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Abstract

Prefrontal cortex is crucial for learning and decision-making. Classic reinforcement learning
(RL) theories centre on learning the expectation of potential rewarding outcomes and explain a
wealth of neural data in prefrontal cortex. Distributional RL, on the other hand, learns the full
distribution of rewarding outcomes and better explains dopamine responses. Here we show
distributional RL also better explains prefrontal cortical responses, suggesting it is a ubiquitous
mechanism for reward-guided learning.

Main text

The prefrontal cortex (PFC) is critical for appropriate learning and decision-making'®.
Reinforcement learning (RL) theory offers a computational framework for understanding learning
and decision-making processes’ and accordingly explains many neural responses throughout
PFC?°. “Classic” RL models”'® learn to predict the expectation — or mean — of the distribution over
possible rewarding outcomes following a stimulus or action. However, by learning only the
expected reward, knowledge of the underlying reward distribution — which is essential for risk-
sensitive decision-making — is lost. Furthermore, since in classic RL models all neurons learn to
predict the same, expected reward, the classic RL framework is unable to account for substantial
diversity in reward-related responses across PFC neurons®'"'?,

A recent modification to classic RL — distributional RL — learns the full reward distribution
and offers a candidate explanation for neuronal diversity’®'°. Unlike classic RL models, in
distributional RL, different neurons learn to predict different parts of the reward distribution. Some
neurons will carry value predictions above the mean of the reward distribution, and others below —
referred to as optimistic and pessimistic neurons, respectively. This means that across the
population of neurons the full distribution of possible rewards is encoded, and that diversity is
predicted in neuronal responses. By explaining such diversity, recent research demonstrates
distributional RL better explains responses of midbrain dopaminergic neurons’® — famously known
to encode reward prediction errors (RPEs) that drive learning of reward predictions'® — than classic
RL.

The PFC encodes a diversity of learning- and decision-related computations®'”*®, including
reward prediction errors®'®. However, a striking feature of PFC, particularly the anterior cingulate
cortex (ACC), is that it encodes diverse reward-related features, such as diverse temporal scales
and learning rates®*??, suggesting PFC neurons may be a strong candidate for distributional RL.
Furthermore, PFC is engaged in risk-sensitive decision-making tasks?, for which distributional
representations will be useful. Given the findings of distributional RL in dopamine neurons, and the
fact that PFC is a major recipient of dopaminergic input**?°, we examined whether distributional
RL explains reward responses in multiple regions of primate PFC in two different decision-making
tasks. In the first dataset, we demonstrate key signatures of distributional RL conceptually
analogous to those shown in mouse dopamine neurons'. In the second dataset, we provide
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evidence for a previously untested prediction of distributional RL; that there are asymmetries in the
rates of learning from better vs. worse than expected outcomes.

To test for signatures of distributional RL in the first dataset, we tested three key
predictions. The first is that different neurons carry different value predictions, varying in their level
of optimism. In contrast to classic RL, which predicts all neurons linearly increase their firing rate
as a function of reward and no diversity across neurons (since all neurons predict the expected
reward), the varying value predictions in distributional RL manifest as: i) neurons increasing their
firing rate non-linearly as a function of reward, and ii) diversity in this non-linearity across neurons'®
(Figure 1B). The same value-predicting cue will therefore elicit different responses in different
neurons. The second prediction of distributional RL is that different neurons will place different
relative weights on positive vs. negative RPEs. Because the different value predictions arise from
these different relative weights, the third prediction of distributional RL is that these two sources of
diversity should correlate.

To test the first prediction of distributional RL, we examined non-linear value coding in
neurons recorded from three PFC regions implicated in learning and decision-making®®'®; the
lateral prefrontal cortex (LPFC, n=257), the orbitofrontal cortex (OFC, n=140), and the anterior
cingulate cortex (ACC, n=213). Two non-human primates (NHPs, Macaca mulatta) were presented
with a choice of two value-predicting stimuli, which varied in the probability of upcoming reward
while magnitude of reward was held constant® (Figure 1A). We initially analysed firing rates of
reward-sensitive neurons (Supplementary Information) as a function of the 4 possible chosen value
(probability) levels by looking at the mean firing rate in a window of 200-600ms post-stimulus onset
during the choice epoch of the task. We then subtracted the mean firing rate in this window across
trials. We observed non-linearities in individual neurons, which we indexed using a measure of
optimism analogous to Dabney et al.”>. We measure the ‘reversal point’ of a given neuron using
the mean-subtracted firing rates to find the interpolated cue value for which the firing rate reverses
from above to below the mean firing rate (Figure 1B). In classic RL, we would expect the reversal
point for all neurons to be around the mean of the value distribution (i.e., around 2.5 in this
dataset), whereas optimistic neurons in distributional RL will have reversal points falling towards
higher values, and vice versa for pessimistic neurons (Figure 1B).

We observed diversity in reversal points (i.e., value predictions) across the population of
117 reward-sensitive neurons in ACC, which exhibited both optimistic and pessimistic neurons
(Figure 1B and 1C). To confirm this diversity in ACC is not simply due to noise, we demonstrated
that the reversal point estimated in a random half of the data predicted that in the other half of the
data (R = 0.46, P = 1.7x10” by Pearson correlation; Figure 1D). Neurons in OFC and LPFC
exhibited lower reward-selectivity, and a lack of diversity in reversal point (Supplementary
Information), and hence we focus on ACC for the remainder of this report.

Critically, distributional RL predicts reversal diversity is a signature of distributional coding
over value, not over stimulus features. A neuron tuned to the sensory (e.g. visual) features for the
cue predicting value 4 would appear as an optimistic neuron by distributional RL definitions, even
though it may not be optimistic. Our experiment controlled for this by using two stimuli for each
value level. We showed optimism in ACC generalises over different stimulus sets by correlating the
reversal point estimated in one stimulus set with that of the other (R = 0.41, P = 2.8x10° by
Pearson correlation; Figure 1E). This confirmed that diversity in ACC reversal points is neither
explained by noise nor tuning to specific stimulus features.

In RL settings, ACC exhibits a spectrum of learning rates topographically organized along
the posterior-anterior axis??. We therefore tested for topographic organisation of optimism in ACC
reward-selective neurons, and found the anterior-posterior location within ACC predicted optimism,
such that more anterior neurons were more optimistic (R = 0.33, P = 2.9x10™ by Pearson
correlation; Figure 1F). Such topographic organisation to optimism may ensure neurons interact
with other neurons of similar optimism'>%’, and may offer a route to non-invasive measurement and
manipulation of optimism.
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Figure 1 — Diverse optimism in value coding across ACC neurons. A) On each ftrial, subjects chose
between two cues of neighbouring probability value. Each probability value could be denoted by two stimuli,
resulting in two stimulus sets (see8 for task details). B) Example neuron responses demonstrating different
levels of optimism. In each plot the mean firing rate is plotted as a function of time and split according to the
chosen value (probability) level. There are four chosen values (0.3-0.9 probability) as subjects rarely chose
the 0.1 probability level (choice accuracy was at ceiling; 98%). Insets demonstrate firing rate is a non-linear
function of value. Mean firing rate (having z-scored across trials all trials) in a 200-600ms window post-cue
onset is plotted as a function of the 4 values. Reversal points are the interpolated value at which there is 0
change from the mean firing rate, an index of non-linearity. C) Histogram showing a diversity of reversal
points across neurons. D) Scatter plot showing reversal points estimated in one half of the data strongly
predict that in the other half. Each point denotes a neuron. Inset: log p-values of the correlation between
1000 different random splits of the data into independent partitions. Black line denotes the geometric mean
of these p-values. E) Scatter plot showing reversal points estimated in stimulus set 1 strongly predict those in
stimulus set 2. Each point denotes a neuron. F) Anterior-posterior topographic location of the neuron predicts
its reversal point, with more anterior ACC neurons more optimistic. Each point denotes a neuron.

A second key prediction of Distributional RL is that different value predictions arise from
different relative weights placed on positive vs. negative RPEs'®. If, for example, a neuron puts
more weight on — and therefore learns more from — positive than negative RPEs, it will learn an
optimistic value prediction. Asymmetries in the relative weighting of positive and negative RPEs
can be indexed by the relative scaling, i.e. regression slope, of positive and negative RPEs (Figure
2A). For each neuron, we determined separately the scaling of positive and negative RPEs elicited
at feedback. We did this by regressing firing rate against the chosen probability cue — which
determines the size of the RPE — on rewarded and unrewarded trials, respectively. From these we
computed a single measure to reflect the asymmetry of positive vs. negative RPEs; g*/(8* + B7),
where B and B~ are the betas for positive and negative RPEs, respectively. We include in this
analysis only those neurons that are RPE selective (41 neurons in ACC, see Supplementary
Information). We found diversity in the relative weighting of positive vs. negative RPEs across ACC
neurons at feedback (Figure 2B), and this diversity was stable across independent partitions of the
data (R = 0.32; P = 0.015 by Pearson correlation; Figure 2C).

While we know neuronal responses in cortex are diverse, often talked about in the context
of mixed selectivity'"?*%, distributional RL makes a more specific prediction. Since, in distributional
RL theory, the different weights placed on positive vs. negative RPEs result in the diverse levels of
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optimism in value predictions that we observed at choice, these should be related. This is despite
being two different measures of optimism estimated in different periods of the task (i.e., choice and
outcome). We confirm this prediction in ACC neurons; asymmetry in RPEs at feedback predicted
the reversal points at choice (R = 0.41, P = 0.0079 by Pearson correlation; Figure 2D). Thus
primate 1‘!:’FC contains conceptual analogues of distributional RL found in rodent dopamine
neurons .
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Figure 2 — Diverse asymmetric scaling of reward prediction errors predicts choice optimism in ACC.
A) An example neuron’s responses at each of the task epochs: choice, feedback on rewarded trials, and
feedback on unrewarded trials, demonstrating where in the task the betas are measured for RPE scaling
asymmetries. f* and g~ are betas corresponding to the scaling of positive and negative RPEs. B) Histogram
showing a diversity of asymmetric scaling across ACC RPE neurons. C) Same format as Figure 1D but for
asymmetric scaling consistency. Each point denotes a neuron; RPE-selective neurons only. D) Asymmetric
scaling estimated at feedback predicts reversal point at choice. Each point denotes a neuron.

Thus far we have identified neural signatures of distributional RL in PFC during decisions
where the reward structure is static and values do not need to be updated through learning.
However, many real world contexts require continuous learning as decision values change. We
now turn to a previously untested, strong prediction of distributional RL, which predicts a unique
pattern of learning across neurons. That is, in addition to diverse asymmetries in the scaling of
positive vs. negative RPEs, distributional RL also predicts diverse asymmetries in the rates of
learning from positive vs. negative RPEs (Figure 3A and 3B).

Whereas in asymmetric scaling, neurons differ in the degree to which the firing rate
response is scaled as a function of positive vs. negative RPEs, in asymmetric learning, the rate at
which a neuron updates its estimated value of a state from RPEs differs for positive vs. negative
RPEs (Figure 3A). This will influence subsequent RPE responses as these are computed from the
state value. For example, an optimistic neuron will increase its predicted value more rapidly than
decrease it following changes in the true value. Therefore, following an increase in the true value,
the size of positive RPE responses will decrease more rapidly since the new (higher) reward is
learnt — and therefore expected — more rapidly. The converse pattern will be true for pessimistic
neurons (Figure 3B).
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Figure 3 — Asymmetric learning. A) Asymmetric scaling and asymmetric learning are both predictions of
distributional RL, but dissociable. Asymmetric scaling reflects differences in the degree to which positive and
negative RPEs are scaled in order to predict firing rate. Asymmetric learning reflects differences in the rate of
state value update following positive and negative RPEs. These different learning rates are denoted by a™
and a~, respectively. § = r —V is the RPE, where r is the reward on the current trial and V the value. B)
Simulated examples demonstrating the difference between asymmetric scaling and learning. C) Comparing
cross-validated model fits reveals that a model with both asymmetric scaling and asymmetric learning is the
best explanation of the ACC data. This is followed by a model with asymmetries in only scaling, then only
learning, and the fully classic (symmetric) model is the worst model of the data. Each bar in the bar graph
shows the comparison between a pair of models. D) Example model fits. Top: RPE regressors generated
using learning rate parameters fit to individual neuron data, for three different neurons from the same
session. Different levels of optimism can be seen via the different rates at which RPEs tend back toward zero
following changes in state value (denoted by dashed black line in bottom plot). Bottom: This is reflected in
the corresponding values. The pessimistic neuron (shown in blue), for example, is quick to devalue but slow
to value.

Exploring asymmetric learning requires a learning task in which the reward structure is
dynamic, so that subjects must update their value expectations. It also requires neurons that are
outcome selective. We recorded single neuron data from two different NHPs (Macaca mulatta) in
ACC during performance of the “two-step task™®?', in which there were 4 end-stage cues that
independently changed in value every 5-9 ftrials (Supplementary Information). Subjects were
therefore required to update their value estimates of these cues across trials. We identified a
significant population of reward selective neurons in ACC (n=111/240, 46%), which were then used
for the asymmetric learning analysis below (Supplementary Information).

To test for asymmetric learning, we modelled neuronal responses using classic (temporal
difference RL, which learns the expected value) and distributional RL models and tested which
best fits the data (Supplementary Information for details). We adapt the one-step transition
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temporal difference RL model to incorporate either asymmetries in scaling, asymmetries in
learning, or both, and asked which model best explained the data. For each neuron, we fit the
learning rate and scaling parameters in a subset of the data. We then used these parameters to
generate RPE regressors for the held-out data in which we assessed the model’s fit to the data (R-
squared) using 10-fold cross validation. We then compared the different models using the mean R-
squared (across partitions) for each neuron.

We found a model that incorporates both asymmetric learning as well as asymmetric
scaling was the best fit to the ACC data (Figure 3C). This suggests that two learning rates are
better than one in explaining the learning dynamics of ACC neuronal responses; demonstrating
that different neurons update their value estimates at different rates, depending on whether they
are increasing vs. decreasing in value. For example, one neuron may increase its value estimate
rapidly for positive outcomes, but decrease it slowly for negative outcomes, and vice versa for
other neurons (Figure 3D). This finding in ACC provides evidence for a previously untested key
prediction of the distributional RL theory.

Distributional RL provides a powerful new computational framework that learns the full
reward distribution rather than only the expectation, improves performance of artificial agents, and
better explains rodent dopaminergic responses'>™'°. Here, we provide the first demonstration that
distributional RL also better explains single-neuron responses in cortex, specifically in primate
ACC. We show conceptual analogues to the results in dopamine; specifically, evidence for diverse
value predictions that are correlated with diverse asymmetries in RPE scaling. We further show
diversity generalises over stimulus features, demonstrating it is due to diverse optimism not
stimulus feature coding, and that it lies on an anatomical gradient, offering a candidate solution to
the connectivity patterns predicted by distributional RL'>?. Finally, we present evidence for
asymmetries in the rates of learning from positive vs. negative RPEs.

That distributional RL is in cortex has several important implications. First, it provides a
candidate mechanism for how cortical representations of probability distributions over value arise,
as are required for value-based risk-sensitive decision-making®>*. Second, PFC responses are
famously diverse, with different neurons showing different selectivity profiles'"'®?°. Although there
is much diversity still to be explained in PFC, distributional RL provides one account for such
diversity and suggests other interesting computational principles may underlie other sources of
diversity. Third, it raises intriguing questions about possible differences between dopaminergic and
cortical distributional RL. Perhaps, the latter facilitates learning cortical representations’* that
implement the former, which is used for risk-sensitive decision-making. Finally the presence of
distributional RL in cortex of NHPs across two different studies suggests distributional RL may be
hidden in many RL datasets, and that it may be a ubiquitous mechanism for reward-guided
learning.
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Supplementary information

Task and neural recordings from Kennerley et al 2011

Results in Figures 1 and 2 are a re-analysis of the data presented in Kennerley et al 20118,
Full task and recording details can be found there, but we outline the key points relevant to the
current study here.

This task was a two-alternative forced choice task, in which two rhesus macaques were
presented, on each trial, with two stimuli, which they chose between using a joystick movement.
After a delay feedback was delivered. Trials differed in the pair of stimuli presented at the choice
phase. Stimuli were drawn from a set of possible stimuli, which denote different values varying
along one of three attributes: probability of reward, magnitude of reward, or the amount of effort
(lever pulls) required to obtain reward.

On any given ftrial, subjects will be presented with two stimuli that: belong to the same
attribute (e.g. they are both probability cues), will be drawn from the same stimulus set within that
attribute, and denote neighbouring values (e.g. subjects will choose between 0.9 and 0.7
probability cues and never 0.9 and 0.5). This means animals only ever choose between options
within the same attribute and stimulus set, and that the chosen value difference is the same on all
trials. For the purpose of this study, our analyses only focus on probability (not magnitude or effort)
trials.

Recordings were made in ACC (n=213 neurons), OFC (n=140) and lateral PFC (n=257);
see figure 6 of Kennerley et al 2009 for precise locations of recorded neurons.

This dataset is well suited to test for distributional RL given recordings were in ACC, a
region known to contain value-related learning signals® and to be important for risk-sensitive
decision-making®. Furthermore, this dataset is well suited as we can index neural responses to
positive and negative RPEs separately? (see below). Indeed, we previously reported® that some
neurons in ACC encode, for example, positive RPEs more strongly than negative RPEs, which is
suggestive — broadly speaking — of diversity in RPE coding. In addition to being the most


https://doi.org/10.1101/2021.06.14.448422
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448422; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

appropriate brain region to test for distributional RL in cortex, the ACC is also recorded in both this
dataset and the other dataset analysed in this manuscript (see below).

Note that we only present results from the analyses of probability trials, since these are the
only trials that we can measure asymmetric scaling of RPEs because the probabilistic feedback
causes positive and negative RPEs on rewarded and unrewarded trials, respectively (see below).

Neuron inclusion criteria and analysis assumptions

Only neurons that significantly encoded reward probability at choice (“probability-selective”)
entered into subsequent distributional RL analyses. Probability-selective neurons were defined as:
P<0.05 in linear regression between probability level and mean firing rate on each trial in a 200-
600ms window post-cue onset. This is the analysis window used throughout the paper. 117 ACC
neurons (55%) passed this criterion. In contrast, only 30% of OFC and 30% of LPFC neurons met
this criterion. For the asymmetric scaling analyses in Figure 2, we include the subset of these
probability-selective neurons that additionally encode reward probability at feedback with an
opposite sign to that at choice, i.e. reward prediction error (RPE) selective neurons (see below) as
we defined previously®. 41 (19%) ACC neurons met this criterion; in contrast, only 6% of OFC and
10% of LPFC neurons met this criterion. Furthermore, there was a lack of significant diversity in
reversal point in OFC and LPFC (Supplementary Figure 3). Hence we focused on the ACC for the
remainder of the analyses.

We briefly note here that, unlike dopaminergic neurons, in ACC, some neurons’ firing rates
have a positive relationship with reward (i.e., firing rate increases as reward increases) and others
negative (i.e., firing rate increases as reward decreases)®. We therefore flipped the firing rates
(multiply by -1) of those neurons that are negative, but note that this in fact does not make any
difference to the estimation of the distributional RL measures.

Furthermore, since the value differences of the choices are constant (as they are only ever
shown pairs of stimuli neighbouring in value) and their performance is at ceiling? (choosing the
higher option on 98% of trials), we have 4 possible values corresponding to the 4 possible pairs of
stimuli that could be presented on each trial.

Note that some trials are better than others and therefore ACC responses to the choice
cues could reflect an RPE of the current trial value relative to the average set of trial values that
could be offered. We can therefore treat the response to the cues at choice as a RPE (i.e., current
offer value — average trial value).

Measuring optimism at choice

We index the non-linearity in the firing rate as a function of reward using a measure
analogous to that used in Dabney et al 2020'°. We measure the ‘reversal point’ of a given neuron
by estimating the value at which that neuron’s response is the same as (or reverses from positive
to negative deviation from) the mean firing rate across trials following the presentation of the value-
predicting cue (in the analysis window).

We note that, unlike in dopaminergic neurons, the reversal point here is induced by z-
scoring the data (mean firing rate in the analysis window post-stimulus onset) across trials, and is
therefore not the same as reversal point from baseline (pre-stimulus onset) firing, as used in
Dabney et al'. This is necessary because deviation in firing rate from baseline in cortical neurons
does not have the same assumed meaning as it does in dopaminergic neurons. In dopaminergic
neurons, it is assumed that positive and negative deviations from baseline firing rate equate to
positive and negative RPEs being signalled by that neuron''. However, in cortex, many
probability selective neurons will, for example, increase their firing rate (relative to the pre-cue
baseline) in response to all values (i.e. even those at the lowest part of the reward distribution,
which ought to elicit negative RPEs even in the most pessimistic neurons). Hence, unlike in
dopaminergic neurons, in cortex, an increase in firing rate relative to baseline does not necessarily
mean a positive RPE. We therefore measure the reversal point for all neurons by z-scoring the
data in a window after feedback, so that we can compare the measures of optimism across
neurons (this z-scoring results in neutral neurons having a reversal point of 2.5 and deviations
above and below this indicate optimism and pessimism, respectively). If a neuron is optimistic and
thus predicts the highest values in the range of the task, the firing rate to all values but the highest
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value will be low relative to that of the highest, hence the reversal point will be high (see Fig 1B,
left). We use this reversal point measure for consistency with Dabney et al'®.

However, we note that an alternative measure of optimism capturing the non-linear shape
of the neuronal response as a function of reward gives qualitatively the same results
(Supplementary Figure 1), and is highly correlated with the reversal point. This measure is
obtained by fitting the non-linearity in the firing rate as a function of reward using a quadratic term
in linear regression:

FR = By + 1R + B,R?
where FR is the firing rate on each trial and R the reward level. 5, is a regression weight that
indexes optimism via the concavity (or convexity) of the function. As expected, this measure of
optimism is highly correlated with the reversal point described above (R = 0.87, P = 4.0x10™*" by
Pearson correlation) — corroborating that both measures index the non-linearity in the firing rate as
a function of reward.

Consistent diversity in optimism at choice

Observing diversity in optimism/reversal point alone is not sufficient, as this would be
expected simply by noise. We therefore confirm diversity in reversal points is consistent by
partitioning the data into independent partitions and testing whether the diversity is consistent
across the partitions. We follow the same methodology as in Dabney et al 2020". We estimate the
reversal point in a random half of the trials, and repeat in the other half. We do this for each neuron
and then correlate the reversal points estimated in one half with that in the other, obtaining r and P
values for the correlation. If diversity is not due to random noise, we would expect these
independently estimated reversal points to significantly correlate across neurons. To ensure this
correlation is robust across partitions of the data, we repeat this partitioning process 1000 times
and take the geometric mean of the P-values across partitions to obtain a summary P-value for the
analysis.

Asymmetric scaling (RPEs at feedback) analysis

In order to estimate asymmetry in the scaling of firing rate as a function of positive vs.
negative RPEs, we estimated the scaling of positive and negative RPEs on rewarded and
unrewarded trials, respectively. This is possible since rewarded trials will always elicit positive
RPEs, and vice versa for unrewarded trials. The scaling of the firing rate as a function of, for
example, positive prediction error is the regression weight used to scale the positive RPE in order
to predict the firing rate, as in Dabney et al 2020. The size of the RPE is dependent on the cued
probability at choice®. The RPE is defined as r — V, where r is the delivered reward and V is the
cued probability value that denotes the expected value of the upcoming outcome. Rewarded and
unrewarded trials yield a reward of 1 and 0, respectively. If, for example, the cued probability is
high (0.9), this will elicit a smaller positive RPE on rewarded trials than a low cued probability (0.3),
as reward was more expected (the RPEs in these cases would be: 1-0.9 = 0.1, and 1-0.3 = 0.7,
respectively). In contrast, high cued probabilities will elicit larger negative RPEs on unrewarded
trials, as reward was expected. We therefore estimate the scaling of positive and negative RPEs
by regressing the chosen cue probability against the firing rate at feedback, separately for
rewarded and unrewarded trials, resulting in the regression coefficients B* and g~ for scalings of
positive and negative RPEs, respectively. We use these scalings to compute the optimism of the
scaling asymmetry as f*/(B* + p~). These analyses are only carried out in RPE selective
neurons, of which there were 41 in ACC (see below). The consistent diversity in reversal points
observed at choice holds in this subset of neurons (Supplementary Figure 2). In order to confirm
the revealed diversity is not simply due to noise, we perform the same partition-based consistency
analysis as we did for optimism at choice.

This measure is analogous to the asymmetric scaling measure used in Dabney et al
2020". The difference being that whereas Dabney et al 2020 measured asymmetric scaling from
the cue presentation epoch, we estimate the scalings at a separate task epoch to cue
presentation/choice; that is, at feedback time, when RPEs will be elicited following cued
probabilistic reward delivery. Furthermore, we estimate positive and negative RPEs on rewarded
and unrewarded trials, respectively.
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To test for the relationship between optimism at choice and asymmetric scaling, we
regressed choice optimism against asymmetric scaling across neurons. We perform this analysis
for those neurons that encode RPEs. In other words, following Kennerley et al 20118, those
neurons that code the cued probability in choice epoch and feedback epoch with opposite signed
relationships, and where both feedback epochs (rewarded and unrewarded) had the same sign. In
brief, the logic is as follows: a RPE selective neuron that, for example, increases its firing rate as a
function of chosen probability at choice, and therefore has a positive relationship between firing
rate and RPE (elicited by the probability cue), should fire less strongly after reward following a high
probability cue (since the RPE is smaller), and therefore has a negative relationship between firing
rate between and probability at feedback. The same negative relationship between firing rate and
probability at feedback applies on unrewarded trials, when a larger decrease in firing is elicited on
high probability trials as a larger negative prediction error is elicited by lack of reward on high
probability trials. Hence, the sign of the relationship between firing rate and probability cue is
opposite at choice and feedback for RPE selective neurons as previous explained in detail®.

Simultaneous diversity

Differences in value expectation may vary across sessions, due to, for example, motivation.
Therefore, when pooling neurons across sessions for analysis, we might find diversity even from
classic RL alone due to different expectations across sessions. To address this, we show that
diversity exists within single sessions (Supplementary Figure 4). We further account for possible
diversity across subjects in the asymmetry predicting reversal point correlation: we found that the
relationship between choice reversal point and feedback asymmetric scaling held after including
subject as a co-regressor (1(38) = 2.66; P=0.01, for the asymmetric scaling regressor predicting
reversal point, in a GLM regressing out subject). This suggests differences in value expectations
across subjects or sessions cannot explain the observed diversity.

Task and neural recordings from Miranda et al (in prep): Two-step decision task

Results in Figure 3 are a re-analysis of the data presented in Miranda et al (in preparation),
which are the neural recordings accompanying Miranda et al 2020°". Full task details can be found
there, but we outline the key points relevant to the current study here.

This task was an adaptation of the classic two-step decision-making task® to NHPs. The
two-step nature of this task, along with the probabilistic transitions, is not relevant to the current
study. This is because we focused analyses on the outcome time when learning of values of the
stimuli ought to be occurring (see below). Nonetheless, we briefly describe the task here for
completeness. Two decisions were made on each ftrial. At the first decision step, animals chose
between two options (denoted by picture stimuli) that each result in probabilistic transitions to one
of two second stage states. One transition was more likely (70% - a common transition) and the
other less likely (30% - a rare transition). The common transition from each of the first stage
options was to a different second stage option. In the each of the possible second stages, another
two-option choice was required, and each of these 4 end-stage states had one of three different
outcome levels (high, medium and low reinforcement levels) associated with it at a given time,
which was delivered in the feedback stage. To induce learning, the outcome levels for the second
stage options were dynamic: Reward associated with each second stage option remained the
same for 5-9 trials, then changed randomly to any of the three possible outcome levels (including
remaining the same). In order to make appropriate choices at both first and second stages of the
task (which they did®'), animals had to continually track and update the value of each end stage
stimulus.

We focus exclusively on neural activity at the feedback stage when outcome was received.
This is because: 1) we want to focus on the learning of the dynamic values of the second-stage
options in order to test for asymmetric learning, 2) it is at this feedback period when RPEs ought to
be elicited and error-driven learning of option values occurring, 3) this allows us to look at simple
value learning without the added complication of the probabilistic transition structure of the task,
which is not relevant for testing distributional RL. For the sake of our analyses, we can therefore
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think of this task as a simple reversal learning task in which four cues change their value every 5-9
trials. Amongst other brain regions, recordings were made in the ACC. We focus analyses on ACC
since this is the brain region in common with Kennerley et al 2011 and where we have a strong
hypothesis for the presence of distributional RL.

Neurophysiological methods in the 2" (two-step) dataset

Two NHPs (Subjects “J” and “C”), different to those in Kennerley et al 2011, performed the
task. Subjects were implanted with a titanium head positioner for restraint, then subsequently
implanted with two recording chambers that were located on the basis of preoperative 3T MRI and
stereotactic measurements. Postoperatively, we used gadolinium-attenuated MRI imaging and
electrophysiological mapping of gyri and sulci to confirm chamber placement’®. The chamber
positioning along the anterior—posterior (AP), medial-lateral (ML) coordinate planes and their
respective lateral tilt (LT) angle from vertical were as follows: one chamber over the left
hemisphere at AP = 38(C)/37(J) mm, ML = 20.2(C)/18.1(J) mm and LT = 21-(C)/26°(J); and one
over the right hemisphere at AP = 27(C)/27.5(J) mm, ML = 19.7(C)/17.9(J) mm and LT =
22.5°(C)/28-(J). Craniotomies were then performed inside each chamber to allow for neuronal
recordings in different target regions.

For single-neuron recording we used epoxy-coated (FHC Instruments, Bowdoin, USA) or
glass-coated (AlphaOmega Engineering, Nazareth, Israel) tungsten microelectrodes inserted
through a stainless-steel guide tube mounted on a custom-designed plastic grid with 1 mm spacing
between adjacent locations inside the recording chamber. Electrodes were acutely and slowly
advanced through the intact dura at the beginning of every recording session using custom-built
micro-drive assemblies manually controlled that lowered electrodes in pairs or triplets from a single
screw; or motorised microdrives (Flex MT and EPS by Alpha Omega Engineering, Nazareth,
Israel) with individual digital control of electrodes. During a typical recording session, 8-24
electrodes were lowered into multiple target regions until well-isolated neurons were found.
Neuronal signals were acquired at 40 KHz, amplified, filtered and digitised (OmniPlex Neural Data
Acquisition System by Plexon Instruments, Dallas, USA). Spike waveform sorting was performed
off-line using principal component analysis-based method (Offline Sorter by Plexon Instruments,
Dallas, USA). Channels were discarded if either neuronal waveforms could not be clearly
separated, or if waveforms did not remain stable throughout the session.

We randomly sampled neurons; no attempt was made to select neurons on the basis of
responsiveness or specific cortical layer. This procedure ensured an unbiased estimate of neuronal
activity, thereby allowing a fair comparison of neuronal properties between the different brain
regions.

We recorded neuronal data from the dorsal bank of anterior cingulate cortex (ACC). We
used the gadolinium-enhanced MRI along with electrophysiological observations during the
process of lowering each electrode to estimate the location of each recorded neuron. In ACC, the
recordings were positioned between AP 30-37mm in Subject C, and AP 30-36mm in Subject J
relative to the interaural line (AP=0mm).

Neuron inclusion

Of the 240 neurons recorded in ACC, we tested for signatures of distributional RL (see
below) in those that were sensitive to RPE (those neurons that had P<0.05 in linear regression
between firing rate and RPE). The RPE regressors used to test for sensitivity are from Miranda et
al 2020°". These are obtained using the best fitting parameters fit to behaviour, as described in
Miranda et al 2020*'. 111 neurons passed this criterion, and are the neurons analysed in Figure 3.
Furthermore, we note that the results hold using a much more stringent definition of RPE from
Bayer & Glimcher 2005 (Supplementary Figure 5). That is, the firing rate at feedback on the
current trial must be sensitive to the reward delivered on the current trial and on the previous ftrial,
but with opposite signs, i.e. FR = S, + f1Rew(t) + f,Rew(t — 1), where $; and [, are both
significant at P<0.05 but with opposite signs. 39 neurons pass this criterion.
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Models and model fitting to test for asymmetric learning
Models

To test for asymmetric learning, we model neuron responses with classic and distributional
RL models and test which is a better fit to the data. In all cases the model is used, for each neuron,
to predict the firing rate on each trial (mean firing rate in a window of 200-600ms post feedback).

We adapt the one-step transition temporal difference learning model wherein estimates of
cue values V are updated according to:

VeV4+ad

where § is the reward prediction error, § = r —V, where r is the reward delivered on the current
trial and V the previous value estimate, and «a is the learning rate by which § is scaled to update
values. This is the equation for classic RL and amounts to the Rescorla-Wagner model™.

The distributional RL version of this model is°:

VeV4+ats 6§>0
VeV4+ad 6<0

where a™ and a~ are separate learning rates for positive and negative RPEs/§. In other words, the
learning rate associated with a value update on a given trial will depend on whether the RPE was
positive or negative. Different learning rates for positive and negative RPEs result in asymmetries
in the rates at which neurons learn from better than expected and worse than expected feedback,
i.e. asymmetric learning. This is unlike classic RL where learning is symmetric.

In order to fit the model to neural data, we predict the firing rate at feedback from the RPE.
For the classic RL case this is as follows:

FR = B+ B16
where B, and 8; are regression coefficients. In the distributional RL case we have:
FR=By+p%8, 6§>0
FR=By+p76, 6<0

where B* and B~ are different regression coefficients for positive and negative RPEs/§, i.e. allows
the FR to be a different scaling of the RPE for positive and negative RPEs. Critically, this
asymmetric scaling is different to the above asymmetric learning, as it does not directly impact the
update of the cue value V, and therefore subsequent computation of RPEs (r — V). It is therefore
possible to have asymmetric scaling without asymmetric learning, and vice versa. Both asymmetric
scaling and asymmetric learning are predictions of the distributional RL theory. Asymmetric scaling
is what was tested for in Dabney et al 2020'° (it was not possible to test for learning in the task
they analysed, nor the first dataset in this paper, due to the static nature of cue values).

We therefore have four possible models to test: symmetric scaling and symmetric learning
(‘fully classic RL’), asymmetric scaling and symmetric learning, symmetric scaling and asymmetric
learning, asymmetric scaling and asymmetric learning (‘fully distributional RL’).

Model fitting

We tested which of the above models were the best fit to the data. We did this by fitting the
parameters in a subset of the data, and tested how well (measured using R-squared) a model
using these fit parameters explained held out data in a 10-fold cross validation procedure. We then
asked which model was the best fit to the data.

Fitting a simplified, single asymmetric scaling parameter

Since fitting all 4 parameters to the data was not possible due to computational demands,
we adapt the asymmetric scaling equations such that asymmetric scaling can be accounted for
with one, rather than two, parameters. We replace the asymmetric scaling equations with the
following:

FR =By + B18S, § >0
FR=fy+p16(1—=5), §<0

where S is bounded between 0 and 1 and acts as a single asymmetric scaling parameter (e.g. if S
is near 1, positive RPE are scaled greatly relative to negative RPEs). Using S rather than fitting g+
and B~ therefore still achieves the important effect of accounting for asymmetries in the scaling of
the FR by positive vs. negative RPEs. Note that the regression coefficients, 8, and B,, are the
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same in both equations, i.e. they were fit in the same regression model (positive and negative RPE
trials were included in the same regression model), having scaled the RPEs by S or 1 — S. Note
that it is the scaling parameter S, which captures the asymmetry, that is trained and tested in cross-
validation, not the betas.

Estimating the parameters

We generate RPE regressors from each of the models and regress these against neural
data. The regressors are generated by passing through the model the option chosen and reward
observed on each trial of the training set. Values are updated and RPEs computed on each trial
according to the above equations. We measure the model fit using the R-squared computed from
the regression model. For each model (e.g. asymmetric learning with asymmetric scaling) we carry
out the model fitting using a grid search over parameter space. Possible values for each parameter
that is fit to the data —a™, @~ and S — lie between 0 and 1, and we perform the grid search with
0.025 size increments (this is an additional advantage to using S rather than g™ and g~, as the
former but not the latter are bounded by 0 and 1, and can therefore be more easily fit with grid
search). The combination of parameters with the highest R-squared is taken to be the best fit of
parameters to the data.

Testing in held out data

For a given model, we take this combination of best-fitting parameters and use them to
generate regressors in the held out data with the model equations above, again using the option
chosen and reward delivered on each trial. We then assess their fit to the data by regressing the
RPEs computed by the model in these held out trials against the firing rates on those trials. This
results in R-squared values for the held out data, dependent on parameters fit to the training data,
such that parameters capturing features of the data consistent across cross-validation folds will
result in better fits in the held out data. We obtain 10 R-squared values for each model for each
neuron, one for each cross-validation fold.

Testing for differences between model fits

We then compare, across the population of neurons, the different models’ fits to the neural
data. We take the mean across the 10 cross-validated model fits in the test data for each model for
each neuron, giving one number per model per neuron. We then carry out paired t-tests between
the different models to determine the best fitting model. We found the asymmetric scaling with
asymmetric learning model was better than all other models. This means the extra parameters
improved the explanation of the neural data in the held out data (despite having to fit more
parameters to the data), demonstrating that asymmetric learning is a better account of the data
than symmetric learning.
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Supplemental Figure 1 — Results hold with a different measure of non-linearity at choice. A) Histogram
showing diverse quadratic betas. B) Histogram showing the log p-values for consistency of these quadratic
betas across partitions. C) Correlation between asymmetric scaling and quadratic betas.
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Supplemental Figure 2 — Consistent and diverse reversal points at choice in only those neurons
defined as RPE selective. Same analyses as in Figure 1 testing for consistent and diverse reversal points,
but in only those neurons that are RPE selective, i.e. those neurons in Figure 2 (as opposed to all reward-
sensitive neurons, as in Figure 1). A) Diversity in reversal points. B) This diversity is consistent.
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Supplemental Figure 3 — Lack of diversity in OFC and LPFC. Same analysis as in Figure 1 and
Supplemental Figure 2, but for OFC and LPFC on all reward-selective neurons or RPE selective neurons. A)
OFC reward-selective neurons. B) OFC RPE-selective neurons. C) LPFC reward-selective neurons. D)
LPFC RPE-selective neurons. With the exception of the reward-selective neurons in OFC (A), none of these
analyses were significant. The RPE-selective neurons had no consistent diversity, so we did not look for
further distributional RL signatures in these brain regions.
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Supplemental Figure 4 — Simultaneous diversity within session. Four simultaneously recorded cells
from the session with most reward-sensitive cells (9 in total), demonstrates there is diversity in optimism
even within a session. Across cells, responses to middle value levels are both above and below the linear
interpolation between lowest and highest values’ responses. Mean normalised firing is plotted for each of the
4 value levels. Firing rates are normalised such that responses to value 1 and 4 have mean firing rate 0 and
1, respectively. Normalisation allows comparison across cells of responses to middle value levels.
Responses to value 2 across the 9 simultaneously recorded cells were significantly diverse; ANOVA rejected
the null hypothesis that across cells the value 2 responses were drawn from the same mean (F(8,405) =
3.56, P = 0.0005). The same was true for responses to value 3 (F(8,441) = 2.16, P = 0.0291).
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Supplementary Figure 5 — All pairwise model comparisons for asymmetric learning and scaling
analyses. Same format as Figure 3 in the main text. A) Bar graphs with all 6 pairwise model comparisons.
ALAS — SLAS, SLAS — ALSS, and ALSS — SLSS are the same as in the main text. B) Same as A but for
only those neurons (n=39) that meet a strict definition for being RPE selective. That is, as defined in Bayer &
Glimcher 2005, those neurons that encode reward on the current trial and previous trial but with opposite
signs.
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