

1 **Title:** Zinc²⁺ ion inhibits SARS-CoV-2 main protease and viral replication *in vitro*.
2 **Authors:** Love Panchariya^{1†}, Wajahat Ali Khan^{1†}, Shobhan Kuila^{1†}, Kirtishila Sonkar¹, Sibasis
3 Sahoo¹, Archita Ghoshal¹, Ankit Kumar², Dileep Kumar Verma², Abdul Hasan², Shubhashis
4 Das³, Jitendra K Thakur³, Rajkumar Halder⁴, Sujatha Sunil², Arulandu Arockiasamy^{1*}

5 **Affiliation:**

6 ¹Membrane Protein Biology Group, International Centre for Genetic Engineering and
7 Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067. India.

8 ²Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology,
9 Aruna Asaf Ali Marg, New Delhi-110067. India.

10 ³Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New
11 Delhi- 110 067

12 ⁴Ruhvenile Biomedical OPC PVT LTD, Plot No-8, OCF Pocket Institution, Sarita Vihar, New
13 Delhi-110070. India.

14 [†]These authors contributed equally to the work presented.

15 For correspondence:

16 *Correspondence should be addressed to: sam@icgeb.res.in / asamy001@gmail.com

17 Communicating author:

18 Arockiasamy Arulandu

19 International Centre for Genetic Engineering and Biotechnology (ICGEB),

20 Aruna Asaf Ali Marg,

21 New Delhi 110067. India.

22 Phone: +91-11-26741358 Ext-172

23 Fax: +91-11-26742316

24 Mobile: +91-9711055502

25 **Abstract:**

26 Zinc deficiency is linked to poor prognosis in COVID-19 patients while clinical trials with Zinc
27 demonstrate better clinical outcome. The molecular target and mechanistic details of anti-
28 coronaviral activity of Zinc remain obscure. We show that ionic Zinc not only inhibits SARS-
29 CoV-2 main protease (Mpro) with nanomolar affinity, but also viral replication. We present the
30 first crystal structure of Mpro-Zn²⁺ complex at 1.9 Å and provide the structural basis of viral
31 replication inhibition. We show that Zn²⁺ coordinates with the catalytic dyad at the enzyme
32 active site along with two previously unknown water molecules in a tetrahedral geometry to form
33 a stable inhibited Mpro-Zn²⁺ complex. Further, natural ionophore quercetin increases the anti-
34 viral potency of Zn²⁺. As the catalytic dyad is highly conserved across SARS-CoV, MERS-CoV
35 and all variants of SARS-CoV-2, Zn²⁺ mediated inhibition of Mpro may have wider
36 implications.

37

38 **Main Text:**

39 COVID-19 pandemic caused by SARS-CoV-2 is a major clinical challenge^{1 2 3}. Lower serum
40 Zinc concentration at the time of admission of COVID-19 patients correlates with severe clinical
41 presentations; an extended duration to recovery, higher morbidity, and a higher mortality in
42 elderly^{4 5}. However, clinical trials with Zinc and ionophore show positive clinical outcome with
43 a decreased rate of mortality, and transfer to hospice^{6 7 8}

44 Zinc plays several key roles in biological systems viz. structural, catalytic, regulatory and
45 signalling events^{9 10 11}. Further, Zinc exhibits anti-viral properties¹², including against SARS-
46 CoV. SARS-CoV Main protease (Mpro)¹³ and RNA dependent RNA polymerase (RDRP)¹⁴ are
47 potential key molecular targets of Zinc. However, the structure of SARS-CoV-2 RDRP¹⁵
48 suggests a structural role for Zinc rather than an inhibitory one. Notably, detailed kinetics and
49 mechanism of ionic Zinc targeting SARS-CoV-2 Mpro is lacking.

50 We first studied one on one binding kinetics of Zinc acetate with purified SARS-CoV-2 Mpro
51 using Surface Plasmon Resonance (SPR). Zinc binds to SARS-CoV-2 Mpro with an association
52 rate constant (ka) of $8,930 \pm 30 \text{ M}^{-1}\text{s}^{-1}$ and the dissociation rate constant (kd) of $0.01755 \pm 10 \text{ s}^{-1}$,
53 and an equilibrium dissociation constant (KD) of $1.965\text{E-}06 \text{ M}$. (**Fig. 1a**) The half-life ($t_{1/2} = \ln$

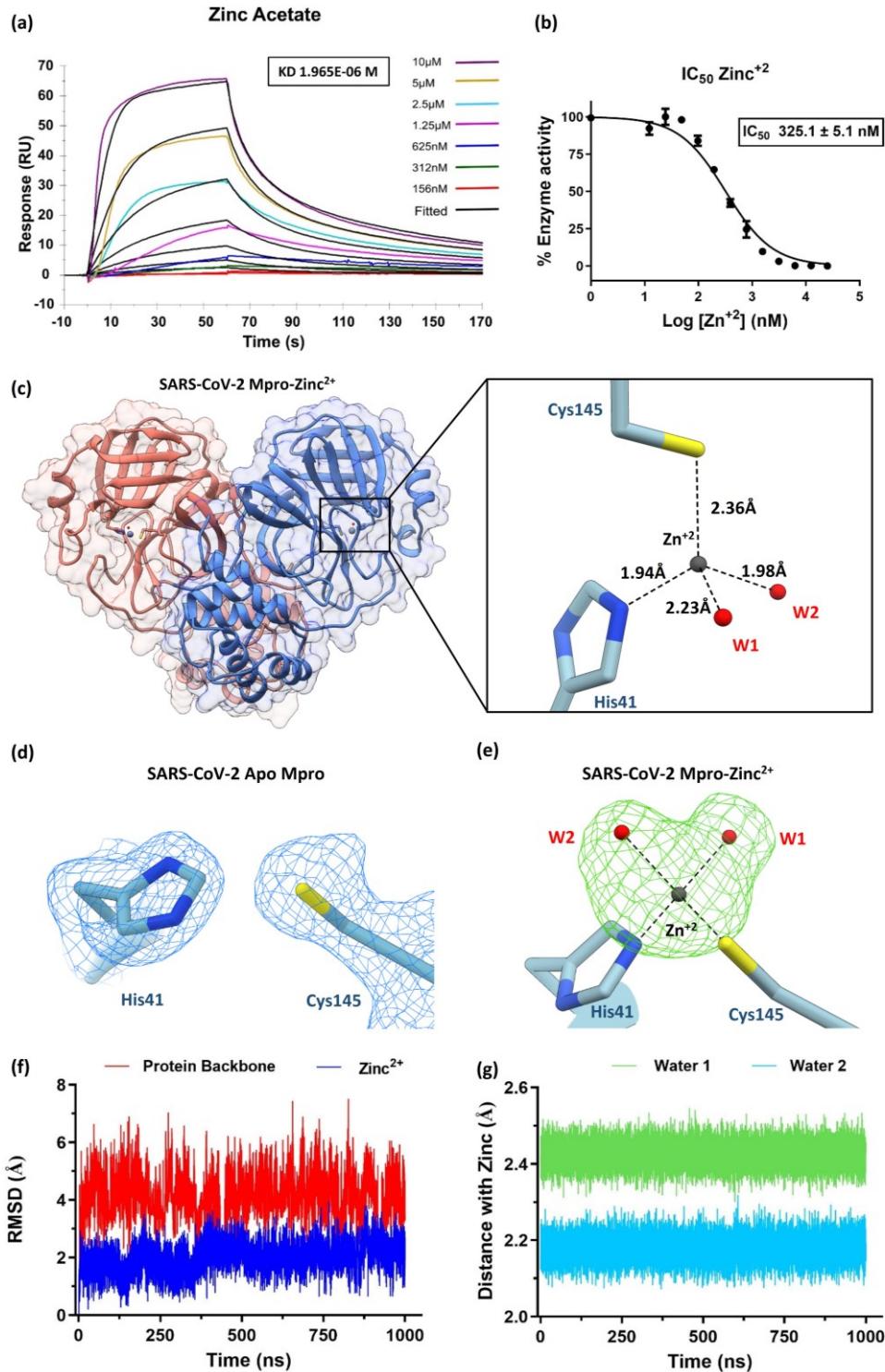
54 [0.5]/kd) of Mpro-Zn²⁺ complex is ~40s. We then assessed the inhibitory effects of Zn²⁺ binding
55 on the proteolytic activity of SARS-CoV-2 Mpro in the presence of Zinc acetate. We obtained
56 an IC₅₀ value of 325.1 ± 5.1 nM with complete inhibition at 6.25 μM and above (**Fig. 1b**). We
57 also tested Zinc glycinate and Zinc gluconate complexes, which are available as Zinc
58 supplements in the market and are also investigated in COVID-19 clinical trials¹⁶, and obtained
59 IC₅₀ values of 279.35±17.95 nM and 405.25±0.45 nM, respectively (**Supplementary Figure 1a**
60 **and 1b**). Reversibility of Zn²⁺-mediated inhibition was tested by first inhibiting the enzyme with
61 500 nM Zinc acetate, and then initiating the reaction with a substrate peptide, followed by
62 addition of EDTA to regain the enzyme activity by chelating Zn²⁺ ions. We find that Zinc
63 inhibition is completely reversible by EDTA (**Supplementary Figure 1c**), suggesting that
64 inhibition by the metal ion is not because of oxidation of catalytic cysteine (Cys145).

65 To further understand the structural basis of SARS-CoV-2 Mpro inhibition by Zn²⁺ ion, we
66 solved the crystal structure of the bound complex at 1.9 Å (**Supplementary Table 2**). The
67 asymmetric unit contains a dimer of Mpro in space group P2₁2₁2₁ (**Fig. 1c**). An unambiguous
68 electron density for Zn²⁺ (**Fig. 1d, e**) shows that the metal ion is coordinated by the catalytic dyad
69 His41 and Cys145, which is absent in the control datasets collected for apo-enzyme crystals
70 grown in the same condition. Zn²⁺-bound complex shows a tetrahedral coordination geometry at
71 the Mpro active site by coordinating with two water molecules that are absent in the apo-enzyme
72 structure (**Fig. 1c**). Distortion in the tetrahedral geometry observed is attributed to the presence
73 of heterogeneous atoms; sulphur (Cys145-SG) and nitrogen (His41-NE2) in the inhibited
74 complex. A 180° flip of the imidazole ring of His41 brings NE2 closer to Zn²⁺ with an inter-
75 atomic distance of 1.94 Å to form a coordinate bond. The interatomic distance between catalytic
76 Cys145 and Zn²⁺ is 2.36 Å consistent with observed bound complexes. Two structural water
77 molecules W1 and W2 (PDB: 7DK1; HETATM 5028 and 5031, respectively) coordinate Zn²⁺ at
78 an inter-atomic distance of 2.23 Å and 1.98 Å, respectively, to satisfy the tetrahedral geometry
79 (**Fig. 1c**). The coordination of Zn²⁺ with the catalytic dyad is expected to prevent a nucleophilic
80 attack on the carbonyl moiety of the amide bond in polyprotein substrate. We hypothesize that
81 the two strongly coordinated water molecules impart stability to the Zn²⁺ inhibited complex
82 To gain deeper insights into the stability of Mpro-Zn²⁺ complex, we simulated the complex for 1
83 μs at 300K, keeping the coordinating waters, W1 and W2. During the simulation, Zn²⁺ remains

84 strongly bound to the active site via metal coordination bonds with His41 (NE2) and Cys145
85 (SG) with an interatomic distance of 1.951 ± 0.031 and 2.518 ± 0.031 Å, respectively, throughout
86 the $1\mu\text{s}$ time frame. The mobility of Zn^{2+} ion is restricted with a mean RMSD of 0.920 Å (Fig.
87 1f) in accordance with the dynamics of side chains of coordinating catalytic dyad. Visualization
88 of MD simulation trajectory shows (**Supplementary Movie**) that coordinating water molecules
89 W1 and W2 remain bound to Zn^{2+} throughout the simulation, and help maintain the tetrahedral
90 geometry observed in complex crystal structure (Fig. 1g)

91 We further assessed the inhibitory potential of Zinc acetate, Zinc glycinate and Zinc gluconate
92 against SARS-CoV-2. Infected Vero E6 cells were treated with all the three Zinc salts at their
93 respective maximum non-toxic concentrations (MNTD) for 48 hours. The MNTDs used for the
94 three compounds were $100\text{ }\mu\text{M}$ for Zinc acetate and Zinc gluconate and $70\text{ }\mu\text{M}$ for Zinc
95 glycinate. We observed that Zinc acetate treatment resulted in more than 50% reduction of viral
96 titre, as compared to the untreated infected cells (Fig. 2a). Based on these results, we determined
97 the IC_{50} of Zinc acetate to be $3.227\text{ }\mu\text{M}$ (Fig 2b). Surprisingly, Zinc glycinate and Zinc
98 gluconate failed to inhibit viral replication in standard antiviral assays at non-toxic
99 concentrations albeit showing effective enzyme inhibition *in vitro*. Quercetin, a natural Zinc
100 ionophore, increases the bioavailability of Zinc in treated cells¹⁷, which prompted us to ask
101 whether an increased bioavailability of Zn^{2+} results in enhanced inhibition of viral replication.
102 To test this, we mixed Zinc acetate with Quercetin at 1:2 molar ratio¹⁸ at non-toxic
103 concentrations (**Supplementary Figure 2**) and tested the antiviral activity against SARS-CoV-2.
104 We observed >2 -fold viral inhibition in the presence of Quercetin (Fig. 2c).

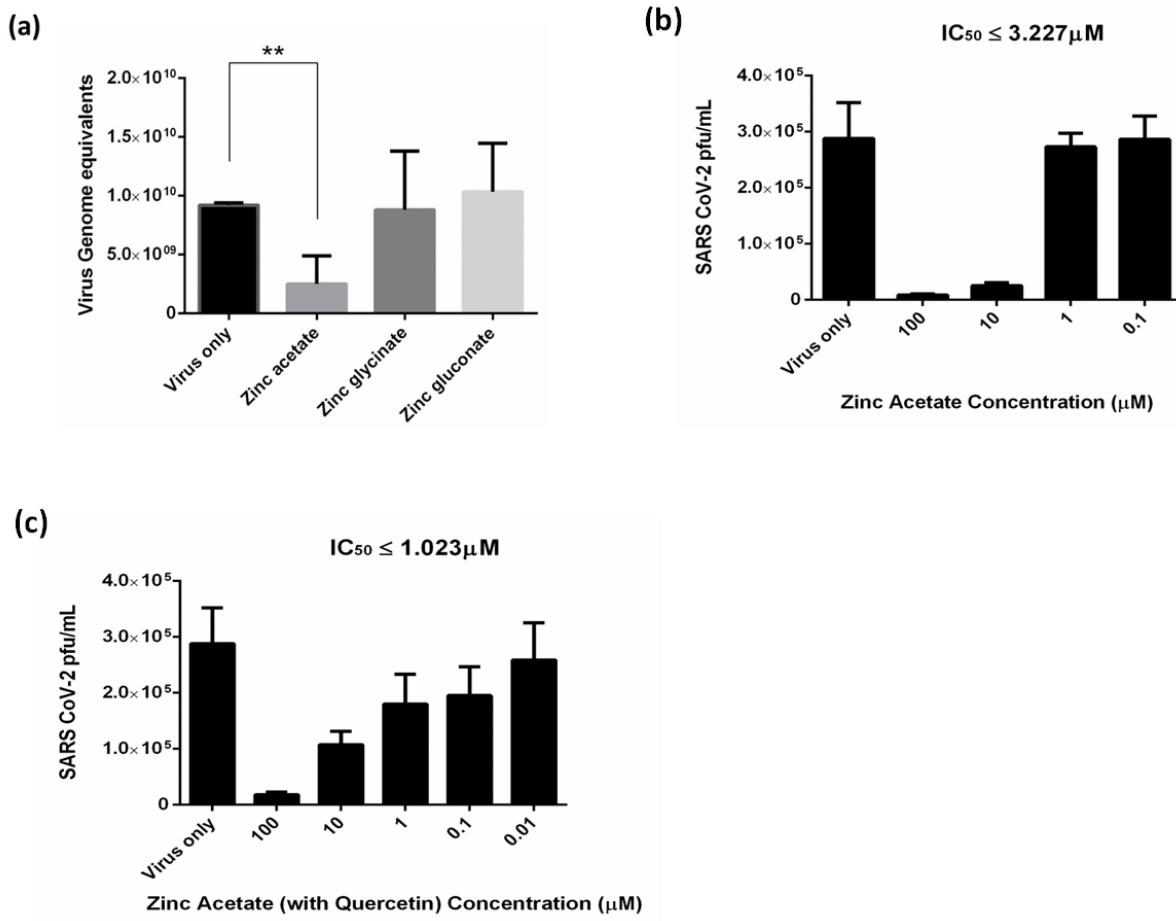
105 Taken together, our data strongly suggest an inhibitory role for ionic Zinc¹¹, wherein it inhibits
106 SARS-CoV-2 Mpro enzyme activity, supported by complex crystal structure and subsequent
107 inhibition of viral replication *in vitro*. Known crystal structures of Zinc conjugates such as N-
108 ethyl-n-phenyl-dithiocarbamic acid (EPDTC), JMF1600, and Zinc-pyrithione in complex with
109 3C-like (Mpro) proteases from coronavirus¹⁹, including SARS-CoV²⁰ and SARS-CoV-2²¹, show
110 a similar mode of metal ion coordination with the catalytic dyad (Supplementary Figure 3).
111 However, the Zn^{2+} inhibited SARS-CoV-2 Mpro enzyme structure presented in this study clearly
112 suggests that ionic form of Zinc alone is capable of inhibiting the enzyme, by forming a stable
113 complex at the active site with the help of two water molecules, previously unknown. We further


114 show Zinc complexes; Zinc glycinate and Zinc gluconate failed to show any antiviral effects in
115 our cell culture experiments. Most notably, we show that Zinc ionophore Quercetin aids in
116 inhibition of SARS-CoV-2 replication as it increases the intracellular concentration of Zinc¹⁷.
117 Our data support the findings that a combination of Zinc salt, which provides ionic Zinc, with
118 ionophores^{6 7 8}, may have a better clinical outcome in COVID-19 therapy. As the Zn²⁺
119 coordinating catalytic dyad; Cysteine and Histidine is conserved across all coronaviral 3C-like
120 proteases (Mpro), including the variants of SARS-CoV-2, the mode of Zn²⁺ mediated inhibition
121 is expected to be similar. Whether Zn²⁺ targets Mpro *in vivo* requires further investigation.

122 **Data accessibility:** Mpro-Zinc²⁺ complex coordinates are available at PDB: 7DK1. X-ray raw
123 data is available from Integrated Resource for Reproducibility in Macromolecular
124 Crystallography (IRRMC) repository (<https://proteindiffraction.org/>).

125 **Acknowledgement:** We thank Prof. Rolf Hilgenfeld, Institute of Biochemistry, University of
126 Lübeck, Lübeck, Germany for providing the expression construct for SARS-CoV-2 Mpro. We
127 thank the beamline staff at the Elettra XRD2 particularly Raghurama P. Hegde and Annie
128 Heroux for beamline support. Access to the XRD2 beamline at the Elettra synchrotron, Trieste
129 was made possible through grant-in-aid from the Department of Science and Technology, India,
130 vide grant number DSTO-1668. The following reagent was deposited by the Centers for Disease
131 Control and Prevention and obtained through BEI Resources, NIAID, NIH: SARS-Related
132 Coronavirus 2, Isolate USA-WA1/2020, NR-52281. We thank Prof. Ramesh Sonti, former
133 Director, NIPGR, New Delhi for access to Biacore T-200. This work was supported by ICGEB
134 core grant and Govt. of India DST-SERB IRHPA grant: IPA/2020/000285.

135 **Author contribution:** LP, WK, SK, KS purified Mpro and performed biochemical and SPR
136 experiments and SD and JKT helped with SPR experiments and data analysis. LP and KS
137 crystallized, collected X-ray data and solved the structure. LP and SS performed MD simulation
138 and analysis. AG performed cytotoxicity assays. AK, DV, AH and S. Sunil performed anti-viral
139 assays and analysed the data. RH provided inputs to biochemical assays. AA coordinated the
140 work and LP and AA wrote the manuscript with inputs from all the authors.


141 **Conflict of interest:** The authors declare no conflict of interest.

142

143 **Figure 1. Zn²⁺ binds at the active site and inhibits SARS-CoV-2 Mpro enzyme activity:** (a)
144 Interaction kinetics of Zn²⁺ with immobilized Mpro using surface plasmon resonance (SPR)
145 shows affinity (KD) of 1.96 μM. Coloured lines indicate various concentrations of Zinc acetate.

146 (b) IC_{50} and concentration dependent inhibition of Mpro by Zn^{2+} ion. (c) Complex crystals
147 structure of Mpro dimer with Zinc (grey sphere) bound at the active site of both protomers. On
148 the right, catalytic dyad Cys145 and His41 of Mpro is shown with bound Zinc in tetrahedral
149 coordination geometry. (d) Electron density map (2Fo-Fc) contoured at 1 σ showing the catalytic
150 dyad in Apo-Mpro (e) Omit difference map (Fo-Fc contoured at 3 σ) shows unambiguous
151 density (green) for Zn^{2+} (grey) and two metal-ion coordinating structural water molecules (red).
152 (f) 1 μ s MD simulation Mpro- Zn^{2+} complex shows low RMSD of Zn^{2+} (blue) and protein
153 backbone (red) indicating stability of inhibited state (**Supplementary video**) (g) Distance plot
154 shows less fluctuations in inter-atomic distances between Zn^{2+} and two coordinating water
155 molecules during the course of simulation, representing stable metal ion-water interactions in the
156 inhibitory role of Zn^{2+} .

157

158 **Figure 2. Anti-SARS-CoV-2 activity of Zinc and its complexes with ionophore in infected**
159 **Vero E6 cells. a)** Zinc acetate inhibits SARS-CoV-2 replication in Vero E6 cells as determined
160 using qRT-PCR. Treatment with Zinc acetate (100 μ M) for 48 h resulted in >50% reduction of
161 viral titre while the Zinc glycinate and Zinc gluconate complexes did not show significant
162 reduction. **(b)** IC₅₀ determination using varying concentrations of Zinc acetate for 48 h followed
163 by viral quantification using plaque assay. **(c)** Viral inhibition by Zinc acetate and Quercetin
164 mixture (1:2 M ratio). Mean percentage reduction of SARS-CoV-2 is indicated within the bars.
165 The antiviral experiments were repeated at least twice, and each experiment included at least
166 three replicates. Statistical significance was determined using Student's t-test ($n \geq 2$ biological
167 replicates).

168 References

- 169 1 Wu, F. *et al.* A new coronavirus associated with human respiratory disease in China. *Nature* **579**,
170 265-269, doi:10.1038/s41586-020-2008-3
- 171 10.1038/s41586-020-2008-3 [pii] (2020).
- 172 2 Wise, J. Covid-19: New coronavirus variant is identified in UK. *BMJ* **371**, m4857,
173 doi:10.1136/bmj.m4857 (2020).
- 174 3 Yadav, P. D. *et al.* Isolation and characterization of the new SARS-CoV-2 variant in travellers from
175 the United Kingdom to India: VUI-202012/01 of the B.1.1.7 lineage. *J Travel Med* **28**, doi:taab009
176 [pii]
- 177 10.1093/jtm/taab009
- 178 6121695 [pii] (2021).
- 179 4 Jothimani, D. *et al.* COVID-19: Poor outcomes in patients with zinc deficiency. *Int J Infect Dis* **100**,
180 343-349, doi:S1201-9712(20)30730-X [pii]
- 181 10.1016/j.ijid.2020.09.014 (2020).
- 182 5 Vogel-Gonzalez, M. *et al.* Low Zinc Levels at Admission Associates with Poor Clinical Outcomes in
183 SARS-CoV-2 Infection. *Nutrients* **13**, doi:562 [pii]
- 184 10.3390/nu13020562
- 185 nu13020562 [pii] (2021).
- 186 6 Carlucci, P. M. *et al.* Zinc sulfate in combination with a zinc ionophore may improve outcomes in
187 hospitalized COVID-19 patients. *J Med Microbiol* **69**, 1228-1234, doi:10.1099/jmm.0.001250
188 (2020).
- 189 7 Frontera, J. A. *et al.* Treatment with Zinc is Associated with Reduced In-Hospital Mortality
190 Among COVID-19 Patients: A Multi-Center Cohort Study. *Res Sq*, doi:rs.3.rs-94509 [pii]
- 191 10.21203/rs.3.rs-94509/v1 (2020).
- 192 8 Derwand, R., Scholz, M. & Zelenko, V. COVID-19 outpatients: early risk-stratified treatment with
193 zinc plus low-dose hydroxychloroquine and azithromycin: a retrospective case series study. *Int J
194 Antimicrob Agents* **56**, 106214, doi:S0924-8579(20)30425-8 [pii]
- 195 10.1016/j.ijantimicag.2020.106214 (2020).
- 196 9 Kochanczyk, T., Drozd, A. & Krezel, A. Relationship between the architecture of zinc coordination
197 and zinc binding affinity in proteins--insights into zinc regulation. *Metalomics* **7**, 244-257,
198 doi:10.1039/c4mt00094c (2015).
- 199 10 Maret, W. Inhibitory zinc sites in enzymes. *Biometals* **26**, 197-204, doi:10.1007/s10534-013-
200 9613-7 (2013).
- 201 11 Maret, W. Zinc coordination environments in proteins determine zinc functions. *J Trace Elem
202 Med Biol* **19**, 7-12, doi:S0946-672X(05)00012-X [pii]
- 203 10.1016/j.jtemb.2005.02.003 (2005).
- 204 12 Read, S. A., Obeid, S., Ahlenstiel, C. & Ahlenstiel, G. The Role of Zinc in Antiviral Immunity. *Adv
205 Nutr* **10**, 696-710, doi:10.1093/advances/nmz013
- 206 5476413 [pii] (2019).
- 207 13 Hsu, J. T. *et al.* Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-
208 CoV. *FEBS Lett* **574**, 116-120, doi:10.1016/j.febslet.2004.08.015

- 209 S0014579304010087 [pii] (2004).
- 210 14 te Velthuis, A. J. *et al.* Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro
211 and zinc ionophores block the replication of these viruses in cell culture. *PLoS Pathog* **6**,
212 e1001176, doi:10.1371/journal.ppat.1001176 (2010).
- 213 15 Kokic, G. *et al.* Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. *Nat Commun* **12**,
214 279, doi:10.1038/s41467-020-20542-0
- 215 10.1038/s41467-020-20542-0 [pii] (2021).
- 216 16 Thomas, S. *et al.* Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on
217 Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: The
218 COVID A to Z Randomized Clinical Trial. *JAMA Network Open* **4**, e210369-e210369,
219 doi:10.1001/jamanetworkopen.2021.0369 (2021).
- 220 17 Dabbagh-Bazarbachi, H. *et al.* Zinc ionophore activity of quercetin and epigallocatechin-gallate:
221 from Hepa 1-6 cells to a liposome model. *J Agric Food Chem* **62**, 8085-8093,
222 doi:10.1021/jf5014633 (2014).
- 223 18 Bratu, M. *et al.* Biological Activities of Zn(II) and Cu(II) Complexes with Quercetin and Rutin:
224 Antioxidant Properties and UV-Protection Capacity. *Revista de Chimie* **65**, 544-549 (2014).
- 225 19 Lee, C. C. *et al.* Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-
226 coordinating and peptidomimetic compounds. *J Biol Chem* **284**, 7646-7655,
227 doi:10.1074/jbc.M807947200
- 228 S0021-9258(20)32476-5 [pii] (2009).
- 229 20 Lee, C. C. *et al.* Structural basis of mercury- and zinc-conjugated complexes as SARS-CoV 3C-like
230 protease inhibitors. *FEBS Lett* **581**, 5454-5458, doi:S0014-5793(07)01116-7 [pii]
- 231 10.1016/j.febslet.2007.10.048 (2007).
- 232 21 Gunther, S. *et al.* X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2
233 main protease. *Science* **372**, 642-646, doi:10.1126/science.abf7945
- 234 science.abf7945 [pii] (2021).
- 235
- 236