

1 Haplotype analyses reveal novel 2 insights into tomato history and 3 domestication including long-distance 4 migrations and latitudinal adaptations

5
6 Running title: Historical long-distance migrations and adaptations of tomatoes
7

8 Authors

9 Jose Blanca^{1*}, David Sanchez-Matarredona¹, Peio Ziarsolo¹, J Montero-Pau¹, Esther van der Knaap^{2,3}, M^a
10 José Díez¹, Joaquín Cañizares¹

11 12 Affiliations

13 ¹ Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, COMAV, Universitat
14 Politècnica de València, Spain.

15 ² Institute of Plant Breeding, Genetics and Genomics, University of Georgia, GA, USA.

16 ³ Department of Horticulture, University of Georgia, GA, USA.

17
18 Author for correspondence: *Jose Blanca

19 jblanca@upv.es

20 Abstract

21 A novel haplotype-based approach that uses Procrustes analysis and automatic classification was used to
22 provide further insights into tomato history and domestication. Agrarian societies domesticated species of
23 interest by introducing complex genetic modifications. For tomatoes, two species, one of which had two
24 botanical varieties, are thought to be involved in its domestication: the fully wild *Solanum pimpinellifolium*
25 (SP), the wild and semi-domesticated *S. lycopersicum* var. *cerasiforme* (SLC) and the cultivated *S. l.* var.
26 *lycopersicum* (SLL). The Procrustes approach showed that SP evolved into SLC during a gradual
27 migration from the Peruvian deserts to the Mexican rainforests and that Peruvian and Ecuadorian SLC
28 populations were the result of more recent hybridizations. Our model was supported by independent

29 evidence, including ecological data from the accession collection site and morphological data.
30 Furthermore, we showed that photosynthesis-, and flowering time-related genes were selected during the
31 latitudinal migrations.
32

33 **Keywords**

34 Tomato, domestication, evolution, haplotype, latitudinal adaptation, hybridization

35 **Introduction**

36 Cultivated plants result from domestication processes that alter the morphology, physiology, and genetics
37 of wild species to benefit human needs and preferences. These processes usually involve a domestication
38 syndrome, which involves modifying a set of traits (Hammer, 1984) favored by humans, and/or that
39 provide growth advantages under cultivation or adaptations to thrive in disturbed habitats (Meyer &
40 Purugganan, 2013). In horticultural crops, these traits usually include larger and more nutritious fruits,
41 robust stems, and reduced seed dormancy (Yang, Li, Tieman, & Zhu, 2019). Selection, bottlenecks, and
42 outcrossing with wild and feral populations are common during domestication. Moreover, domestication
43 histories are intertwined with the history of the agrarian cultures that performed them, and complex
44 migrations and interchanges between different geographic regions have also occurred. Thus, the extant
45 population genetic structure and the patterns of morphological diversity are often complex. In addition to
46 historical interest, the study of these processes has practical implications because they generate knowledge
47 regarding genes and pathways of agronomic interest (Zsögön et al., 2018).

48
49 The fully wild *Solanum pimpinellifolium* L. (SP) and *S. lycopersicum* L. (SL) are two sister Solanaceae
50 species (genus *Solanum* L., section *Lycopersicon* (Peralta, Spooner, & Knapp, 2008), which are capable of
51 interbreeding. SL is split into two botanical varieties: *S. l. var. lycopersicum* L. (SLL) and *S. l. var.*
52 *cerasiforme* (Dunal) Spooner, G.J. Anderson & R.K. Jansen (SLC) (Peralta et al., 2008). SP has been
53 proposed as the species from which the cultivated tomato forms have been domesticated (Peralta et al.,
54 2008). SP is divided into several populations associated with different climates and ecological niches: the

55 dry Peruvian coast, the northern Peruvian and southern Ecuadorian Andean valleys, and the wet northern
56 Ecuadorian coast (Gibson & Moyle, 2020).

57

58 Recent studies have shown that SP likely evolved into SLC before human colonization of the Americas
59 (Razifard et al., 2020). Therefore, an ancestral wild SLC population might have been involved in tomato
60 domestication. SLL is cultivated, whereas SLC comprises a complex mix of wild, semi-domesticated, and
61 vintage Peruvian, Ecuadorian, and Mesoamerican varieties (José Blanca et al., 2015; C. M. Rick & Holle,
62 1990). Furthermore, as a feral and weedy species, SLC colonized subtropical regions worldwide after the
63 arrival of the Europeans in America (C. M. Rick & Holle, 1990).

64

65 The most accepted model for tomato domestication is a two-step process (Jose Blanca et al., 2012; José
66 Blanca et al., 2015; Gao et al., 2019; Lin et al., 2014; Razifard et al., 2020). According to this model, the
67 desert-dwelling, most diverse, and wild Peruvian SP (SP Pe) population comprised the most ancient
68 population. In a slow process unrelated to human activity, SP Pe adapted to the climatic conditions in the
69 Peruvian and Ecuadorian Andean valleys (SP Montane) and the northern humid Ecuadorian regions (SP
70 Ec). Ecuadorian SLC (SLC Ec), which comprises the most diverse SLC population and has the shortest
71 genetic distance to any SP, would be the first SL type derived from SP (Jose Blanca et al., 2012). SLC Ec
72 occupies the humid Amazonian regions in Ecuador closer to the Andes, also known as Ceja de la Montaña
73 (C. M. Rick & Holle, 1990). Afterward, SLC would have moved south from Ecuador to northern Peru,
74 where early farmers might have begun domestication. In Ecuador and northern Peru, SLC accessions with
75 a domesticated fruit morphology were found, and several Peruvian and Ecuadorian cultivated SLCs were
76 collected in markets in the early part of the last century. Finally, the Peruvian cultivated tomatoes would
77 have migrated to Mesoamerica, and there, in a second phase of improvement, SLL emerged.

78

79 However, there are complexities in tomato domestication history that remain to be explained (Jose Blanca
80 et al., 2012; Razifard et al., 2020). For instance, SLC Ec is the most genetically diverse SLC, but it is
81 proposed to be derived from a less diverse population, SP Ec. The conclusions of prior evolutionary

82 genetic analyses were supported, at least partially, using traditional population indices, such as genetic
83 diversity or linkage disequilibrium (LD). Despite being informative, these values can be misleading
84 because they may be accounted by different hypotheses. For instance, high genetic diversity is typically
85 found in ancient and well-established populations and recent admixtures. When several measures are
86 combined, certain hypotheses can be effectively refuted. However, when the evolutionary history is
87 complex, conclusions based on these traditional indices remain tentative. Complex statistical models may
88 be used as alternatives to these nonparametric approaches. However, these complex parametric methods
89 also have limitations because they tend to make unrealistic assumptions, such as the lack of Hardy-
90 Weinberg violations, and/or depend on parameters that are difficult to establish, such as the number of
91 ancestral migrations (Pickrell & Pritchard, 2012; Raj, Stephens, & Pritchard, 2014; Razifard et al., 2020).

92

93 Recently, Razifard et al. (2020) interpreted the high genetic diversity of SLC Ec by assuming that it was an
94 ancient and wild population closely related to SP. However, their data are inconsistent with this
95 hypothesis: SLC Ec appears to be an admixture according to their fastStructure results, and, although we
96 would expect LD to be lower in the older population, SLC Ec had a higher LD than the Mexican SLC.

97

98 Linguistic and historical evidence might complement the genetic data in the study of domestication
99 history. However, there is scant linguistic and historical evidence for tomato, and what is available is
00 ambiguous and subject to different interpretations (Iris Peralta & David Spooner, 2011). Moreover, few
01 tomato archeological remains have been uncovered. This might, at least in part, be caused by the
02 perishability of the tomatoes (Kiple, Ornelas, & Press, 2000; Pickersgill, 2016). As far as we know, there
03 are only two reports of tomato archeological remains, both seeds in coprolites: one in Southern Texas,
04 close to the Mexican border, dated ~2500 B.C. (Reinhard, Chaves, Jones, & Iñiguez, 2008), and one in the
05 Peruvian Ica valley, from ~500 A. D. In both cases the tomatoes were ingested, but there is no information
06 regarding the degree of domestication (Beresford-Jones, Whaley, Ledesma, & Cadwallader, 2011).

07

08 Thus, despite past efforts, none of the tomato domestication models coherently captured all molecular,
09 morphological, and passport data. To gain deeper insights into the domestication history of tomatoes, we
10 developed a new approach based on an unsupervised automatic classification of haplotypic principal
11 coordinate analyses (PCoAs) aligned via Procrustes (Krzanowski, 2000). The results of this analysis imply
12 that SP evolved into SLC during a slow migration from Peru to Mesoamerica and that Peruvian and
13 Ecuadorian SLCs are admixed populations originating from Mesoamerican SLC and Peruvian and
14 Ecuadorian SP. Subsequently, Peruvian domesticated SLCs migrated north to Mexico and then evolved
15 into SLL. Despite differing from the previously proposed evolutionary models, our model agrees with all
16 available evidence, such as LD, genetic diversity, and distance, results from fastStructure (Raj et al., 2014)
17 and TreeMix (Pickrell & Pritchard, 2012), and morphological and collection site ecological data.
18 Moreover, other analyses have shown evidence that the selection of genes associated with photosynthesis
19 and flowering time might have been involved in the long-distance migrations between different climatic
20 types and latitudes.

21 Materials and Methods

22 Accessions and sequences

23 A total of 628 sequenced accessions, obtained from the Varitome project (Gao et al., 2019) and
24 six previous studies (Causse et al., 2013; Lin et al., 2014; Sato et al., 2012; Strickler et al., 2015;
25 Zhu et al., 2018) were included in the study. The sequences were obtained specifically from all
26 SP, SLC, and SLL resequencing experiments publicly available in the Sol Genomics database
27 (solgenomics.net) and the NCBI Sequence Read Archive, and three newly sequenced accessions
28 of Ecuadorian origin. The passport data and mean coverage are listed in Tables S1 and S2.

29 Mapping and single nucleotide polymorphisms (SNPs)

30 All reads were mapped with BWA-MEM (H. Li, 2013) against the latest available tomato
31 reference genome (v.4.0) (Hosmani et al., 2019). After mapping, duplicate reads marked by

32 Picard Tools (<https://broadinstitute.github.io/picard/>) and reads with a mapping quality lower than
33 57 were removed. For variant calling, the first and last three bases of every mapped read were
34 ignored. SNP calling was conducted by FreeBayes, with a minimum coverage of 10, a minimum
35 alternative allele count of two, an alternative allele frequency of 0.1, and a maximum number of
36 searched alleles of five (Garrison & Marth, 2012).

37

38 After SNP calling, genotypes with coverage less than five were set to missing, and variants with a
39 calling rate lower than 0.6, having observed heterozygosity greater than 0.1, or that were located
40 on chromosome 0 were removed. Afterward, accessions with a calling rate less than 0.85 were
41 removed from the analysis. Of the 25.3 million variants initially generated by FreeBayes, 11.8
42 million were retained after filtering out low-quality variants, and 2.02 million were present in the
43 euchromatic regions. The variant filtering code is available in
44 `create_tier1_snps_excluding_low_qual_samples_and_chrom0.py`.

45

46 Heterochromatic region determination was based on the recombination rate, and this rate was
47 determined by interpolating data from the publicly available SolCAP genetic map constructed
48 with 3,503 genotyped markers genotyped in the EXPEN 2000 F2 population (Sim et al., 2012). A
49 region was considered heterochromatic when its physical distance-to-genetic distance ratio was
50 lower than 1e-6.

51

52 We included all codes used to perform the analysis from variant filtering to figure creation in the
53 supplementary materials and a public GitHub repository
54 (https://github.com/bioinfcomav/tomato_haplotype_paper). The code developed was thoroughly
55 tested, and the tests are also available in GitHub and can be run to check the correctness of the

56 implementation. The tests for the calculated indices were also checked against standard
57 population genetic software (Peakall & Smouse, 2012).

58
59 For most haplotypic analyses, the highly correlated heterochromatic regions were ignored, and to
60 speed up the computations, only variants with at most 10% missing genotypes were used,
61 resulting in a working set of 33,790 variants. For these haplotype analyses, the variants were
62 phased and imputed using Beagle (Browning, Zhou, & Browning, 2018), and the relevant script
63 used was phase_and_impute_with_beagle.py.

64 **Aligned haplotypic PCoAs and automatic haplotypic classification**

65 The euchromatic regions were divided into segments. For each segment with at least 20 markers,
66 a PCoA was conducted using the haplotypic alleles (two alleles per diploid individual)
67 reconstructed after imputing and phasing. First, a pairwise distance matrix was constructed by
68 calculating edit distances. PCoAs were then performed according to the methods of Krzanowski
69 (Krzanowski, 2000). PCoAs from different genomic segments were then aligned using the SciPy
70 orthogonal Procrustes function (Krzanowski, 2000). The Procrustes algorithm uses two sets of
71 points in a space and then calculates and applies a linear transformation (e.g., rotates, translates,
72 and/or reflects) to the second set of points to align it as best as possible to the first set. In this case,
73 all the PCoA results were aligned to obtain the final set of aligned PCoA data. The code that
74 implemented this functionality is located at haplo_auto_classification.py, haplo_pca.py, and
75 procrustes.py.

76
77 Once all PCoA data were aligned, the haplotypes were automatically classified using an
78 unsupervised classification algorithm. Before classification, the outlier haplotypes were removed
79 using the isolation forest algorithm implemented by the scikit-learn Python library, with the

80 contamination parameter set to 0.070 (Liu, Ting, & Zhou, 2012). Because of memory allocation
81 limitations, outlier detection and unsupervised classification could not be conducted with the
82 entire aligned PCoA haplotype matrix. This matrix has more than half a million rows, and these
83 algorithms require a memory allocation that grows geometrically with the number of rows. To
84 solve this problem, thinned input matrices were input into the algorithms. The thinned matrices
85 were constructed by calculating the Euclidean distance between haplotypes, and when several
86 haplotypes were closer than 0.0015, only one was retained in the thinned matrix. The automatic
87 classification depended only on the haplotype location in the PCoA, such that once the
88 classification was completed, all haplotypes that were close to the one present in the thinned
89 matrix shared the same classification. We are aware that excessive thinning could alter the
90 haplotype cluster density in the aligned PCoA data, which would affect the unsupervised
91 classification. Therefore, care was taken to minimize the thinning. The thinning distance chosen
92 was the minimum distance that created a matrix capable of being held in the computer's memory.
93 In total, 45,982 of the original 526,240 haplotypes were ultimately present in the thinned matrix.

94
95 Haplotypic unsupervised classification was performed in two steps. First, the haplotypes were
96 classified using the agglomerative algorithm implemented by scikit-learn (Pedregosa et al., 2011).
97 This agglomerative approach has one limitation: it forces the classification of each haplotype. To
98 solve this problem, the automatic classification was refined in a second step by the KNeighbors
99 supervised classification algorithm that uses the classification generated by the agglomerative step
100 as an input. KNeighbors was configured to use 30 neighbors (Pedregosa et al., 2011).

101 Population structure

102 The accessions were classified into populations accounting for their taxonomic and collection
103 origin passport data and a series of variant-based (not haplotypic-based) hierarchical PCoAs. A

!04 population was defined when a set of contiguous accessions in a PCoA were collected from the
!05 same geographic area or were classified in the same taxon and shared a similar haplotype
!06 composition inferred from the previously calculated haplotypic-based PCoAs. The variant-based
!07 PCoAs were performed only with variants with a major allele frequency lower than 0.95, a
!08 missing genotype rate lower than 0.1, and presence in the euchromatin. To avoid
!09 overrepresentation of any genomic region, the euchromatin was divided into segments of 100 kb,
!10 and from each segment, only the most variable variants were retained. Using the resulting
!11 variants, the Kosman distances were calculated (Kosman & Leonard, 2005), and a PCoA was
!12 conducted (Krzanowski, 2000). The relevant scripts used include both pcas_do.py and pca.py.

!13

!14 FastStructure was also used to infer population composition (Raj et al., 2014). This method was
!15 run with Ks ranging from two to 11 with the default settings. For this analysis, only the variants
!16 with a maximum major allele frequency of 0.95 and were located in the euchromatic regions were
!17 used. The code used was embedded in the fastructure_run.py.

!18 Parametric population history reconstruction

!19 We used TreeMix to reconstruct the population history using variants characterized by low LD
!20 (Pickrell & Pritchard, 2012). Thus, the variants were selected by generating haplotype blocks of
!21 consecutive SNPs in the genome that allowed only a maximum correlation threshold between its
!22 genotypes. From every haplotype block, only one variant was selected at random for use by
!23 TreeMix. Branch support was calculated by bootstrapping, and in each bootstrap iteration,
!24 random variants were used from every linked genomic block. Different TreeMix analyses with
!25 different LD thresholds were performed to test the robustness of the results. The code can be
!26 found in the treemix.py file.

!27 Population diversity and LD

!28 To evaluate the population diversity, various parameters were calculated, such as the number of
!29 polymorphic variants (95% threshold) and unbiased Nei diversity (Nei & Roychoudhury, 1974).
!30 Additionally, to reflect the haplotypic diversity, several indices were evaluated for each 500 kb
!31 genome segment: the mean number of different haplotypes or the mean number of variants found
!32 in a genomic segment.

!33

!34 Some of these parameters could potentially be affected by the number of individuals available in
!35 each population. Two strategies accounted for this potential pitfall. In the first strategy, diversities
!36 were calculated using the same number of accessions for each population. The number of
!37 accessions was chosen to be 75% of the number of accessions of the population with the fewest
!38 accessions in the analysis. The indexes were then calculated 100 times, with different accessions
!39 randomly chosen for each population in each iteration. When all 100 values were obtained, the
!40 mean and confidence interval of the mean were used to represent the diversity of each population.

!41 In the second approach, a complementary rarefaction analysis, in which accessions were added
!42 one by one to each population, was performed. The script files used to perform these calculations
!43 were diversities_vars.py and diversities_haplos.py, respectively.

!44

!45 The LD was calculated using only polymorphic variants (95% threshold). LDs between markers
!46 that were up to 1000 kb apart were calculated, and LD decay was estimated using locally
!47 weighted scatterplot smoothing (LOWESS) implemented by the statsmodels Python library
!48 (www.statsmodels.org). Finally, the LD of 10 kb was obtained from the adjusted curve. The
!49 relevant code is located in ld.py, ld_decay_plot.py, and ld_bar_plot.py.

!50 Introgression detection and functional analysis

!51 ABBA-BABA indices were calculated using euchromatic variants (Green et al., 2010).

!52 Additionally, the mean values per genome region were obtained and plotted to look for

!53 introgressions in Ecuadorian and Peruvian SLC. These genomic regions were 50 kb in length. The

!54 relevant scripts are abba.py and there_and_back_abba.py.

!55

!56 Additionally, the alleles potentially introgressed from SP into SL were examined using the

!57 method below. Alleles in the SLC MA population were considered reference SL alleles, and

!58 alleles found in all other SLC populations were labeled as introgressed when they were not found

!59 in SLC MA but were present in an SP population at a frequency higher than 10%. SLC MA was

!60 used as a reference because the results showed that this population had the fewest Peruvian and

!61 Ecuadorian haplotypes. Once each allele for each variant was labeled as introgressed or not

!62 introgressed, the allele introgression frequency was calculated for each variant. The

!63 implementation can be found in the introgressions.py file.

!64

!65 Morphological analysis

!66 Morphological analysis based on a characterization of 375 accessions available at the Tomato

!67 Genetic Resource Center (TGRC) and the COMAV GenBank was performed using the accessions

!68 for which images were available. Each accession was evaluated for basic inflorescence, leaf,

!69 stem, and fruit traits (Table S1, Fig. S15).

!70

!71 Morphological classification was conducted via principal component analysis (PCA).

!72 Morphological traits were treated as ordinal traits. For the PCA, accessions with more than seven

!73 missing values were removed, and any missing data in the remaining accessions were filled by the

!74 means. The data for each trait were standardized using the StandardScaler function of the scikit-
!75 learn Python library, and PCA was performed using the PCA functionality implemented in the
!76 same library (Pedregosa et al., 2011). The code is located in the morphological.py file. Finally,
!77 morphological classification was performed manually by inspecting the morphological PCA data
!78 and the taxonomic and collection site passport information.

!79

!80 The passport data were manually curated to determine the collection source information. The final
!81 collection source for each accession was obtained by combining the information stated in the
!82 collection source passport field and, when available, the annotations and images made during the
!83 collection expeditions.

!84 **Results**

!85 **Haplotypic PCoAs and automatic classification**

!86 The euchromatic regions of the entire genome were divided into 440 segments (0.5 Mb), resulting
!87 in a total of 526,240 haplotypes (two per plant accession per 440 segments). The output of the
!88 PCoAs conducted with the haplotypes of each segment was aligned using Procrustes, resulting in
!89 a triangular-like structure that matched the structure of the main taxonomic groups (Fig. 1). The
!90 haplotypes were automatically classified into three types using an unsupervised clustering
!91 algorithm. The three haplotype types were named according to the taxonomic groups in which
!92 they were usually found: hPe (most abundant in Peruvian SP), hEc (most abundant in Ecuadorian
!93 SP and SLC), and hSL (most commonly found in SLC and SLL). The chosen number of
!94 haplotype types, three, was in good agreement with the number of ancestral populations suggested
!95 by the fastStructure marginal likelihoods (Fig. S2). However, the Calinski-Harabasz (CH)
!96 clustering score, an index commonly used to evaluate clustering performance, suggested fewer

197 types (Fig. S2). This might have been caused by the intermediate haplotypes found between the
198 main clusters, likely caused by recombinant and intermediate haplotypes and by the uneven
199 representation of the different haplotype types. SLL accessions were overrepresented, with 44%
200 of the sequenced accessions, whereas the SP Ec, a traditionally ignored population, was
201 underrepresented with only 2.5% of the accessions. To determine the effect of the number of
202 haplotype types, haplotype classification was also performed with two, three, four, and five
203 haplotype types (Fig. S3). When two types were used, the haplotype mainly divided SP from SL,
204 whereas when more types were allowed, SP was divided into subtypes, such as Ecuadorian and
205 Peruvian SP for three types. The relationship between SL and SP, the main focus of the current
206 analysis, remained unchanged when the number of haplotype types was altered.

207
208 Haplotypic classification was used to analyze the genomic composition of each accession (Fig. S4
209 and Fig. S5). For example, the haplotype composition for the Cervil accession (Causse et al.,
210 2013) is shown in Fig. S6. The haplotype classification and location in the aligned PCoA results
211 showed that this accession comprised hPe and hSL haplotypes. Therefore, it is likely that Cervil is
212 the result of hybridization between Peruvian SP and cultivated tomato.

213 **Accession classification and haplotype composition**

214 The accessions were classified into genetic groups through a series of hierarchical PCoAs
215 calculated from the genetic distance matrix (Fig. 2 and Fig. S7), and the information provided by
216 the geographic and taxonomic passport data (Tables S1 and S2) and their haplotype composition
217 (Figs. S3, S4, and S5). SP was split into three populations: SP Pe (Peru), SP Montane, and SP Ec
218 (Ecuador). The most abundant SLC populations were SLC MA (Mesoamerica), SLC Pe, and SLC
219 Ec. SLL was composed of SLL Mx (Mexico), SLL vintage, and SLL modern (Table S2). Other
220 minor populations were noted, such as SLC Co (Colombia), but they were represented by only a

121 few accessions; thus, they could not be used in all analyses. The overall genetic group separation
122 was similar to that used in previous studies (Fig. S8) (Razifard et al., 2020).

123
124 The haplotype composition of each population was assessed by plotting the haplotypes of the
125 accessions belonging to each population in the aligned PCoA (Fig. 3 A). The ancestral population
126 composition calculated from the fastStructure results was similar to the haplotype composition at
127 the population (Fig. 3 B and C) and individual level (Fig. S5).

128
129 To determine if the size chosen for the genome segments could affect the haplotype analyses, they
130 were repeated with different genome segment sizes (100, 500, and 1000 kb), and the results were
131 similar in all cases (Fig. S9).

132
133 The genetic diversity of the haplotypes that belong to one of the haplotype types (hPe, hEc, hSL)
134 was calculated for each population (Fig. 4). SP Pe was the most diverse population for haplotype
135 type hPe, SP Ec for hEc, and Mesoamerican SLC for hSL. These diversity results agreed with the
136 fastStructure results, which also suggested that three haplotype types (hPe, hEc, hSL)
137 corresponded to the three ancestral populations (Fig. 3 C). Furthermore, the haplotypes associated
138 with hPe and hEc were most abundant in the extant SP Pe and SP Ec populations, respectively
139 (Fig. 3 B). The SL populations were genetically close and contained mostly hSL haplotypes.

140
141 Overlap of the divisions among Peru, Ecuador, and SL, the population haplotype composition had
142 an evident pattern of secondary contacts. For instance, although most haplotypes found in SLC Pe
143 were hSL, certain hPe and hEc haplotypes were also present in this population. Remarkably, a
144 quarter of the haplotypes found in the Ecuadorian SLC were not hSL but hEc haplotypes; thus,
145 they might have been introgressed from SP Ec. To further investigate the complex patterns of

146 gene flow, we employed TreeMix (Fig. S10). According to the TreeMix analysis (Fig. S10 A)
147 SLC MA appeared to be basal to all other SLCs. SLC Pe and SLC Ec were then derived from
148 SLC MA by acquiring introgressions from SP Pe and SP Ec, respectively. These results were also
149 in agreement with the ABBA-BABA analyses (Green et al., 2010). For SLC Ec, SLC MA, SP Ec,
150 and SP Pe, the D statistic was -0.23, whereas for SLC Pe, SLC MA, SP Ec, and SP Pe, the D
151 value was 0.43. In both cases, the p-value was 0. These D statistics were compatible with SLC Ec
152 receiving introgressions primarily from SP Ec, whereas SLC Pe would have introgressed genomic
153 segments mainly from SP Pe.

154 Diversity and LD

155 The overall number of polymorphic (95% criteria) genetic variants (Fig. 5 A), the mean number
156 of variants found in a genomic region (Fig. 5 B), and the unbiased Nei genetic diversity (Fig. S11)
157 yielded similar results. According to these indexes, the most diverse populations were the
158 Peruvian and Ecuadorian SP and SLC and modern SLL. A relatively low genetic diversity
159 characterized SLC MA, SLC World, and particularly SLL Mx. These results matched those of
160 previous analyses (Jose Blanca et al., 2012; José Blanca et al., 2015), but contrasted with those of
161 another diversity measure, the mean number of different haplotypes found in a given genomic
162 region (Fig. 5 D). According to this index, the SP populations were the most diverse, whereas all
163 SLC populations exhibited lower levels of diversity. Although SLC Ec and SLC Pe were
164 seemingly highly variable according to the number of polymorphic variants, these populations did
165 not have many different haplotypes. These results also indicated that SLC Ec and SLC Pe might
166 result from an admixture of an ancient SLC population with an SP, as already suggested by the
167 haplotype composition, the fastStructure, the TreeMix, and the ABBA-BABA analyses.
168 Furthermore, LDs of recently created populations or populations that recently incorporated

169 genetic material were usually high, and the SLC population with the lowest LD was SLC MA
170 (Fig. 5 C).

171 Latitude-related selection

172 According to all previous researchers and all the evidence presented, SP Pe is the oldest
173 population; thus, SLC MA would result from northward migration. In this migration, some
174 genomic regions could have been selected. To study the possibility of a selective sweep, the
175 expected heterozygosity was calculated along the genome for SLC MA (Fig. 6 A). SLC Ec and
176 SLC Pe appeared to be derived from SLC MA; however, according to the haplotype, TreeMix,
177 fastStructure, and ABBA-BABA analyses, both have introgressions from SP. Thus, we calculated
178 the D, BABA, and ABAA indices along the genome assuming the following evolutionary
179 schemas: 1) SLC Ec, SLC MA, SP Ec, and SP Pe and 2) SLC Pe, SLC MA, SP Ec, and SP Pe
180 (Fig. 6 B, Fig. S12). Some genomic regions have an introgression frequency, such as the
181 chromosome 1 end, or the region just before the pericentromeric region on chromosome 4. We
182 analyzed the possible relationship between the diversity in SLC MA and the introgression rate in
183 SLC Ec (Fig. 6 C). The regions more introgressed in SLC Ec had lower diversity in SLC MA.
184 This result appeared to indicate that the selection process experienced during the northward
185 migration might have been partially reversed by introgressions from SP after the Ecuadorian
186 colonization by SLC. Additionally, we tested this hypothesis by calculating the frequency of SP
187 alleles in SLC Ec that were not present in SLC MA, and we related these possible introgressions
188 with the SLC MA diversity (Fig. S13). In this analysis, the genomic regions with an abundance of
189 SP alleles were also correlated with regions with lower diversity in Mesoamerican SLCs.
190
191 We inspected the genes found in regions with high introgression rates in SLC Ec and SLC Pe and
192 low diversity in SLC MA (Table S3). Some regions, such as those on chromosomes 2, 8, and 11,

193 were large and comprised hundreds of genes, whereas others, such as those on chromosome 7,
194 were smaller. Only five genes were identified in this region, one of which was Solyc07g043270, a
195 FAR-red elongated hypocotyl 3-like protein-encoding gene. FAR-red genes respond to light and
196 have been related to flowering time and other processes regulated by light conditions (G. Li et al.,
197 2011; Xie et al., 2020). FAR-red genes were detected in three of these regions. On chromosome 4,
198 two of the 22 genes found were a spermidine synthase (Solyc04g026030) that might also be
199 involved in the regulation of flowering time (Imamura, Fujita, Tasaki, Higuchi, & Takahashi,
200 2015). Additionally, an Agamous protein was possibly involved in flowering and fruit
201 development (Pan, McQuinn, Giovannoni, & Irish, 2010). In total, three Agamous genes were
202 found in these regions. On chromosome 2, Solyc02g021650, a component of the light signal
203 transduction machinery involved in the repression of photomorphogenesis (Lieberman, Segev,
204 Gilboa, Lazar, & Levin, 2004), and on chromosome 6, Solyc06g050620, a reticulata-related
205 family gene associated with chloroplast development, among other processes, was detected
206 (Pérez-Pérez et al., 2013).

207 Mexican SLL origin

208 To further determine the relationship between the Mesoamerican and Peruvian SLCs and the
209 Mexican SLL, a detailed haplotype-based analysis was conducted (Fig. 7). The populations with
210 the most private haplotypes were the Mesoamerican SLC and Peruvian SLC populations. Many
211 private Peruvian SLC haplotypes appeared to be the result of introgressions from Peruvian and
212 Ecuadorian SP. The Mexican SLL had the fewest private haplotypes. The two population pairs
213 that shared the most haplotypes were Mesoamerican and Peruvian SLC and Peruvian SLC and
214 Mexican SLL; however, despite their geographic closeness, SLC MA and SLL Mx shared fewer
215 haplotypes. Thus, according to these results, it is plausible that Mexican SLL originated from the
216 Peruvian SLC and not from the geographically closer Mesoamerican SLC.

¶17 Morphological analysis

¶18 Morphological characterization of SP, SLC, and SLL was also conducted. A PCA for leaf-,
¶19 inflorescence-, fruit-, and stem-related traits was used to cluster accessions into several
¶20 morphological types (Fig. 8 A, Fig. S1, Fig. S14, and Fig. S15). Three morphological types were
¶21 found in SP, of which the first featured longer inflorescences, wider petals, and frequently, striped
¶22 fruits, and curved and exerted styles compared with those of the other types. This first
¶23 morphological type was characteristic of the Peruvian SP. Compared with the other types, the
¶24 second type comprised mostly northern Ecuadorian SP accessions and featured slightly larger
¶25 fruits, which usually showed a distinct transversally elongated shape (peanut-like shape). Finally,
¶26 the intermediate SP morphological type found in Peru and Ecuador was characteristic of
¶27 accessions found in the mountainous valleys between Peru and Ecuador. SLC was mainly divided
¶28 into three morphological types: SLC small, SLC big, and SLC Ecu. SLC small had small fruits,
¶29 with sizes ranging from small SP fruit size to cherry size, whereas SLC big had relatively large
¶30 fruits that varied in size from cherry size to full-size commercial fruits. These relatively large
¶31 fruits were frequently ribbed and almost always flat. Fruit size was found to be associated with
¶32 stem width. Finally, the endemic Ecuadorian SLC form was characterized as having a mixture of
¶33 characteristics between different SLC and SP types: it had cherry-sized fruits like those of SLC
¶34 but folded back petals and longer inflorescences, similar to the intermediate SP type, and no stem
¶35 pilosity and some transversally elongated fruits, such as those of Ecuadorian SP.

¶36

¶37 These morphological types were associated with molecularly defined populations (Fig. 8 B). For
¶38 this analysis, SLC Pe was divided into two genetic subpopulations, northern Peruvian SLC (SLC
¶39 Pe N) and southern Peruvian SLC (SLC Pe S) (Fig. S7 B and C), which exhibited differential
¶40 morphological characteristics, despite being closely genetically related. The SP Pe and SP Ec
¶41 genetic groups roughly corresponded to the Peruvian and Ecuadorian SP morphological types.

|42 The SP Montane population was characterized by the intermediate type, although this type was
|43 also found in other SP populations. Mesoamerican SLC primarily produced small fruits, whereas
|44 northern Peruvian SLC was characterized mainly by SLC big or SLL morphological types. The
|45 other American SLC populations, southern Peruvian SLC and Ecuadorian SLC were
|46 morphologically variable and included morphological types that produced large and small fruits,
|47 and in the Ecuadorian case, also the typical Ecuadorian SLC-type.

|48

|49 Additionally, an analysis of the collection sites taken from the passport data was performed (Fig.
|50 S16). Undisturbed environments were labeled natural, whereas accessions collected in human-
|51 altered environments, such as roadsides, were considered ruderal. Semi-cultivated or cultivated
|52 accessions were collected mainly from backyards. The collected data were manually curated, and
|53 sometimes, these passport data were complemented by the information obtained from images of
|54 the collection sites. A total of 262 accessions had associated collection data. Most SP accessions
|55 (160 vs. 10) and 65% (17 vs. 9) of the SLC MA accessions were wild or ruderal, whereas the rest
|56 were weedy or semi-cultivated. These findings contrasted with the data concerning Ecuadorian
|57 SLC, which was semi-cultivated or cultivated in 89% of the occasions (25 vs. 3 accessions).

|58

|59 Discussion

|60 Previous studies have reported a complex history of SLC, the wild and semi-domesticated variety
|61 related to the cultivated tomato (Fig. 9) (Jose Blanca et al., 2012; José Blanca et al., 2015;
|62 Razifard et al., 2020; C. M. Rick & Holle, 1990). However, even with the available genomic
|63 evidence, no detailed tomato evolutionary model capable of accounting for all the empirical
|64 evidence has been produced. In the current analysis, the wild and cultivated genetic diversity
|65 present among SP, SLC, and SLL were analyzed considering all the publicly available whole-

166 genome resequencing data mapped to the latest tomato genome reference (v4.0) (Hosmani et al.,
167 2019), as well as the morphological and passport data gathered from various gene banks.
168 Moreover, we developed a novel method to perform a genome-wide haplotypic analysis by
169 combining Procrustes-aligned PCoA output with automatic unsupervised classification. This new
170 method allowed a detailed and quantitative inspection of the haplotype composition of each
171 accession and population; thus, it was useful for studying gene flow, introgression, and migration
172 without the need for any assumptions related to the Hardy-Weinberg equilibrium or reproductive
173 system of the species involved. The only limitation was sufficient LD; otherwise, the haplotypes
174 would not be informative. To our knowledge, Procrustes has never been used for this purpose,
175 and its use in population genetics has been restricted to the alignment of genomic PCA data and
176 geographic maps (Wang et al., 2010) or alignment of PCA data generated from different SNP
177 datasets (Wang, Zhan, Liang, Abecasis, & Lin, 2015). The domestication model obtained was
178 supported by traditional population genetic indices, parametric statistical models, and
179 morphological and passport data. We hope that similar approaches can be used to study the
180 complex domestication histories of other species.

181 **Three original wild populations**

182 This novel analysis provided empirical evidence that suggests a tomato evolutionary model that
183 accounts for all previous problematic results (Fig. 9 A). The haplotypic PCoA results, in
184 agreement with fastStructure, suggested the existence of three haplotype types (hPe, hEc, and
185 hSL) related to the main tomato taxonomic groups (Fig. 3 B and C and Fig. S5). The haplotype
186 composition, fastStructure, and genetic diversity of each type of haplotype (Fig. 4) suggested that
187 the three haplotype types (hPe, hEc, and hSL) originated in three ancient populations related to
188 the extant SP Pe, SP Ec, and SL MA populations (Fig 9. A). SP Pe, the only population,
189 composed mainly of hPe haplotypes, was also the most diverse population. Owing to its diversity

190 and abundance, this population has been considered in all previous studies as the center of origin
191 for SP (Charles M. Rick & Fobes, 1975). hEc haplotypes were mainly present in the two
192 Ecuadorian populations, namely, SP Ec and SLC Ec (Fig. 3 A and B), but they were more
193 common and diverse in SP Ec (Fig. 4); thus, they appear to be ancient Ecuadorian SP haplotypes
194 and not SLC haplotypes.

195

196 All SLC populations, distributed from Mexico to southern Peru, were genetically close and
197 composed mainly of hSL haplotypes. However, SLC MA was the most ancient SLC; its hSL
198 haplotypes were the most diverse (Fig. 4) and exhibited the lowest LD (Fig. 5 C).

199

200 Passport data represent additional completely independent evidence in favor of the ancient origin
201 of the SLC MA (Fig. S16). In Mexico, SLC has been collected mostly as a wild species in natural
202 or disturbed environments and not under cultivation. Unfortunately, collectors were mainly
203 interested in the degree of cultivation and did not differentiate between wild and ruderal
204 environments. However, a recent study that involved an on-site evaluation reported wild SLC in
205 tropical and mesophilic forests and shrublands (Álvarez-Hernández, Cortez-Madrigal, & García-
206 Ruiz, 2009). This abundance of wild Mesoamerican SLC contrasted with its absence in the
207 Andean region. In northern Peru and Ecuador, SLC was mainly cultivated or semi-cultivated in
208 backyards. Semi-cultivated plants are those that, despite seldomly being planted, are cared for by
209 backyard owners, as reported by Rick and Holle (1990). To our knowledge, Ecuadorian and
210 northern Peruvian SLCs have never been reported in natural environments. Moreover, some
211 Ecuadorian SLCs are commercially cultivated and have been mistakenly collected as vintage
212 SLLs because they produce large fruits and are sold in markets (José Blanca et al., 2015). In
213 southern Peru SLC, the ecology of SLC is different and is commonly found in disturbed

i14 environments. This SLC behavior has also been observed in most other subtropical areas
i15 worldwide. Thus, SLC has become a very successful invader in human-modified environments.
i16
i17 Mesoamerican and Andean hSL haplotypes have had no time to differentiate, indicating that the
i18 migration from Mesoamerica to Peru and Ecuador resulted from a rapid and recent event. Ruderal
i19 and weedy behavior could explain why SLC migrated back from Mesoamerica to Ecuador. SLC
i20 could have arrived in the Andean region from Mesoamerica as a weed associated with importing
i21 other crop species, such as Mesoamerican maize. Archeological records indicate that maize
i22 arrived in Ecuador approximately 7000–5500 calibrated years before present (Grobman et al.,
i23 2012; Meyer & Purugganan, 2013). If this hypothesis is true, it implies that the weedy SLC that
i24 arrived in the Andean region would have produced small fruits. The morphological
i25 characterization of the extant Mesoamerican SLC agrees with this hypothesis. Mesoamerican
i26 SLC typically produces small fruits. However, without direct archeological evidence, any
i27 hypotheses regarding the fruit phenotypes of populations thousands of years old are, by necessity,
i28 somewhat speculative, especially in populations that have undergone extensive migrations.
i29
i30 Moreover, haplotype composition, fastStructure, TreeMix, and ABBA-BABA results clearly
i31 showed that the Ecuadorian and Peruvian SLC populations were admixtures between SLC MA
i32 and SP, probably created after SLC MA migrated south to the Amazonian region and introgressed
i33 some Ecuadorian and Peruvian alleles. However, when the TreeMix analysis was conducted with
i34 less stringent LD thresholds (Fig. S10 B), it showed different tree topologies. Therefore, caution
i35 is advised when interpreting the TreeMix results. This lack of robustness is a limitation
i36 acknowledged by the TreeMix authors (Pickrell & Pritchard, 2012). Furthermore, it might have
i37 caused problems in the analysis conducted by Razifard et al. (2020) with an LD threshold that
i38 overrepresented the highly linked tomato pericentromeric regions.

i39

i40 Based on the high Nei diversity found in SLC Ec, all previous studies proposed SLC Ec and not
i41 SLC MA as the oldest SLC population (Jose Blanca et al., 2012; Lin et al., 2014; Razifard et al.,
i42 2020) (Fig. 9 B and C). However, this diversity index was calculated using all haplotypes, which
i43 was also found in the current study (Fig. 5 A and B). Moreover, the previous models struggled to
i44 explain how the highly diverse SLC Ec could have been derived from the genetically close but
i45 less diverse SP Ec, and they all proposed additional secondary contacts between SP and SLC to
i46 explain the high SLC Ec Nei diversity. However, this proposal undermined the main evidence
i47 used to appoint SLC Ec as the oldest SLC.

i48

i49 **There and back**

i50 The wide range of latitudes covered by the wild SP and SLC plants suggests that, in the
i51 northward migration of SP from Peru to Mexico, which became SLC, there should have been
i52 some selection related to latitudinal adaptation. Moreover, some of the adaptations associated
i53 with the northern latitudes could have been detrimental in Ecuador and might have been reverted
i54 in the southward trip of SLC to Ecuador. However, given that the SLC southbound migration was
i55 too fast for many new haplotypes to arise, we hypothesized that the alleles used in the
i56 readaptation of SLC to Ecuadorian latitudes would have been mainly introgressed from
i57 Ecuadorian SP. This hypothesis was successfully tested by calculating the ABBA-BABA
i58 statistics. The introgressions detected were concentrated in specific genomic regions (Fig 6 and
i59 Fig. S12). Moreover, many of these regions with SP introgressions have lower expected
i60 heterozygosity in SLC MA (Fig 6 C). This result indicated that many regions that suffered
i61 selective sweeps in the slow northward migrations recovered the original SP allele in the fast
i62 southward migration by introgression.

i63

i64 We manually inspected the genes located in these genomic regions (Table S3). Some regions
i65 might have been selected to adapt the plants to new lighting conditions. For example, in the
i66 region detected on chromosome 7, there are only five genes, and one is a FAR-like gene involved
i67 in light detection (Xie et al., 2020). In total, of the 13 analyzed regions, three included FAR-like
i68 genes, and one included a light response gene (Solyc02g021650). Other regions showed
i69 flowering-related genes: three had Agamous-like genes (Solyc06g161130, Solyc05g056620,
i70 Solyc04g160300), possibly involved in the regulation of flowering (Pan et al., 2010), and one had
i71 a possible flowering time regulation gene (Imamura et al., 2015). These regions also included a
i72 chloroplast development gene (Solyc06g050620) (Pérez-Pérez et al., 2013) and a photosystem
i73 protein (Solyc06g009950). Some of these regions are quite large, they include many genes, and it
i74 is impossible to know with certainty which gene was selected because most introgressed genes
i75 would have merely been carried over along with the selected ones. However, the abundance of the
i76 biological functions in these regions indicates that they are involved in latitudinal adaptations.
i77 The genetic studies required to evaluate these possibilities, gene by gene, might be accelerated by
i78 the public availability of hundreds of F2 populations of many of the accessions involved in the
i79 current study with SP, SLC, and SP parents (Mata-Nicolás et al., 2020).

i80

i81 This relationship between flowering genes and latitudinal adaptation has also been detected in
i82 other species. For instance, in potatoes, the southern wild species eased the introduction of
i83 cultivated potatoes to southern latitudes in Chile (Hardigan et al., 2017). Additionally, Cui et al.
i84 (Cui et al., 2020) observed the selection of genes related to heading date in the northward
i85 expansion of rice cultivation. In wheat and barley, photoperiod sensitivity arose when these crop
i86 species emerged from the Fertile Crescent (Meyer & Purugganan, 2013). Unfortunately, these
i87 resources are not available for all species. Concerning pumpkins and gourds, for instance, another

i88 American domesticate, they could not be transferred effectively between latitudes and were
i89 domesticated independently from different species in different regions (Kates, Soltis, & Soltis,
i90 2017).
i91
i92 Therefore, the original wide range of latitudes covered by wild tomato plants might have created a
i93 wealth of allelic diversity that breeders could actively use to adapt tomato varieties to different
i94 latitudes worldwide. This might prove to be a key characteristic in the adaptation to climate
i95 change in the near future.

i96 Two-step domestication

i97 Both Blanca et al. (2015) and Razifard et al. (2020) proposed a two-step domestication
i98 evolutionary model (Fig 9. B and C). According to these models, SLC would have been
i99 domesticated in northern Peru and then moved to Mesoamerica, where it was finally improved
i00 and transformed into SLL. The analyses and evidence shown in the current study are in agreement
i01 with this two-step domestication. The Mexican SLL is closely related to the Peruvian SLC. SLL
i02 Mx has few novel alleles and shares most of its haplotypes with SLC Pe, with some being SP Pe
i03 introgressions. Therefore, SLL Mx could result from improvements in local plants originally
i04 imported from northern Peru (Fig. 7). This close relationship between SLC Pe and SLL Mx
i05 constitutes indirect evidence in favor of Andean domestication. If there were semi-domesticated
i06 SLC in Mexico, Mexican growers would have probably derived SLL from it and not from
i07 imported Peruvian SLC.
i08

i09 Moreover, northern SLC Pe and SLC Ec, which, according to the proposed evolutionary model,
i10 are related to the oldest cultivated populations, were collected mainly from backyards, whereas in
i11 Mesoamerica, SLC was mainly wild and ruderal. Additionally, according to the morphological

512 PCA (Fig. 8 A), the large-fruited SLC morphological type, typical of northern Peruvian SLC, was
513 very close to the Mexican SLL, whereas the small-fruited SLC-type, typically found in SLC MA,
514 was located between SP Ec and the large-fruited SLC. Thus, the sequence suggested by this
515 morphological analysis would be as follows: SP Ec, small SLC (typical of Mesoamerican SLC),
516 large-fruited SLC (typically found in northern Peru), and SLL. Therefore, there is a match
517 between the evolutionary model suggested by morphological, passport, and genetic evidence.
518 Most traits, such as style exertion, petal position and width, and fruit shape, varied monotonically
519 along this sequence (Fig. 8 C). Assuming this progression, leaf type and margin would have
520 already acquired its typical cultivated form in SLC MA; however, petal width would have
521 decreased until its minimum was reached in SLC Pe N, and this population would also be the first
522 one without folded back petals. Inflorescences gradually became more irregular starting with SLC
523 MA and reached a maximum in SLL Mx, a trend shared by the flat and ribbed fruits that would
524 have appeared in SLC MA and SLC Pe N, respectively. Razifard et al. (2020) noticed this same
525 pattern of small-fruited SLC in Mesoamerica. However, because they thought Peruvian and
526 Ecuadorian SLC to be older than Mesoamerican SLC, they proposed a reduction in fruit size
527 during the migration out of the Andean region and a redomestication in Mesoamerica. The model
528 presented in the current study proposes a smoother domestication process (Fig. 8), and it explains
529 why the same domesticated alleles were found in Ecuador, Peru, and Mesoamerica (José Blanca
530 et al., 2015).

531 **Conclusions**

532 The new analysis method based on Procrustes and automatic haplotype classification allowed us
533 to propose a new hypothesis for the complex evolution of wild and cultivated tomato plants. The
534 wild populations were Peruvian and Ecuadorian SP, and Mesoamerican SLC. After migrating
535 back to Ecuador and Peru, SLC was domesticated, and the Mexican SLL would have been

536 derived from these improved materials. This model is backed by traditional population genetic
537 indexes, parametric statistical models, morphological and passport data, and the new haplotypic
538 analysis. We hope that similar approaches can be used to study the complex domestication
539 histories of other species. Finally, we identified genomic regions associated with the latitudinal
540 migration experienced by tomato plants that could be useful for adapting the currently cultivated
541 varieties to new latitudes, particularly in a world affected by climate change.

542 Acknowledgements

543 This research was supported by the National Natural Science Foundation of the USA Varitome Project
544 (NSF IOS 1564366).

545 References

- 546 Álvarez-Hernández, J. C., Cortez-Madrigal, H., & García-Ruiz, I. (2009). Exploración y
547 caracterización de poblaciones silvestres de jitomate (Solanaceae) en tres regiones de Michoacán,
548 México. *Polibotánica*, (28), 139–159.
- 549 Beresford-Jones, D. G., Whaley, O., Ledesma, C. A., & Cadwallader, L. (2011). Two millennia of
550 changes in human ecology: Archaeobotanical and invertebrate records from the lower Ica valley,
551 south coast Peru. *Vegetation History and Archaeobotany*, 20(4), 273. doi: 10.1007/s00334-011-
552 0292-4
- 553 Blanca, Jose, Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., & Nuez, F. (2012). Variation
554 Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato.
555 *PLOS ONE*, 7(10), e48198. doi: 10.1371/journal.pone.0048198
- 556 Blanca, José, Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., ... Cañizares, J.
557 (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions.
558 *BMC Genomics*, 16(1), 257. doi: 10.1186/s12864-015-1444-1
- 559 Browning, B. L., Zhou, Y., & Browning, S. R. (2018). A One-Penny Imputed Genome from

- 560 Next-Generation Reference Panels. *The American Journal of Human Genetics*, 103(3), 338–348.
- 561 doi: 10.1016/j.ajhg.2018.07.015
- 562 Causse, M., Desplat, N., Pascual, L., Le Paslier, M.-C., Sauvage, C., Bauchet, G., ... Bouchet, J.-
- 563 P. (2013). Whole genome resequencing in tomato reveals variation associated with introgression
- 564 and breeding events. *BMC Genomics*, 14(1), 791. doi: 10.1186/1471-2164-14-791
- 565 Cui, Y., Wang, J., Feng, L., Liu, S., Li, J., Qiao, W., ... Yang, Q. (2020). A Combination of
- 566 Long-Day Suppressor Genes Contributes to the Northward Expansion of Rice. *Frontiers in Plant*
- 567 *Science*, 11, 864. doi: 10.3389/fpls.2020.00864
- 568 Gao, L., Gonda, I., Sun, H., Ma, Q., Bao, K., Tieman, D. M., ... Fei, Z. (2019). The tomato pan-
- 569 genome uncovers new genes and a rare allele regulating fruit flavor. *Nature Genetics*, 51(6),
- 570 1044–1051. doi: 10.1038/s41588-019-0410-2
- 571 Garrison, E., & Marth, G. (2012). Haplotype-based variant detection from short-read sequencing.
- 572 *ArXiv:1207.3907 [q-Bio]*. Retrieved from <http://arxiv.org/abs/1207.3907>
- 573 Gibson, M. J. S., & Moyle, L. C. (2020). Regional differences in the abiotic environment
- 574 contribute to genomic divergence within a wild tomato species. *Molecular Ecology*, 29(12),
- 575 2204–2217. doi: <https://doi.org/10.1111/mec.15477>
- 576 Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., ... Pääbo, S. (2010).
- 577 A draft sequence of the Neandertal genome. *Science (New York, N.Y.)*, 328(5979), 710–722. doi:
- 578 10.1126/science.1188021
- 579 Grobman, A., Bonavia, D., Dillehay, T. D., Piperno, D. R., Iriarte, J., & Holst, I. (2012).
- 580 Preceramic maize from Paredones and Huaca Prieta, Peru. *Proceedings of the National Academy*
- 581 *of Sciences*, 109(5), 1755–1759. doi: 10.1073/pnas.1120270109
- 582 Hammer, K. (1984). Das Domestikationssyndrom. *Die Kulturpflanze*, 32(1), 11–34. doi:
- 583 10.1007/BF02098682
- 584 Hardigan, M. A., Laimbeer, F. P. E., Newton, L., Crisovan, E., Hamilton, J. P., Vaillancourt, B.,

- ... Buell, C. R. (2017). Genome diversity of tuber-bearing *Solanum* uncovers complex evolutionary history and targets of domestication in the cultivated potato. *Proceedings of the National Academy of Sciences*, 114(46), E9999–E10008. doi: 10.1073/pnas.1714380114
- Hosmani, P. S., Flores-Gonzalez, M., Geest, H. van de, Maumus, F., Bakker, L. V., Schijlen, E., ... Saha, S. (2019). An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. *BioRxiv*, 767764. doi: 10.1101/767764
- Imamura, T., Fujita, K., Tasaki, K., Higuchi, A., & Takahashi, H. (2015). Characterization of spermidine synthase and spermine synthase—The polyamine-synthetic enzymes that induce early flowering in *Gentiana triflora*. *Biochemical and Biophysical Research Communications*, 463(4), 781–786. doi: 10.1016/j.bbrc.2015.06.013
- Iris Peralta & David Spooner. (2011). History, Origin and Early Cultivation of Tomato (Solanaceae). In Maharaj K. Razdan & K. Mattoo (Eds.), *Genetic Improvement of Solanaceous Crops*. Boca Raton: CRC Press.
- Kates, H. R., Soltis, P. S., & Soltis, D. E. (2017). Evolutionary and domestication history of *Cucurbita* (pumpkin and squash) species inferred from 44 nuclear loci. *Molecular Phylogenetics and Evolution*, 111, 98–109. doi: 10.1016/j.ympev.2017.03.002
- Kiple, K. F., Ornelas, K. C., & Press, C. U. (2000). *The Cambridge World History of Food*. Cambridge University Press.
- Kosman, E., & Leonard, K. J. (2005). Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. *Molecular Ecology*, 14(2), 415–424. doi: <https://doi.org/10.1111/j.1365-294X.2005.02416.x>
- Krzanowski, W. (2000). *Principles of Multivariate Analysis: A User's Perspective*: 23. Oxfordshire; New York.
- Li, G., Siddiqui, H., Teng, Y., Lin, R., Wan, X., Li, J., ... Wang, H. (2011). Coordinated

- '10 transcriptional regulation underlying the circadian clock in *Arabidopsis*. *Nature Cell Biology*,
'11 13(5), 616–622. doi: 10.1038/ncb2219
- '12 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
'13 *ArXiv:1303.3997 [q-Bio]*. Retrieved from <http://arxiv.org/abs/1303.3997>
- '14 Lieberman, M., Segev, O., Gilboa, N., Lazar, A., & Levin, I. (2004). The tomato homolog of the
'15 gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes
'16 the high pigment-1 mutant phenotype. *TAG. Theoretical and Applied Genetics. Theoretische Und
'17 Angewandte Genetik*, 108(8), 1574–1581. doi: 10.1007/s00122-004-1584-1
- '18 Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., ... Huang, S. (2014). Genomic analyses
'19 provide insights into the history of tomato breeding. *Nature Genetics*, 46(11), 1220–1226. doi:
'20 10.1038/ng.3117
- '21 Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2012). Isolation-Based Anomaly Detection. *ACM
'22 Transactions on Knowledge Discovery from Data*, 6(1), 3:1-3:39. doi: 10.1145/2133360.2133363
- '23 Mata-Nicolás, E., Montero-Pau, J., Gimeno-Paez, E., Garcia-Carpintero, V., Ziarsolo, P., Menda,
'24 N., ... Díez, M. J. (2020). Exploiting the diversity of tomato: The development of a
'25 phenotypically and genetically detailed germplasm collection. *Horticulture Research*, 7. doi:
'26 10.1038/s41438-020-0291-7
- '27 Meyer, R. S., & Purugganan, M. D. (2013). Evolution of crop species: Genetics of domestication
'28 and diversification. *Nature Reviews Genetics*, 14(12), 840–852. doi: 10.1038/nrg3605
- '29 Nei, M., & Roychoudhury, A. K. (1974). Sampling Variances of Heterozygosity and Genetic
'30 Distance. *Genetics*, 76(2), 379–390.
- '31 Pan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of
'32 AGAMOUS lineage genes in regulating tomato flower and fruit development. *Journal of
'33 Experimental Botany*, 61(6), 1795–1806. doi: 10.1093/jxb/erq046
- '34 Peakall, R., & Smouse, P. E. (2012). GenAIEx 6.5: Genetic analysis in Excel. Population genetic

- '35 software for teaching and research--an update. *Bioinformatics (Oxford, England)*, 28(19), 2537–
'36 2539. doi: 10.1093/bioinformatics/bts460
- '37 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, É.
'38 (2011). Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*,
'39 12(85), 2825–2830.
- '40 Peralta, I. E., Spooner, D. M., & Knapp, S. (2008). *Taxonomy of Wild Tomatoes and Their
'41 Relatives (Solanum Sect. Lycopersicoides, Sect. Juglandifolia, Sect. Lycopersicon; Solanaceae)*.
'42 American Society of Plant Taxonomists.
- '43 Pérez-Pérez, J. M., Esteve-Bruna, D., González-Bayón, R., Kangasjärvi, S., Caldana, C., Hannah,
'44 M. A., ... Micol, J. L. (2013). Functional Redundancy and Divergence within the Arabidopsis
'45 RETICULATA-RELATED Gene Family1[W][OA]. *Plant Physiology*, 162(2), 589–603. doi:
'46 10.1104/pp.113.217323
- '47 Pickersgill, B. (2016). Domestication of Plants in Mesoamerica: An Archaeological Review with
'48 Some Ethnobotanical Interpretations. In R. Lira, A. Casas, & J. Blancas (Eds.), *Ethnobotany of
'49 Mexico: Interactions of People and Plants in Mesoamerica* (pp. 207–231). New York, NY:
'50 Springer. doi: 10.1007/978-1-4614-6669-7_9
- '51 Pickrell, J. K., & Pritchard, J. K. (2012). Inference of Population Splits and Mixtures from
'52 Genome-Wide Allele Frequency Data. *PLOS Genetics*, 8(11), e1002967. doi:
'53 10.1371/journal.pgen.1002967
- '54 Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: Variational Inference of
'55 Population Structure in Large SNP Data Sets. *Genetics*, 197(2), 573–589. doi:
'56 10.1534/genetics.114.164350
- '57 Razifard, H., Ramos, A., Della Valle, A. L., Bodary, C., Goetz, E., Manser, E. J., ... Caicedo, A.
'58 L. (2020). Genomic Evidence for Complex Domestication History of the Cultivated Tomato in
'59 Latin America. *Molecular Biology and Evolution*, 37(4), 1118–1132. doi:

- '60 10.1093/molbev/msz297
- '61 Reinhard, K. J., Chaves, S. M., Jones, J. G., & Iñiguez, A. M. (2008). Evaluating chloroplast
- '62 DNA in prehistoric Texas coprolites: Medicinal, dietary, or ambient ancient DNA? *Journal of Archaeological Science*, 35(6), 1748–1755. doi: 10.1016/j.jas.2007.11.013
- '63 Rick, C. M., & Holle, M. (1990). Andean *lycopersicon esculentum* var. *cerasiforme*: Genetic
- '64 variation and its evolutionary significance. *Economic Botany*, 44(3), 69. doi:
- '65 10.1007/BF02860476
- '66 Rick, Charles M., & Fobes, J. F. (1975). Allozyme Variation in the Cultivated Tomato and
- '67 Closely Related Species. *Bulletin of the Torrey Botanical Club*, 102(6), 376–384. doi:
- '68 10.2307/2484764
- '69 Sato, S., Tabata, S., Hirakawa, H., Asamizu, E., Shirasawa, K., Isobe, S., ... Universitat Pompeu
- '70 Fabra. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. *Nature*,
- '71 485(7400), 635–641. doi: 10.1038/nature11119
- '72 Sim, S.-C., Durstewitz, G., Plieske, J., Wieske, R., Ganal, M. W., Deynze, A. V., ... Francis, D.
- '73 M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density
- '74 Genetic Maps in Tomato. *PLOS ONE*, 7(7), e40563. doi: 10.1371/journal.pone.0040563
- '75 Strickler, S. R., Bombarely, A., Munkvold, J. D., York, T., Menda, N., Martin, G. B., & Mueller,
- '76 L. A. (2015). Comparative genomics and phylogenetic discordance of cultivated tomato and close
- '77 wild relatives. *PeerJ*, 3, e793. doi: 10.7717/peerj.793
- '78 Wang, C., Szpiech, Z. A., Degnan, J. H., Jakobsson, M., Pemberton, T. J., Hardy, J. A., ...
- '79 Rosenberg, N. A. (2010). Comparing Spatial Maps of Human Population-Genetic Variation Using
- '80 Procrustes Analysis. *Statistical Applications in Genetics and Molecular Biology*, 9(1). doi:
- '81 10.2202/1544-6115.1493
- '82 Wang, C., Zhan, X., Liang, L., Abecasis, G. R., & Lin, X. (2015). Improved Ancestry Estimation
- '83 for both Genotyping and Sequencing Data using Projection Procrustes Analysis and Genotype
- '84

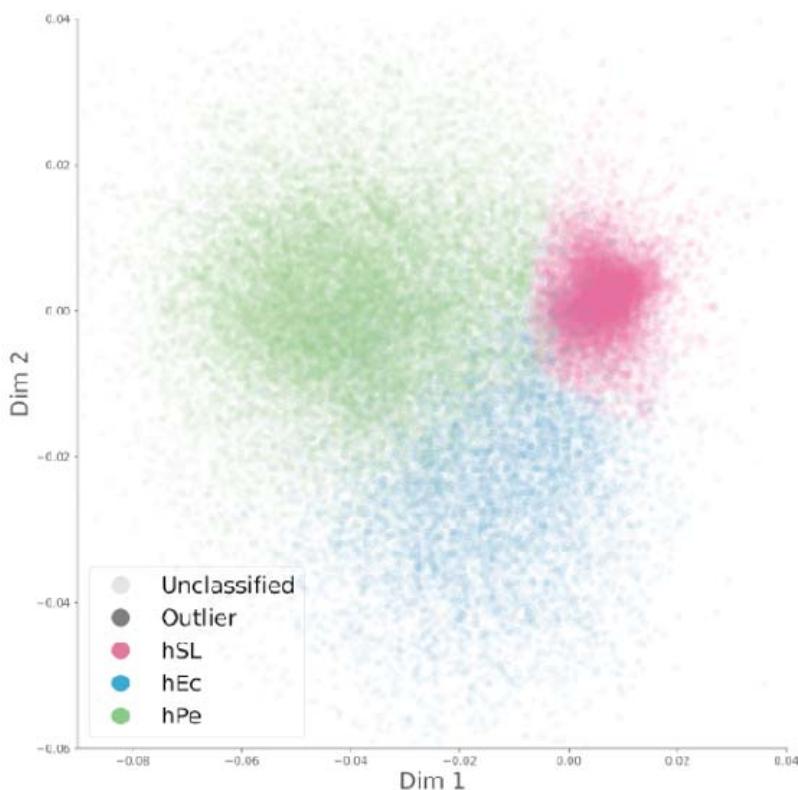
- '85 Imputation. *American Journal of Human Genetics*, 96(6), 926–937. doi:
'86 10.1101/10.1101/2015.04.018
- '87 Xie, Y., Zhou, Q., Zhao, Y., Li, Q., Liu, Y., Ma, M., ... Wang, H. (2020). FHY3 and FAR1
'88 Integrate Light Signals with the miR156-SPL Module-Mediated Aging Pathway to Regulate
'89 Arabidopsis Flowering. *Molecular Plant*, 13(3), 483–498. doi: 10.1101/10.1101/2020.01.013
- '90 Yang, Z., Li, G., Tieman, D., & Zhu, G. (2019). Genomics Approaches to Domestication Studies
'91 of Horticultural Crops. *Horticultural Plant Journal*, 5(6), 240–246. doi:
'92 10.1101/10.1101/2019.11.001
- '93 Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., ... Huang, S. (2018). Rewiring of
'94 the Fruit Metabolome in Tomato Breeding. *Cell*, 172(1), 249-261.e12. doi:
'95 10.1101/10.1101/2017.12.019
- '96 Zsögön, A., Čermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., ... Peres, L. E. P.
'97 (2018). De novo domestication of wild tomato using genome editing. *Nature Biotechnology*,
'98 36(12), 1211–1216. doi: 10.1038/nbt.4272
- '99

300 Data accessibility

- 301 The new genome reads supporting the conclusions of this article are available in the SRA repository under
302 bioproject PRJNA702633 (<https://www.ncbi.nlm.nih.gov/bioproject/702633>).
303 All the Python code used is available in the Github public repositories: tomato_haplotype_paper and
304 variation5 (https://github.com/bioinfcomav/tomato_haplotype_paper,
305 <https://github.com/bioinfcomav/variation5>) under the GNU GPL license.

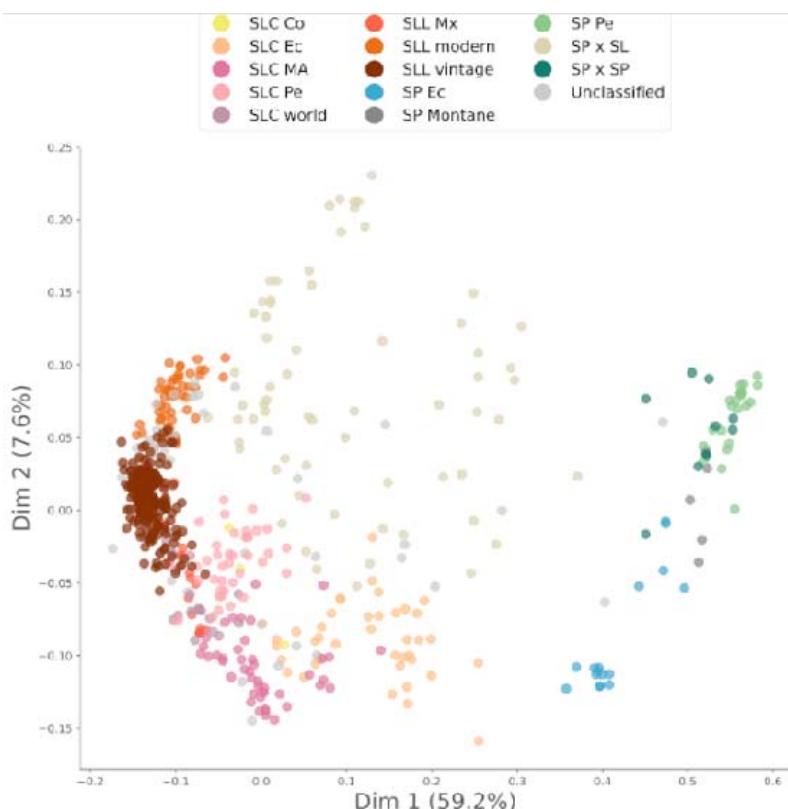
306 Author contributions

- 307 JB and JC wrote the manuscript and designed the methodology. DM, PZ, JMP, JB, and JC analyzed the
308 data. MJD performed the morphological characterizations. JMP, MJD, and EK participated in the
309 discussion and manuscript revisions. All the authors have read and approved the final manuscript.

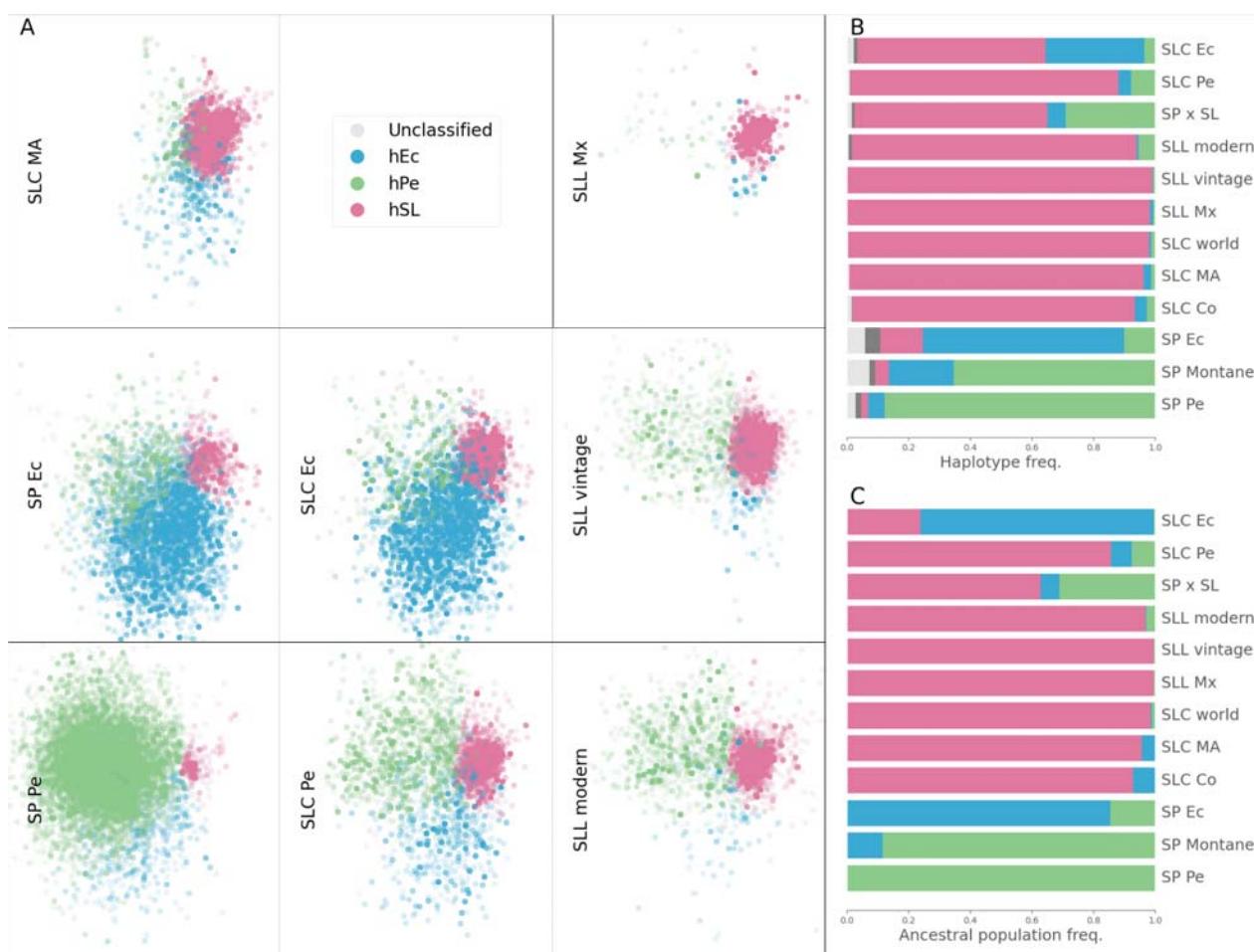

310

311
312

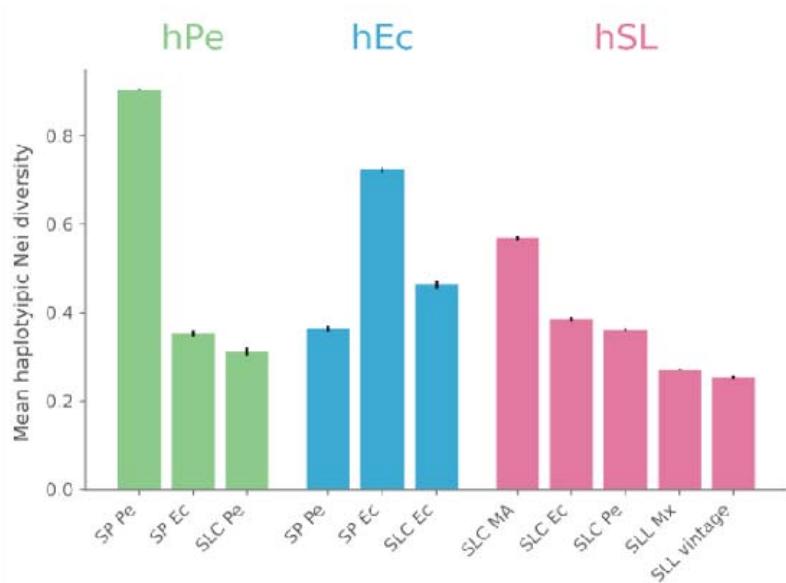
Competing interests: Authors declare that they have no competing interests.

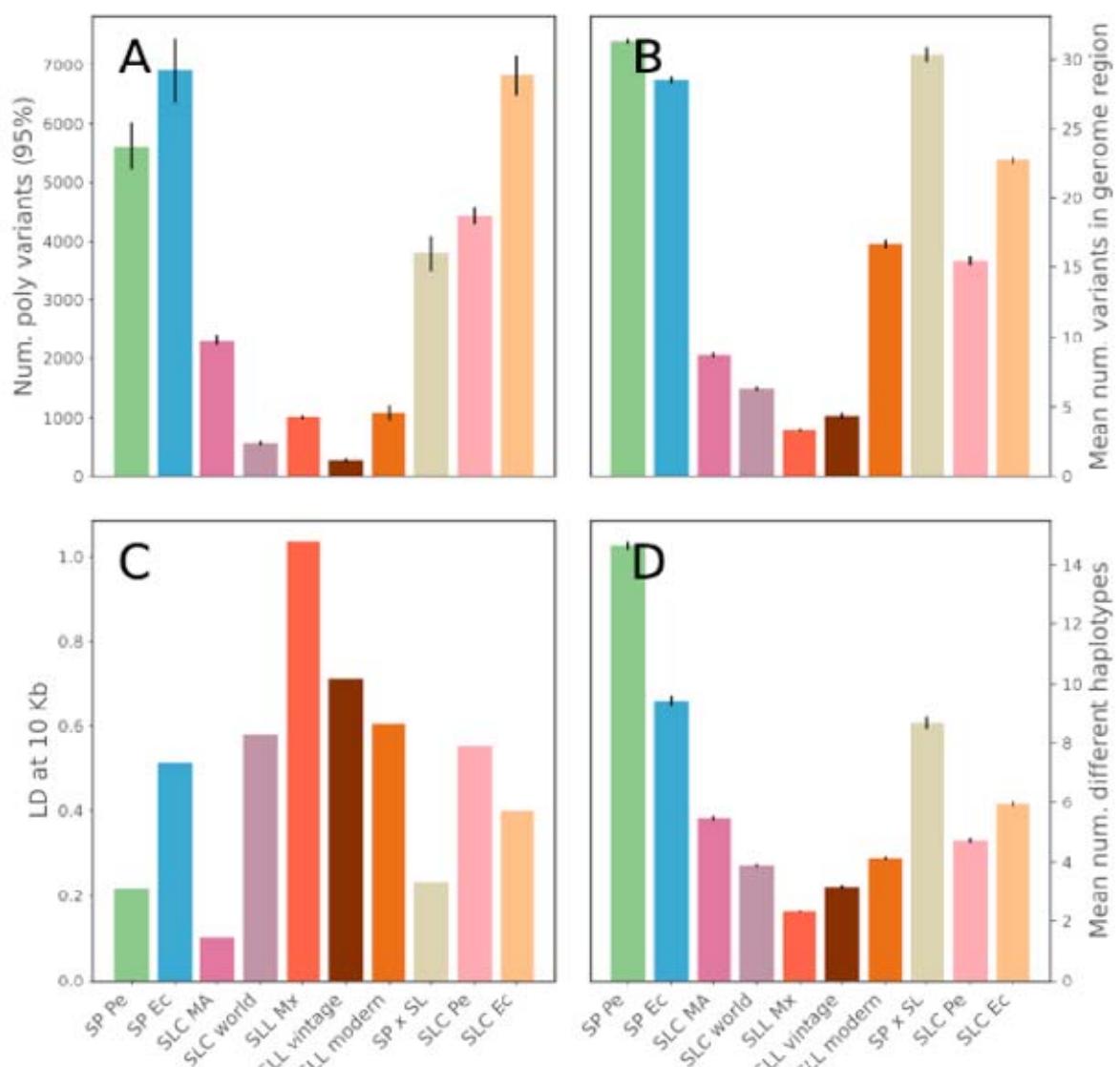

313

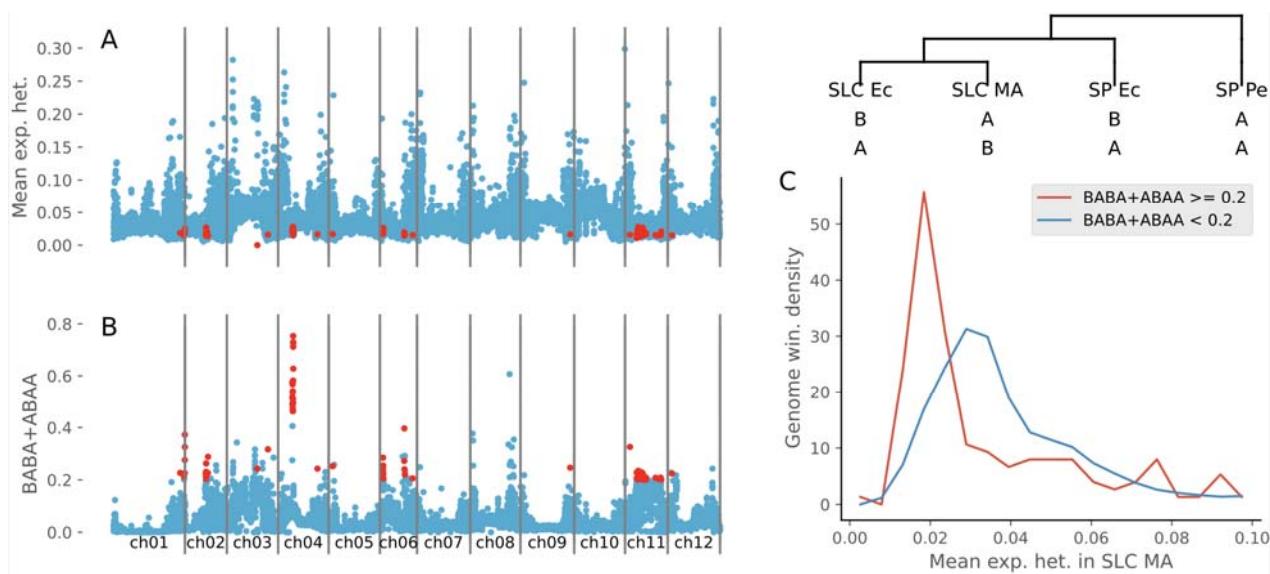
Figures



314


315 **Fig. 1. Haplotypic PCoAs.** A PCoA was conducted for every 500 kb genome segment using edit
316 distances between haplotypes. The resulting PCoAs were aligned using Procrustes and
317 automatically classified into three haplotype types.
318
319


320
321 **Fig. 2. Accession PCoAs.** Pairwise Kosman genetic distances between accessions were
322 calculated using variants characterized by a major allele frequency lower than 0.95 and a missing
323 genotype rate lower than 0.1. Only the most variable variant from every 100 kb genomic segment
324 was used to calculate the distances. The PCoA was based on the obtained pairwise genetic
325 distance matrix. The accessions are colored according to the population in which they were
326 classified.
327
328


329
330 **Fig. 3. Population haplotype composition.** A) Classified haplotype PCoA obtained for Figure 1
331 was divided into several figures, one per population. In each figure, only the haplotypes that
332 belong to accessions for each population were included. B) Frequencies of each haplotype type
333 found in each population. C) FastStructure ancestral population composition per population.
334
335

336
337 **Fig. 4. Mean Nei haplotypic diversity per haplotype type.** Euchromatic regions were split into
338 500 kb segments; for each segment, the haplotypic alleles were determined and classified. The
339 unbiased expected heterozygosity per variant was calculated using only the genotypes
340 corresponding to the haplotypes classified as hPe, hPEc, and hSL. The mean of the expected
341 heterozygosity for the whole genome was calculated. To calculate the indexes, the number of
342 accessions was the same for each population, being 75% of the population with fewer individuals.
343 The analysis was repeated 100 times, choosing the accessions representative of each population at
344 random. The bar represents the mean obtained in the 100 repeats, and the error bars are the
345 confidence intervals of the means.
346
347

348
349 **Fig. 5. Diversity and linkage disequilibrium per population.** To calculate the indexes, the
350 number of accessions was the same for each population, 75% of the population with fewer
351 individuals. The analysis was repeated 100 times, choosing the accessions representative of each
352 population at random. The bar represents the mean from the 100 repeats, and the error bars are the
353 confidence intervals of the means. A) Number of polymorphic variants (95% threshold). B) Mean
354 number of variants found in a 500 kb euchromatic segment. C) Linkage disequilibrium between
355 variants at 10 kb. D) Mean number of haplotypic alleles (500 kb euchromatic segments).
356
357

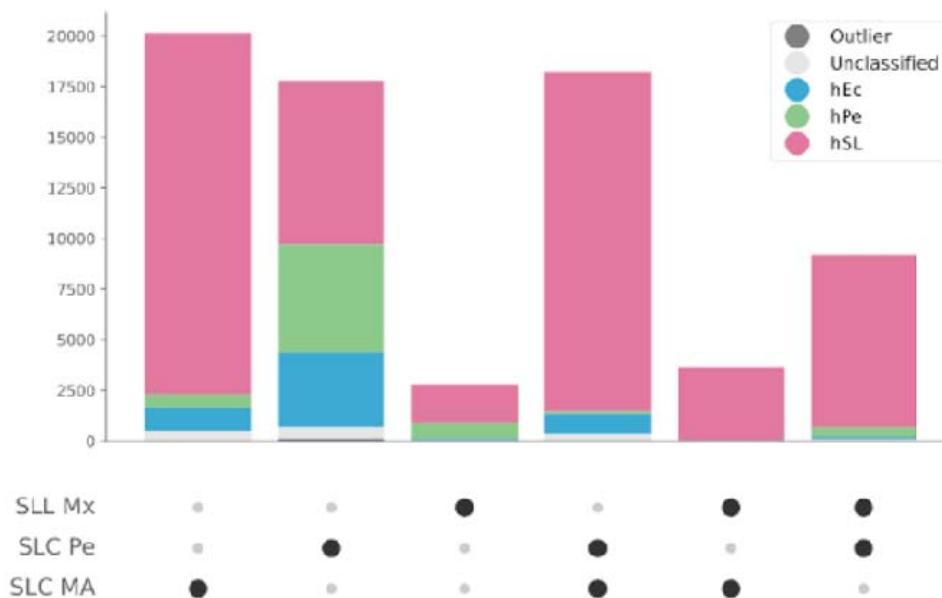
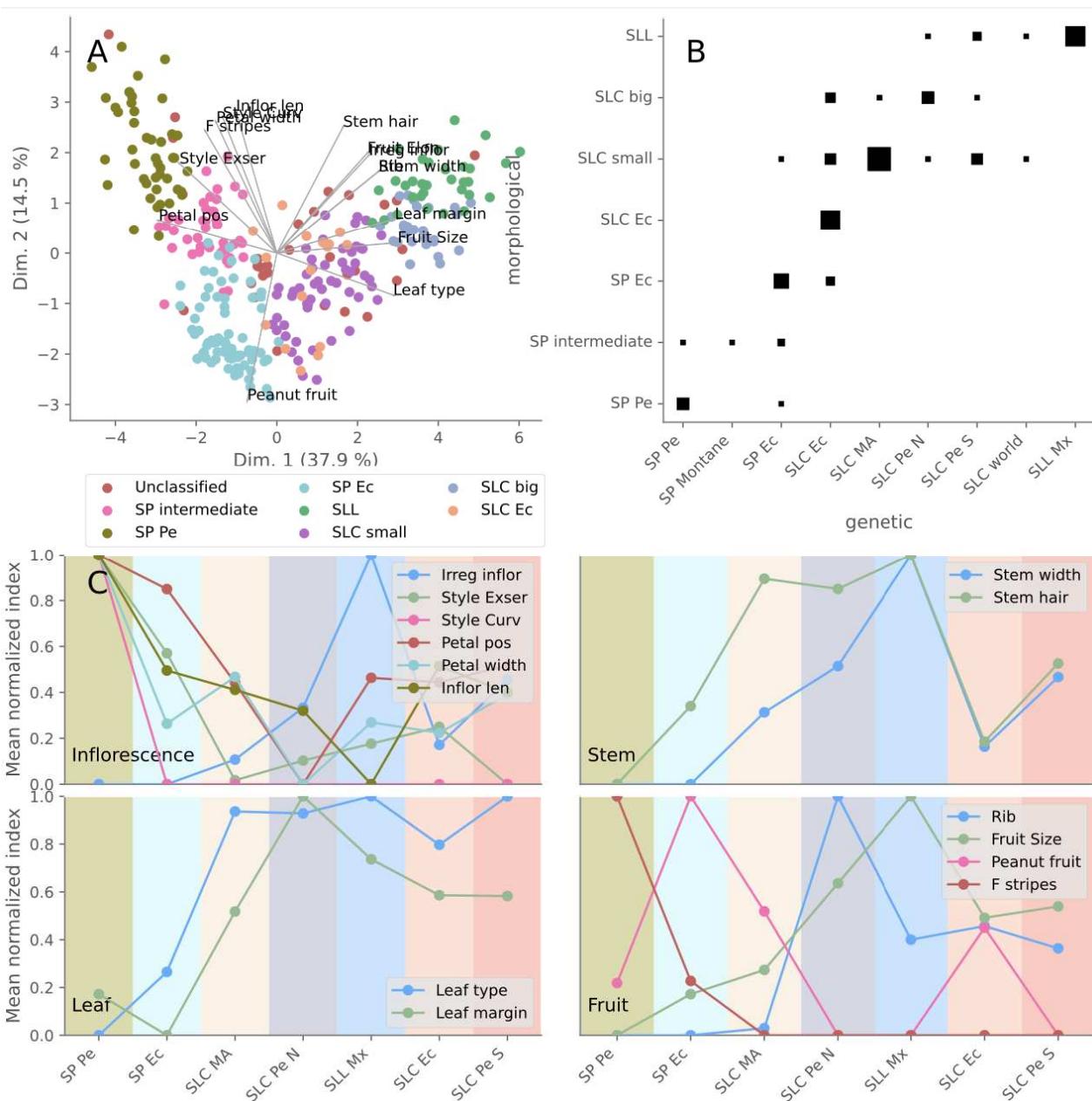
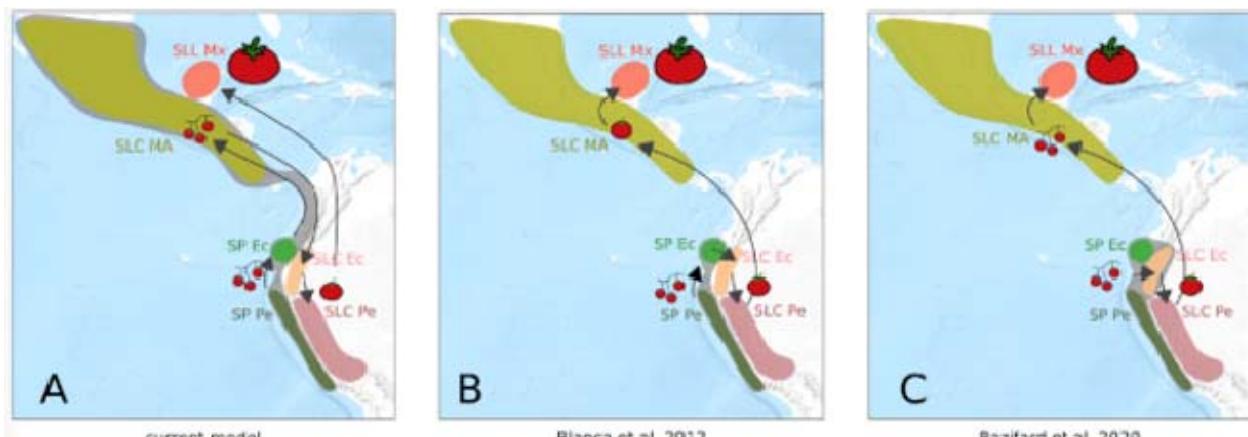


Fig. 6. Mesoamerican Nei diversity and introgression detection in SLC Ec along the genome.


A) Mesoamerican SLC expected heterozygosity along the genome in 500 kb segments. B) Sum of BABA and ABAA products calculated in 500 kb segments along the genome using the evolution model: SLC Ec, SLC MA, SP Ec, SP Pe. The genome segments with a BABA + ABAA value higher than 0.2 and expected heterozygosity lower than 0.03 are represented in red. C) SLC MA expected heterozygosity genome segment distributions with BABA + ABAA lower and higher than 0.2.

366


367

368
369 **Fig. 7. Distribution of haplotypic alleles.** Shared and private haplotypic alleles among
370 Mesoamerican SLC, Peruvian SLC, and Mexican SLL. The bars represent the number of the
371 different haplotypes shared between the populations, with higher numbers depicted by the larger
372 dots in the lower panel.
373
374

375
376 **Fig. 8. Morphological analysis.** A) Accession-based Principal Component Analysis calculated
377 using the morphological traits. The marker colors represent different morphological types. B)
378 Comparisons between morphological types and populations. The marker size represents the
379 number of accessions. C) Morphological trait mean values calculated for different populations.
380
381

382
383 **Fig. 9. Tomato evolution hypotheses.** Genetic population ranges are represented by the coloring
384 of the different geographical areas. The areas in grey include populations that evolved before any
385 human alteration. Arrows indicate migrations. Three fruit sizes are represented: wild-like small
386 fruits, semi-domesticated forms, and SLL fruit types. A) Evolutionary model proposed in the
387 current study. B) Hypothesis proposed by Blanca et al. 2012. C) Hypothesis proposed by Razifard
388 et al. 2020.