

Novel intracellular phospholipase B from *Pseudomonas aeruginosa* with activity towards endogenous phospholipids affects biofilm assembly

Andrea J. Weiler¹, Olivia Spitz², Mirja Gudzuhn³, Stephan N. Schott-Verdugo^{4,5}, Michael Kamel⁶,
Björn Thiele⁸, Wolfgang R. Streit³, Alexej Kedrov⁶, Lutz Schmitt², Holger Gohlke^{4,7} and Filip
Kovacic^{1,*}

1. Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
2. Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
3. Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
4. Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
5. Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, CL-3460000 Talca, Chile
6. Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
7. John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
8. Institute of Bio- and Geosciences, Plant Sciences (IBG-2) and Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

* Corresponding author: f.kovacic@fz-juelich.de

25

26 Keywords: oligomerization, virulence factor, membrane protein, α/β -hydrolase, pathogen

27 **Abstract**

28 *Pseudomonas aeruginosa* is a severe threat to immunocompromised patients due to its numerous
29 virulence factors and multiresistance against antibiotics. This bacterium produces and secretes
30 various toxins with hydrolytic activities including phospholipases A, C and D. However, the
31 function of intracellular phospholipases for bacterial virulence has still not been established. Here
32 we demonstrate that the hypothetical gene *pa2927* of *P. aeruginosa* encodes a novel
33 phospholipase B named PaPlaB. PaPlaB isolated from detergent-solubilized membranes of *E. coli*
34 rapidly degraded various GPLs including endogenous GPLs isolated from *P. aeruginosa* cells.
35 Cellular localization studies suggest that PaPlaB is peripherally bound to the inner and outer
36 membrane of *E. coli*, yet the active form was predominantly associated with the cytoplasmic
37 membrane. *In vitro* activity of purified and detergent-stabilized PaPlaB increases at lower protein
38 concentrations. The size distribution profile of PaPlaB oligomers revealed that decreasing protein
39 concentration triggers oligomer dissociation. These results indicate that homooligomerisation
40 regulates PaPlaB activity by a yet unknown mechanism, which might be required for preventing
41 bacteria from self-disrupting the membrane. We demonstrated that PaPlaB is an important
42 determinant of the biofilm lifestyle of *P. aeruginosa*, as shown by biofilm quantification assay and
43 confocal laser scanning microscopic analysis of biofilm architecture. This novel intracellular
44 phospholipase B with a putative virulence role contributes to our understanding of membrane GPL
45 degrading enzymes and may provide a target for new therapeutics against *P. aeruginosa* biofilms.

46 1. Introduction

47 *Pseudomonas aeruginosa* causes severe hospital-associated infections, especially in
48 immunocompromised hosts, which are complicated to treat due to the increasing antibiotic
49 resistance and the aggressive nature of this pathogen leading to the fast progression of the
50 infection [1, 2]. In general, the overall mortality rate determined on a large group of 213,553
51 patients with *P. aeruginosa* septicemia was 16 %, going along with the observation that the
52 incidence of sepsis increases since 2001 [3]. This clearly illustrates a need for novel treatments to
53 kill the pathogen or, at least, diminish its virulence. Therefore, WHO has recently classified *P.*
54 *aeruginosa* in the group of most critical pathogens [1] and advised research and development of
55 new antibiotics against it. Unfortunately, despite intensive investigations towards understanding
56 virulence in this human pathogen, many genes encoding putative virulence factors remain
57 uncharacterized [4].

58 In *P. aeruginosa*, as well as in other bacterial pathogens, phospholipases, the hydrolases with
59 membrane phospholipid-degrading activity, play an important role during infections. They are
60 classified into several groups depending on which ester bond of a glycerophospholipid (GPL) they
61 hydrolyze [5]. While phospholipases C (PLC) and D (PLD), respectively, hydrolyze the glycerol-
62 oriented and the head group-oriented phosphodiester bonds of phospholipids, phospholipases A1
63 (PLA1) and A2 (PLA2) release fatty acids bound at the *sn*-1 or *sn*-2 positions, respectively.
64 Phospholipases B (PLB) cleave *sn*-1 and *sn*-2 bonds of GPL with similar specificity.
65 Lysophospholipids, degradation products of PLA1 and PLA2, are converted by lysophospholipases
66 A (lysoPLA) to glycerophosphoalcohol and fatty acid.

67 The contribution of bacterial phospholipases to virulence is predominantly related to damaging
68 the host cells, which mostly enhances the survival and spread of the pathogen in the host [6, 7].
69 Several phospholipases of *P. aeruginosa*, namely phospholipases A ExoU [8] and PlaF [9, 10],

70 phospholipase A/esterase EstA [11], phospholipase C PlcH [12], and two phospholipases D, PldA
71 and PldB [13], were suggested to be virulence factors in that way. The ExoU, PldA, and PldB are
72 directly secreted into eukaryotic cells, where they modulate native host pathways to facilitate
73 invasion by *P. aeruginosa* or inflammation [14]. An EstA of *P. aeruginosa*, which is anchored to the
74 outer membrane with the catalytic domain protruding into the extracellular medium, was shown
75 to effects virulence- and resistance-related phenotypes (cell motility and biofilm formation) [11].
76 PlcH, one of three secreted PLCs of *P. aeruginosa*, is considered as a virulence factor because (i) it
77 exhibits hemolytic activity; (ii) it is produced during clinical infection with *P. aeruginosa* [15], and
78 (iii) *plcH* deletion strain of *P. aeruginosa* shows attenuated virulence in mouse burn models [16].
79 However, despite more than three decades of research on phospholipases, still little is known
80 about the direct action of *P. aeruginosa* phospholipases on their membranes.

81 On the contrary, one of the best-studied pathogens concerning phospholipases is *Legionella*
82 *pneumophila*, an intracellularly replicating Gram-negative bacterium [17]. Several phospholipases
83 of *L. pneumophila* were proposed to have a function for establishing a proper life cycle inside a
84 host. One of them is the major surface-associated phospholipase PlaB (LpPlaB). LpPlaB is a serine
85 hydrolase with hemolytic activity and catalytic activity towards common bacterial phospholipids
86 and lysophospholipids containing glycerol and choline head groups [18, 19]. However, the catalytic
87 mechanism of LpPlaB, the mechanism of targeting to the outer membrane, structural features
88 responsible for binding to the membrane, and its effect on the host are unknown.

89 Here, we expressed, purified, and characterized a homolog of LpPlaB from human pathogen *P.*
90 *aeruginosa* PA01, which we named PaPlaB. Comprehensive phospholipolytic enzyme activity
91 studies revealed that PaPlaB is a promiscuous PLB and lysoPLA, which shows strong activity
92 towards endogenous phospholipids isolated from *P. aeruginosa*. Furthermore, we demonstrated
93 that a *P. aeruginosa* *ΔplaB* deletion strain produces less biofilm with a different architecture

94 compared to the wild-type bacterium. Thus, the PaPlaB is a novel putative virulence factor of
95 *P. aeruginosa* PA01 belonging to the poorly understood PLB family.

96

97 **2. Material and methods**

98 **2.1. Sequence analysis, and structure prediction**

99 Amino acid sequence search and alignment were performed using BLAST and alignment tools
100 provided by the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov) [20]. The
101 sequence alignment was visualized using BioEdit software [21]. The secondary structure was
102 predicted with the JPred4 server using a method based on hidden Markov models [22]. TMpred
103 server (https://embnet.vital-it.ch/software/TMPRED_form.html) was used to predict
104 transmembrane helices with the length between 17 and 33 residues. The homology-based
105 structural model of PaPlaB was built using the Phyre2 server [23], and the TopScore tool [24] was
106 used to validate the structure prediction.

107 For further validation, protein residue-residue contacts were calculated with MetaPSICOV2 server
108 [25] using a large sequence alignment containing 3,469 sequences. A distance violation (DV) score
109 which indicates deviation (higher score higher deviation) between the MetaPSICOV2 predicted
110 contacts and those found in the Phyre2 model was computed according to eq. 1. Hence, DV score
111 below 10 indicates that a structural model has the same fold as the native structure [26].

$$112 \quad DV = \frac{1}{L} \sum_{i=1}^L \sum_{j>i}^L score_{ij} \quad score_{ij} = \begin{cases} d_{ij} - 8, & \text{if } d_{ij} > 8 \text{ \AA} \wedge P > 0.5 \\ 0, & \text{if } (d_{ij} \leq 8 \text{ \AA} \wedge P > 0.5) \vee P < 0.5 \end{cases} \quad (\text{eq. 1}),$$

113 where L is the sequence length, d_{ij} is the distance between C_β atoms of the corresponding residue
114 pair (C_α if glycine is used), and P is the MetaPSICOV2 prediction confidence bounded between 0
115 and 1. The structures of oligomers were generated by *ab initio* docking of the monomeric
116 structure followed by structural refinement using the GalaxyHOMOMER server [27].

117 Refined structures of PaPlaB homooligomers were used for positioning them in the membrane
118 with PPM web server provided by Orientations of Proteins in Membranes (OPM) database [28].
119 The PyMol software (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.)
120 was used for visualization of the structural model.

121 **2.2. Molecular cloning**

122 The *paplaB* gene containing the sequence that encodes a C-terminal His₆-tag was amplified using
123 Phusion® DNA polymerase (Thermo Fisher Scientific, Darmstadt, Germany). In the PCR, the
124 genomic DNA of *P. aeruginosa* PA01 [29], isolated with the DNeasy blood and tissue kit (QIAGEN,
125 Germany), was used as the template together with primers *paplaB_for* and *paplaB_rev* (Table S1).
126 The pET22-*paplaB* vector for T7 RNA polymerase-controlled expression of *paplaB* was constructed
127 by ligation of the *paplaB* gene into the pET22b vector (Novagen, Germany) at *Nde*I and *Sac*I
128 restriction sites, using T4 DNA ligase (Thermo Fisher Scientific). Site-directed mutagenesis of
129 PaPlaB was performed by the Quick® Change PCR method using the pET22-*paplaB* plasmid as a
130 template and complementary mutagenic oligonucleotide pairs (Table S1) [30]. *E. coli* DH5 α strain
131 [31] was used for molecular cloning experiments. The plasmid DNA and DNA fragments from the
132 agarose gel (1 % w/v) after electrophoresis were isolated with innuPREP Plasmid Mini Kit 2.0 and
133 the innuPREP DOUBLEpure Kit (Analytik Jena, Germany). Oligonucleotides synthesis and plasmid
134 DNA sequencing was performed by Eurofins Genomics (Germany).

135 **2.3. Protein expression and purification**

136 For the expression of PaPlaB with a C-terminal His₆-tag, *E. coli* C43(DE3) [32] cells were
137 transformed with pET22-*paplaB* plasmid, and the empty pET22b vector was used as a control.
138 Cells were grown overnight in lysogeny broth (LB) medium [33] supplemented with ampicillin
139 (100 μ g/ml) at 37°C with agitation. Overnight cultures were used to inoculate the expression
140 cultures to an initial OD_{580nm} = 0.05 in LB medium containing ampicillin (100 μ g/ml). The cultures

141 were grown at 37°C, and the expression of *paplaB* was induced with isopropyl-β-D-thiogalactoside
142 (IPTG, 1 mM) at OD_{580nm} = 0.4 - 0.6 followed by incubation at 37°C for 5 hours. The cells were
143 harvested by centrifugation (6,000 g, 4°C, 10 min) and stored at -20° C before proceeding with
144 further analysis. Active site variants of PaPlaB carrying S79A, D196A, or H244A mutations were
145 expressed the same as the PaPlaB.

146 Cells producing PaPlaB were suspended in 100 mM Tris-HCl pH 8, disrupted by a French press, and
147 incubated for 30 min with lysozyme (2 mg/ml) and DNase (0.5 mg/ml). The cell debris and
148 inclusion bodies were removed by centrifugation (6,000 g, 4°C, 10 min), and the soluble cell lysate
149 was ultracentrifuged (180,000 g, 4°C, 2 h) to isolate the membrane fraction. Subsequently, the
150 proteins were extracted from the membranes upon overnight incubation in the solubilization
151 buffer (5 mM Tris-HCl pH 8, 300 mM NaCl; 50 mM KH₂PO₄; 20 mM imidazole, Triton X-100 1 % v/v)
152 at 4°C. Insoluble debris was removed by ultracentrifugation (180,000 g, 4°C, 0.5 h), and the
153 supernatant containing PaPlaB was used for purification.

154 Immobilized metal affinity chromatographic purification of PaPlaB was performed [34] using the
155 ÄKTA Pure instrument (GE Healthcare). The Ni²⁺-NTA column (4 ml; Macherey-Nagel, Düren) was
156 equilibrated with ten column volumes of the solubilization buffer before loading the sample. The
157 column was washed with five column volumes of the washing buffer (5 mM Tris-HCl pH 8, 300 mM
158 NaCl, 50 mM KH₂PO₄, 50 mM imidazole, 0.22 mM DDM) to remove unspecifically bound proteins
159 followed by the elution of PaPlaB with 100 ml of buffer (5 mM Tris-HCl pH 8, 300 mM NaCl, 50 mM
160 KH₂PO₄, 0.22 mM DDM) in which the concentration of imidazole was increased linearly from 50 to
161 500 mM. The fractions containing pure PaPlaB were transferred into 100 mM Tris-HCl, pH 8
162 supplemented with 0.22 mM DDM by gel filtration using the PD-10 column (GE Healthcare).
163 Samples were concentrated using Amicon®Ultra-4 ultrafiltration device, cut-off 10 kDa (Merck

164 Millipore). The protein was incubated at 4°C for 1 h with Bio-BeadsTM SM-2 resin (Bio-Rad)
165 equilibrated with 100 mM Tris-HCl, pH 8 to remove excess of detergent.

166 **2.4. *In vitro* separation of inner and outer membranes**

167 The separation of the inner and outer membranes of *E. coli* C43(DE3) pET22-*paplaB* (25 ml LB
168 medium, 37°C, 5 h after induction) was performed with a continuous sucrose gradient (20 - 70 %
169 w/v in 100 mM Tris-HCl pH 7.4). The gradients were prepared in SW40-type tubes (Beckman
170 Coulter) using the Gradient Station (Biocomp Instruments, Canada). Isolated membranes were
171 suspended in buffer containing 20 % (w/v) sucrose and loaded on the top of the continuous
172 sucrose gradient followed by ultracentrifugation at 110,000 g for 16 h, 4°C in swinging-bucket
173 rotor SW40 (Beckman Coulter). Fractions (1 ml) were collected from the top using the Gradient
174 Station equipped with a TRIAX UV-Vis flow-cell spectrophotometer (Biocomp Instruments,
175 Canada). The sucrose concentration in collected fractions was determined with a refractometer
176 (OPTEC, Optimal Technology, Baldock UK).

177 **2.5. SDS-PAGE and immunodetection**

178 The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed
179 according to the method of Laemmli [35], and the gels were stained with Coomassie Brilliant Blue
180 G-250. For immunodetection of PaPlaB, the gel was loaded with 10 µl of the cell, soluble and
181 membrane fractions isolated from the cell suspension with $OD_{580nm} = 25$. After SDS-PAGE, proteins
182 were transferred from the gel onto a polyvinylidene difluoride membrane [36] and detected with
183 the anti-His (C-terminal)-HRP antibody (Thermo Fisher/Invitrogen) according to the manufacturer's
184 instructions. The concentration of PaPlaB was determined using the UV-VIS spectrophotometer
185 NanoDrop 2000c (Thermo Fisher Scientific). The extinction coefficient $\varepsilon = 73.005 \text{ M}^{-1} \text{ cm}^{-1}$ was
186 calculated with the ProtParam tool [37].

187

188 **2.6. Enzyme activity assay and inhibition**

189 Esterase activity of PaPlaB was determined in a 96-well microtiter plate (MTP) at 37°C by
190 combining 10 µl of enzyme sample with 150 µl of the *p*-nitrophenyl butyrate (*p*-NPB) substrate [5].
191 Hydrolytic activities towards glycerophospholipids (GPLs) and lysoGPLs (Table S2), which were
192 purchased from Avanti Polar lipids (Alabaster, USA), were determined by quantification of
193 released fatty acids using NEFA assay kit (Wako Chemicals, Neuss, Germany) [5]. Lipids were
194 dissolved in NEFA buffer (50 mM Tris, 100 mM NaCl, 1 mM CaCl₂, 1 % (v/v) Triton X-100, pH 7.2).
195 The enzymatic reactions were performed by combining 12.5 µl of enzyme sample with 12.5 µl of a
196 lipid substrate (0.67 mM) at 37°C for 15 min. The fatty acid amount was calculated from the
197 calibration curve made with 0.5, 1, 2, 3, 4, and 5 nmol oleic acid.

198 The inhibition of PaPlaB with PMSF, paraoxon (both were dissolved in propane-2-ol), and EDTA
199 (dissolved in 100 mM Tris-HCl pH 8) was tested as described previously [9]. Inhibition of PaPlaB
200 was performed by incubating enzyme aliquots with the inhibitors for 1.5 h at 30°C, followed by
201 determination of the enzymatic activity using the *p*-NPB substrate.

202 Phospholipase A1 (PLA1) and phospholipase A2 (PLA2) activities of PaPlaB were measured using
203 selective fluorescent substrates PED-A1, [N-((6-(2,4-DNP)amino)hexanoyl)-1-(BODIPY®FL C5)-2-
204 hexyl-*sn*-glycero-3-phosphoethanolamine]; PC-A2_{R/G}, 1-O-(6-BODIPY®558/568-aminohexyl)-2-
205 BODIPY®FL C5-*sn*-glycero-3-phosphocholine (Thermo Fisher Scientific) as described previously
206 [38]. Measurements in 96-well MTP were performed at 25°C by combining 50 µl of the substrate
207 with 50 µl PaPlaB, or control enzymes, the PLA1 of *Thermomyces lanuginosus* (5 U/ml) and the
208 PLA2 or *Naja mocambique mocambique* (0.7 U/ml).

209 **2.7. Gas chromatography-mass spectrometric (GC-MS) analysis of fatty acids**

210 Fatty acids were extracted after incubation of purified PaPlaB (2 ml, 4.28 µg/ml) with 1-oleoyl-2-
211 palmitoyl-PC (PC_{18:1-16:0}) (0.5 mM in 2 ml NEFA buffer) for 1 h at 37°C. After incubation 1 ml of

212 NEFA buffer was added, and fatty acids were extracted with 12 ml CHCl₃ : CH₃OH = 2 : 1. The CHCl₃
213 extract was removed, and FAs were extracted again with 8 ml CHCl₃. CHCl₃ extracts were
214 combined and evaporated.

215 FAs were dissolved in 200 μ l CHCl₃. The CHCl₃ extract was mixed with ten volumes of acetonitrile
216 and filtered through a 0.2 μ m pore size filter. The residues of the PaPlaB extracts were dissolved in
217 1 ml acetonitrile : methylenchloride = 4 : 1. Before GC-MS analysis, fatty acids in the PaPlaB
218 extracts and standard solutions were derivatized to their trimethylsilylestes. For this purpose, 100
219 μ l of each sample solution was mixed with 700 μ l acetonitrile, 100 μ l pyridine and 100 μ l N-
220 methyl-N-(trimethylsilyl) trifluoroacetamide and heated to 90°C for 1 h. A 1 mM fatty acid mixture
221 in acetonitrile (C_{10:0}-, C_{12:0}-, C_{14:0}-, C_{16:0}-, C_{18:0}- and C_{18:1}-fatty acid (oleic acid)) was diluted to 50,
222 100, 200 and 400 μ M and derivatized in the same manner as above. The GC-MS system consisted
223 of an Agilent gas chromatograph 7890A and autosampler G4513A (Agilent, CA, USA) coupled to a
224 TOF mass spectrometer JMS-T100GCV AccuTOF GCv (Jeol, Tokyo, Japan). Analytes were separated
225 on a Zebron-5-HT Inferno column (30 m x 0.25 mm i.d., 0.25 μ m film thickness, Phenomenex,
226 USA). Helium was used as carrier gas at a constant gas flow of 1.0 ml/min. The oven temperature
227 program employed for analysis of silylated fatty acids was as follows: 80°C; 5°C/min to 300°C, held
228 for 1 min. The injector temperature was held at 300°C, and all injections (1 μ l) were made in the
229 split mode (1:10). The mass spectrometer was used in the electron impact (EI) mode at an ionizing
230 voltage of 70 V and ionizing current of 300 μ A. Analytes were scanned over the range m/z 50 - 750
231 with a spectrum recording interval of 0.4 s. The GC interface and ion chamber temperature were
232 both kept at 250°C. After the conversion of the raw data files to the cdf-file format, data
233 processing was performed by the use of the software XCalibur 2.0.7 (ThermoFisher Scientific).
234 Fatty acids from the PaPlaB sample were identified by comparison of their retention times and
235 mass spectra with those of fatty acid standards.

236 **2.8. Thermal stability analysis**

237 Differential scanning fluorimetric analysis of PaPlaB thermal stability was performed using the
238 Prometheus NT.48 nanoDSF instrument (NanoTemper Technologies, Germany) [39]. The
239 Prometheus NT.Plex nanoDSF Grade Standard Capillary Chip containing 10 μ l PaPlaB sample per
240 capillary was heated from 20°C to 90°C at the rate of 0.1°C/min, and the intrinsic fluorescence at
241 wavelengths of 330 nm and 350 nm was measured. The first derivative of the ratio of fluorescence
242 intensities at 350 nm and 330 nm as a function of temperature was used to visualize the
243 denaturing transition and determine the “melting” temperature. Enzyme activity-based thermal
244 stability experiments were performed by measuring the residual esterase activity of a PaPlaB
245 sample incubated 1 h at temperatures from 30°C to 70°C [40]. After the incubation, the enzymatic
246 assay was performed as described above using the *p*-NPB substrate, and the inactivation
247 temperature was determined.

248 **2.9. Multi-angle light scattering (MALS) and size-exclusion chromatography**

249 Superdex 200 Increase 10/300 GL column (GE Healthcare) was equilibrated overnight at a flow
250 rate of 0.6 ml/min with 100 mM Tris pH 8 containing 0.22 mM DDM. For each analysis 200 μ l
251 PaPlaB at concentrations of 1, 0.5 and 0.1 mg/ml were loaded to the column at the flow rate of 0.6
252 ml/min using 1260 binary pump (Agilent Technologies), and the scattered light (miniDAWN TREOS
253 II light scatterer, Wyatt Technologies) and the refractive index (Optilab T-rEX refractometer, Wyatt
254 Technologies) were measured. Data analysis was performed with the software ASTRA 7.1.2.5
255 (Wyatt Technologies) under the assumption that dn/dc of DDM is 0.1435 ml/g and the extinction
256 coefficient of PaPlaB is 1.450 ml/(mg*cm) [41].

257 Size-exclusion chromatographic (SEC) analysis of PaPlaB in Tris-HCl (100 mM, pH 8, 0.22 mM DDM)
258 buffer was performed using Biosep-SEC-S3000 column (Phenomenex, Aschaffenburg, Germany),
259 LC-10Ai isocratic pump (Shimadzu, Duisburg, Germany) and SPD-M20A photodiode array detector

260 (Shimadzu, Duisburg, Germany). The molecular weight (M_w) of standard proteins dissolved in the
261 same buffer as PaPlaB was determined (Table S3). For the analysis, 100 μ l of PaPlaB or protein
262 standard sample was loaded on the column, and separation was achieved at a flow rate of 0.5
263 ml/min and 26°C.

264 **2.10. Construction of *P. aeruginosa* Δ plaB strain**

265 The *P. aeruginosa* Δ plaB mutant strain was generated by homologous recombination [42]. In
266 short, *P. aeruginosa* PAO1 cells were conjugated with the pEMG- Δ plaB mutagenesis vector
267 containing the 814 bp fragment of the upstream region of *paplaB*, followed by a gentamicin
268 resistance gene and the 584 bp downstream region of *paplaB*. For that, *E. coli* S17-1 λ pir
269 transformed with the pEMG- Δ plaB plasmid was used as a donor strain. *Pseudomonas* cells with
270 pEMG- Δ plaB plasmid integrated on the chromosome were selected on LB-agar plates containing
271 gentamicin (30 μ g/ml), kanamycin (300 μ g/ml; a kanamycin resistance gene is encoded on pEMG
272 plasmid) and Irgasan (25 μ g/ml; used for negative selection of *E. coli*). Cells transformed with the
273 plasmid pSW-2 containing the I-SceI restriction endonuclease were cultivated on LB agar plates
274 containing benzoic acid (2mM; for induction of I-SceI expression) and Irgasan (25 μ g/ml). The
275 deletion of the *paplaB* gene was confirmed by PCR amplification using the genomic DNA of
276 *P. aeruginosa* Δ plaB as the template (Fig. S1).

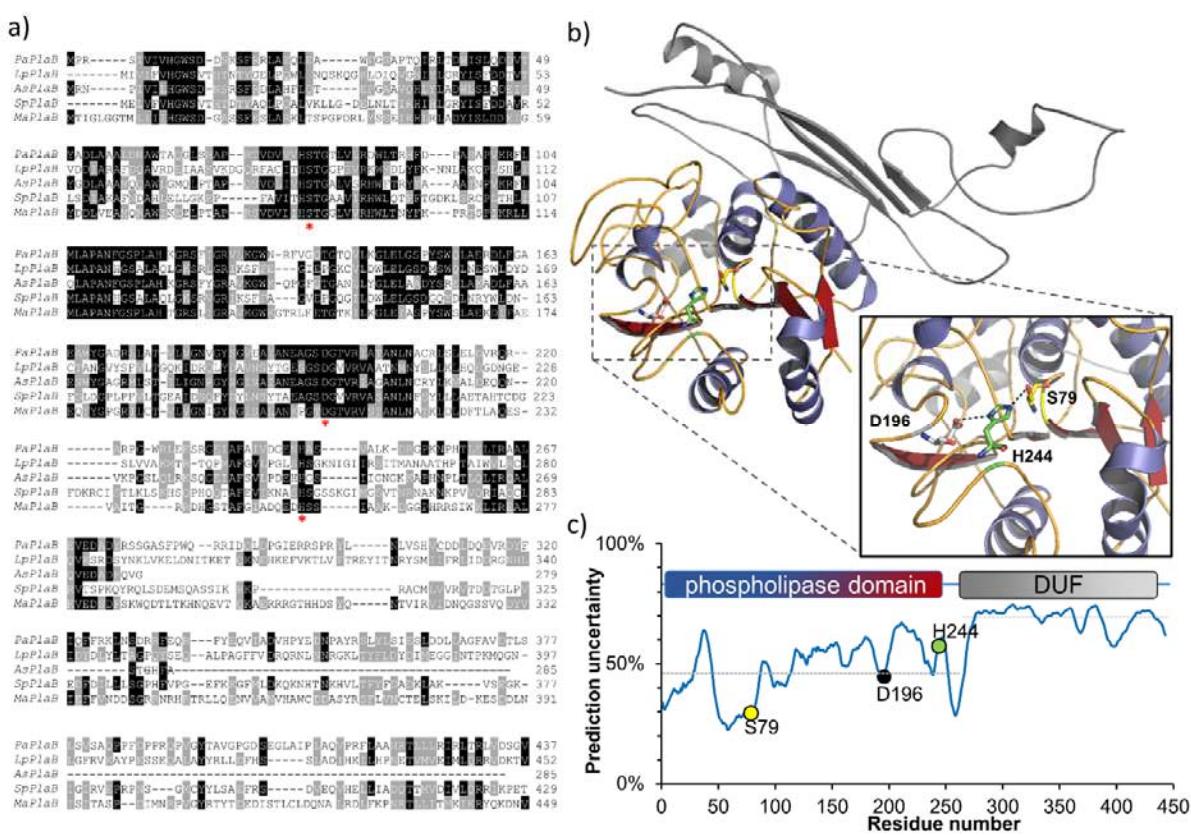
277 **2.11. Fluorescence imaging of biofilm in flow chambers**

278 *P. aeruginosa* PAO1 and Δ plaB biofilms were grown on a microscope cover glass (24 mm x 50 mm,
279 thickness 0.17 mm, Carl Roth GmbH & Co. KG, Karlsruhe, Germany), which was fixed with
280 PRESIDENT The Original light body silicon (Coltène/Whaledent AG, Altstätten, Switzerland) on the
281 upper side of the three-channel flow chambers [43]. The flow chambers and tubes (standard
282 tubing, ID 0.8 mm, 1/16" and Tygon Standard R-3607, ID 1.02 mm; Cole-Parmer GmbH, Wertheim,
283 Germany) were sterilized by flushing with sterile chlorine dioxide spray (Crystel TITANIUM, Tristel

284 Solutions Ltd., Snailwell, Cambridgeshire, United Kingdom). Afterward, the flow chambers were
285 filled with 1 % (v/v) sodium hypochlorite, and the tubes were autoclaved. All biofilm experiments
286 were performed at 37°C with a ten-fold diluted LB medium. Before inoculation, the flow chamber
287 was flushed with 1:10 diluted LB medium for 30 minutes with a flow rate of 100 μ l/min using the
288 IPC12 High Precision Multichannel Dispenser (Cole-Parmer GmbH, Wertheim, Germany). For
289 inoculation, an overnight culture of *P. aeruginosa* PAO1 or *ΔplaB* was adjusted to an OD_{580nm} of 0.5
290 in 1:10 diluted LB medium. The diluted culture (300 μ l) was inoculated in each channel. After the
291 interruption of medium supply for 1 h, the flow (50 μ l/min) was resumed, and the biofilm
292 structure was analyzed after 24, 72, and 144 h grown at 37°C. For visualization, the cells were
293 stained with propidium iodide and SYTO 9 dyes using the LIVE/DEAD™ BacLight™ Bacterial Viability
294 Kit (Thermo Fisher Scientific). Imaging of biofilm was performed using the confocal laser scanning
295 microscope (CLSM) Axio Observer.Z1/7 LSM 800 with airyScan (Carl Zeiss Microscopy GmbH,
296 Germany) with the objective C-Apochromat 63x/1.20W Korr UV VisIR. The microscope settings for
297 the different fluorescent dyes are shown in Table S4. The analysis of the CLSM images and three-
298 dimensional reconstructions were done with the ZEN software (version 2.3, Carl Zeiss Microscopy
299 GmbH, Germany). Experiments were repeated two times, each with one biological replicate that
300 was analyzed at three different points by imaging a section of 100 x 100 μ m.

301 **2.12. Crystal violet biofilm assay**

302 *P. aeruginosa* wild-type and *ΔplaB* cultures incubated in LB medium overnight at 37°C in
303 Erlenmeyer flasks (agitation at 150 rpm) were used to inoculate 100 μ l culture with OD_{580nm} 0.1 in
304 plastic 96-well MTP. Cultures were grown at 37°C without agitation, and the cells attached to the
305 surface of MTP after removing the planktonic cells were stained with 0.1 % (w/v) crystal violet
306 solution for 15 min, solubilized with acetic acid (30 % v/v) and quantified spectrophotometrically
307 [44].


308 **3. Results**

309 **3.1 *P. aeruginosa* gene *pa2947* encodes a putative phospholipase A**

310 We performed a BLAST search using sequences of the currently known bacterial PLAs to identify
311 novel phospholipases A (PLA) in *P. aeruginosa* PA01 [6]. One of the results was a gene *pa2927*
312 encoding a 49.5 kDa protein with moderate sequence similarity (39 %) to LpPlaB, a major
313 intracellular PLA of *L. pneumophila* [18, 19, 45-48]. We named the *P. aeruginosa* homolog
314 analogously, PaPlaB. A BLAST search revealed substantial sequence identity (27 to 43 %) between
315 PaPlaB and several uncharacterized proteins and putative phospholipases (Figs. 1a and S2). The
316 recently annotated active site of LpPlaB (Ser85, Asp203, His251) [18] allowed us to identify Ser79,
317 Asp196, and His244 as residues of the putative catalytic triad in PaPlaB, which are strongly
318 conserved among PaPlaB homologs (Fig. 1a). PaPlaB, similar to LpPlaB, contains the catalytic Ser79
319 embedded into a VHSTG pentapeptide, which differs from the canonical GXSXG lipase motif by the
320 absence of the glycine at position -2 of the serine. The present threonine residue was shown to be
321 functionally important, as the mutation T83G reduced LpPlaB activity by 95 % [18]. The difference
322 in the catalytic pentapeptide was proposed to be a novel feature of the lipolytic family
323 represented by LpPlaB [18]. Although no conserved domains encompassing the catalytic residues
324 were identified in PaPlaB using either NCBI's conserved domain [49] or Pfam [50] databases, we
325 observed a notably higher sequence identity of the 270 amino-terminal residues of PaPlaB to its
326 homologs than the carboxy-terminal residues (271 – 443). Even secondary structure elements
327 predicted in the N-terminal regions of PaPlaB and LpPlaB agreed better than secondary structure
328 elements predicted in the C-terminal regions (Fig. S3).

329 To assess whether PaPlaB is a two-domain protein, we predicted its 3D structure with the Phyre2
330 homology modeling server [51]. Using the structure of a protein of unknown function from *Listeria*
331 *innocua* (PDB code: 3DS8) as a template, the homology model of the N-terminal PaPlaB domain

332 revealed an α/β -hydrolase fold, which provides a scaffold for the canonical serine-hydrolase
333 catalytic triad (Fig. 1b) as found in many lipolytic enzymes [52, 53]. No homolog with a resolved
334 structure was found for the C-terminal domain of PaPlaB. Therefore, the *ab initio* approach of the
335 Phyre2 server was used. The resulting model for this domain suggested a four-stranded β -sheet
336 (Fig. 1b) which was furthermore validated. Validation with TopScore [24] confirmed a higher
337 quality of the N-terminal domain than the C-terminal one (Fig. 1c). Additional validation with a
338 MetaPSICOV2 server shows two distinct groups of residue-residue contacts, one in the N-terminal
339 and one in the C-terminal region, thus corroborating a two-domain protein structure (Fig. S4). DV
340 score, a measure of the deviation of predicted contacts versus those derived from the structural
341 model, of 2.7 suggests that the PaPlaB model has a fold similar to the native structure, as DV < 10
342 was calculated for real structures. In summary, our sequence, secondary and tertiary structure
343 analyses indicate that PaPlaB has an N-terminal putative phospholipase A domain with an α/β -fold
344 and a C-terminal domain, the function of which is currently unknown.

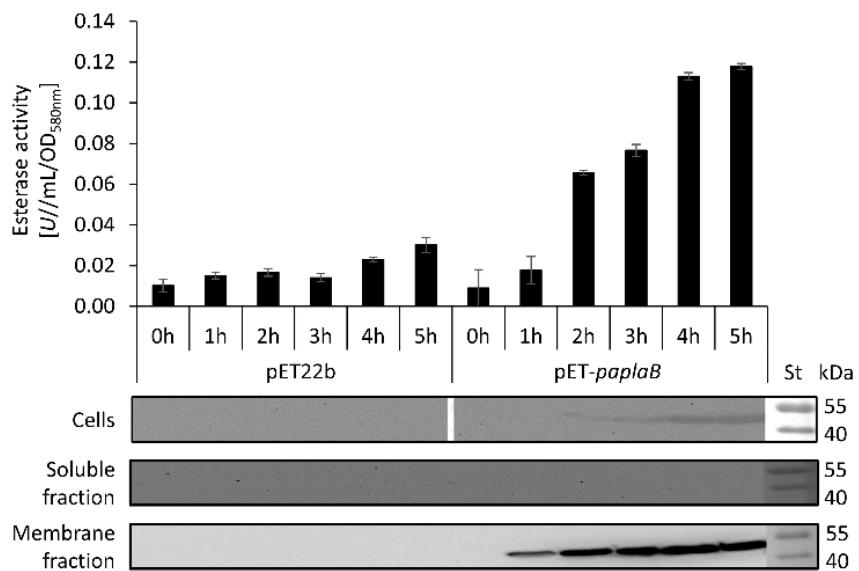
345

346 **Fig. 1: Putative two-domain architecture of *P. aeruginosa* PaPlaB.** a) Sequence alignment of PaPlaB from
 347 *P. aeruginosa* (PaPlaB), *Legionella pneumophila* (LpPlaB), *Alishewanella* sp.32-51-5 (AsPlaB), *Shewanella*
 348 *pealeana* (SpPlaB), and *Marinobacter algicola* (MaPlaB). Black and grey background indicate identical and
 349 similar residues in at least three proteins, respectively. The catalytic triad residues (Ser79, Asp196, and
 350 His244 in PaPlaB) are marked with asterisks. The last six PaPlaB residues are shown in the Fig. S2. b) PaPlaB
 351 structural model. The N-terminal domain model (coloured secondary structure elements) was based on the
 352 structure of the protein of unknown function from *L. innocua* (PDB code: 3DS8). The C-terminal domain
 353 (grey) was modelled *ab initio* using the Phyre2 web server [51]. The view of the catalytic triad is expanded.
 354 c) The residue-wise uncertainty of the predicted PaPlaB model was computed with TopScore, a quality
 355 assessment tool for protein structure models [24]. Grey lines indicate average uncertainties of the
 356 phospholipase and DUF domains.

357

358 **3.2 Expression of *paplaB* in *E. coli* yields a membrane-bound phospholipase A**

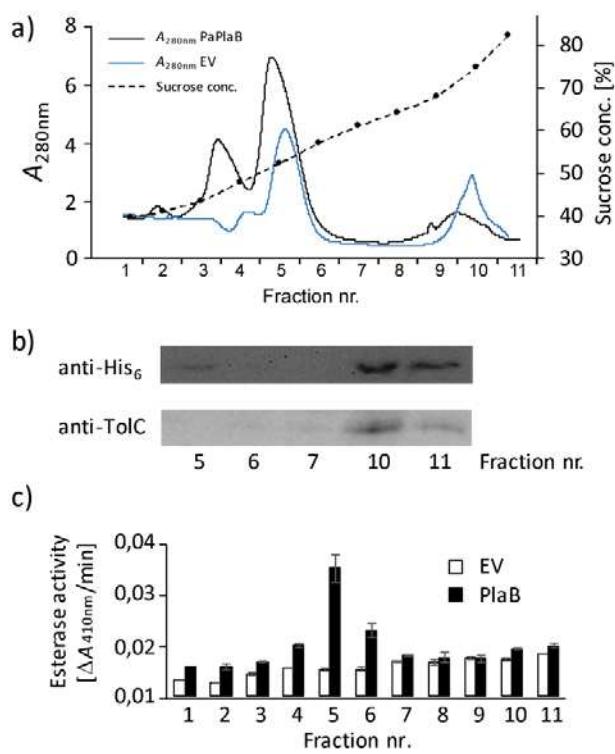
359 To experimentally test the putative PLA function, we set out to heterologously express and purify
360 PaPlaB. To achieve this, we constructed the PaPlaB expression vector (pET22-*paplaB*) suitable for
361 heterologous expression in *E. coli* strains that contain the T7 RNA polymerase gene. *PaplaB* gene in
362 pET22-*paplaB* plasmid was modified by including a sequence coding for six histidine residues at
363 the 3' end to enable purification of the protein using immobilized metal affinity chromatography
364 (IMAC) and the protein expression was conducted in *E. coli* C43(DE3) cells. SDS-PAGE (Fig. S5) and
365 Western blot (Fig. 2) analyses of cells sampled during the first 5 h after induction revealed the
366 expression of a protein with an estimated molecular weight (M_w) of ~50 kDa, which agrees with
367 the theoretical M_w of PaPlaB (49.5 kDa). The expression of PaPlaB variants with mutated putative
368 catalytic triad residues S79, D196, and H244 yielded also ~50 kDa proteins as shown by SDS-PAGE
369 (Fig. S6a) and Western blot (Fig. S6b) analyses. Esterase activities of cell lysates revealed that the
370 wild type PaPlaB was active while all three variants showed activities comparable to the activity of
371 the empty vector control (Fig S6c)


372 Considering the membrane localization of the PaPlaB homolog from *L. pneumophila*, [19], we
373 suspected a membrane localization of PaPlaB. This was confirmed by Western blot detection of
374 PaPlaB only in the membrane fraction of *E. coli* C43(DE3) pET22-*paplaB* sedimented upon
375 ultracentrifugation, while no PaPlaB was detected in the soluble fraction containing periplasmic
376 and cytoplasmic proteins (Fig. 2). We next investigated whether PaPlaB is associated with inner or
377 outer membranes of *E. coli* by separation of these two membranes using ultracentrifugation in a
378 sucrose density gradient. Analysis of UV absorbance ($A_{280\text{nm}}$) through the gradient after the
379 centrifugation suggested an efficient separation of inner and outer membranes, which we
380 assigned to be fraction 5 (inner membranes) and fractions 10-11 (outer membranes) (Fig. 3a). The
381 refractometric measurement showed that the sucrose concentration in fractions 5 and 11 was 45

382 and 67 % (w/v), respectively, which is in agreement with the literature [54]. We confirmed that
383 fractions 10-11 contain the outer membrane proteins by immunodetection of outer membrane
384 protein TolC from *E. coli*, whereas fraction 5 did not contain *E. coli* TolC (Fig. 3b). Immunodetection
385 of PaPlaB revealed a weak PaPlaB signal in fraction 5 and a strong signal in fractions 10-11.
386 However, the highest esterase activity was detected for fraction 5, while the enzymatic activity of
387 the PaPlaB-enriched fraction 11 was negligibly higher than the activity of the empty vector control
388 (Fig. 3c).

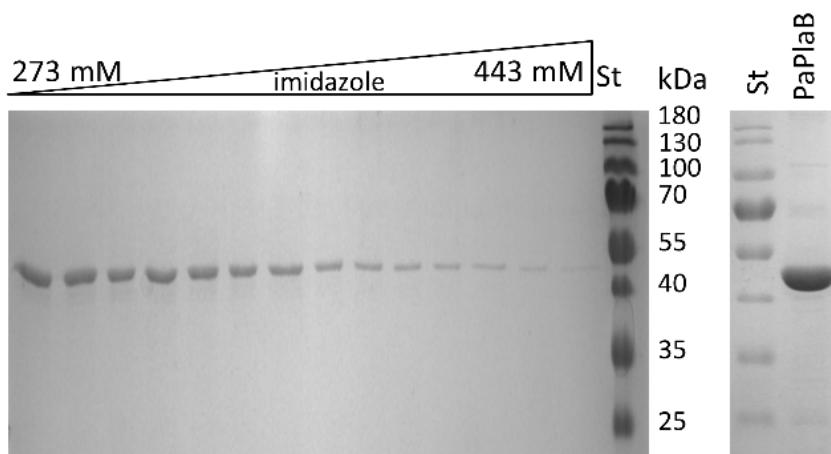
389 For protein isolation, we used Triton X-100 detergent for extraction of PaPlaB from the
390 membranes, while mild, non-ionic detergent DDM was added to the buffers used for IMAC
391 purification to maintain the soluble state of PaPlaB. Elution of PaPlaB from Ni^{2+} -NTA column with
392 buffer containing an increasing concentration of imidazole resulted in highly pure PaPlaB as judged
393 from SDS-PAGE (Fig. 4). The established protocol yielded ~ 0.25 mg of PaPlaB per 1 l of
394 overexpression culture. Purified PaPlaB showed specific esterase (*p*-NPB substrate) and
395 phospholipase A (1,2-dilauroyl phosphatidylcholine, PC_{12:0} substrate) activities of 3.41 ± 0.1 and
396 6.74 ± 0.8 U/mg, respectively.

397 As ethylenediaminetetraacetic acid (EDTA), an inhibitor of metal-dependent enzymes, did not
398 exert an inhibitory effect on PaPlaB (Fig. S7), we concluded that PaPlaB belongs to metal ion
399 independent type of PLAs [55]. We furthermore examined inhibition of PaPlaB activity with two
400 irreversible inhibitors, paraoxon and phenylmethylsulfonyl fluoride (PMSF). Under the conditions
401 used, the activity of the paraoxon-treated PaPlaB was abolished (Fig. S7). Paraoxon covalently
402 modifies the catalytic serine residue in the serine-hydrolase enzyme family [56]; therefore, we
403 concluded that PaPlaB contains a nucleophilic serine in its active site, which is in agreement with
404 the sequence-based prediction of a Ser-His-Asp catalytic triad (Fig. 1) and mutational studies (Fig.
405 S6). Although PMSF is also utilized to identify serine hydrolases [57], it did not inhibit the PaPlaB.


406 Paraoxon is an organophosphate inhibitor that mimics, after the reaction with an enzyme, the first
407 transition state. In contrast, PMSF is a sulfonyl inhibitor that mimics, after the reaction, the
408 transition state formed by the deacylation of the acyl-enzyme in the second step of ester-
409 hydrolysis [57]. The observed striking difference in the reactivity of paraoxon and PMSF with
410 PaPlaB may be due to differences in the stability of the two transition state mimics.

411

412 **Fig. 2: PaPlaB is heterologously expressed in *E. coli*.** Expression, localization, and activity of PaPlaB was
413 tested at 1, 2, 3, 4, and 5 h after induction. Cell lysates (10 μ L, $OD_{580nm} = 10$) were analyzed by esterase *p*-
414 NPB assay (top) and Western blotting against the His₆-tag (below). Disrupted cells were fractionated by
415 ultracentrifugation into soluble (cytoplasmic and periplasmic proteins) and membrane protein fractions
416 that were analyzed by Western blotting. *E. coli* C43(DE3) carrying empty vector pET22b were grown under
417 the same conditions and were used as the negative control. Molecular weights of standard proteins (St) are
418 indicated on the right-hand side. The esterase activity results are means \pm S.D. of three independent
419 experiments, each set in triplicate.


420

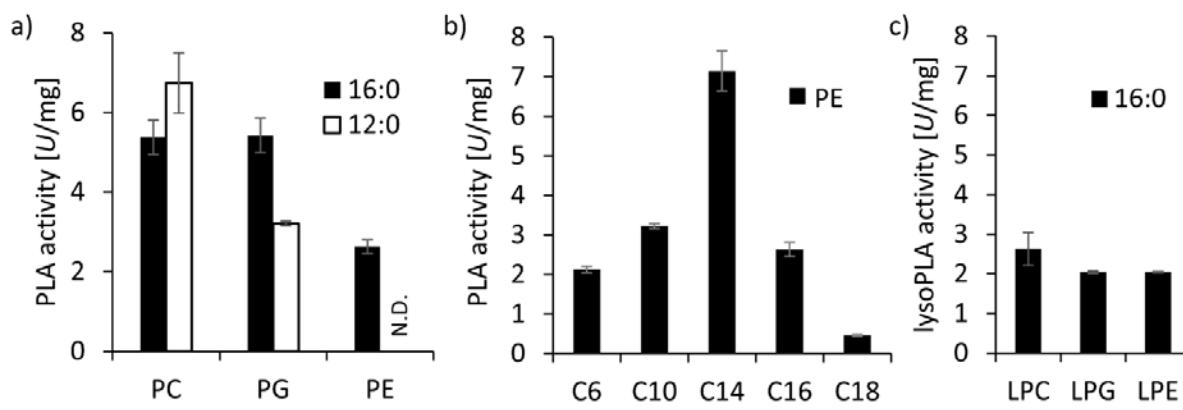
421

422 **Fig. 3: Membrane localization of PaPlaB.** a) Isolated membranes of *E. coli* C43(DE3) pET-*paplaB* strain
423 cultivated in LB medium (25 ml, 5 h, 37°C) were separated by sucrose density gradient. *E. coli* C43(DE3)
424 pET22b cultivated under the same conditions was used as the empty vector (EV) control. Fractions (1 ml)
425 were collected and their sucrose concentration was measured refractometrically (filled circles, dashed line).
426 Protein absorption at 280 nm is shown in solid lines. b) Sucrose density gradient fractions of *E. coli*
427 C43(DE3) pET-*paplaB* were analyzed by Western blotting using the anti-His (C-term)-HRP antibody for
428 detection of PaPlaB and primary anti-TolC antibodies combined with the anti-rabbit immunoglobulin G
429 antibodies for detection of TolC. c) Enzymatic activity was measured with *p*-NPB assay by combining 10 µl
430 of fraction and 150 µl of the substrate. The activities are means \pm S.D. of two independent experiments
431 with three samples.

432

433

434 **Fig. 4: Purification of detergent-isolated PaPlaB.** The fractions eluted from the Ni-NTA column (left) and
435 pooled PaPlaB after desalting by PD-10 column (right) were analyzed by SDS-PAGE (12 % v/v). The
436 molecular weights of protein standards (St) are indicated.


437

438 **3.3 PaPlaB shows promiscuous PLB and lysoPLA activities**

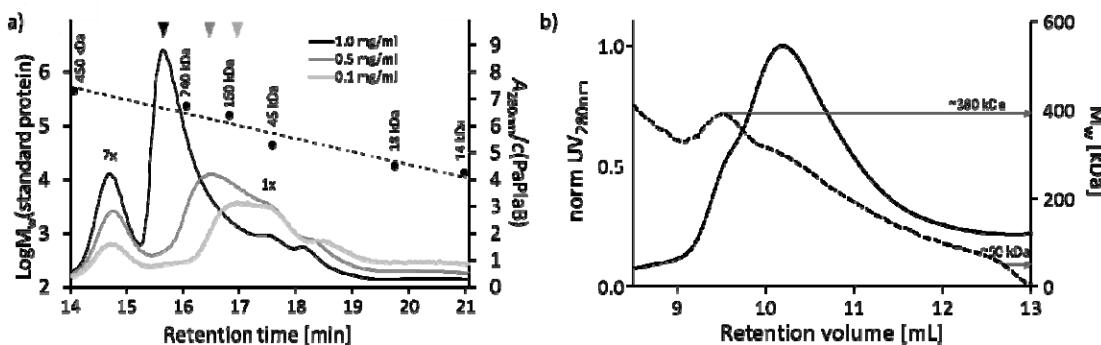
439 Using an esterase activity assay, we observed that PaPlaB retained 100 % of its activity after
440 incubation for 1 h at temperatures up to 42.5°C (Fig. S8). The thermal stability of PaPlaB was
441 confirmed by monitoring its thermal unfolding via changes in the intrinsic fluorescence. The
442 unfolding profile of PaPlaB revealed the transition temperature of ~53°C (Fig. S8). Hence, PaPlaB is
443 stable and active at temperatures relevant to bacterial infections. Therefore, a temperature of
444 37°C was used for activity assays. We next examined the PLA activity of PaPlaB using a spectrum of
445 glycerophospholipids (GPLs) naturally occurring in cell membranes. We showed that PaPlaB is a
446 rather promiscuous PLA, using GPL substrates with various head groups (ethanolamine, glycerol,
447 and choline) (Fig. 5a) and different fatty acid chain lengths (C6 – C18) (Fig. 5b). It released fatty
448 acids from all tested substrates with specific activities in the range from 2 U/mg to 8 U/mg, with
449 1,2-dimyristoyl-phosphatidylethanolamine (PE_{14:0}) being the best substrate. We then analyzed
450 whether PaPlaB hydrolyses GPLs containing one fatty acid linked to the *sn*-1 position called
451 lysoglycerophospholipids (lysoGPLs). Experiments using lysoGPLs with various head groups

452 (ethanolamine, glycerol, and choline) showed that all three lipid types were accepted as substrates
453 by PaPlaB (Fig. 5c). Notably, the lysoPLA activity of PaPlaB is generally lower (2 – 2.5 U/mg) than its
454 PLA activity toward the respective GPLs (Fig. 5c). To analyze whether PaPlaB shows specificity for
455 hydrolysis of fatty acids bound to *sn*-1 or *sn*-2 in GPLs, artificial fluorogenic substrates (PED-A1 for
456 PLA1, and Red/Green BODIPY® PC-A2_{R/G} for PLA2) were used. These substrates contain one alkyl
457 group bound to glycerol by ether bond, which cannot be cleaved by PLA. Both substrates were not
458 hydrolyzed by PaPlaB (Fig. S9), most likely due to steric hindrance caused by the bulky fluorescent
459 dyes linked to the acyl chain of substrates. We furthermore tested whether PaPlaB hydrolyzes the
460 natural phospholipid 1-oleoyl-2-palmitoyl-PC (PC_{18:1-16:0}), which contains different fatty acids
461 bound to glycerol. Spectrophotometric quantification of the total fatty acid amount after
462 incubation of PaPlaB (4.3 µg/ml) with PC_{18:1-16:0} (0.5 mM) showed PaPlaB activity of 3.7 ± 0.6 U/mg.
463 To identify which fatty acids were released, PaPlaB-treated PC_{18:1-16:0} samples were analyzed by
464 GC-MS. The results of GC-MS quantification revealed 1.6 ± 0.2 µmol and 1.7 ± 0.1 µmol for palmitic
465 and oleic acid, respectively (Table S5). This result confirmed that PaPlaB hydrolyzes both ester
466 bonds in PC_{18:1-16:0} substrate with a similar efficiency, which classifies it into the phospholipase B
467 (PLB) family.

468

469

470 **Fig. 5: Phospholipolytic activity profile of PaPlaB.** **a)** PaPlaB is a PLA that hydrolyses PE, PG, and PC, which
471 contain unsaturated FAs with C16 (16:0), and C12 (12:0) chain length commonly occurring in *P. aeruginosa*
472 membranes. N.D. = not determined. **b)** Substrate specificity of PaPlaB measured with PE containing
473 different FA chain lengths (C6 - C18). **c)** PaPlaB shows hydrolytic activity towards various lysophospholipids
474 (LPE, LPG, and LPC) containing unsaturated FA with C16 (16:0) chain length. PLA and lysoPLA activities were
475 measured by NEFA-assay using 54 ng PaPlaB per reaction. Activities are mean \pm S.D. of three independent
476 experiments with three samples.

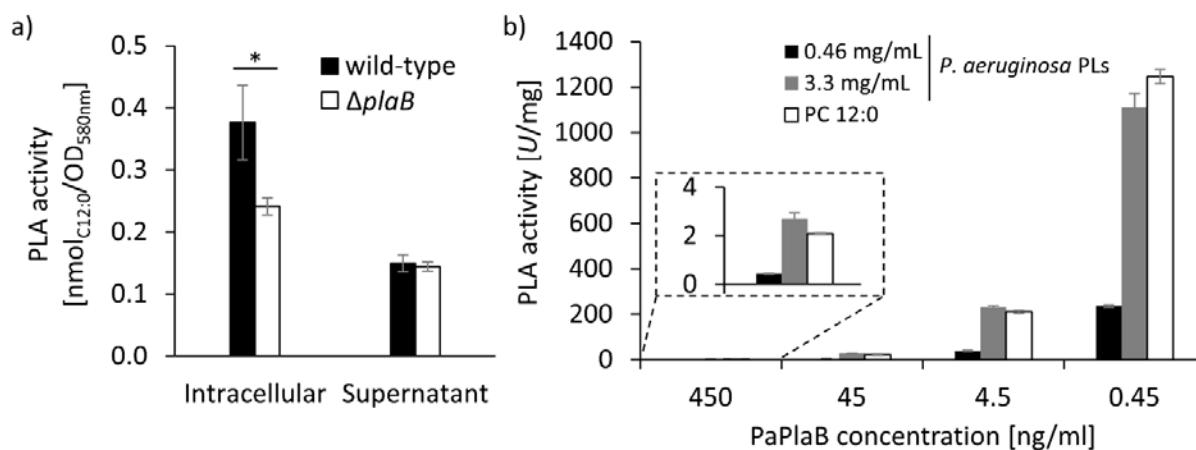

477

478 **3.4 PaPlaB oligomerizes in solution**

479 Reversible formation of dimeric and tetrameric LpPlaB was observed at protein concentrations
480 ranging from \sim 0.01 to 1 mg/ml. Therefore, we assessed whether purified and DDM-stabilized
481 PaPlaB oligomerizes in solution. Size-exclusion chromatography (SEC) analysis of PaPlaB at 0.1, 0.5,
482 and 1.0 mg/ml revealed presence of several oligomeric PaPlaB species. Protein species of \sim 45 kDa,
483 and \sim 360 kDa, as judged through comparison with standard globular proteins of known molecular
484 weights, were observed for all tested PaPlaB concentrations (Fig. 6a). According to the theoretical
485 M_w of PaPlaB of 49.5 kDa, we interpreted these as monomeric and heptameric PaPlaB, although
486 the exact oligomerization state cannot be reliably assessed due to detergent bound to PaPlaB and
487 likely nonglobular shape of oligomers. Notably, at low PaPlaB concentration (0.1 mg/ml), the
488 amount of the monomeric PaPlaB is much larger than the amount of the heptameric PaPlaB, as
489 expected. By rising the PaPlaB concentration, the equilibrium shifts towards heptamers.
490 Additionally, PaPlaB species of intermediate molecular masses were also detected, thus indicating
491 a stepwise oligomerization of PaPlaB. Based on the elution volumes, we assigned these oligomers
492 to trimeric, tetrameric, and pentameric forms of PaPlaB. At high PaPlaB concentration (1 mg/ml),
493 pentameric PaPlaB was prevalent over tetrameric and trimeric species, while at 0.5 mg/ml
494 predominantly tetrameric, and 0.1 mg/ml predominantly trimeric PaPlaB were observed. Thus, the

495 equilibrium was shifted towards higher-order oligomeric species by increasing the PaPlaB
496 concentration. The formation of homooligomers was predicted by *ab initio* docking using
497 monomeric PaPlaB structure as an input (Fig. S10). The spatial orientation of PaPlaB monomers,
498 dimers, and higher oligomers at the membrane suggests that PaPlaB is a peripheral membrane-
499 bound protein (Fig. S10). This is in agreement with the negative result of the sequence-based
500 prediction of TM helices with biological relevance (Table S6).

501 Determination of absolute M_w of protein: detergent complexes by SEC analysis is prone to errors.
502 Therefore we determined the absolute M_w of DDM-stabilized PaPlaB using multi-angle light
503 scattering coupled to SEC (MALS-SEC). The absolute M_w that was determined at a concentration of
504 1 mg/ml revealed a distribution starting at ~380 kDa (heptamer), which was continuously
505 decreasing to ~50 kDa (monomer) (Fig. 6b). For the PaPlaB sample with 0.1 mg/ml very broad
506 MALS signal in the range expected for proteins with M_w ~50 kDa was observed (Fig. S11). Similar to
507 SEC experiments, MALS-SEC results showed that the equilibrium of PaPlaB oligomers expectedly
508 depends on the protein concentration.


509
510 **Fig. 6: Concentration-dependent oligomerization of PaPlaB.** a) PaPlaB (1.0, 0.5, and 0.1 mg/ml), and
511 standard proteins (Table S3) dissolved in a buffer containing DDM were separately analyzed using Biosep-
512 SEC-S3000 column. Proteins were detected by measuring absorbance at 280 nm (solid curves). b) SEC-MALS
513 analysis using a Superdex 200 Increase column. PaPlaB (1.0 mg/ml) stabilized by DDM was detected by

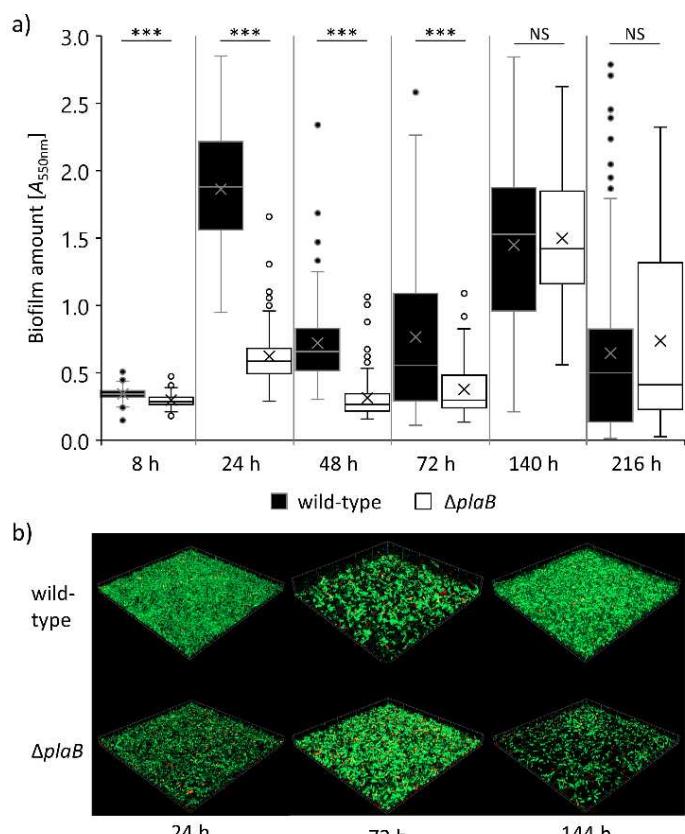
514 measuring absorbance at 280 nm (solid curve), and the overall M_w (dashed line) was determined with the
515 software ASTRA 7.

516 **3.5 PaPlaB is a major intracellular PLB of *P. aeruginosa* with hydrolytic activity towards
517 endogenous phospholipids**

518 To study the *in vivo* PLB function of PaPlaB in the homologous host, we constructed a *P.*
519 *aeruginosa* deletion mutant $\Delta plaB$, which is missing the entire *plaB* gene (Fig. S1). The activity
520 assay showed a 60 % reduction of cell-associated PLA activity in *P. aeruginosa* $\Delta plaB$ compared
521 with *P. aeruginosa* wild-type (Fig. 7a). PLA activity of proteins secreted into the medium was not
522 significantly different among these two strains (Fig. 7a), indicating that PaPlaB is a cell-associated
523 and not secreted PLA of *P. aeruginosa*. PLA activity of PaPlaB demonstrated *in vitro*, and the
524 membrane localization of the enzyme provides a hint that PaPlaB might be related to hydrolysis of
525 cell membrane GPLs. To test this, we have isolated phospholipids (PLs) from the *P. aeruginosa*
526 wild-type cells by extraction with an organic solvent. These PL extracts were used at 3.3 mg/ml
527 and 0.46 mg/ml as substrates for *in vitro* PLA assay with purified PaPlaB at 450, 45, 4.5 and 0.45
528 ng/ml.

529 Results showed that PaPlaB hydrolyzes endogenous PLs with high efficiency (Fig. 7b). Hence,
530 assays with 3.3 mg/ml endogenous PLs showed comparable activities to these measured with
531 PC_{12:0}, which was among the best PaPlaB substrates. PaPlaB activity with endogenous PLs was
532 higher at higher substrate concentrations as expected for enzyme-catalyzed reactions. We
533 furthermore observed that specific PaPlaB activities immensely increase by diluting the PaPlaB
534 samples. Consequently, 2 and > 1100 U/mg activities were respectively measured with 450 and
535 0.45 ng/ml enzyme and 3.3 mg/ml endogenous PLs. We confirmed the activation of PaPlaB by
536 dilution in the assays performed with 0.46 mg/ml endogenous PLs or PC_{12:0} (Fig 7b).

537


538 **Fig. 7: PaPlaB is an intracellular PLA of *P. aeruginosa* that releases fatty acids from endogenous**
539 **phospholipids.** a) PLA activity of the whole cells and the supernatant of *P. aeruginosa* wild-type and Δ *plaB*
540 cultivated in LB medium overnight at 37°C. Cells washed with fresh LB medium were disrupted by
541 ultrasonication before measurement. NEFA assay with PC_{12:0} substrate (25 μ l) was performed using cell
542 lysates (25 μ l) adjusted to OD_{580nm} = 10 or undiluted cell-free supernatant (25 μ l). Results are the means \pm
543 S.D. of three measurements with three biological replicates. Statistical analysis was performed using the *t*-
544 test, * p < 0.05. b) PLA activity of purified PaPlaB was measured by NEFA assay using endogenous PLs
545 isolated from *P. aeruginosa* wild-type cells and synthetic PC_{12:0}, which was used as control. Free fatty acids
546 were quantified after 15 min incubation of PaPlaB with the substrate at 37°C. Activities are mean \pm S.D. of
547 three measurements with three biological replicates.

548

549 **3.6 PaPlaB affects biofilm amount and architecture**

550 To investigate whether PaPlaB affects the formation, maturation, and dispersion of biofilm, we
551 have performed long-time studies (8 – 216 h) of biofilm formation in microtiter plates (MTP) under
552 static conditions (crystal violet assay) and in the chamber with a continuous supply of the
553 nutrients under dynamic conditions (confocal laser scanning microscopic (CLSM) analysis) (Figs. 8a
554 and 8b). *P. aeruginosa* Δ *plaB* produces significantly less biofilm under static conditions than the
555 wild-type strain after 8, 24, 48, and 72 h of growth, indicating that PaPlaB plays a role in initial

556 attachment and maturation [58, 59] of *P. aeruginosa* biofilm (Fig. 8a). Under these conditions, the
557 biofilm amount in *P. aeruginosa* Δ plaB and wild-type cultures grown for 6 and 9 days showed no
558 significant difference, indicating that PaPlaB likely does not have a function for biofilm dispersion.
559 Based on these results, we examined the biofilm assembly of 24, 72, and 144 h-old biofilms by
560 using CLSM [60]. Large differences between the *P. aeruginosa* Δ plaB and WT were observed (Figs.
561 8b and S11). After 72 h, the wild-type strain forms larger aggregates opposite to small-sized
562 aggregates observed for the Δ plaB strain. The lower density of 72 h-old biofilms found by CLSM
563 correlates with less biofilm quantified by crystal violet assay after 72 h of growth. Interestingly,
564 although the crystal violet assay did not reveal significant differences after six days of growth, the
565 CLSM showed differences. Hence, the wild-type nearly homogeneously and densely covered the
566 surface of the flow-cell coverslip after 144 h, whereas the Δ plaB strain showed less dense
567 coverage indicating impaired maturation [58, 59].

568

569 **Fig. 8: PaPlaB affects biofilm formation in *P. aeruginosa*.** **a)** *P. aeruginosa* wild-type and Δ plaB were
570 cultivated in 96-well MTP (LB medium, 37°C, without aeration). The cells not attached to the plastic surface
571 were removed, and the biofilm stained with crystal violet was quantified at 550 nm. The results are mean \pm
572 S.D. of three independent experiments with five biological replicates each measured eight times. Statistical
573 analysis was performed using the *t*-test, *** p < 0.001. **b)** Biofilm architecture analyzed by CLSM after 24,
574 72, and 144 h growth at 37°C in a flow cell with continuous supply (50 μ l/min) of LB medium. Experiments
575 were repeated two times, each with one biological replicate that was analyzed at three different points by
576 imaging a section of 100 x 100 μ m. All collected images are shown in Fig. S12.

577

578 **4. Discussion**

579 Here we identified *P. aeruginosa* PA01 gene *pa2927*, which encodes a novel PLB (PaPlaB) with a
580 function in biofilm assembly. This enzyme shows moderate global sequence homology (Fig. 1a)
581 with a known virulence-related outer membrane PLA (LpPlaB) of *L. pneumophila* [18, 19, 46, 47]
582 Sequence alignment of LpPlaB and PaPlaB revealed strongly conserved catalytic triad residues
583 (Ser, His, Asp) embraced in the N-terminal domain which is predicted to resemble α/β -hydrolase
584 fold (Fig 1b). By sequence alignment predicted and by mutational analysis confirmed (Fig. S6)
585 catalytic triad resembles in the three-dimensional model the catalytic triad reported in other Ser-
586 hydrolases with PLA activity [53]. C-terminal sequences, in contrast to N-terminal, are not similar
587 within PlaB-family and do not show similarity to other proteins (Fig. 1a). It is thought that the C-
588 terminus of the PlaB-family proteins folds into a distinct domain [18]. This was proposed for
589 LpPlaB [18] and is suggested from *de novo* structural model of PaPlaB (Fig. 1b). The functional
590 importance of the C-terminal domain was suggested, as 15 C-terminal residues were shown to
591 modulate phospholipolytic A activity of LpPlaB [46], although the reason for this is unknown.
592 Interestingly, PaPlaB is missing these 15 C-terminal residues (Fig. S2) what might be related to
593 subtle catalytic differences between LpPlaB and PaPlaB. For example, PaPlaB has comparable PLA

594 activities with PG and PC substrates (Fig. 5a), while LpPlaB hydrolyses PG two times faster than PC
595 [18, 19].

596 We next analyzed whether PaPlaB is an intracellular or extracellular protein because the
597 physiological function of secreted bacterial PLAs and PLBs differ substantially from the function of
598 intracellular enzymes [7, 61]. Extracellular PLA/Bs are toxins involved in host cell membrane
599 disruption [62] or modulation of host cell pathways through the release of bioactive compounds
600 [7]. On the other hand, the function of intracellular PLA/Bs in bacteria is still not clearly established
601 although we recently discovered novel cytoplasmic membrane-bound PLA1 PlaF from *P.*
602 *aeruginosa* which remodeling of membrane GPLs is suggested as a virulence mechanism [9, 10].
603 Interestingly, the function of intracellular PLAs for the regulation of fatty acyl chain composition in
604 GPLs through a deacylation-reacylation pathway called Lands' cycle was described in yeast [63]
605 and other eukaryotes [64].

606 Using *P. aeruginosa* Δ plaB we observed a ~60 % reduction of a cell-associated PLA activity
607 compared to the wild type, whereas extracellular PLA activities did not significantly differ (Fig. 7a).
608 These results suggest that PaPlaB is the main intracellular PLA of *P. aeruginosa*. In agreement with
609 this result is observed membrane localization of catalytically active PaPlaB recombinantly
610 produced in *E. coli* C43(DE3) [32] (Fig. 2), although a large portion was accumulated in catalytically
611 inactive aggregates. Furthermore, activity assays and Western blot analysis of sucrose density
612 gradient fractionated membranes isolated from fragmented *E. coli* C43(DE3) cells overexpressing
613 PaPlaB indicated dual membrane localization of PaPlaB (Fig. 3). Yet, only the cytoplasmic
614 membrane fraction showed PaPlaB activity while the activity of the outer membrane fraction was
615 comparable to the empty vector control strain. These results are only partially agreeing with the
616 suggested outer membrane localization of LpPlaB, [46] because LpPlaB showed the highest PLA
617 activity in outer membrane Momp protein-enriched fractions of *L. pneumophila*. However, it also

618 showed substantial activity (~70 % of outer membrane activity) in the fractions containing inner
619 membranes [46]. The drawback of this fractionation method is the difficulty of absolute separation
620 of outer from inner membranes, which was described by several research groups [46, 65, 66].
621 Keeping in mind that LpPlaB and PaPlaB do not have predicted TM helix or β -barrel-like structure,
622 which were recognized in all hitherto known integral membrane proteins [67, 68], it is likely that
623 these hydrophobic proteins are peripherally associated with one or both membranes. In line with
624 this suggestion is our observation that monomeric PaPlaB in the presence of DDM micelles (~70
625 kDa large [69]) has the M_w of ~45 kDa (estimated by SEC, (Fig. 6a)) which is close to the theoretical
626 M_w (49.5 kDa). Hence, it seems that PaPlaB has not been embedded into DDM micelle, as it would
627 be expected for a true integral membrane protein. Additionally, the prediction of the orientation
628 of PaPlaB at the membrane using the structural model suggests its peripheral interaction with the
629 membrane (Fig. S10).

630 These findings strengthen our hypothesis that PaPlaB is rather a peripheral membrane protein.
631 Interestingly, in PaPlaB and LpPlaB, [46] no recognizable signature for their secretion across the
632 membrane was found; therefore, it remains unknown how these proteins are targeted across and
633 to the membrane. Further experiments are needed to clarify cellular localization and the
634 membrane anchoring mechanism of LpPlaB and PaPlaB.

635 The additional similarity of LpPlaB and PaPlaB is the phenomenon that these proteins
636 homooligomerize at high concentrations, which is accompanied by a decrease in their enzyme
637 activity (Fig. 7b) [47]. Using the SEC method, we observed the equilibrium of PaPlaB monomers
638 and several oligomeric species with M_w of up to ~360 kDa, likely heptamers, at concentrations 0.1,
639 0.5, and 1.0 mg/ml. Keeping in mind that the shape, which presumably deviates from a sphere
640 (Figs. 1b and S10), and bound DDM molecules make a difficult precise determination of oligomeric
641 state by SEC, we have determined an absolute M_w of PaPlaB by MALS method. MALS analyses

642 confirmed PaPlaB monomers and the formation of various oligomers of up to ~380 kDa (Fig. 6b).
643 The observation that PaPlaB:DDM species of M_w between ~45 and ~380 kDa were simultaneously
644 present in the same sample suggests a stepwise oligomerization of PaPlaB. This is in agreement
645 with the structural prediction of PaPlaB oligomers containing from 3 to 7 PaPlaB monomers.
646 SEC and MALS results revealed that increasing the PaPlaB concentration leads to the enrichment
647 of higher oligomeric species. This is similar to LpPlaB, for which were identified only
648 homotetramers at the concentration of ≥ 0.3 mg/ml and the mixture of tetramers and dimers at
649 protein concentrations ≤ 0.05 mg/ml by analytical ultracentrifugation [47]. Furthermore, the
650 oligomerization at higher protein concentrations was accompanied by a strong decrease in
651 activities of PaPlaB and LpPlaB several hundredfolds (Fig. 7b) [47], which was suggested as a
652 mechanism of protecting the host from uncontrolled degradation of own membranes [47]. The
653 activity of *P. aeruginosa* phospholipase A ExoU [70], and human PLA₂ [71], has been suggested to
654 be regulated through homomeric protein:protein interactions. However, further studies are
655 necessary to elucidate the molecular mechanism of PaPlaB activation and particularly the role of
656 the membrane for it.
657 Although LpPlaB and PaPlaB seem not to be essential for bacterial life (Fig. S1), they both affect
658 the important virulence properties of their hosts. It was suggested that the regulation of
659 intracellular replication of *L. pneumophila* is a mechanism of LpPlaB-mediated virulence [46], while
660 the regulation of biofilm maturation was suggested as a mechanism of PaPlaB-mediated virulence
661 (Fig. 8). Despite the exact molecular mechanism by which LpPlaB and PaPlaB contribute to
662 bacterial virulence is unknown, it is most likely that phospholipid-degrading activities are essential
663 for their virulence function. We have shown that PaPlaB rapidly hydrolyses PE (Fig. 5b), which is
664 the most abundant bacterial GPL [72], at the same rate as it hydrolysed GPLs extracted from the
665 membranes of *P. aeruginosa* (Fig 7b). We could show that the biochemical function of PaPlaB is

666 related to the complete deacylation of GPLs to fatty acids and glycerophosphoalcohol as shown by
667 lysoPLA assay (Fig. 5c) and GC-MS analysis of fatty acid products released from PC_{18:1-16:0} (Table
668 S5).

669 In conclusion, the ability of PaPlaB to rapidly degrade endogenous GPLs and above-proposed
670 membrane localization of this novel PLB of *P. aeruginosa*, suggesting that PaPlaB might modulate
671 the molecular GPL profile of *P. aeruginosa* membranes similarly as described for PlaF [9, 10], PLA₂
672 from rat [73], yeast [63] and other eukaryotes [64]. This adaptive GPL modulation might indirectly
673 affect biofilm formation of *P. aeruginosa* what goes along with findings that *P. aeruginosa*
674 undergoes drastic changes in membrane GPL composition upon transition from the planktonic to a
675 biofilm lifestyle [72]. Our results contribute to a still limited understanding of the virulence
676 mechanism of PLA/B from pathogenic bacteria that may represent a previously not explored
677 family of antibiotic targets.

678

679 **Acknowledgment**

680 This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
681 Foundation) – project number 267205415 – CRC 1208 (project A01 to LS, A02 to FK, A03 to HG and
682 A10 to AK). HG is grateful for computational support by the “Zentrum für Informations und
683 Medientechnologie” at the Heinrich-Heine-Universität Düsseldorf and the computing time
684 provided by the John von Neumann Institute for Computing (NIC) to HG on the supercomputer
685 JUWELS at Jülich Supercomputing Centre (JSC) (user IDs: HKF7; HDD18). We thank Christoph
686 Strunk and Esther Knieps-Grünhagen (Heinrich Heine University Düsseldorf, IMET) for their help
687 with the generation of the expression plasmid and SEC analysis, respectively, Muttalip Caliskan
688 (Heinrich Heine University Düsseldorf, IMET) for providing GPLs extract, and Prof. Karl-Erich Jaeger
689 (Heinrich Heine University Düsseldorf, IMET) for valuable discussions.

690 **References**

691 [1] E. Tacconelli, E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D.L. Monnet, C. Pulcini, G. Kahlmeter, J.
692 Kluytmans, Y. Carmeli, M. Ouellette, K. Outterson, J. Patel, M. Cavalieri, E.M. Cox, C.R. Houchens, M.L.
693 Grayson, P. Hansen, N. Singh, U. Theuretzbacher, N. Magrini, W.H.O.P.P.L.W. Group, Discovery, research,
694 and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis,
695 *Lancet Infect Dis* 18 (2018) 318-327.

696 [2] M.J. Filiatrault, K.F. Picardo, H. Ngai, L. Passador, B.H. Iglewski, Identification of *Pseudomonas*
697 *aeruginosa* genes involved in virulence and anaerobic growth, *Infect Immun*, 74 (2006) 4237-4245.

698 [3] B.J. Werth, J.J. Carreno, K.R. Reveles, Shifting trends in the incidence of *Pseudomonas aeruginosa*
699 septicemia in hospitalized adults in the United States from 1996-2010, *Am J Infect Control*, 43 (2015) 465-
700 468.

701 [4] A. Croussilles, E. Maunders, S. Bartlett, C. Fan, E.-F. Ukor, Y. Abdelhamid, Y. Baker, A. Floto, D.R. Spring,
702 M. Welch, Which microbial factors really are important in *Pseudomonas aeruginosa* infections?, *Future*
703 *Microbiol*, 10 (2015) 1825-1836.

704 [5] K.E. Jaeger, F. Kovacic, Determination of lipolytic enzyme activities, *Methods Mol Biol*, 1149 (2014) 111-
705 134.

706 [6] M. Flores-Diaz, L. Monturiol-Gross, C. Naylor, A. Alape-Giron, A. Flieger, Bacterial sphingomyelinases and
707 phospholipases as virulence factors, *Microbiol Mol Biol Rev*, 80 (2016) 597-628.

708 [7] T.S. Istivan, P.J. Coloe, Phospholipase A in Gram-negative bacteria and its role in pathogenesis,
709 *Microbiol*, 152 (2006) 1263-1274.

710 [8] A.M. Saliba, D.O. Nascimento, M.C.A. Silva, M.C. Assis, C.R.M. Gayer, B. Raymond, M.G.P. Coelho, E.A.
711 Marques, L. Touqui, R.M. Albano, U.G. Lopes, D.D. Paiva, P.T. Bozza, M.C. Plotkowski, Eicosanoid-mediated
712 proinflammatory activity of *Pseudomonas aeruginosa* ExoU, *Cell Microbiol*, 7 (2005) 1811-1822.

713 [9] F. Bleffert, J. Granzin, M. Caliskan, S.N. Schott-Verdugo, M. Siebers, B. Thiele, L. Rahme, S.
714 Felgner, P. Dörmann, H. Gohlke, R. Batra-Safferling, K.-E. Jaeger^{1,11} and F. Kovacic, Structural and
715 mechanistic insights into phospholipase A-mediated membrane phospholipid degradation
716 associated with bacterial virulence, *PNAS*, revision submitted (2021)

717 [10] F. Bleffert, J. Granzin, H. Gohlke, R. Batra-Safferling, K.E. Jaeger, F. Kovacic, *Pseudomonas aeruginosa*
718 esterase PA2949, a bacterial homolog of the human membrane esterase ABHD6: expression, purification
719 and crystallization, *Acta crystallogr F*, 75 (2019) 270-277.

720 [11] S. Wilhelm, A. Gdynia, P. Tielen, F. Rosenau, K.E. Jaeger, The autotransporter esterase EstA of
721 *Pseudomonas aeruginosa* is required for rhamnolipid production, cell motility, and biofilm formation, *J*
722 *Bacteriol*, 189 (2007) 6695-6703.

723 [12] L.S. Terada, K.A. Johansen, S. Nowbar, A.I. Vasil, M.L. Vasil, *Pseudomonas aeruginosa* hemolytic
724 phospholipase C suppresses neutrophil respiratory burst activity, *Infect Immun*, 67 (1999) 2371-2376.

725 [13] S. Wettstadt, T.E. Wood, S. Fecht, A. Filloux, Delivery of the *Pseudomonas aeruginosa* phospholipase
726 effectors PldA and PldB in a VgrG- and H2-T6SS-dependent manner, *Front Microbiol*, 10 (2019) 1718.

727 [14] F. Jiang, Nicholas R. Waterfield, J. Yang, G. Yang, Q. Jin, A *Pseudomonas aeruginosa* type VI secretion
728 phospholipase D effector targets both prokaryotic and eukaryotic cells, *Cell Host Microbe*, 15 (2014) 600-
729 610.

730 [15] A.E. Hollsing, M. Granstrom, M.L. Vasil, B. Wretlind, B. Strandvik, Prospective study of serum
731 antibodies to *Pseudomonas aeruginosa* exoproteins in cystic fibrosis, *J Clin Microbiol*, 25 (1987) 1868-1874.

732 [16] L.G. Rahme, E.J. Stevens, S.F. Wolfson, J. Shao, R.G. Tompkins, F.M. Ausubel, Common virulence factors
733 for bacterial pathogenicity in plants and animals, *Science*, 268 (1995) 1899-1902.

734 [17] K. Seipel, A. Flieger, *Legionella* phospholipases implicated in infection: determination of enzymatic
735 activities, *Methods Mol Biol*, 954 (2013) 355-365.

736 [18] J. Bender, K. Rydzewski, M. Broich, E. Schunder, K. Heuner, A. Flieger, Phospholipase PlaB of *Legionella*
737 *pneumophila* represents a novel lipase family: protein residues essential for lipolytic activity, substrate
738 specificity, and hemolysis, *J Biol Chem*, 284 (2009) 27185-27194.

739 [19] A. Flieger, K. Rydzewski, S. Banerji, M. Broich, K. Heuner, Cloning and characterization of the gene
740 encoding the major cell-associated phospholipase A of *Legionella pneumophila*, *plaB*, exhibiting hemolytic
741 activity, *Infect Immun*, 72 (2004) 2648-2658.

742 [20] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, *J Mol Biol*,
743 215 (1990) 403-410.

744 [21] T. Hall, Ibis Biosciences, <http://www.mbio.ncsu.edu/bioedit/bioedit.html>, (2007).

745 [22] A. Drozdetskiy, C. Cole, J. Procter, G.J. Barton, JPred4: a protein secondary structure prediction server,
746 *Nucleic Acids Res*, 43 (2015) W389-394.

747 [23] L.A. Kelley, M.J. Sternberg, Protein structure prediction on the Web: a case study using the Phyre
748 server, *Nat Protoc*, 4 (2009) 363-371.

749 [24] D. Mulnaes, H. Gohlke, TopScore: using deep neural networks and large diverse data sets for accurate
750 protein model quality assessment, *J Chem Theory Comput*, 14 (2018) 6117-6126.

751 [25] D.W.A. Buchan, D.T. Jones, Improved protein contact predictions with the MetaPSICOV2 server in
752 CASP12, *Proteins*, 86 Suppl 1 (2018) 78-83.

753 [26] M. Michel, D. Menendez Hurtado, K. Uziela, A. Elofsson, Large-scale structure prediction by improved
754 contact predictions and model quality assessment, *Bioinformatics*, 33 (2017) i23-i29.

755 [27] M. Baek, T. Park, L. Heo, C. Park, C. Seok, GalaxyHomomer: a web server for protein homo-oligomer
756 structure prediction from a monomer sequence or structure, *Nucleic Acids Res*, 45 (2017) W320-w324.

757 [28] M.A. Lomize, I.D. Pogozheva, H. Joo, H.I. Mosberg, A.L. Lomize, OPM database and PPM web server:
758 resources for positioning of proteins in membranes, *Nucleic Acids Res*, 40 (2012) D370-376.

759 [29] B.W. Holloway, V. Krishnapillai, A.F. Morgan, Chromosomal genetics of *Pseudomonas*, *Microbiol Rev*,
760 43 (1979) 73-102.

761 [30] F. Kovacic, J. Granzin, S. Wilhelm, B. Kojic-Prodic, R. Batra-Safferling, K.E. Jaeger, Structural and
762 functional characterisation of TesA - a novel lysophospholipase A from *Pseudomonas aeruginosa*, *PLoS One*,
763 8 (2013) e69125.

764 [31] D.M. Woodcock, P.J. Crowther, J. Doherty, S. Jefferson, E. DeCruz, M. Noyer-Weidner, S.S. Smith, M.Z.
765 Michael, M.W. Graham, Quantitative evaluation of *Escherichia coli* host strains for tolerance to cytosine
766 methylation in plasmid and phage recombinants, *Nucleic Acids Res*, 17 (1989) 3469-3478.

767 [32] B. Miroux, J.E. Walker, Over-production of proteins in *Escherichia coli*: mutant hosts that allow
768 synthesis of some membrane proteins and globular proteins at high levels, *J Mol Biol*, 260 (1996) 289-298.

769 [33] G. Bertani, Studies on lysogenesis. I. The mode of phage liberation by lysogenic *Escherichia coli*, *J
770 Bacteriol*, 62 (1951) 293-300.

771 [34] J. Porath, J.A.N. Carlsson, I. Olsson, G. Belfrage, Metal chelate affinity chromatography, a new
772 approach to protein fractionation, *Nature*, 258 (1975) 598.

773 [35] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4,
774 *Nature*, 227 (1970) 680-685.

775 [36] S.D. Dunn, Effects of the modification of transfer buffer composition and the renaturation of proteins
776 in gels on the recognition of proteins on Western blots by monoclonal antibodies, *Anal Biochem*, 157
777 (1986) 144-153.

778 [37] M.R. Wilkins, E. Gasteiger, A. Bairoch, J.C. Sanchez, K.L. Williams, R.D. Appel, D.F. Hochstrasser, Protein
779 identification and analysis tools in the ExPASy server, *Methods Mol Biol*, 112 (1999) 531-552.

780 [38] P.V. da Mata Madeira, S. Zouhir, P. Basso, D. Neves, A. Laubier, R. Salacha, S. Bleves, E. Faudry, C.
781 Contreras-Martel, A. Dessen, Structural basis of lipid targeting and destruction by the type V secretion
782 system of *Pseudomonas aeruginosa*, *J Mol Biol*, 428 (2016) 1790-1803.

783 [39] A. Viegas, P. Dollinger, N. Verma, J. Kubiak, T. Viennet, C.A.M. Seidel, H. Gohlke, M. Etzkorn, F. Kovacic,
784 K.E. Jaeger, Structural and dynamic insights revealing how lipase binding domain MD1 of *Pseudomonas
785 aeruginosa* foldase affects lipase activation, *Sci Rep*, 10 (2020) 3578.

786 [40] F. Kovacic, A. Mandrysch, C. Poojari, B. Strodel, K.E. Jaeger, Structural features determining thermal
787 adaptation of esterases, *Prot Eng Des Sel*, 29 (2016) 65-76.

788 [41] D.J. Slotboom, R.H. Duurkens, K. Olieman, G.B. Erkens, Static light scattering to characterize membrane
789 proteins in detergent solution, *Methods (San Diego, Calif.)*, 46 (2008) 73-82.

790 [42] E. Martinez-Garcia, V. de Lorenzo, Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of *Pseudomonas putida* KT2440, *Environ Microbiol*, 13 (2011) 2702-2716.

791 [43] T. Tolker-Nielsen, C. Sternberg, Growing and analyzing biofilms in flow chambers, *Current protocols in microbiology*, Chapter 1 (2011) Unit 1B.2.

792 [44] B. Coffey, G. Anderson, Biofilm formation in the 96-well microtiter plate, in: A. Filloux, J.-L. Ramos (Eds.) *Pseudomonas Methods and Protocols*, vol. 1149, Springer New York, 2014, pp. 631-641.

793 [45] S. Banerji, P. Aurass, A. Flieger, The manifold phospholipases A of *Legionella pneumophila* - identification, export, regulation, and their link to bacterial virulence, *Int J Med Microbiol*, 298 (2008) 169-181.

794 [46] E. Schunder, P. Adam, F. Higa, K.A. Remer, U. Lorenz, J. Bender, T. Schulz, A. Flieger, M. Steinert, K. Heuner, Phospholipase PlaB is a new virulence factor of *Legionella pneumophila*, *Int J Med Microbiol*, 300 (2010) 313-323.

795 [47] K. Kuhle, J. Krausze, U. Curth, M. Rossle, K. Heuner, C. Lang, A. Flieger, Oligomerization inhibits *Legionella pneumophila* PlaB phospholipase A activity, *J Biol Chem*, 289 (2014) 18657-18666.

796 [48] C. Lang, A. Flieger, Characterisation of *Legionella pneumophila* phospholipases and their impact on host cells, *Eur J Cell Biol*, 90 (2011) 903-912.

797 [49] A. Marchler-Bauer, M.K. Derbyshire, N.R. Gonzales, S. Lu, F. Chitsaz, L.Y. Geer, R.C. Geer, J. He, M. Gwadz, D.I. Hurwitz, C.J. Lanczycki, F. Lu, G.H. Marchler, J.S. Song, N. Thanki, Z. Wang, R.A. Yamashita, D. Zhang, C. Zheng, S.H. Bryant, CDD: NCBI's conserved domain database, *Nucleic Acids Res*, 43 (2015) D222-226.

798 [50] R.D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J.E. Pollington, O.L. Gavin, P. Gunasekaran, G. Ceric, K. Forslund, L. Holm, E.L. Sonnhammer, S.R. Eddy, A. Bateman, The Pfam protein families database, *Nucleic Acids Res*, 38 (2010) D211-222.

799 [51] L.A. Kelley, S. Mezulis, C.M. Yates, M.N. Wass, M.J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, *Nat Protoc*, 10 (2015) 845-858.

800 [52] F. Kovacic, N. Babic, U. Krauss, K.-E. Jaeger, Classification of lipolytic enzymes from bacteria, in: F. Rojo (Ed.) *Aerobic utilization of hydrocarbons, oils and lipids*, Springer International Publishing, Cham, 2019, pp. 1-35.

801 [53] D.L. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolov, S.M. Franken, M. Harel, S.J. Remington, I. Silman, J. Schrag, et al., The alpha/beta hydrolase fold, *Protein Eng*, 5 (1992) 197-211.

802 [54] V. Viarre, E. Cascales, G. Ball, G.P. Michel, A. Filloux, R. Voulhoux, HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor, *J Biol Chem*, 284 (2009) 33815-33823.

803 [55] S. Ramanadham, T. Ali, J.W. Ashley, R.N. Bone, W.D. Hancock, X. Lei, Calcium-independent phospholipases A2 and their roles in biological processes and diseases, *J Lipid Res*, 56 (2015) 1643-1668.

804 [56] I.L. Asler, M. Zehl, F. Kovacic, R. Muller, M. Abramic, G. Allmaier, B. Kojic-Prodic, Mass spectrometric evidence of covalently-bound tetrahydrolipstatin at the catalytic serine of *Streptomyces rimosus* lipase, *Biochim Biophys Acta*, 1770 (2007) 163-170.

805 [57] K.H. Nam, S.J. Kim, A. Priyadarshi, H.S. Kim, K.Y. Hwang, The crystal structure of an HSL-homolog EstE5 complex with PMSF reveals a unique configuration that inhibits the nucleophile Ser144 in catalytic triads, *Biochem Biophys Res Commun*, 389 (2009) 247-250.

806 [58] K. Sauer, A.K. Camper, G.D. Ehrlich, J.W. Costerton, D.G. Davies, *Pseudomonas aeruginosa* displays multiple phenotypes during development as a biofilm, *J Bacteriol*, 184 (2002) 1140.

807 [59] O.E. Petrova, K. Sauer, A novel signaling network essential for regulating *Pseudomonas aeruginosa* biofilm development, *PLoS Pathog*, 5 (2009) e1000668-e1000668.

808 [60] C. Reichhardt, M.R. Parsek, Confocal laser scanning microscopy for analysis of *Pseudomonas aeruginosa* biofilm architecture and matrix localization, *Front Microbiol*, 10 (2019) 677.

809 [61] A.B. Russell, M. LeRoux, K. Hathazi, D.M. Agnello, T. Ishikawa, P.A. Wiggins, S.N. Wai, J.D. Mougous, Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors, *Nature*, 496 (2013) 508-512.

810 [62] D.H. Schmiel, V.L. Miller, Bacterial phospholipases and pathogenesis, *Microbes Infect*, 1 (1999) 1103-1112.

842 [63] J. Patton-Vogt, A.I.P.M. de Kroon, Phospholipid turnover and acyl chain remodeling in the yeast ER,
843 *Biochim Biophys Acta Mol Cell Biol Lipids*, 1865 (2020) 158462.

844 [64] L. Wang, W. Shen, M. Kazachkov, G. Chen, Q. Chen, A.S. Carlsson, S. Stymne, R.J. Weselake, J. Zou,
845 Metabolic interactions between the Lands cycle and the Kennedy pathway of glycerolipid synthesis in
846 *Arabidopsis* developing seeds, *Plant Cell*, 24 (2012) 4652-4669.

847 [65] C.D. Vincent, J.R. Friedman, K.C. Jeong, E.C. Buford, J.L. Miller, J.P. Vogel, Identification of the core
848 transmembrane complex of the *Legionella* Dot/Icm type IV secretion system, *Mol Microbiol*, 62 (2006)
849 1278-1291.

850 [66] H.M. Eriksson, P. Wessman, C. Ge, K. Edwards, A. Wieslander, Massive formation of intracellular
851 membrane vesicles in *Escherichia coli* by a monotopic membrane-bound lipid glycosyltransferase, *J Biol*
852 *Chem*, 284 (2009) 33904-33914.

853 [67] A. Craney, K. Tahlan, D. Andrews, J. Nodwell, Bacterial transmembrane proteins that lack N-terminal
854 signal sequences, *PLoS One*, 6 (2011) e19421-e19421.

855 [68] R. Koebnik, K.P. Locher, P. Van Gelder, Structure and function of bacterial outer membrane proteins:
856 barrels in a nutshell, *Mol Microbiol*, 37 (2000) 239-253.

857 [69] D.J. Slotboom, R.H. Duurkens, K. Olieman, G.B. Erkens, Static light scattering to characterize membrane
858 proteins in detergent solution, *Methods*, 46 (2008) 73-82.

859 [70] A. Zhang, J.L. Veesenmeyer, A.R. Hauser, Phosphatidylinositol 4,5-bisphosphate-dependent
860 oligomerization of the *Pseudomonas aeruginosa* cytotoxin ExoU, *Infect Immun*, 86 (2017) e00402-00417.

861 [71] J.E. Burke, E.A. Dennis, Phospholipase A2 biochemistry, *Cardiovasc Drugs Ther*, 23 (2009) 49-59.

862 [72] H. Benamara, C. Rihouey, I. Abbes, M.A. Ben Mlouka, J. Hardouin, T. Jouenne, S. Alexandre,
863 Characterization of membrane lipidome changes in *Pseudomonas aeruginosa* during biofilm growth on
864 glass wool, *PLoS One*, 9 (2014) e108478.

865 [73] W.E.M. Lands, Lipid Metabolism, *Annu Rev Biochem*, 34 (1965) 313-346.

a)

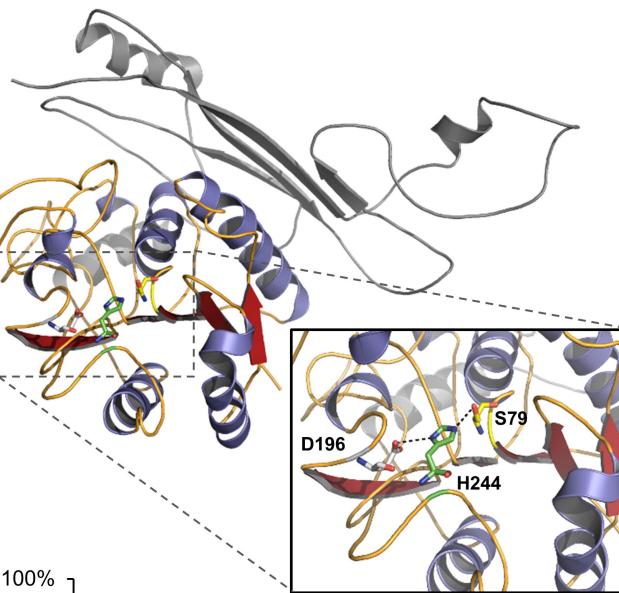
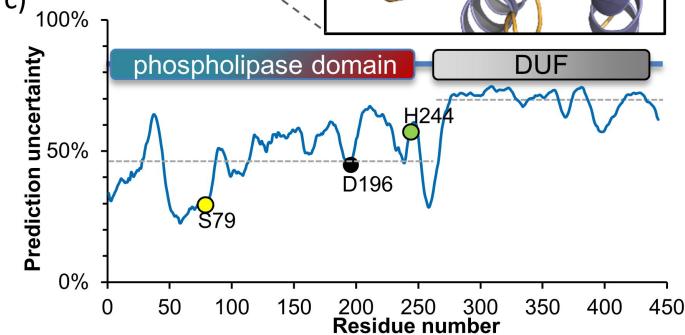
PaPlaB MPR-----S[VIVHGWS-DKSFRLAQLA-----WGSAPTOPLRDNISIQDVI 49
LpPlaB -----MIV[VHGWSVTITNNGEDPWL NQSKQGLDIQVGNILIGRYISSEDDIVI 53
AsPlaB MRN-----PV[VHGWS-NRSRFDLAHFLT-----EEGDAVGHLYLADLSEQDEIS 49
SpPlaB -----ME[VVGWSVTITDVAQEPDALVKKLG-DDELNLTIHILGRYISSEDDAVR 52
MaPlaB MTIGLGGTM[LTHGWSD-GSSFVSLAHLTSPGPDRLLSEIHLRFLDYISLDDLG 59

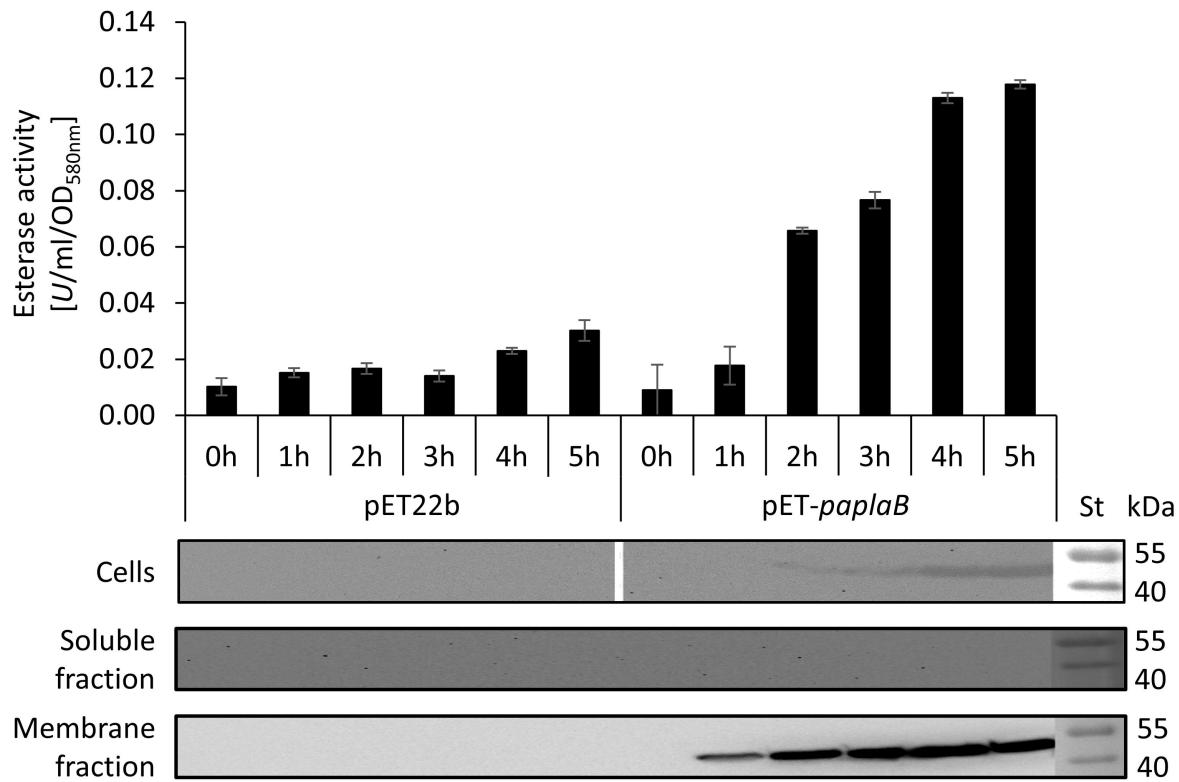
PaPlaB YDLAALDAAATAAGISRAF--RIVDVIVHSTGGLVRLWLTFLFD--PAVAPVKEF 104
LpPlaB VDQDPRFDCAVRDIAAMVKDGRFACHHSTGSPVIVRQDLYEK--NNLAKCPVSHI 112
AsPlaB YDLAALDAAQANGMQIPEF--QVDFIHLHSTGGLVSRHWEYRAA---AANPVPKEF 104
SpPlaB LSQDARFIDAHBLLGKRP-----PAVIVHSTGAVRWVWCTFTGDKLRCPTVHLI 107
MaPlaB YDLAALDAAQANWAKRVEPAP--RIVDVIVHSTGGLVRLWLTINYFK--PRSPVTKRLI 114

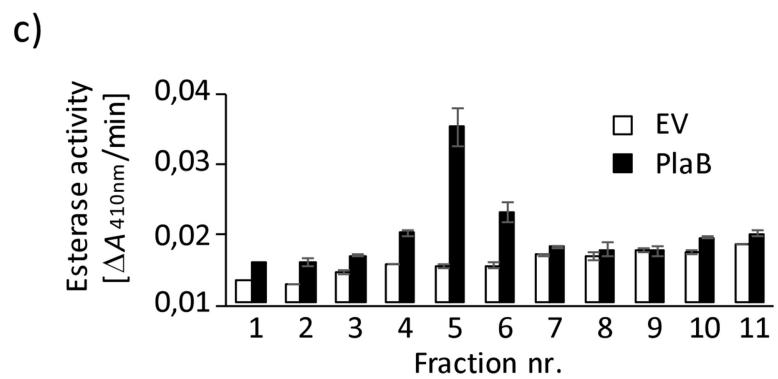
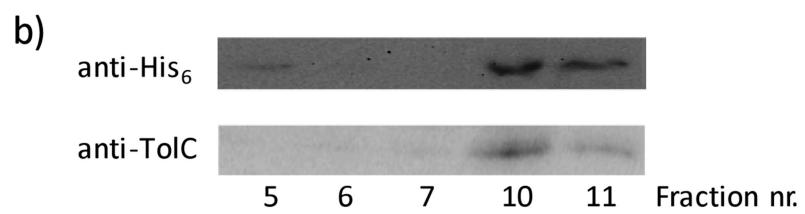
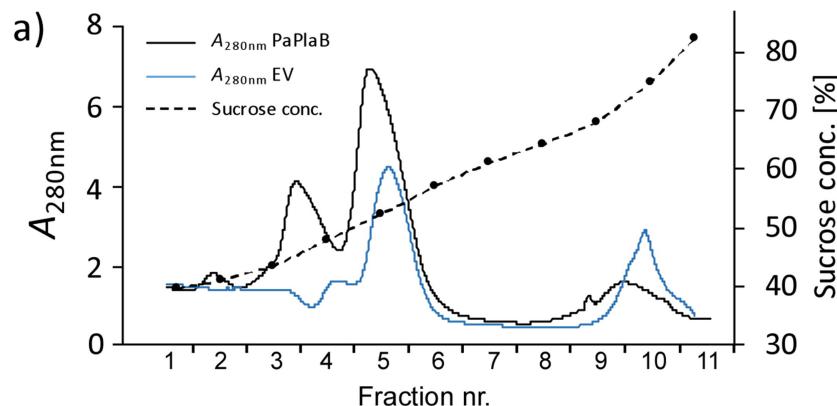
*

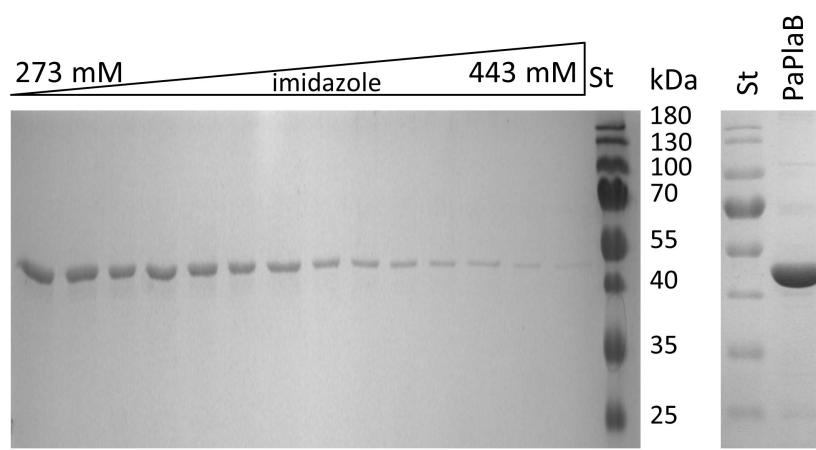
PaPlaB M[LA]PANFGSPLAH[KGRSFVGR]V[IKGW-NRFVG-TCTQ]L[GLELGS]PYSWOLAERDLE 163
LpPlaB M[LA]PANFGSPLAH[KGRSFVGR]KSFED---C[HEPKC]L[DWLLELGS]DMSWLNESWLDY 169
AsPlaB O[LA]PANFGSPLAH[KGRSFYGR]V[KGW-QDFGFTGCA]V[LYGLA]A[DYSR]LAJADLEAA 163
SpPlaB M[LA]PANFGSPLAH[KGRSFVGR]KSFED---C[HEPKC]L[DWLLELGS]DQ[DINRYWLN- 163
MaPlaB M[LA]PANFGSPLAH[KGRSFVGR]GKWTGTRLPETGKTL[LE]GLA[ASP]PSWLSAERDFAE 174

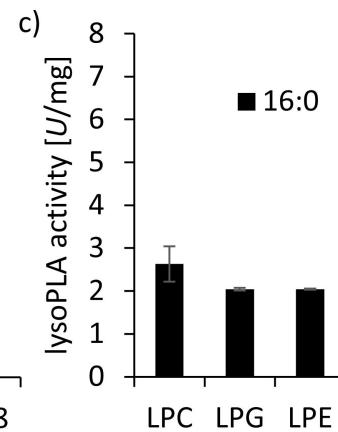
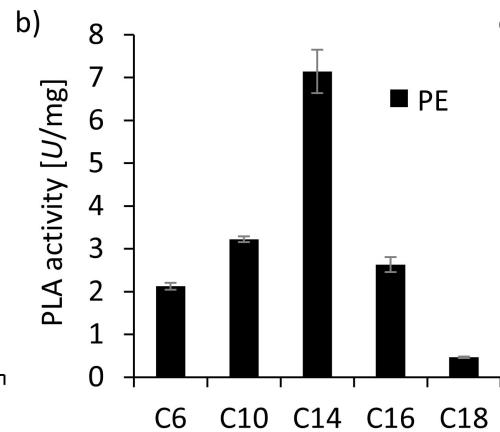
PaPlaB E[WYGADR]IAT--VIG[GNVGY]KG[BANAGS]DCTVR[IA]ANLNACRLI[DEL]VR[CR]-- 220
LpPlaB E[AN]VVSF[LIGQ]IDR[LY]AVN[SYTG]S[GSDGVVRAAAT]N[LY]LL[AL]Q[EGDNGE]-- 228
AsPlaB E[WYGADR]IAT--VIG[GNVGY]KG[BANAGS]DCTVR[IA]ANLNACRLI[DEL]VR[CR]-- 220
SpPlaB FLD[SP]LPF[IL]GEA[DSE]EY[YLNS]YTA[EAG]DGVVRAAAT[ANLN]FVLLAETAHATCDG 223
MaPlaB E[OKY]PCR[LUCH]I[LV]GN[GY]G[IS]A[AN]P[G]DGT[RV]V[TA]N[LA]K[LD]FTL[Q]A[Q]ES 232

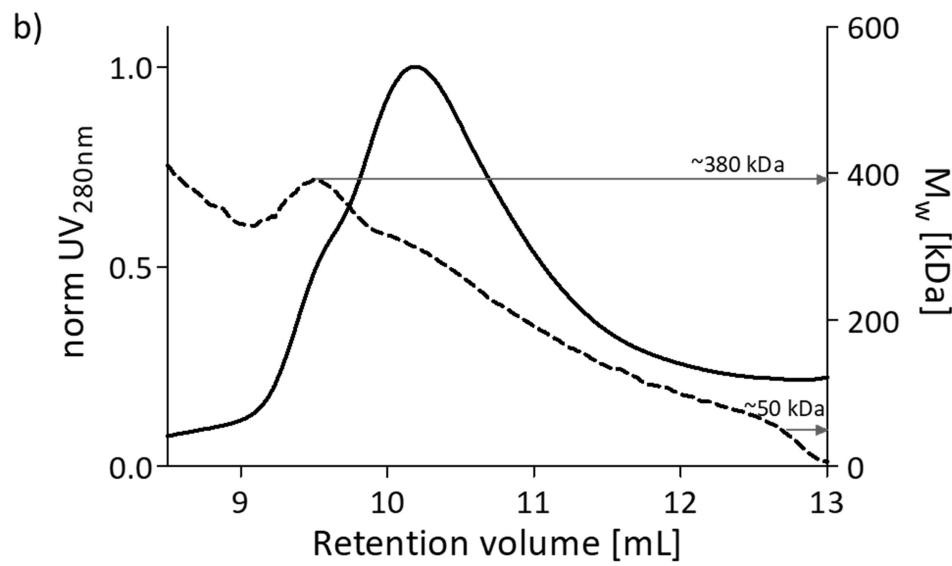
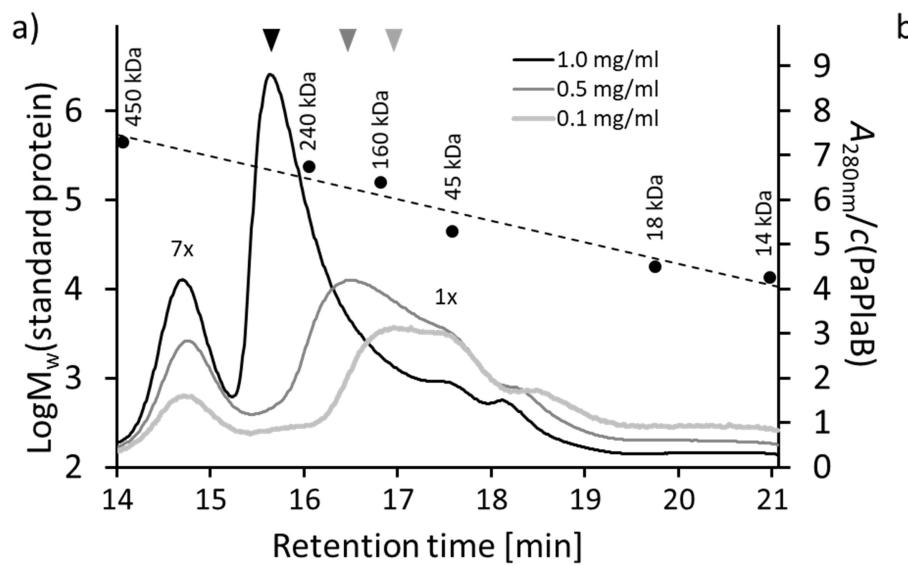


*


PaPlaB R[RP]-W[RP]PSRG[IA]F[AL]A[VD]G[HE]S---V[A]L[K]-D[E]G[P]N[P]H[T]D[E]L[R]A[L] 267
LpPlaB S[LV]V[A]R[T]-T[OP]I[A]P[G]V[P]G[HL]H[G]K[N]G[I]I[RS]T[MA]N[A]P[H]A[T]R[AI]N[VL]L[C] 280
AsPlaB V[K]E[PSL]Q[LP]K[SQ]G[IA]S[V]P[D]P[E]H[Q]I[RS]T[MA]N[A]P[H]A[T]R[AI]N[VL]L[C] 269
SpPlaB FDKRCI[TL]MLS[H]S[PH]O[TR]P[E]H[K]N[A]H[G]C[S]K[G]I[G]V[EN]N[A]K[K]P[V]C[R]I[A]C 283
MaPlaB V[G]I[Q]S---R[D]H[E]S[T]A[G]A[D]Q[E]S[SS]---[A]K[EGG]H[R]SI[W]L[R]K[A] 277




PaPlaB FVEDD[DR]RSSGASFPWQ--RRID[PS]PGIERRSP[IL---]V[LV]SH[CDD]DQ[V]R[TF] 320
LpPlaB JV[SRD]SYNKLVKELDNITKET[KR]HKEFVKTLV[ST]REYINRYSM[FR]ID[RG]M[H] 340
AsPlaB QVEDD[DR]QVG 279
SpPlaB FVTS[P]KQYRQLSDEMSQASSIK[R]K[D]---RACM[V]V[TR]TD[T]G[L]P[V] 325
MaPlaB FVEDD[DR]SKWQDTLTKH[NE]V[TR]RRRGTHHDS[MQ]---NTVIR[IL]DNGQSSV[D]YY 332


PaPlaB I[EF]FRK[NS]D[R]FEG[---]FY[QV]A[D]VH[P]Y[EN]PAYR[LY]S[IS]I[SE]DDI[AG]FAV[T]L[S] 377
LpPlaB I[DYD]IY[T]G[PO]YSE[---]ALPAGFFFV[QR]RN[NGKL]TYFLDY[IL]EGG[NT]PKMGN[397
AsPlaB -----S[GH]FA- 285
SpPlaB E[ED]I[L]L[SC]P[B]FV[P]G--E[E]K[CF]L[Q]KQK[NH]T[N]KHL[T]YF[AI]K[LA]K[---]V[S]G[K]- 377
MaPlaB I[EF]N[D]DS[G]R[NRH]STRLLQ[IV]V[A]V[H]WC[AS]Y[R]S[SL]V[N]C[TE]LS[K]I[D]K[E]S[DL]N 391



PaPlaB I[S]S[A]S[P]F[PP]R[P]G[Y]TAVGPGD[SE]GLA[IP]A[V]P[R]F[AA]A[RT]L[LR]R[LR]R[LR]V[D]SGV 437
LpPlaB I[G]FRV[A]Y[P]SSE[CA]A[Y]YRLL[D]FHS[---]S[AD]I[H]K[II]H[P]P[TR]M[V]M[ML]R[R]R[K]DTV 452
AsPlaB ----- 285
SpPlaB I[G]R[V]R[P]S[---]C[Q]YLSA[F]P[S]---D[EQ]H[E]I[A]D[OT]M[V]D[V]L[R]R[K]P[E]T 429
MaPlaB I[S]T[A]S[---]I[M]N[F]P[G]R[Y]T[Y]ED[ST]L[C]D[Q]N[A]R[D]F[K]P[K]R[HL]I[L]K[R]YQ[K]DN[449



b)**c)**

