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Abstract

Marine ecosystem models often consider temporal dynamics on the order of months to years, and
spatial dynamics over regional and global scales as a means to understand the ecology, evolution, and
biogeochemical impacts of marine life. Large-scale dynamics are themselves driven over diel scales as a
result of light-driven forcing, feedback, and interactions. Motivated by high-frequency measurements
taken by Lagrangian sampling in the North Pacific Subtropical Gyre, we develop a hierarchical set of
multitrophic community ecology models to investigate and understand daily ecological dynamics in
the near-surface ocean including impacts of light-driven growth, infection, grazing, and phytoplankton
size structure. Using these models, we investigate the relative impacts of viral-induced and grazing
mortality for Prochlorococcus; and more broadly compare in silico dynamics with in situ observations.
Via model-data fitting, we show that a multi-trophic model with size structure can jointly explain
diel changes in cyanobacterial abundances, cyanobacterial size structure, viral abundance, viral in-
fection rates, and grazer abundances. In doing so, we find that a significant component (between
5% to 55%) of estimated Prochlorococcus mortality is not attributed to either viral lysis (by T4-
or T7-like cyanophage) or grazing by heterotrophic nanoflagellates. Instead, model-data integration
suggests a heightened ecological relevance of other mortality mechanisms – including grazing by other
predators, particle aggregation, and stress-induced loss mechanisms. Altogether, linking mechanistic
multitrophic models with high-resolution measurements provides a route for understanding of diel
origins of large-scale marine microbial community and ecosystem dynamics.
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1 Introduction

Highly resolved surface ocean observations suggest that diel light rhythms drive repeatable changes in the
abundance of ubiquitous cyanobacteria at the base of the microbial food web, including both Prochloro-
coccus and Synechococcus [1, 2]. Cyanobacterial population dynamics are influenced by both nutrients
and light availability [2, 3, 4, 5, 6, 7, 8] as well as by density- and size-dependent feedback processes with
other components of the community [9, 10, 11, 12, 13, 14, 15]. These interactions lead to diel oscillations,
including in grazing rates, viral abundances, viral infection rates, and viral activity [16, 17, 18, 19, 20, 21].
The emergence of diel rhythms in abundances and process rates raises the question: how does light-driven
growth of photoautotrophs over day-night cycles influence oscillations of other microbial populations and
ecosystem processes? Resolving this question is challenging because it is often hard to disentangle process
from pattern, e.g., reduced population growth and/or increased mortality can have the same net effect
on cyanobacterial abundances. This type of identifiability problem is inherent to prior efforts to model
size-structured phytoplankton growth with generic loss terms [2, 9, 10]. The identifiability problem is
compounded by the fact that daily rhythms of microbes are also entrained, in part, with oscillatory
day-night light forcing. In this study, we set out to use an ecological modeling framework, combined with
field observations that go beyond cyanobacterial population measurements, as a means to understand
how observed rhythms in Prochlorococcus dynamics influence and are influenced by rhythms of other
populations in the microbial community in the North Pacific Subtropical Gyre (NPSG).

The NPSG is an oligotrophic system numerically dominated by the unicellular cyanobacteria Prochloro-
coccus, the most abundant phototroph in the global oceans [22]. Grazers and viruses are hypothesised to
be the dominant drivers of Prochlorococcus loss [23, 24]. However estimating the relative contribution of
viral-induced mortality and grazing-induced loss remains challenging [20, 25, 26, 27, 28]. We focus our
study on a near-surface Lagrangian parcel of water in the NPSG, which was sampled at 15m depth over
the course of ten days in summer 2015. Sampling on this expedition was performed at high time resolu-
tion (i.e., at four hour intervals for some components and nearly continuously for others). Related work
from this cruise using the cellular iPolony method estimates that viruses, despite being highly abundant,
may contribute to approximately 5% or less of total Prochlorococcus cell losses per day [20]. Congruently,
using quota based reasoning, grazing by heterotrophic nanoflagellates could potentially account for the
majority of Prochlorococcus cell losses per day [21], but this method cannot rule out the potential for
significantly lower rates of grazing. We note that cruise data show clear repeatable periodicity in av-
erage Prochlorococcus cell volume, which peaks close to dusk, and cell abundance, which peaks during
nighttime. Population abundances of heterotrophic nanoflagellates oscillate as does the fraction of cells
infected by of T4- and T7-like viruses [20, 21]; suggesting the potential for emergent synchronization.

Here, we synthesise and integrate data from the 2015 cruise; augmented by the development, fit-
ting and comparison with multi-trophic models. Our primary aim is to understand how mechanistic
interactions between cyanobacteria, viruses, and grazers explain the observed diel variation in popula-
tion abundances, process rates, and aggregate community dynamics in a model ocean ecosystem. To do
so, we developed a hierarchical set of nonlinear dynamic models of microbial interactions spanning the
cyanobacterium Prochlorococcus, heterotrophic nanoflagellate grazers and T4- and T7-like cyanophages
in an oscillating light environment, and including phytoplankton size structure. These models combine
principles of microbial interactions (including virus-microbe interactions) [28, 29, 30, 31, 32, 33] with
size-structured models of phytoplankton growth [2, 7, 9, 10, 12, 13, 34, 35, 36]. We use these models
to examine a series of related questions: how is the system expected to behave over diel timescales and
how does light driven forcing of cyanobacterial growth affect size-dependent interactions between marine
prey and predators? To do so, we compare in silico ecological rhythms with in situ ecological rhythms as
a means to identify whether mechanistic representations of feedback can recapitulate observed rhythms
and, if so, to what extent we can disentangle the relative contribution of viral-induced lysis and grazing
to total Prochlorococcus mortality. Indeed, as we show, model-data integration suggests that the tight
coupling of Prochlorococcus growth and loss over diel cycles may not be controlled only by cyanophages
and heterotrophic grazers, but that additional factors are at play, raising new questions on governing
mechanisms at the base of the marine food web.

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448546
http://creativecommons.org/licenses/by/4.0/


Figure 1: Community ecological models of viral and grazer mediated predation. Phyto-
plankton are structured by viral infection status; either susceptible (S) or infected (I). Susceptible
phytoplankton can become infected upon encountering viruses (V ). Infected cells produce virions which
are released into the environment upon viral-induced lysis. Both susceptible and infected cells are prone
to grazing pressure from grazers (G). Additionally, grazers may have a generalist strategy (e.g., grazing
on heterotrophs, mixotrophs and phytoplankton not represented by S and I) denoted by the dotted line.
a) the ECLIP model b) the ECLIPSS model in which phytoplankton are additionally structured by size.
Three size classes are graphically presented; more could be included as denoted by the dotted lines.

2 Modeling Framework

2.1 Overview of Model Structure

We develop two related models of an Ecological Community driven by Light including Infection of Phyto-
plankton, with and without Size Structure, which we term ECLIP and ECLIPSS, respectively. The first
model includes dynamics of Prochlorococcus, grazers, and viruses (ECLIP). The second model extends
this model to include Prochlorococcus size structure (ECLIPSS). These models include phytoplankton
division and loss, where the loss arises due to a combination of grazing, viral lysis, and other factors.
The ECLIPSS model also includes a phytoplankton growth term and explicit accounting for variation in
cell size. In both models, viruses denote abundances of a focal set of T4- and T7-like cyanophages which
are known to primarily infect Prochlorococcus. The grazers represent heterotrophic nanoflagellates which
can feed on multiple prey types [37], however the primary food source for heterotrophic nanoflagellates
may be Prochlorococcus [21]. As a result, we introduce flexibility in our model framework to account for
whether or not Prochlorococcus constitutes the primary source of food for the observed grazer class. To
assess this uncertainty we investigated models of two grazer strategies, with either a “specialised” grazer
class that only consumes Prochlorococcus or a “generalised” grazer class that includes additional prey
sources, e.g., heterotrophic bacteria which are not explicitly integrated into the models. Mixotrophic
nanoflagellates [38] were observed at the study site, but are thought to contribute less to the grazing
pressure on the bacterial community compared to heterotrophic nanoflagellates [21]. As it was not pos-
sible to differentiate measurements of mixotrophic nanoflagellates from measurements of phototrophic
nanoflagellates [21] we choose to focus our attention on grazing by heterotrophic nanoflagellates. In
both models, we search for sets of ecological parameters that are biologically feasible and use model-data
integration approaches to identify parameter sets that generate dynamics consistent with the observed
population dynamics in the NPSG. Details of ECLIP, ECLIPSS, and size structured assumptions follow.
A complete description of the model structure and justifications for functional and parameter choices are
found in the Supplementary Methods.
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2.2 Ecological model of phytoplankton communities with viral and grazer
mediated predation (ECLIP)

The ECLIP model represents Prochlorococcus cell division as a light-driven process (where cell division
is expected to occur at night [2, 39]) and Prochlorococcus cell losses are controlled by viral lysis, grazing,
and other density-dependent factors (Figure 1a). The Prochlorococcus population is structured by two
states of infection: cells that are susceptible to viral infection (S) and cells that are infected (I) by viruses
(V ). Grazers (G) feed indiscriminately on both on S and I classes. The dynamics of the abundances of
S, I, V and G over time are described by the following system of equations:

dS

dt
=

division
︷ ︸︸ ︷

µ(t)S −

losses
︷ ︸︸ ︷

mp1S −mp2S(S + I)−

infection
︷ ︸︸ ︷

φSV −

grazing
︷ ︸︸ ︷

ψSG

dI

dt
=

infected
︷ ︸︸ ︷

φSV −

losses
︷ ︸︸ ︷

mp1I −mp2I(S + I)−

viral-lysis
︷︸︸︷

ηI −

grazing
︷︸︸︷

ψIG

dV

dt
=

viral production
︷︸︸︷

βηI −

adsorption
︷ ︸︸ ︷

φ(S + I)V −

viral losses
︷ ︸︸ ︷

mv1V −

higher-order losses
︷ ︸︸ ︷

mv2V
2

dG

dt
=

grazing
︷ ︸︸ ︷

ε
NP

NG

ψ(S + I)G−

specialist/generalist grazing
︷ ︸︸ ︷

mg1G −

higher-order losses
︷ ︸︸ ︷

mg2G
2 ,

(1)

where
µ(t) = µave ( 1 + δµ sin( 2π(t+ δt) ) ) . (2)

Prochlorococcus have a diel-driven population division rate µ(t) whose proportional amplitude and phase
are set by parameters δµ and δt, and t=0 represents 06:00:00 local time (where t is measured in days).
To aid model fitting we constrain δt such that peak division rate occurs at night. Prochlorococcus have
a linear loss rate mp1 and a nonlinear loss rate, mp2, dependent on total phytoplankton abundance to
implicitly represent niche competition [40]. Viruses infect susceptible Prochlorococcus at a rate φ and
release β new virions into the environment upon cellular lysis following the latent period (defined by
the reciprocal of the lysis rate as 1

η
). Grazing upon Prochlorococcus is non-preferential with respect to

infection status and occurs at a rate ψ with a Gross Growth Efficiency (GGE) ε proportional to the
fraction of nitrogen contents in a Prochlorococcus cell (NP ) and a grazer (NG). We introduce mg1 as
a parameter to denote whether grazers act as specialists or generalists, where the term represents net
additional gains to the grazer from non-Prochlorococcus prey sources after accounting for respiratory
costs. We represent a specialist strategy via mg1 ≥ 0, assuming that Prochlorococcus cells are the main
source of grazer sustenance. In contrast, we represent a generalist strategy via mg1 < 0, implying that
grazers have a net positive growth rate even in the absence of S or I via the consumption of other
phytoplankton, heterotrophic bacteria, or grazers (via intraguild predation). Grazer and viral losses are
both characterised by a nonlinear loss term to avoid structurally biasing the model to favour one of these
Prochlorococcus predators [28] and to avoid competitive exclusion. A full list of parameters and further
details are shown in the Supplementary Information.

2.3 Ecological model of phytoplankton communities including size structure
(ECLIPSS)

The ECLIPSS model is illustrated in Figure 1b; it represents a Prochlorococcus population structured by
differences in cell size and infection status: cells that are susceptible to viral infection (S) and cells that
are infected (I) by viruses (V ). Both S and I are grazed upon by a general grazing class (G). S, I, V
and G represent population abundances. The ecological dynamics can be written, for a discrete number
of size classes in matrix form as:
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d~S

dt
=

birth
︷ ︸︸ ︷

2B~S −

division
︷︸︸︷

D~S +

growth
︷ ︸︸ ︷

R (E)~S −

respiration
︷ ︸︸ ︷

λ (E)~S −

losses
︷ ︸︸ ︷

mp1
~S −mp2

~SM −

infection
︷ ︸︸ ︷

~φ~SV −

grazing
︷ ︸︸ ︷

~ψ~SG

d~I

dt
=

growth
︷ ︸︸ ︷

R (E)~I −

respiration
︷ ︸︸ ︷

λ (E)~I −

losses
︷ ︸︸ ︷

mp1
~I −mp2

~IM +

infected
︷ ︸︸ ︷

~φ~SV −

grazing
︷ ︸︸ ︷

~ψ~IG −

viral-lysis
︷︸︸︷

η~I

dV

dt
=

viral production
︷ ︸︸ ︷

β
[

η~I
]

−

adsorption
︷ ︸︸ ︷

~φ~SV − ~φ~IV −

viral losses
︷ ︸︸ ︷

mv1V −

higher-order losses
︷ ︸︸ ︷

mv2V
2

dG

dt
=

grazing
︷ ︸︸ ︷

ε
[

~NS
~ψ(~S + ~I)

] G

NG

−

specialist/generalist grazing
︷ ︸︸ ︷

mg1G −

higher-order losses
︷ ︸︸ ︷

mg2G
2

(3)

where vectors are shown in bold and accented by right arrows, and matrices are capitalised, bold and

double underlined. Total Prochlorococcus carbon biomass is defined as M =
∑

(

~CS(~S + ~I)
)

, where the

carbon biomass of a Prochlorococcus cell is denoted as ~CS . Both ~CS and the nitrogen biomass of a cell,
~NS , are cell size-dependent (see Supplementary Information S1). The nitrogen biomass of a grazer cell is

denoted as NG. For simplicity, time dependencies on incoming photosynthetically active radiation, E, and
biological state variables S, I, V and G are suppressed. A full list of parameters and further details are
detailed in Supplementary Information S1. Key differences between the ECLIP and ECLIPSS models are
that ECLIP has a sinusoidal diel-driven division rate, while in ECLIPSS we incorporate a light response
that drives cellular volumetric growth and respiration (both absent in ECLIP). In ECLIPSS division rate
is size-dependent such that a division event creates two daughter cells each with a volumetric size equal to
half that of the mother cell. Additionally, in ECLIPSS, we model size-dependent encounter rates between
Prochlorococcus and heterotrophic nanoflagellate grazers (~ψ), and T4- and T7-like cyanophages (~φ).

3 Results

3.1 Ecological model of phytoplankton communities with viral and grazer
mediated predation (ECLIP) and model-data integration

To explore the potential coexistence dynamics of Prochlorococcus, viruses and grazers, we first attempted
to fit the ECLIP model using a Markov chain Monte Carlo (MCMC) approach given parameter bounds
in biologically realistic ranges (see Table S2 for parameters and the Supplementary Information S2 for
information on the MCMC fitting procedure). Since our data spans several orders of magnitude, and
to avoid preferential fitting of a particular timeseries, we define error as the sum of the average relative
differences between the model and empirical timeseries for each signal (Prochlorococcus cells, %-infected
Prochlorococcus cells, T4- and T7- like cyanophages, and heterotrophic nanoflagellates), subject to a
quadratic penalty (see details in Supplementary Information, equation S25). The models are fitted
against detrended empirical data, so for visualisation we add this trend to the model simulations. The
results from the best-fit specialist and generalist ECLIP model are shown in Figure 2. Both classes of
ECLIP models were able to reproduce the magnitudes of the different data signals and produced fits
with similar fitting error (see Figure S5). Hence, we find that a relatively simple multitrophic model can
recapitulate multi-trophic populations dynamics in the NPSG.

Despite the strong agreement with population dynamics, the specialist and generalist models dif-
fer significantly in the posterior parameter values identified by the MCMC procedure (see Figure S5).
Some life-history traits converge to similar values in parameter space, such as the phasing of division,
which corresponds to the peak division rate occurring between 00:00:00 and 00:30:00. However, modeled
Prochlorococcus abundances did not fit the phasing of the empirical data without constraining the model
to ensure peak division rate occurs at night. Prochlorococcus division is expected to peak at night after
daytime photosynthesis-driven growth. The failure of ECLIP to identify this phasing provides motivation
for including a more mechanistically driven model of division (explored in the next section). In other
cases, MCMC parameter distributions appear bimodal (e.g. adsorption rates, lysis rates), multi-modal
(e.g. grazing encounter rates), some with no clear mode (e.g. GGE), and others that differ between spe-
cialist and generalist models. For example, specialist models tend to have a larger lysis rate and grazing
gross growth efficiency than do generalist models (see Supporting Information Section S2). Altogether,
these findings suggest that the ECLIP model exhibits parameter entanglement and “sloppiness" [41], i.e.
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Figure 2: Specialist and generalist ECLIP model fit to empirical data. The best fitting
specialist (left) in pink and generalist (right) in green ECLIP models are compared against empirical
data in black. Model lines represent the median MCMC solution within the full range of solutions
found by the converged chains shown as bands. Data signals include Prochlorococcus cell abundances
(top), the percentage of infected Prochlorococcus cells, the abundance of free viruses and the abundance
of heterotrophic nanoflagellate grazers (bottom). The models were fitted against detrended data; for
visualisation we have added these trends to the model solutions. Grey bars indicate hours of darkness.

many parameter sets can lead to similar system behaviour. Further evidence for sloppiness is suggested
by the parameter variability between different MCMC chains which all exhibited small and similar fitting
errors. We interpret these findings to mean that despite the ability of ECLIP to recapitulate baseline
dynamics (but not necessarily oscillation features of cells and infected cells over the diel cycle), we must
be cautious in conflating fits with mechanism. Instead, the parameter sloppiness suggests the need to
include additional data types (e.g., Prochlorococcus size structure) in order to differentiate between bi-
ological mechanisms (e.g., the relative contributions of lysis, grazing, or other factors to phytoplankton
loss).

3.2 Size-structured ecological model (ECLIPSS) and model-data integration

The size-structured ECLIPSS model includes dynamics of size-structured susceptible and infected Prochloro-
coccus cells, cyanophages and heterotrophic nanoflagellates. Hence, in identifying parameters within
ECLIPSS we augment the abundances of total cells, viruses, and heterotrophic nanoflagellates with the
mean average volume of Prochlorococcus (as measured using SeaFlow; see Materials and Methods). We
simulate the models using 20,000 parameter sets obtained by Latin Hypercube sampling (LHS) in bio-
logically realistic ranges. Of these, 400 simulations produced feasible results (those that lead to stable
coexistence of Prochlorococcus, cyanophages and grazers) under the specialist model and 1,094 simula-
tions produced feasible results under the generalist model. These low rates of feasibility given random
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parameter sampling are consistent with prior analyses of a multitrophic model without light-driven dy-
namics [29]. We used a subset of model runs with the smallest total error to constrain our parameter
ranges; and used these to generate 10,000 new parameter sets (see Supplementary Text). Of these, 1,886
simulations produced feasible results under the specialist model and 2,512 simulations produced feasible
results under the generalist model. The best fit from the generalist model has an error of 0.1584, whilst
the best fit from the specialist model has an error of 1.0414 (Supplementary Information, Figure S12).
We cannot directly compare fitting error between ECLIP and ECLIPSS models due to the addition of
fitting ECLIPSS to cell volume, however the errors in the ECLIPSS models are larger per population
type on average than those found in the optimised ECLIP models. We note these fits improve upon
those found in the initial parameterisation of ECLIPSS (Supplementary Information, Table S1) shown in
Supplementary Information Figure S4.

Figure 3: The best fitting specialist and generalist ECLIPSS models. The best fitting specialist
(left) in red and generalist (right) in green ECLIPSS models are denoted in solid lines and enveloped in
the bounds of the best ten fitting models and compared against empirical data in black. Data signals that
are compared to the data for fitting are Prochlorococcus cell abundance (top), mean Prochlorococcus cell
volume, the percentage of infected Prochlorococcus cells, the abundance of free viruses and the abundance
of heterotrophic nanoflagellate grazers. The figure shows the bounds and mean of the top ten specialist
and generalist models. The models were fitted to detrended data; for visualisation we have added these
trends to the model solutions. Grey bars indicate hours of darkness.

The agreement between model and data in Figure 3 suggest that the core feedback mechanisms are

7

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448546
http://creativecommons.org/licenses/by/4.0/


sufficient to jointly explain Prochlorococcus abundances and size structure, viral infection rates, viral
abundances, and grazer abundances at sub-daily resolution. Nonetheless, differences appear between the
best fitting specialist and generalist model states and the data; as well as between the model outcomes
themselves. In the specialist model Prochlorococcus cell abundances appear about an order of magnitude
larger than those observed and the model population has a larger average volume than that found in
the data. On the other hand, the generalist model broadly captures the magnitude of Prochlorococcus
cell abundance; and captures the diel variations in average cell volume. Both ECLIPSS models appear
close to the observed magnitudes of ≈ 1% infected cells [20]. Both ECLIPSS models were broadly able to
characterise the magnitudes of free T4- and T7-like cyanophages and heterotrophic nanoflagellate grazer
abundances, though there was large variation amongst the best fitting specialist models. We note that the
model predicted dynamics of Prochlorococcus, free virus abundance, heterotrophic nanoflagellate abun-
dance, and the percentage of infected cells do not always recapitulate the magnitude of diel oscillations
observed. This gap may point to direct light-mediated modulation of life history traits and behavior
[16, 17, 18, 19, 20, 21], and/or unaccounted for feedback mechanisms in the model structure. Like our
analysis of ECLIP, we find differences in parameter sets between the best fitting generalist and specialist
ECLIPSS models that is then recapitulated via analysis of the full suite of coexisting LHS parameter
sets (Supplementary Information, Figure S9 and S12-S15) Hence, rather than conclude that a particular
parameter set provides the most explanatory power to observed patterns, we seek to identify mechanisms
common to those parameter sets that fit the data nearly equally well.

3.3 Partitioning the daily losses of Prochlorococcus between top-down and
other effects

We revisit the best fitting specialist and generalist ECLIP and ECLIPSS models shown in Figures 2 and
3 to analyse the predicted partitioning of mortality among grazing by heterotrophic nanoflagellates, viral-
induced lysis by T4- and T7-like cyanophages, and other sources. We expect that grazing may represent
a larger proportion of losses in the models in which heterotrophic nanoflagellates act as specialists such
that Prochlorococcus are their only prey source. For ECLIP we evaluate models from across the best
chains, which all had small fitting errors; while in ECLIPSS, due to a paucity of model solutions with
low error, we focus our analysis on models with a fitting error less than 2 (the top 13 specialist and 154
generalist models).

In Figure 4 we compared our model-inferred estimates of relative mortality with additional inde-
pendent estimates from field based (iPolony measurements and fluorescently labelled bacterial (FLB)
uptake estimates) or theoretical (encounter and quota) methods (see details in Supplementary Informa-
tion S4). Theoretical estimates via the encounter and quota methods have significant variability due in
part to uncertainties in life history traits. As such, viral lysis or grazing could potentially explain daily
Prochlorococcus losses. However, direct estimates suggest that both viral-induced lysis by T4- and T7-like
cyanophages and grazing by heterotrophic nanoflagellates only contribute a comparatively small amount
to Prochlorococcus cell losses. We estimate that less than 35% of Prochlorococcus cell losses are explained
by the combination of viral-induced lysis by T4- and T7-like cyanophages (estimated by iPolony) and
grazing by heterotrophic nanoflagellates (estimated by FLB). Across models, we find that grazing makes
up a larger proportion of Prochlorococcus cell losses in models in which heterotrophic nanoflagellates
act as specialist consumers. In general, we find that viral-induced lysis is responsible for only a small
proportion of losses in both models in agreement with Mruwat et al. [20]. Grazing by heterotrophic
nanoflagellates, by contrast, made up the majority of Prochlorococcus cell losses across both the ECLIP
models and in the specialist grazer ECLIPSS model. However, viral-induced lysis was inferred to be larger
in the generalist ECLIPSS model, while grazing was much smaller – and more in line with estimates made
via FLB measurements – relative to the other models. Combining model-data integration with direct
measurements of top-down effectors, we found that the model-inferred combination of viral-induced lysis
by T4- and T7-like cyanophages and grazing by heterotrophic nanoflagellates typically do not sum up to
equal total Prochlorococcus cell losses on a daily basis.

Instead, our model-data integration suggests that other sources of Prochlorococcus cell losses are non-
negligible, accounting for between 5% and 55% across the different model types. One possibility is that
mortality partitioning could be linked to how quickly Prochlorococcus cells are expected to turnover in the
NPSG. We note that the best set of models supports a large range of per capita Prochlorococcus cell loss
rates of between nearly 0 and 1.1 per day; suggesting that perhaps the variability in other loss rates are
coupled to magnitude of the estimated birth/death rates. However, contrary to this hypothesis, we do not
have evidence linking total loss rates and mortality partitioning between viral-induced lysis, heterotrophic
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Figure 4: Relative importance of viral lysis, grazing, and other effects on total Prochloro-

coccus mortality. The proportion of mortality partitioned between viral-induced lysis (top panel),
grazing (middle panel), and other (bottom panel) sources for the best ECLIP specialist (ECLIP-S) and
generalist (ECLIP-G) and ECLIPSS specialist (ECLIPSS-S) and generalist (ECLIPSS-G) models and
other measures of relative mortality. For ECLIP the results from all chains are shown. For ECLIPSS
only models with a fitting error less than 2 are included (and are additionally shown as individual points).
Bars in these panels denote mortality rate proportions associated with the best ECLIP and ECLIPSS
models marked by their 25, 50 and 75% quantiles. Other measures of relative mortality are given via
theoretical encounter rates and quota based estimates, direct measurements of viral infection (iPolony),
and Fluorescently Labelled Bacteria (FLB) incubation measurements (see Supplementary Information
Section S4 for details).

nanoflagellate grazing and other processes in either the ECLIP or ECLIPSS models (Supplementary In-
formation, Figure S16). Taken together, model-data integration suggests that viral-induced lysis accounts
for a relatively small proportion of Prochlorococcus cell losses in the NPSG. Model results also suggest
that the sum of losses via viral-induced lysis and heterotrophic nanoflagellate grazing do not account for
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the majority of Prochlorococcus cell losses - in contrast to prior work that generally aims to partition loss
rates in terms of established top-down drivers. Together, both model-data fits and independent estimates
of top-down mortality suggest that other forms of losses beyond grazing by heterotrophic nanoflagellates
and lysis by T4/T7-like cyanophages may be critical in shaping daily phytoplankton rhythms.

4 Discussion

We developed and analysed two multitrophic community ecology models, ECLIP and ECLIPSS, consist-
ing of Prochlorococcus, viruses, and grazers to investigate the feedback mechanisms and ecological drivers
of oligotrophic ocean microbial population dynamics on diel timescales. Both ECLIP and ECLIPSS
include light-driven phytoplankton growth, where phytoplankton can be infected and lysed by viruses,
or grazed upon by nanoflagellate grazers. ECLIPSS explicitly incorporates phytoplankton size-structure
including size-mediated division and encounter with viral and grazer predators, while ECLIP considers
the ecological interactions independent of size-structure. We found that both ECLIP and ECLIPSS were
capable of generating coexisting populations of cyanobacteria, viruses infecting cyanobacteria, and graz-
ers, and that the suite of model solutions encompasses the population abundances observed in the NPSG
(Supplementary Information, Figure S11). Despite strong agreement with data, we found that underly-
ing process rates and life-history traits differed significantly amongst best-fitting ECLIP models. In an
effort to resolve identifiability problems, we found that ECLIPSS was able to jointly explain the abun-
dance dynamics of Prochlorococcus, virus particle abundances, infected cells, and grazers. By combining
model-data fits with direct measurements of mechanistic interactions we infer that the combination of
lysis and grazing does not account for daily Prochlorococcus losses. Instead, we find that a significant -
and potentially majority - of Prochlorococcus losses are due to other mechanisms beyond that of lysis by
T4- and T7-like cyanophage and nanoflagellate grazing.

The development of a multitrophic model focused in on a portion of a complex, surface ecosystem. In
doing so, we integrated our models with field observations to understand interactions of T4- and T7-like
cyanophages as well as nanoflagellate grazers with Prochlorococcus, the most abundant phytoplankton at
our study site. Prior work has assumed that Prochlorococcus is the predominant prey for heterotrophic
nanoflagellate grazers - but such an assumption had the potential to bias interpretations of direct in-
gestion experiments (and the interpretation of total loss rates). Instead, it is likely that heterotrophic
nanoflagellate grazers rely on other food sources as part of a generalist feeding strategy. To evaluate
this possibility, the ECLIP framework included the potential for model outcomes to span generalist to
specialist strategies. However, we found a critical identifiability problem: a broad range of model classes
could explain population dynamics in the absence of size structure. These identifiability problems within
the ECLIP framework prevented us from distinguishing whether heterotrophic nanoflagellates act pri-
marily as specialist grazers of Prochlorococcus, or ingest a broader range of prey items. Turning to
ECLIPSS, we found that assuming grazers are generalist, rather than specialists, leads to improvements
in fit quality. Notably, ECLIPSS was able to recapitulate daily dynamics of total Prochlorococcus cell
abundances and size structure, as well as top-down populations including the fraction of infected cells,
T4- and T7-cyanophage abundances, and heterotrophic nanoflagellate grazer abundances.

Overall, the fit of model dynamics to NPSG measurements enabled us to examine how much of
Prochlorococcus mortality can be ascribed to viral lysis, heterotrophic nanoflagellate grazing, or other
sources. In partitioning Prochlorococcus mortality we found different outcomes across the different model
scenarios and independent auxiliary estimates (Figure 4). Indirect estimates via encounter rate or quota-
based theory are poorly constrained and are limited by our current knowledge of microbial ecological life-
history traits. However, fitting dynamical models, ECLIP and ECLIPSS with the same initial parameter
ranges, to the data resulted in more constrained mortality estimates. Both the ECLIP and ECLIPSS
models predicted that other sources of mortality were likely important in explaining community diel
patterns. Assuming that grazers function as generalists, we found that compatible model-data fits predict
that other sources of mortality can account for over 50% of daily Prochlorococcus mortality. We found that
direct estimates of mortality from grazing incubation experiments and infected cell measurements also
provide evidence that heterotrophic nanoflagellate grazing and T4- and T7- like viral-induced mortality do
not account for all Prochlorococcus losses in the NPSG. Quantifying the relative importance of mortality
processes beyond conventional top-down effects (grazing and lysis) is critical for understanding how
grazers and viruses contribute to mortality and energy transfer in marine microbial communities [2, 23,
24, 28].
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Undercharacterised ecological interactions

Mixotrophic nanoflagellates are expected to contribute to the “other” loss of Prochlorococcus, but
measurements suggest this is a small contribution relative to the heterotrophic nanoflagellates [21,
42]. Unknown viruses (like RNA viruses), as well as other grazer types including larger consumers
may be contributing to the ‘other mortality’ terms in our models. In addition, the model includes
viral-induced and grazing-induced losses; however in both cases we utilize a contact-driven model,
analogous to ‘Type I’ functional responses. Mechanistic changes in functional responses and/or
responses to light may drive distinct interaction rates (and aggregate mortality) even given the
same set of viruses and grazers.

Aggregation and sinking of picoplankton

Some losses may be due to Prochlorococcus aggregation, particle attachment, and subsequent sinking
out. Picoplankton (and their viruses) have been suggested to be an important contributor to export
in large scale analyses e.g. [43, 44], though Guidi et al. [44] suggest Synechococcus rather than
Prochlorococcus abundances appear correlated to export. Additionally, less is known about the
microscale processes that might lead to export contributions from picoplankton – Prochlorococcus
cells can be grown and sustained in laboratory culture for month-long experiments, suggesting
sedimentation of Prochlorococcus cells may be limited. Generally, conceptual models of ocean ecology
do not include sinking out of picoplanktonic populations. However, particle aggregation could
be stimulated via processes such as sloppy feeding or viral lysate [28, 45]. As viral lysate from
picocyanobacteria is partially labile [46, 47] aggregation and sinking could be stimulated indirectly
by viral lysate via heterotrophic bacterial growth. Particle attachment and aggregation could also be
stimulated by TEP (Transparent exopolymer particles), which is produced in xenic Prochlorococcus
cultures [48, 49]. TEP production appears to be stimulated by high light intensity, characteristic of
the surface ocean, and appears to be linked to loss rates [48].

Physiological stress(es)

Other potential loss mechanisms include physiological stress which can be induced, for example, by
high-level irradiance associated with ultraviolet radiation [50, 51] and refraction of light through
surface waves that could lead to photodamage via the flashing effect [52, 53]. Other abiotic factors
such as nutrient deficiency [54], metal toxicity [55, 56], and thermal variations [57] can also contribute
to increased stress, though we do not expect thermal variations to be important in the NPSG.
Stresses often result in the generation of reactive oxygen species, that cause oxidative stress and can
lead to DNA damage. Reactive oxygen species are also used as a signalling pathway for programmed
cell death in photosynthetic microbes [58, 59, 60], though there is a lack of evidence for a programmed
cell death pathway in Prochlorococcus and sympatric heterotrophic bacteria are thought to alleviate
this type of stress [61, 62]. We note that there is also a lack of evidence for toxin-antitoxin systems,
which are typically common across bacteria and archaea and could act as a pathway to additional
cell loss, in Prochlorococcus [63].

Population heterogeneity

Microbes experience senescence and aging, leading to intracellular accumulation of damage through
their life cycle [64], which may lead to asymmetric division [65]. Unlike other microorganisms,
Prochlorococcus does not have resting stages and rely on heterotrophic bacteria to survive nutrient
starvation in cultures [66], though the types of heterotrophic bacteria they form associations with
in situ differ from those found in culture which tend to be copiotrophic [67]. Heterogeneity within
the Prochlorococcus population may mean there are differing mortality responses at the individual
or strain-level vs. at the scale of total population. Prochlorococcus populations are combinations of
ecotypes which respond differently to environmental stressors [68, 69, 70, 71, 72, 73]. Competition
between these ecotypes and with other phytoplankton in the same niche (like Synechococcus or
picoeukaryotes) may also increase stresses, especially in an oligotrophic environment like the NPSG
where nutrients are limited.

Box 1 | Potential mechanisms to explain other losses of Prochlorococcus
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The finding that model-data fits impute other sources of mortality as quantitatively significant sug-
gests that we may be missing important feedback mechanisms in our representation of marine surface
community dynamics. Indeed, phytoplankton loss from the surface oceans is likely to include factors
beyond grazing and viral-induced lysis [74, 75]. In Box 1 we review some potential mechanisms that may
contribute to the unaccounted losses of Prochlorococcus, including ecological feedback that leads to distinct
functional and/or light-driven responses, aggregation and/or sinking, stress, population heterogeneity, as
well as the possibility of having missed other sources of top-down mortality (e.g., uncharacterised viral
infections or grazing by larger organisms). Similarly, our measurements may miss heterogeneities within
the Prochlorococcus population that mask our ability to interpret mortality. Alternatively, we may be
missing entire mechanisms of loss such as via particle aggregation and sinking out, or via physiological
stresses on cells. Investigating whether alternative mechanisms of Prochlorococcus losses could be sig-
nificant warrants future research, and may be critical to improving understanding of how biomass and
nutrients are transferred through marine food webs.

Both the ECLIP and ECLIPSS modeling frameworks come with caveats, despite the inclusion of
multiple populations and interaction types. First, we have focused on the impacts of direct, light-driven
forcing of cyanobacterial division (in ECLIP) and growth leading to division (in ECLIPSS). Hence, os-
cillations arising in other components reflect a combination of instabilities that can arise in nonlinear
population models as well as the cascading impacts of such oscillations on the community. Direct incor-
poration of diel impacts on grazing [16, 18, 21] or viral traits (e.g., adsorption) [76, 19] may be required
to mechanistically understand population dynamics on sub-daily timescales. Second, we have used two
focal processes to examine ways that carbon and nutrients in basal picoplankton are transferred, e.g., up
through the food chain via grazing or retained in the microbial loop due to viral lysis (aka the viral shunt)
[77, 78]. This dichotomy reflects a potential tension in the extent to which primary production stimu-
lates the biological pump. Extensions to the current model might also examine the mechanistic process
of export explicitly, whether through coupling grazing to the generation of particles and/or examining
the extent to which viral lysis generates aggregates which can exported to the deep oceans via the viral
shuttle [45, 79]. Finally, our work has implicated an accounting challenge in quantifying the balance of
Prochlorococcus growth and losses. Despite the daily growth and division of cells, the overall abundance
remains tightly constrained – our work suggests that this constraint may in fact depend on other fac-
tors beyond conventional mechanisms of loss ascribed to T4- and T7-like cyanophage and nanoflagellate
grazers.

In summary, this multi-trophic modeling framework provides an opportunity to test the limits of our
understanding of feedback mechanisms of microbial communities in the surface open ocean. In doing
so, the model has provided additional support for the hypothesis that relatively high viral abundances
can be compatible with relatively low infection (and mortality) rates, how grazer generalism may be
key to understanding Prochlorococcus abundances, while also identifying a key direction for future work:
identifying the potentially ‘missing mortality’ of phytoplankton at the base of the marine food web.
In moving forward, in situ observations will be needed to probe aggregation and sinking, autolysis,
programmed cell death, or other forms of loss of Prochlorococcus in the surface ocean and to understand
the feedbacks of variation in cyanobacterial growth and loss in a changing ocean.
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Materials and Methods

Model availability

Both the ECLIP and the ECLIPSS models are coded in MATLAB. Core code for running model simu-
lations, analysis and plotting is archived on Zenodo ([80]).

Empirical data

We use data collected from the HOE-Legacy 2A cruise in Summer 2015. In all Figures, the 12 days shown
represent the time between 06:00:00 24th July 2015 and 06:00:00 August 5th 2015 local time.

• SeaFlow measurements of Prochlorococcus cell abundance, size-structure and carbon biomass:

The SeaFlow continuously measures forward scattering, red and orange fluorescence intensities of
particles ranging in size from ~0.4 to 4 µm in diameter from underway samples every 3 minutes. A
combination of manual gating and statistical methods was used to identify Prochlorococcus based
on forward scatter (457/50 bandpass filter), red fluorescence (572/28 bandpass filter) and orange
fluorescence (692/40 band-pass filter) relative to 1-µm calibration beads (Invitrogen F8823). Cell
diameter of individual cells was estimated from SeaFlow-based light scatter by the application of
Mie light scatter theory to a simplified optical model, using an index of refraction of 1.38 [81, 82].
Data was obtained via Simons CMAP [83].

19

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448546
http://creativecommons.org/licenses/by/4.0/


• Virus abundance and infection:

Samples for virus abundance and infection were collected every 4 hours at 15 m depth using a CTD-
rosette equipped with 12 L niskin bottles [20]. Samples for cyanophage abundances (40 mL) were
filtered through a 0.2 µm syringe top filter, flash frozen, and stored at -80°C. Samples for infected
cells (40 mL) were filtered through a 20 µm nylon mesh, fixed with electron microscopy grade
glutaraldehyde (0.125% final abundance), incubated for 30 minutes in the dark at 4°C, flash frozen,
and stored at -80°C. Cyanophage abundances were analysed using the polony method for T7-like
[84] or T4-like [85] cyanophage families. Virally infected Prochlorococcus was quantified using the
iPolony method [20] in which Prochlorococcus cells were sorted with a BD Influx cytometer and
screened for intracellular T4-like and T7-like cyanophage DNA.

• Measurements of heterotrophic nanoflagellates:

Samples for nanoplankton (protists 2-20 µm in diameter) abundances were collected every 4 hours
at 15 m depth [21]. Preserved samples were stored at 4°C. Slides were prepared from preserved
samples within 12 hours of sampling by filtering 100 mL subsamples down to 1 mL onto blackened
2 µm, 25 mm polycarbonate filters and staining the samples with 50 µL of a 4’-6’diamidino-2-
pheylindole (DAPI, Sigma-Aldrich, St. Louis, MO) working solution (1 mg mL−1) for 5-10 minutes
in the dark [86]. Stained samples were filtered and rinsed; filters were placed on glass slides with
a drop of immersion oil and coverslip, then sealed with clear nail polish. Slides were stored at
-20°C until analysis. Heterotrophic nanoplankton abundances were counted using epifluorescence
microscopy from triplicate slides, and differentiated from photo/mixotrophic nanoplankton by the
lack of chlorophyll a autofluorescence in plastidic structures when viewed under blue-light excitation
[21].
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