

1 **Title: A combination of RBD and NTD neutralizing antibodies limits the**
2 **generation of SARS-CoV-2 spike neutralization-escape mutants**
3 **Running title: RBD and NTD neutralizing antibodies against SARS-CoV-2**

4 Denise Haslwanter^{1†}, M. Eugenia Dieterle^{1†}, Anna Z. Wec², Cecilia M. O'Brien^{3,9},
5 Mrunal Sakharkar², Catalina Florez^{1,4}, Karen Tong⁵, C. Garrett Rappazzo², Gorka
6 Lasso¹, Olivia Vergnolle⁵, Ariel S. Wirchnianski^{1,5}, Robert H. Bortz III¹, Ethan
7 Laudermilch¹, J. Maximilian Fels¹, Amanda Mengotto⁶, Ryan J. Malonis⁵, George I.
8 Georgiev⁵, Jose A. Quiroz⁵, Daniel Wrapp⁷, Nianshuang Wang⁷, Kathryn E. Dye⁸,
9 Jason Barnhill^{4,10}, John M. Dye³, Jason S. McLellan⁷, Johanna P. Daily^{1,6}, Jonathan R.
10 Lai⁵, Andrew S. Herbert^{3,9}, Laura M. Walker^{2,11}, Kartik Chandran^{1*}, Rohit K. Jangra^{1*}

11 ¹Department of Microbiology and Immunology, Albert Einstein College of Medicine,
12 New York, NY 10461, USA

13 ²Adimab LLC, Lebanon, NH 03766, USA

14 ³U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702,
15 USA

16 ⁴Department of Chemistry and Life Science, United States Military Academy at West
17 Point, West Point, NY 10996, USA

18 ⁵Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
19 10461, USA

20 ⁶Division of Infectious Diseases, Department of Medicine, Albert Einstein College of
21 Medicine and Montefiore Medical Center, New York, NY 10461, USA

22 ⁷Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
23 78712, USA

24 ⁸Department of Science, Mount St. Mary's University, Emmitsburg, MD 21727, USA

25 ⁹The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA

26 ¹⁰Department of Radiology and Radiological Services, Uniformed Services University
27 of the Health Sciences, Bethesda, MD 20814, USA

28 ¹¹Adagio Therapeutics Inc., Waltham, MA 02451, USA

29 [†]These authors made equivalent contributions.

30 *Corresponding authors

31 Email: rohit.jangra@einsteinmed.org (R.K.J.), kartik.chandran@einsteinmed.org
32 (K.C.)

33 **Abstract**

34 Most known SARS-CoV-2 neutralizing antibodies (nAbs), including those approved by
35 the FDA for emergency use, inhibit viral infection by targeting the receptor-binding
36 domain (RBD) of the spike (S) protein. Variants of concern (VOC) carrying mutations
37 in the RBD or other regions of S reduce the effectiveness of many nAbs and vaccines
38 by evading neutralization. Therefore, therapies that are less susceptible to resistance
39 are urgently needed. Here, we characterized the memory B-cell repertoire of COVID-
40 19 convalescent donors and analyzed their RBD and non-RBD nAbs. We found that
41 many of the non-RBD-targeting nAbs were specific to the N-terminal domain (NTD).
42 Using neutralization assays with authentic SARS-CoV-2 and a recombinant vesicular
43 stomatitis virus carrying SARS-CoV-2 S protein (rVSV-SARS2), we defined a panel of
44 potent RBD and NTD nAbs. Next, we used a combination of neutralization-escape
45 rVSV-SARS2 mutants and a yeast display library of RBD mutants to map their
46 epitopes. The most potent RBD nAb competed with hACE2 binding and targeted an
47 epitope that includes residue F490. The most potent NTD nAb epitope included Y145,
48 K150 and W152. As seen with some of the natural VOC, the neutralization potencies
49 of COVID-19 convalescent sera were reduced by 4-16-fold against rVSV-SARS2
50 bearing Y145D, K150E or W152R spike mutations. Moreover, we found that
51 combining RBD and NTD nAbs modestly enhanced their neutralization potential.
52 Notably, the same combination of RBD and NTD nAbs limited the development of
53 neutralization-escape mutants *in vitro*, suggesting such a strategy may have higher
54 efficacy and utility for mitigating the emergence of VOC.

55 **Importance**

56 The US FDA has issued emergency use authorizations (EUAs) for multiple
57 investigational monoclonal antibody (mAb) therapies for the treatment of mild to
58 moderate COVID-19. These mAb therapeutics are solely targeting the receptor
59 binding domain of the SARS-CoV-2 spike protein. However, the N-terminal domain of
60 the spike protein also carries crucial neutralizing epitopes. Here, we show that key
61 mutations in the N-terminal domain can reduce the neutralizing capacity of
62 convalescent COVID-19 sera. We report that a combination of two neutralizing
63 antibodies targeting the receptor binding and N-terminal domains may have higher
64 efficacy and is beneficial to combat the emergence of virus variants.

65

66 **Introduction**

67 Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a member of the
68 family *Coronaviridae*, and the causative agent of the ongoing coronavirus disease
69 2019 (COVID-19) pandemic (1). Over 171 million cases have been officially diagnosed
70 since its first emergence and >3.6 million people have succumbed to disease (2).
71 Public health measures, along with rapid vaccine development have helped slow the
72 pandemic in some countries. Moreover, small molecule inhibitors, antibody-based
73 therapeutics, and convalescent plasma from COVID-19 convalescents have received
74 emergency use authorizations (EUAs) (3). Recently, multiple virus variants of concern
75 (VOC), some carrying neutralizing antibody (nAb)-resistant mutations that are
76 associated with increased transmission and fatality rates, have emerged (4). The
77 availability of multiple therapeutic approaches especially for people who cannot get
78 vaccinated is essential. There is thus an urgent need to develop therapeutics,
79 especially ones that limit the emergence of neutralization-resistant variants or are

80 more efficient against them as they can help save lives while vaccines are being
81 deployed.

82 SARS-CoV-2 entry into host cells is mediated by the transmembrane spike (S)
83 glycoprotein, which forms trimeric spikes protruding from the viral surface (5). Each
84 monomer, 180-200 kDa in size, comprises S1 and S2 subunits that are generated by
85 post-translational cleavage by the host enzyme furin. The S1 subunit is composed of
86 two domains, an N-terminal domain (NTD) and a C-terminal domain (CTD). The CTD
87 functions as the receptor-binding domain (RBD) for the entry receptor, human
88 angiotensin-converting enzyme 2 (hACE2) (6, 7). The role of the NTD for SARS-CoV-
89 2 is unclear, but it has been proposed in other coronaviruses to play roles in
90 recognizing specific sugar moieties during attachment and regulating the prefusion-to-
91 postfusion transition of the S protein (8–10). The S2 subunit is composed of the fusion
92 peptide, heptad repeats 1 and 2, a transmembrane domain and a cytoplasmic tail.
93 Aided by hACE2-binding and host cathepsin- and/or transmembrane protease serine
94 2 (TMPRSS2)-mediated proteolytic processing, S2 undergoes extensive
95 conformational rearrangement to insert its fusion peptide into the host membrane and
96 mediate the fusion of host and viral membranes (6, 7).

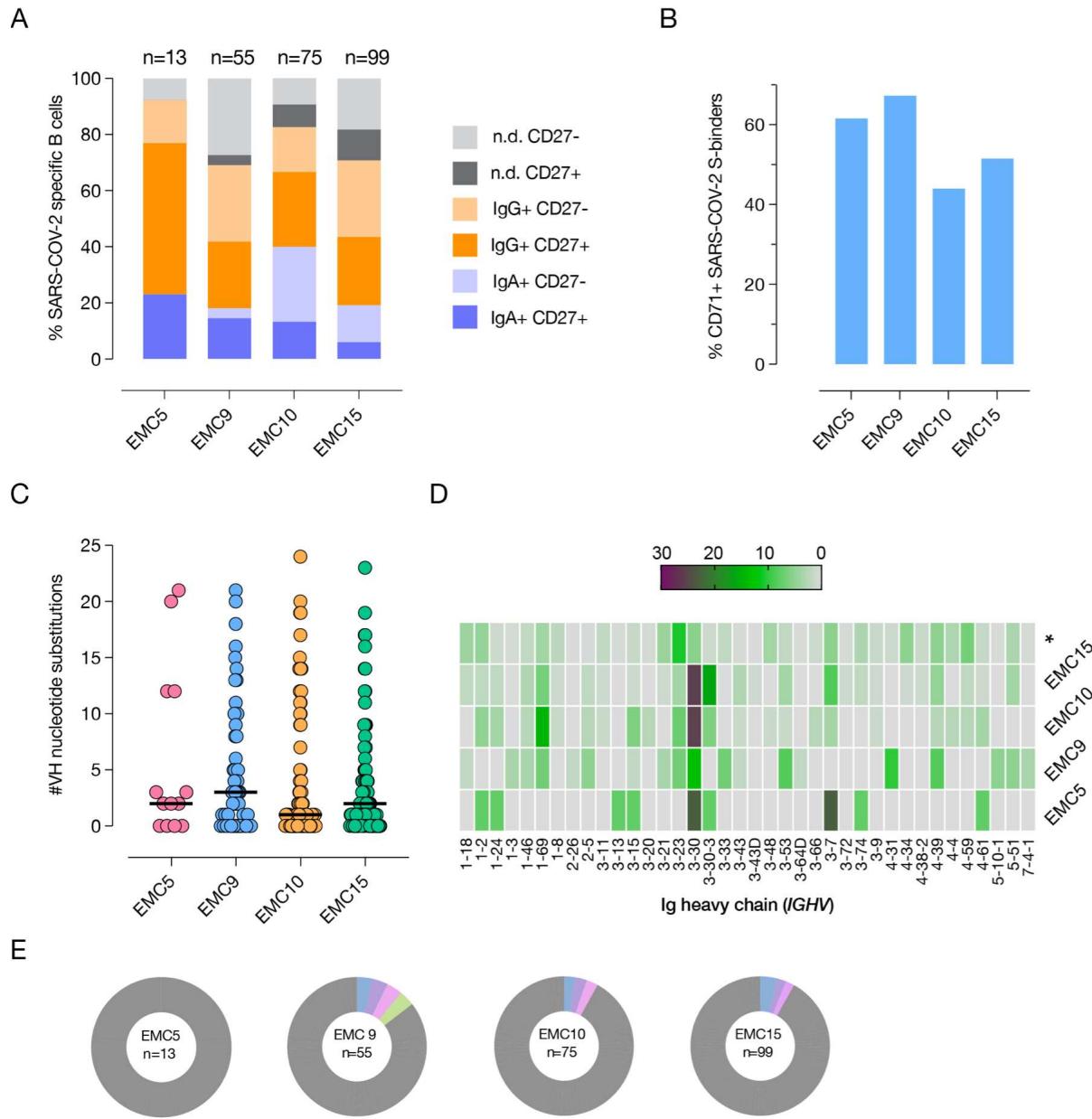
97 The S protein is the major target of nAbs, the production of which is a key correlate of
98 protection following virus infection and vaccination (11–14). Due to their potential to
99 interfere with hACE2 interaction and to efficiently neutralize virus infection, RBD-
100 specific antibodies have been the main focus of human monoclonal antibody (mAb)-
101 based therapeutics (13, 15–20). We recently described the memory B-cell repertoire
102 of a convalescent SARS donor and isolated multiple RBD-specific antibodies that
103 neutralize and protect against SARS-CoV, SARS-CoV-2 and WIV1 viruses (19, 20).
104 Since that time, multiple RBD-targeting mAbs have received emergency use

105 authorizations by the US FDA. However, the widespread circulation of nAb-resistant
106 variants has led to the withdrawal of EUAs for some nAb monotherapies (21)
107 highlighting the need to develop combination-nAb therapies that can treat SARS-CoV-
108 2 variants and reduce the probability of mutational escape. In fact, a few of the VOC
109 carry mutations in some of the major neutralizing epitopes in the RBD as well as the
110 NTD (22).

111 Recently, multiple NTD mAbs with potent neutralizing activity have been described
112 (17, 23–28). As combinations of mAbs targeting distinct epitopes and mechanisms of
113 action have been successfully used against other viruses (29, 30), cocktails of RBD
114 and NTD mAbs have been proposed and recently showed promise against SARS-
115 CoV-2 *in vitro* and *in vivo* (23, 24).

116 To evaluate the effect of combining nAbs targeting the RBD and the NTD, here, we
117 mined the memory B-cell repertoires of four convalescent COVID-19 donors with high
118 serum neutralization and spike-specific antibody titers. By sorting spike-reactive single
119 B-cells, we isolated 163 mAbs targeting S. Further, we evaluated their neutralization
120 capacity against authentic SARS-CoV-2 and a self-replicating vesicular stomatitis
121 virus carrying SARS-CoV-2 S protein (rVSV-SARS2) (31). We downselected the top
122 RBD- and NTD-targeting neutralizers and used multiple approaches to map their
123 epitopes. As described recently (32, 33), we observed that neutralization-escape
124 rVSV-SARS2 mutants of the NTD-targeting mAb were resistant to neutralization by
125 COVID-19 convalescent donor sera, suggesting that natural variants in the NTD could,
126 at least in part, escape the antibody response. Here, we show that a combination of
127 the NTD- and RBD-targeting mAbs neutralized virus more efficiently and limited the
128 emergence of neutralization-escape spike mutants, underscoring the utility of
129 combination therapy.

130 **Results**


131 **SARS-CoV-2 induces robust and diverse memory B-cell response in**
132 **convalescent patients.**

133 To characterize the B-cell responses induced by SARS-CoV-2 infection, we sampled
134 peripheral blood mononuclear cells (PBMCs) from four adult patients (EMC 5, 9, 10
135 and 15) at the Montefiore Medical Center in the Bronx (Einstein-Montefiore COVID-
136 19). They were all previously healthy individuals who developed mild COVID-19.
137 SARS-CoV-2 infection in their nasopharynx was confirmed by a positive RT-qPCR test
138 in the first week of March 2020. All four patients had convalescent blood drawn to
139 collect serum and PBMCs at least two weeks after all symptoms had resolved on
140 March 31, 2020 (Fig. S1A). Serum samples of all four donors displayed reciprocal
141 serum neutralization IC₅₀ titers of >118 against rVSV-SARS2.

142 For each donor, we single-cell sorted SARS-CoV-2 S-reactive class-switched
143 (CD19⁺IgM⁻IgD⁻) B-cells, which ranged in frequency between 0.6 and 1.2% across the
144 donors (Fig. S1B-C). Index-sorting analysis revealed that the S-specific B-cells were
145 predominantly IgG⁺, and the majority expressed the classical memory B-cell marker
146 CD27 (41-76%) (Fig. 1A). Additionally, 44-67% expressed the activation/proliferation
147 marker CD71 (Fig. 1B), consistent with the early time post-infection. Antibodies from
148 all four donors showed similar levels of somatic hypermutation, as evidenced by the
149 median number of nucleotide substitutions in the heavy-chain variable region that are
150 consistent with the early time point post infection (range 1-3) (Fig. 1C). Although VH
151 germline genes such as VH3-30 and VH3-30-3 were over-represented in all individuals
152 as has been seen previously (27), less than 5% of clones were derived from clonally
153 expanded lineages (Fig. 1D-E). Altogether, these results indicate a robust and diverse

154 early memory B-cell response to SARS-CoV-2 infection in each donor and are
155 consistent with previous studies (34–36).

Fig. 1

156

157 **FIG 1.** SARS-CoV-2 induces robust and diverse memory B-cell response in COVID-
158 19 convalescent patients. Relative proportion of immunoglobulin isotype and classical
159 memory B-cell surface marker CD27 expression (A) or activation marker CD71
160 expression (B) on B-cells from which SARS-CoV-2 S-specific mAbs were derived. n.d.

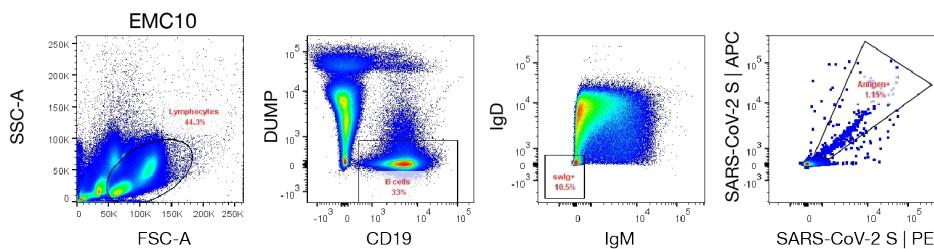
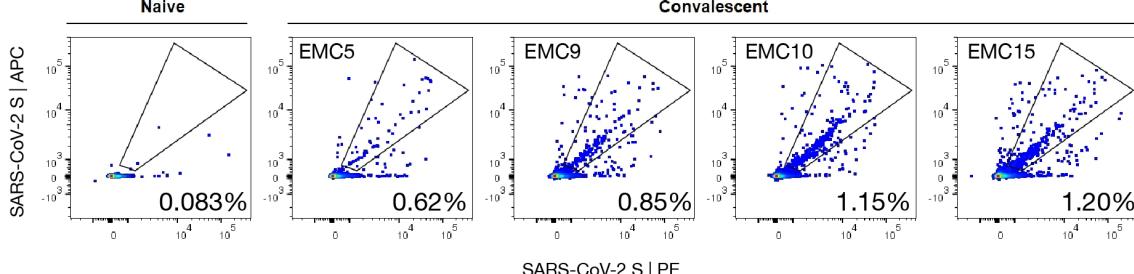

161 = not determined. (C) Number of nucleotide substitutions in the VH genes of the mAbs
162 isolated from the indicated donors. (D) VH germline gene (*IGHV*) usage in SARS-CoV-
163 2 S-specific mAbs; * - indicates the frequency of germline gene usage in unselected
164 human repertoire (37) for comparison. (E) Clonal lineage analysis of SARS-CoV-2 S-
165 specific mAbs for each of the donors. Donor ID and the total number of clones are
166 indicated in the center of each pie. Unique clones are shown in grey; colored slices
167 indicate expanded clones.

Fig. S1


A

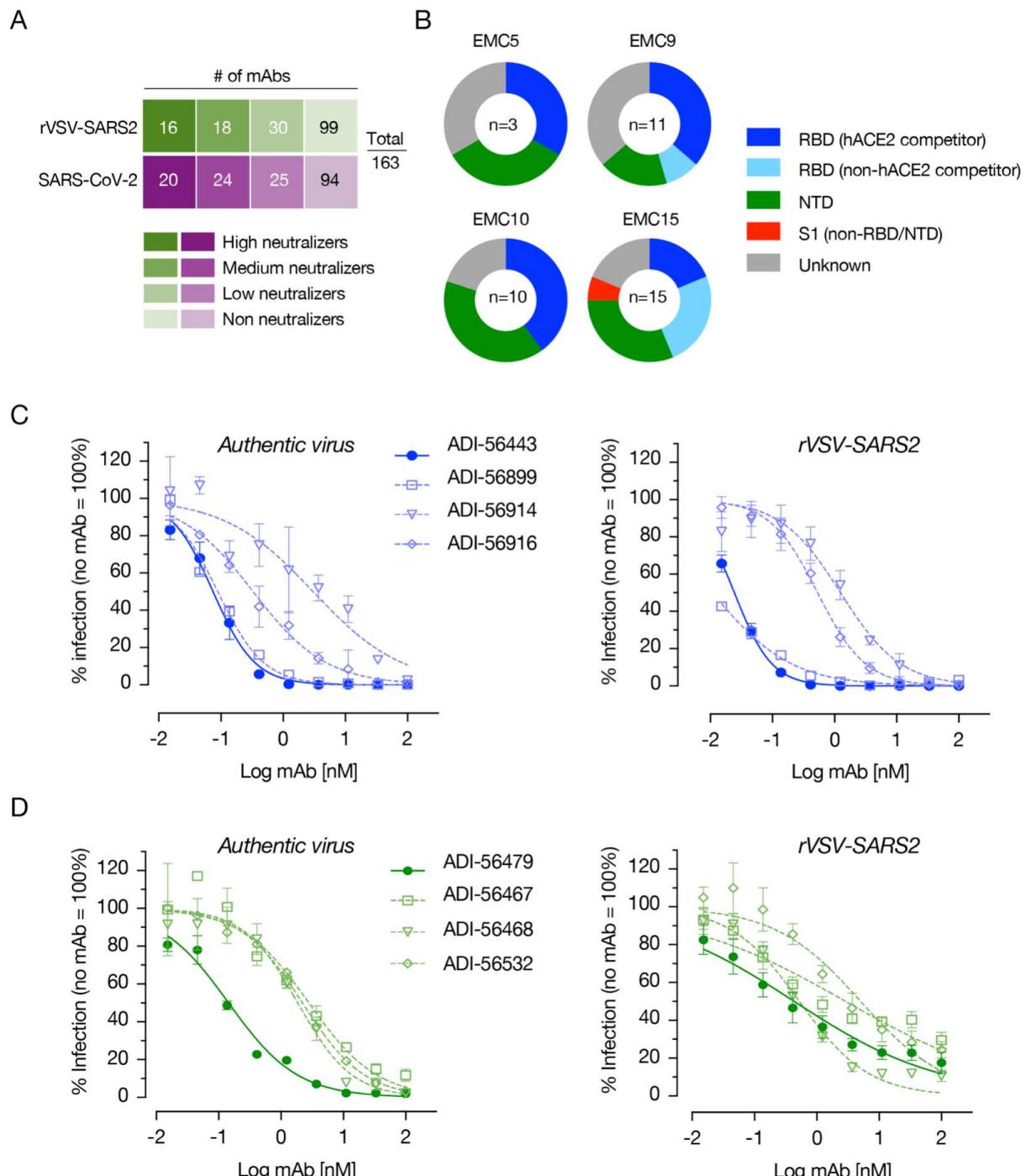
Donor ID	Age (years)	Gender	Day of Collection Post Symptom Onset	Neut. IC ₅₀
EMC5	45	Male	28	118
EMC9	49	Male	28	263
EMC10	38	Male	28	197
EMC15	34	Female	21	409

B

C

168

169 **FIG S1.** (A) Details of SARS-CoV-2 convalescent donors. Neutralization IC₅₀ values
170 are shown as reciprocal serum titers. (B-C) Identification and sorting of SARS-CoV-2
171 S-reactive memory B-cells in COVID-19 convalescent patients. (B) Representative
172 gating strategy for identification of class-switched SARS-CoV-2 S-reactive B-cells. (C)


173 Percent of class-switched SARS-CoV-2 S-reactive B-cells in naïve and convalescent
174 donors. The gated populations were single-cell sorted for cloning of the VH and VL
175 genes. Naïve donor sample drawn and processed in August 2019 is shown for
176 comparison.

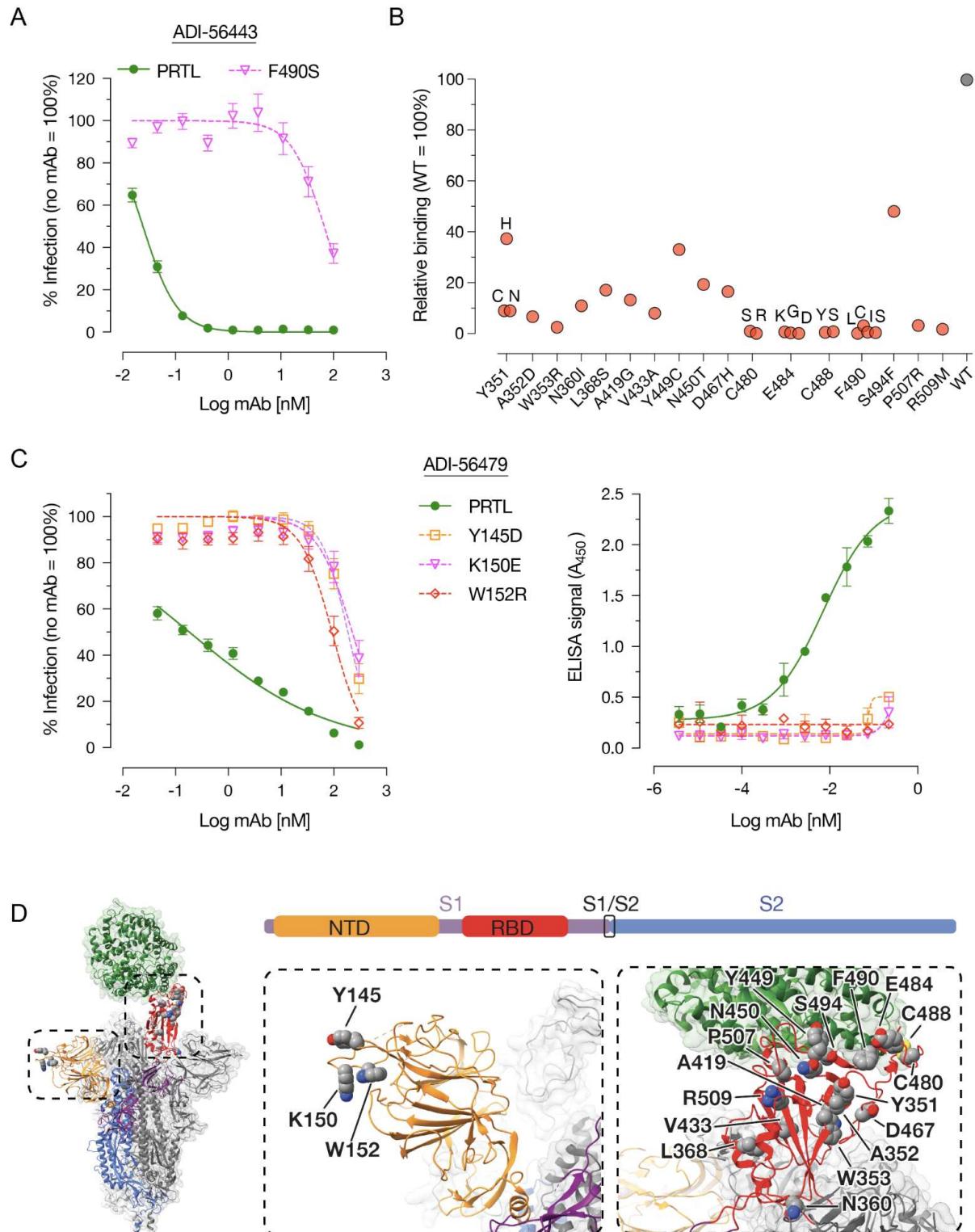
177 **RBD- and NTD-targeting mAbs are potent neutralizers of SARS-CoV-2.**

178 From the cloned pairs of VH and VL genes of the four donors, we expressed and
179 purified mAbs in a human IgG1 background using our yeast expression platform.
180 These mAbs were screened for their S protein binding ability and the top 163 mAbs
181 binders were evaluated for their neutralizing activity against authentic SARS-CoV-2
182 and rVSV-SARS2 at 100 nM and 10 nM antibody concentrations in micro-
183 neutralization assays, respectively. A total of 44 mAbs neutralized authentic virus with
184 more than 50% efficacy and 34 mAbs did the same for rVSV-SARS2 (**Fig. 2A**). Based
185 on these data, we selected the top 40 nAbs for further analyses and used biolayer
186 interferometry (BLI) to identify the specific domains of the S protein targeted by these
187 nAbs. Most of the nAbs mapped to the RBD and included hACE2 competitors and
188 non-competitors. However, we also identified multiple non-RBD binding nAbs
189 including many that target the NTD (**Fig. 2B**). Finally, we ran 9-point neutralization
190 curves on all 40 nAbs with authentic virus and rVSV-SARS2 to down-select to four
191 each of the most potent RBD- and non-RBD targeting antibodies (data not shown).
192 The neutralizing profiles of the RBD-targeting mAbs against rVSV-SARS2 and the
193 authentic SARS-CoV-2 were very similar, with IC₅₀ neutralization values in the
194 picomolar range for ADI-56443 (75 pM) and ADI-56899 (89 pM) (**Fig. 2C**). As has
195 been observed previously for NTD-targeting mAbs (25), rVSV-SARS2 neutralization
196 curves for the non-RBD mAbs were shallower and these mAbs left an un-neutralized
197 fraction of the virus (**Fig. 2D, right panel**). However, there was no un-neutralized

198 fraction left with the authentic virus (**Fig. 2D, left panel**). ADI-56479 was the best NTD-
 199 targeting nAb with picomolar neutralization IC₅₀ values against the authentic virus (144
 200 pM).

Fig. 2

201


202 **FIG 2.** RBD- as well as NTD-targeting mAbs are potent neutralizers of SARS-CoV-2.
203 (A) Screening of high affinity SARS-CoV-2 spike protein-binding mAbs for their
204 neutralization capacity against rVSV-SARS2 and authentic SARS-CoV-2. The mAbs
205 were divided into high neutralizers (80% neutralization efficacy), medium neutralizers
206 (50-80%), low neutralizers (30-50%) and non-neutralizers (<30%) based on their
207 capacity to neutralize rVSV-SARS2 at 10 nM or authentic virus at 100 nM antibody
208 concentration. Number of mAbs in each group is indicated in the corresponding boxes.
209 (B) Proportion of the 40 best nAbs, from each donor, targeting each of the indicated
210 domains/regions of the spike protein. (C-D) Neutralization curves of each of the top
211 four RBD- (C) and non-RBD-targeting (D) mAbs. The data were curve-fitted using a
212 nonlinear regression (log [inhibitor] vs. normalized response, variable slope) to
213 calculate IC₅₀ values. (Average ± SD, n = 4 from two independent experiments for
214 rVSV-SARS2 and n = 2 from a representative of multiple experiments for the authentic
215 virus).

216 **Epitope mapping of the most potent RBD and NTD mAbs.**

217 To better understand the mechanism of neutralization by our most potent nAbs, we
218 mapped their epitopes by selecting rVSV-SARS2 neutralization escape mutants. After
219 serially passaging rVSV-SARS2 in the presence of increasing concentrations of the
220 nAbs, we plaque-purified and sequenced resistant viruses to identify the S mutations
221 that confer resistance. For the best RBD mAb (ADI-56443), a change at amino acid
222 position 490 in the S protein (F490S) made rVSV-SARS2 highly resistant (>2,700-fold
223 increase in neutralization IC₅₀ value) to this mAb (**Fig. 3A**). To comprehensively map
224 its epitope, we analyzed the binding capacity of ADI-56443 to a library of SARS-CoV-
225 2 RBD single amino acid mutants displayed on the surface of yeast cells by flow
226 cytometry. In addition to F490S, binding of ADI-56443 was completely abolished by

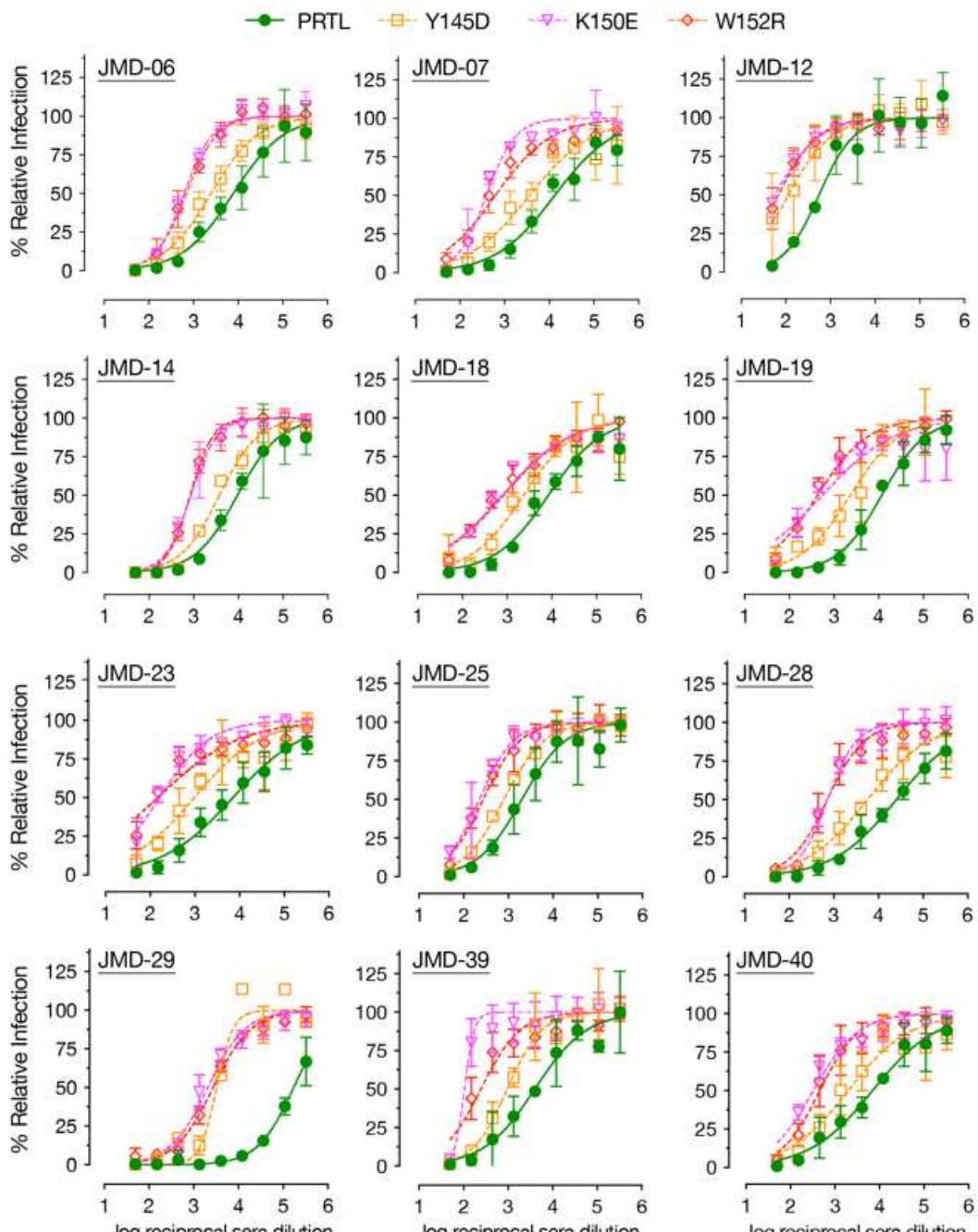
227 C480S/R, E484K/G/D, C488Y/S and F490L/I/C RBD mutations (**Fig. 3B**). Mutations
228 at other residues, including S494F in the RBD also significantly reduced this mAb's
229 binding (**Fig. 3B**). Remarkably, residues E484, F490, and S494 are shared with the
230 epitope of mAb LY-CoV555 (Bamlanivimab), which received an EUA for COVID-19
231 treatment (38). E484K mutation is also present in multiple variants including P.1, P.2,
232 B.1.525 and B.1.351 and viruses carrying this mutation are resistant to the currently
233 used mAb therapy (39, 40). For the NTD mAb (ADI-56479), rVSV-SARS2
234 neutralization-escape mutations mapped to residues 145 (Y145D), 150 (K150E) and
235 152 (W152R) in the NTD and each one of these mutations individually afforded a
236 ~1,000 fold increase in the neutralization IC₅₀ values (**Fig. 3C, left panel**). This was
237 accompanied by a loss of binding of the ADI-56479 mAb to the mutant spike proteins
238 as determined by ELISA using rVSV-SARS2 particles (**Fig. 3C, right panel**).
239 Consistent with the RBD mAb (ADI-56443) being a competitor of hACE2-spike
240 binding, its epitope partly overlaps with the receptor-binding interface (**Fig. 3D, right**
241 **panel**). In contrast, all three of the residues in ADI-56479's epitope are located in the
242 N3 loop of NTD (Y145, K150 and W152) away from the RBD domain. Taken together,
243 we have identified two potent neutralizing antibodies that target two distinct domains
244 of the SARS-CoV-2 spike protein.

Fig. 3

245 **FIG 3.** Epitope mapping of RBD- (ADI-56443) and NTD-targeting (ADI-56479) nAbs.
246 (A) Pre-titrated amounts of the parental (PRTL) or indicated rSV-SARS2 mutants
247 were incubated with serial 3-fold dilutions of the ADI-56443 at room temperature for 1

249 h prior to infecting monolayers of Vero cells. After 7 h, cells were fixed, the nuclei were
250 stained and infected cells were scored by eGFP expression. (Averages \pm SEM, n = 4
251 from 2 independent experiments). (B) Binding capacity of ADI-56443 to a mutagenized
252 library of SARS-CoV-2 RBD point mutants displayed on the surface of yeast cells was
253 measured by flow cytometry. Key residues that led to a loss of ADI-56443 binding are
254 shown (binding to cells displaying WT RBD was set at 100%). Antibody binding was
255 assessed at their EC₈₀ concentrations for the WT RBD construct. (C) Left panel -
256 neutralization capacity of ADI-56473 against pre-titrated amounts of parental (PRTL)
257 and indicated rVSV-SARS2 mutants was determined as above. (Averages \pm SEM, n
258 = 4 from 2 independent experiments). Right panel - ELISA plates coated with the
259 parental or indicated rVSV-SARS2 mutants and binding of biotinylated-ADI-56749 to
260 the spike protein was detected by using an HRP-conjugated streptavidin. A
261 representative dataset from 2 independent experiments is shown here. (Average \pm
262 SD, n = 2). (D) Left panel: An overview of the SARS-CoV-2 S trimer bound to hACE2
263 (green) (26). For clarity, only the domains of one spike monomer have been colored
264 (S1, purple; NTD, yellow; RBD, red; S2, Blue). Middle and right panels: a close-up
265 view of the NTD (in yellow) and RBD (in red) with amino acid residues important for
266 binding to ADI-56479 (middle panel) and ADI-56443 (right panel) are shown.

267 **rVSV-SARS2 NTD mutants are resistant to neutralization by COVID-19**


268 **convalescent sera.**

269 Although the most potent SARS-CoV-2 nAbs target the RBD (12, 13, 15–20), recent
270 antibody profiling efforts and the emergence of multiple VOC with mutations in the
271 NTD that affect the efficacy of nAbs suggesting that NTD-directed antibodies are
272 important for effective control of virus infection (22–24, 41). Therefore, we tested if
273 COVID-19 convalescent sera-mediated neutralization of rVSV-SARS2 is altered by

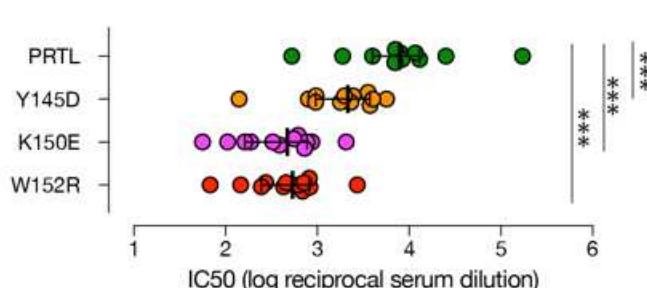
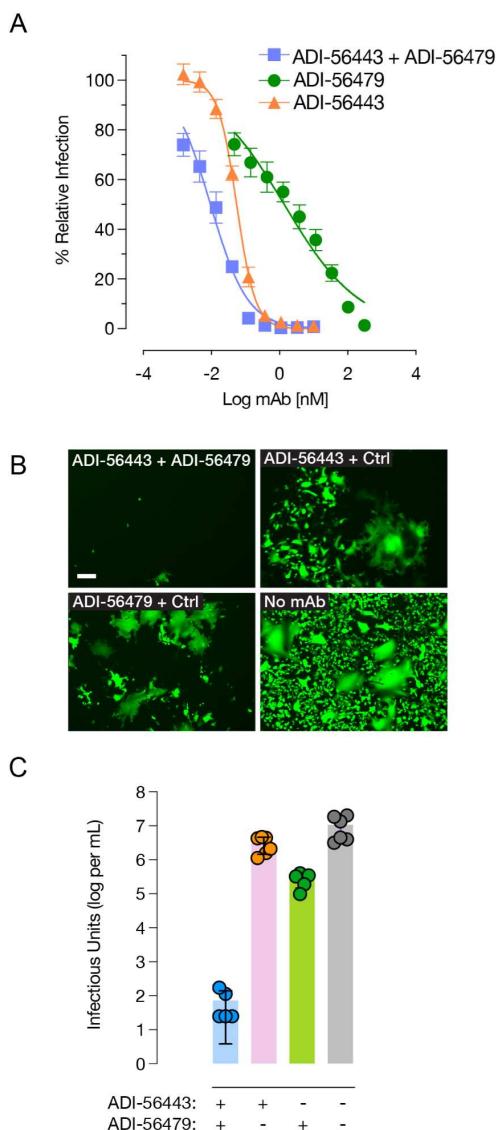

274 the NTD mutations generated in response to the ADI-56479 mAb-driven selection
275 (**Fig. 4**). Using a set of convalescent sera with high neutralizing activity (reciprocal
276 serum neutralization IC₅₀ titers of >500), we observed a significant effect of NTD point
277 mutations on rVSV-SARS2 neutralization (**Fig. 4A**). Specifically, the sera showed a
278 drop of 3.5-fold (Y145D) to 16-fold (K150E and W152R) in their neutralization IC₅₀
279 titers as compared to the parental virus (**Fig. 4B**). Thus, our data further supports a
280 significant role of the NTD-targeting antibodies in polyclonal sera-mediated SARS-
281 CoV-2 neutralization (32, 33).

Fig. 4

A

B

283 **FIG 4.** NTD point mutations significantly reduce neutralization of rVSV-SARS2 by
284 convalescent sera. (A) Neutralization of the parental (PRTL) and indicated rVSV-
285 SARS2 mutants with convalescent sera from 12 donors with high nAb antibody titers
286 (reciprocal serum IC₅₀ titers of >500). Pre-titrated amounts of indicated rVSV-SARS2
287 were incubated with 3-fold serial dilutions of COVID-19 convalescent sera at room
288 temperature for 1 h and applied to monolayers of Vero cells. After 7 hours, cells were
289 fixed and the nuclei were stained. Infected cells were scored by eGFP expression.
290 (Averages ± SEM, n = 4 from 2 independent experiments). (B) Reciprocal serum
291 neutralization IC₅₀ titers of all the convalescent sera against parental (PRTL) and
292 mutant rVSV-SARS2 shown in panel A are depicted. Wilcoxon test was performed to
293 evaluate statistical significance between the neutralization efficacies against the
294 parental and mutant viruses, *** - p≤ 0.001.


295 **Combination of RBD and NTD monoclonal antibodies limit the generation of
296 neutralization-escape mutants.**

297 Since the top RBD (ADI-46443) and NTD (ADI-56479) nAbs bind to two distinct
298 domains of the S protein (**Fig. 3D**), we reasoned that combining them may enhance
299 their neutralization efficacy. Given the vastly different IC₅₀ values of the two mAbs with
300 rVSV-SARS2, we were not able to calculate a classical synergy combination index
301 (CI) analysis based on their equimolar combination at IC₅₀ (42). However, we did
302 observe a modest left shift in the rVSV-SARS2 neutralization curve by combining each
303 mAb starting at their IC₉₀ concentrations (**Fig. 5A**). Next, we evaluated if combining
304 the two mAbs, in 1:1 ratio at their neutralization IC₉₀ concentrations, also has an effect
305 on limiting the emergence of rVSV-SARS2 neutralization-escape mutants as
306 compared to the single mAbs (**Fig. 5B**). As expected, rVSV-SARS2 rather easily
307 escaped individual mAbs reaching a peak titer of 3x10⁶ (RBD nAb) and 2.7x10⁵ (NTD

308 nAb) infectious units per mL as compared to the no nAb controls (1.2×10^7 infectious
309 units per mL) at 48 h post-infection (**Fig. 5C**). However, rVSV-SARS2 failed to grow in
310 the presence of the mAb combination (peak titer of 72 infectious units per mL). Thus,
311 in addition to enhancing neutralization efficacy, this mAb combination limits the
312 development of mAb-resistant spike mutants.

313

Fig. 5

315 **FIG 5.** Combining RBD- and NTD-targeting mAbs enhances resistance to
316 neutralization-escape. (A) Neutralization of rVSV-SARS2 by RBD- (ADI-56443) and
317 NTD- (ADI-56479) targeting mAbs used alone or in combination. (Average \pm SD, n =

318 5-6 from two independent experiments). (B) Representative images of eGFP
319 expression of Vero cells at 24 hpi with rVSV-SARS2 in the presence of IC₉₀
320 concentrations of the RBD- (ADI-56443) and NTD- (ADI-56479) targeting mAbs alone
321 or in combination. No mAb control is shown for comparison. Scale bar = 100 μ m (C)
322 Quantitation of rVSV-SARS2 (infectious units per mL) produced from Vero cells in
323 panel B at 48 hpi. (Average \pm SD, n = 5-6 from two independent experiments).

324

325 **Discussion**

326 All of the SARS-CoV-2 nAbs in phase III clinical trials or clinical use under EUA to treat
327 COVID-19 are RBD-specific (12, 13, 15–18, 20). However, potent non-RBD nAbs are
328 present in COVID-19–convalescent patients, and the emergence of NTD mutations
329 that afford resistance to neutralization in multiple SARS-CoV-2 VOC highlights the
330 importance of NTD as an important target for nAbs. Here, we isolated potent RBD and
331 NTD nAbs from multiple COVID-19 donors and mapped their epitopes in the S protein.
332 We show that neutralization-escape mutations to the NTD nAb significantly reduce the
333 efficacy of polyclonal COVID-19 convalescent sera. Importantly, a combination of RBD
334 and NTD mAbs modestly increased efficacy and could effectively limit the emergence
335 of nAb-resistant S mutations.

336 Consistent with the increasingly recognized importance and prevalence of non-RBD
337 nAbs (41), 12 of our top 40 nAbs targeted NTD (**Fig. 1 and 2**). Six of these NTD nAbs
338 were derived from two variable heavy (VH) genes (VH1-24 or VH3-30), suggesting
339 their preponderance in NTD nAbs. Some NTD nAbs require significant somatic
340 hypermutations for their efficacy (23, 27). However, 11 out of the 12 nAbs that we
341 discovered carried \leq 3 somatic hypermutations, indicating that they arose at an early
342 time-point post-infection. Thus, the nAb response to NTD is polyclonal and many

343 potent NTD nAbs require relatively low levels of affinity maturation, as described
344 recently (23).
345 Although blocking of hACE2:Spike interactions is one of the major mechanisms of
346 virus neutralization, NTD-targeting antibodies with other blocking mechanisms have
347 been reported (23–28). However, their precise mechanisms of action remain unclear.
348 Some appear to inhibit a post-attachment phase of virus infection and may block
349 subsequent viral steps in entry and/or promote Fc-mediated effector functions (23, 24).
350 For the distantly related MERS-CoV, the NTD can bear critical epitope(s) for
351 neutralization (43). Here, we show that a potent NTD nAb (ADI-56479) interacts with
352 residues Y145, K150 and W152 in the NTD (**Fig. 3**), which are located in the N3 loop
353 of an ‘antigenic supersite.’ Other potent NTD nAbs also recognize the same antigenic
354 supersite (17, 23–25, 27). Recently, Suryadevara et al. (24) showed that mutations
355 F140S, and G142D or R158S in the NTD confer resistance of two other NTD nAbs.
356 Notably, our rVSV-SARS2 neutralization-escape variants (Y145D, K150E and
357 W152R) were significantly resistant to neutralization by convalescent COVID-19 sera
358 (**Fig. 4**). In addition, mutations at N148S, K150R/E and S151P in the NTD epitope
359 exhibited reductions in sensitivity to three COVID-19 convalescent plasma samples
360 (32). A deletion at F140 that occurred in response to immune pressure from highly
361 neutralizing convalescent plasma also partially reduced neutralization (33).
362 Interestingly, a VOC, B.1.429, which displays moderate reduction in neutralization
363 against convalescent and post-vaccination sera carries a mutation at W152 (44). One
364 of the Indian variants, B.1.617.2, has as well shown deletions at position 156 and 157
365 emphasizing that the NTD is acquiring adaptive mutations that counteract the immune
366 response (22, 44). Collectively, these findings underscore the importance of NTD in

367 virus entry and the potential of NTD mutations to impact the effectiveness of vaccines
368 and nAb therapies.

369 Combination therapies with RBD and NTD nAbs have been proposed as a strategy to
370 mitigate the emergence of antibody-resistant variants (6, 17, 24, 25, 32). We observed
371 that a combination of RBD and NTD mAbs enhanced neutralization efficacy relative to
372 the individual mAbs. In particular, the virus was less likely to escape when passaged
373 in the presence of a RBD and NTD nAb cocktail than in the presence of each nAb
374 alone (**Fig. 5**). This finding is consistent with what has recently been reported with
375 other NTD and RBD nAb combinations (23, 24). Our findings, together with recent
376 publications, provide evidence that some NTD-targeting mAbs can efficiently inhibit
377 SARS-CoV-2 infection. While SARS-CoV-2 continues to evolve into multiple VOC, a
378 combination antibody therapy with RBD and NTD nAbs could provide an important
379 solution for treating COVID-19 and impede the generation of novel variants especially
380 in populations that cannot be vaccinated.

381

382 **Material and Methods**

383 **Cells and viruses**

384 The African vultur monkey kidney Vero (CCL-81) cells were cultured in Dulbecco's
385 Modified Eagle Medium (DMEM high glucose, Gibco) supplemented with 2% heat-
386 inactivated fetal bovine serum (FBS, Atlanta Biologicals), 1% Penicillin/Streptomycin
387 (Gibco) and 1% Gluta-MAX (Gibco). The cells were passaged every three to four
388 days using 0.05% Trypsin/EDTA solution (Gibco).

389 All the experiments described here with the authentic SARS-CoV-2 (Washington state
390 isolate MT020880.1) were carried out in BSL-3 laboratories at USAMRIID, Frederick,
391 MD as per Federal regulations under institutional biosafety committee-approved

392 protocols. Virus stocks were prepared as described previously (31). Sequencing of the
393 virus stock revealed a single mutation (a histidine to tyrosine change at amino acid
394 position 655, H655Y) in the spike glycoprotein relative to the reference Washington
395 state isolate.

396 A plaque-purified rVSV-SARS2 corresponding to the passage 9 (plaque #2 virus)
397 described previously (31) was used for these studies. It is referred to here as the
398 parental (PRTL) virus. Virus stocks were generated by growing the virus on Vero cells.
399 Appropriate approvals from the Environmental Health and Safety Department and the
400 Institutional Biosafety Committee at Albert Einstein College of Medicine were sought
401 for using rVSV-SARS2 at biosafety level 2.

402 **Collection of COVID-19 convalescent donor blood samples**

403 Convalescent blood samples were collected from healthy adult patient volunteers who
404 had mild COVID-19 and a positive RT-qPCR test for SARS-CoV-2 in March 2020 in
405 Westchester County, New York. These patients were neither hospitalized nor required
406 oxygen supplementation during illness. All donors recovered and were asymptomatic
407 for at least 14 days prior to venipuncture to collect serum and PBMCs. Serum was
408 centrifuged, aliquoted and stored at -80°C. Sera were heat-inactivated at 56°C for 30
409 min and stored at 4°C prior to antibody testing. The study protocol was approved by
410 the Institutional Review Board (IRB) of the Albert Einstein College of Medicine (IRB
411 number 2016-6137).

412 **RT-qPCR to detect SARS-CoV-2 infection**

413 SARS-CoV-2 RT-qPCR was performed as per the CDC protocols (45). Briefly, RNA
414 was isolated from blood and PBMCs using Quick-RNA Viral Kit (Zymo). Total RNA
415 was mixed with the respective primers and probes (all purchased from IDT) specific
416 for 2019-nCoV (N1 and N2 assays), SARS-like coronaviruses (N3 assay), and human

417 RNase P (RP assay) together with TaqPath™ 1-Step RT-qPCR Master Mix CG
418 (ThermoFisher). A plasmid containing the complete nucleocapsid gene from 2019-
419 nCoV (IDT) was used as a positive control. In addition, RNA transcribed from a plasmid
420 containing a portion of the RPP30 gene (IDT) was used as quality control for the RNA
421 isolation. All samples were run and analyzed using the iQ™5 device (BioRad).

422 **rVSV-SARS2 neutralization assay**

423 Parental and mutant rVSV-SARS2 were generated and used for microneutralization
424 assay as described previously (31). In short, serum samples or monoclonal antibodies
425 were serially diluted and incubated with virus for 1 h at room temperature. For initial
426 screening, a single concentration of 10 nM mAb was used instead. Serum or antibody-
427 virus mixtures were then added in duplicates or triplicates to 96-well plates (Corning)
428 containing monolayers of Vero cells. After 7 h at 37°C and 5% CO₂, cells were fixed
429 with 4% paraformaldehyde (Sigma), washed with PBS, and stored in PBS containing
430 Hoechst-33342 (Invitrogen). Viral infectivity was measured by automated enumeration
431 of GFP-positive cells from captured images using a Cytaion5 automated fluorescence
432 microscope (BioTek) and analyzed using the Gen5 data analysis software (BioTek).
433 The half-maximal inhibitory concentration (IC₅₀) of the mAbs or sera was calculated
434 using a nonlinear regression analysis with GraphPad Prism software.

435 For the mAb combination experiment, NTD (300 nM) or RBD (10 nM) mAbs were
436 combined with each other or with an irrelevant mAb at equivalent concentration.
437 Three-fold serial dilutions of the mAbs were serial dilutions of these mixtures were
438 then tested for their neutralization capacity.

439 **SARS-CoV-2 neutralization assay**

440 Neutralization assay using authentic virus was performed as described previously
441 (31). In brief, mAbs with an initial concentration of 100 nM were serially diluted, mixed

442 with pre-titrated amounts of SARS-CoV-2 (MOI = 0.2) and incubated for 1 h at 37°C
443 and 5% CO₂. The inoculum was added to Vero-E6 cell monolayers in 96 well plates
444 and incubated for 1 h at 37°C and 5% CO₂. For initial screening, a single concentration
445 of 100 nM was used instead. The virus:serum inoculum was removed, cells were
446 washed with PBS and media was added. At 24 hours post-infection, cells were treated
447 with 10% paraformaldehyde, washed with PBS and permeabilized with 0.2% Triton-X
448 for 10 min at room temperature. Cells were immunostained with SARS-CoV-1
449 nucleocapsid protein-specific antibody (Sino Biologic; Cat# 40143-R001) and
450 AlexaFluor 488 labeled secondary antibody. Stained cells were imaged using an
451 Operetta (Perkin Elmer) high content imaging instrument and the number of infected
452 cells were determined using Harmony Software (Perkin Elmer).

453 **Isolation of PBMCs**

454 Approximately 64 mL of whole blood collected from each donor using 8 mL BD
455 Vacutainer CPT sodium heparin mononuclear cell preparation tubes was stored
456 upright at room temperature for >1 h prior to centrifugation. Samples were centrifuged
457 using a swinging bucket centrifuge at room temperature for 30 minutes at 4°C at 1800
458 RCF. The mononuclear cell layer was removed by using a pipette and pooled together
459 in a single tube for each donor. The total volume was brought to 45 mL with Mg²⁺ and
460 Ca²⁺ free Hank's Balanced Salt Solution (HBSS). Cells were resuspended by
461 inverting the tubes and centrifuged at room temperature for 10 minutes at 330 RCF.
462 After removing the supernatant, the cells were resuspended in 90% FBS
463 supplemented with 10% DMSO to a final concentration of 1x10⁷ cells per mL and
464 stored at -150°C.

465

466 **Human ACE2 and SARS-CoV-2 spike antigens**

467 Prefusion-stabilized SARS-CoV-2 S-2P spike ectodomain (residues 1-1208) was
468 expressed and purified as described previously (7). Plasmids encoding residues 1-
469 305 of the SARS-CoV-2 spike with a C-terminal HRV3C cleavage site, monomeric Fc-
470 tag and 8x HisTag (SARS-CoV-2 NTD); residues 319-591 of the SARS-CoV-2 spike
471 with a C-terminal HRV3C cleavage site, monomeric Fc-tag and 8x HisTag (SARS-
472 CoV-2 RBD-SD1); residues 1-615 of human ACE2 with a C-terminal 8x HisTag and
473 TwinStrepTag (hACE2) were transfected into FreeStyle-293F cells. Cell supernatants
474 were harvested after 6 days and expressed proteins were purified by affinity
475 chromatography using a Superdex 200 Increase column (Cytiva). The SARS-CoV-2
476 NTD and RBD-SD1 proteins were purified using Protein A resin (Pierce), whereas
477 hACE2 protein was purified using StrepTactin resin (IBA). These proteins were then
478 further purified by size-exclusion chromatography using a buffer composed of 2 mM
479 Tris pH 8.0, 200 mM NaCl and 0.02% NaN3. The SARS-CoV-2 S1 subunit (Cat# S1N-
480 C52H3) was purchased from Acro Biosystems.

481 **Sorting of SARS-CoV-2 spike-reactive single B-cells**

482 B-cells were purified and sorted as described previously (19). In short, B-cells purified
483 from donor PBMCs using the MACS Human B-Cells isolation kit (Miltenyi Biotec
484 Miltenyi Biotec Cat# 130-091-151) were stained with a panel of antibodies: anti-human
485 CD19 (PE-Cy7; Biolegend Cat# 302216), CD3 (PerCP-Cy5.5; Biolegend Cat# 30040),
486 CD8 (PerCP-Cy5.5; Biolegend Cat# 344710), CD14 (PerCP-Cy5.5; Invitrogen Cat#
487 45-0149-42), CD16 (PerCP-Cy5.5; Biolegend Cat# 360712), IgM (BV711; BD
488 Biosciences Cat# 747877), IgD (BV421; Biolegend Cat# 348226), IgA (AF-488;
489 Abcam Cat# Ab98553), IgG (BV605; BD Biosciences Cat# 563246), CD27 (BV510; BD
490 Biosciences Cat# 740167), CD71 (APC-Cy7; Biolegend Cat# 334110), propidium

491 iodide (PI), and an equimolar mixture of APC- and PE-labeled SARS-CoV-2 S-2P
492 protein tetramers. BD FACS Aria II Fusion (BD Biosciences) was used for index
493 sorting. The class-switched B-cells were defined as
494 CD19⁺CD3⁻CD8⁻CD14⁻CD16⁻PI⁻IgM⁻IgD⁻ cells with a reactivity to APC- and PE-
495 labeled SARS-CoV-2 S-2P tetramers. Single cells were sorted and plates were stored
496 at -80°C till further processing. Flow cytometry data was analyzed using FlowJo
497 software.

498 **Amplification and cloning of IgG variable heavy and light chain genes**

499 Human antibody variable gene transcripts (VH, Vk, V λ) were amplified and cloned as
500 previously described (34). Briefly, reverse transcription polymerase chain reaction
501 (RT-PCR) (SuperScript IV enzyme (Thermo Scientific) followed by nested PCR
502 (HotStarTaq Plus DNA Polymerase (Qiagen) with cocktails of variable region and IgM-
503 , IgD-, IgA- and IgG-specific constant-region primers was performed. The next nested
504 PCR was carried out to allow cloning by homologous recombination and amplified
505 gene transcripts were transformed into *S. cerevisiae* (46). Finally, yeast cells were
506 washed with sterile water, resuspended in selective media and plated. The individual
507 yeast clones were analyzed using Sanger sequencing.

508 **Expression and purification of human mAbs**

509 mAbs were expressed as full-length human IgG1 proteins in *S. cerevisiae* cultures, as
510 previously described (34). Briefly, yeast cultures were grown in a 24-well format at
511 30°C and 80% relative humidity with shaking at 650 RPM in Infors Multitron shakers.
512 Culture supernatants were harvested after 6 days of growth and IgGs were purified by
513 protein A-affinity chromatography. IgGs bound to the agarose were eluted with 200
514 mM acetic acid with 50 mM NaCl (pH 3.5) and neutralized with 1/8 (v/v) 2 M HEPES
515 (pH 8.0).

516 **Biolayer interferometry (BLI) to assess mAb:antigen binding**

517 As previously described (34), for apparent equilibrium dissociation constant (KDApp)
518 determination ForteBio Octet HTX instrument (Molecular Devices(34) was used to
519 measure the biolayer interferometry (BLI) kinetic of IgG binding to recombinant
520 antigens. In short, the IgGs were captured on anti-human IgG (AHC) biosensors
521 (Molecular Devices). For BLI measurements involving Strep-tagged antigens, the
522 sensors were additionally incubated in a biocytin solution to saturate remaining
523 streptavidin binding sites. After a one-minute baseline step, IgG-loaded biosensors
524 were exposed for 180 secs to the recombinant antigen. Next, the dissociation of the
525 antigen from the biosensor surface was measured. For binding responses >0.1 nm,
526 data were aligned, inter-step corrected to the association step, and fit to a 1:1 binding
527 model using the ForteBio Data Analysis Software, version 11.1.

528 **mAb competition assay using BLI**

529 Competitive binding of mAbs to recombinant SARS-CoV-2 RBD with hACE2 was
530 evaluated using the ForteBio Octet HTX instrument (Molecular Devices) as described
531 previously (34). Briefly, IgGs were captured onto AHC biosensors (Molecular Devices)
532 to achieve a sensor response between 1-1.4 nm followed by an inert IgG to occupy
533 any remaining binding sites on the biosensor. The sensors were then equilibrated for
534 a minimum of 30 min. The loaded sensors were additionally exposed to hACE2 for 90
535 secs, prior to the binning analysis to assess any interactions between secondary
536 molecules and proteins on the sensor surface. After a 60-seconds baseline step,
537 association to recombinant SARS-CoV-2 RBD was performed for 180 secs and was
538 finally followed by exposure to hACE2. The data was analyzed using the ForteBio Data
539 Analysis Software version 11.0. The absence of binding by the secondary molecule

540 indicates an occupied epitope (competitor) and binding indicates a non-competing
541 antibody.

542 **Epitope mapping using a yeast-display library**

543 Epitope mapping was done using a library of SARS-CoV-2 RBD point mutants
544 displayed on the yeast surface as described previously (47). To select for mutants in
545 the RBD-SD1 library with diminished binding to ADI-56443, the mutant RBD-SD1
546 library and WT RBD-SD1 yeast were incubated with ADI-56443 at its EC₈₀
547 concentration. Yeast cells from the library expressing HA-tag but with reduced ADI-
548 56443 binding, as compared to WT RBD SD1, were sorted by using a BD FACS Aria
549 II (Becton Dickerson). The sorted cells were propagated and the selection process
550 was repeated to further enrich yeast cells encoding RBD mutants with reduced ADI-
551 56443-binding. RBD sequences in the cell clones were sequenced and those
552 possessing single amino acid substitutions were cultured, protein-expression induced,
553 and evaluated for their binding to ADI-56643 at EC₈₀ concentration by flow cytometry.
554 Binding signal was normalized to that of the reference WT RBD-SD1 (set as 100%).

555 **Selection of neutralization-escape mutants of rVSV-SARS2**

556 Generation of rVSV-SARS2 that escaped neutralization with our top RBD (ADI-56443)
557 and NTD (ADI-56479) mAbs was done as described previously (19). Briefly, rVSV-
558 SARS2 was pre-incubated with IC₉₀ concentrations of ADI-56443 (0.37 nM) and ADI-
559 56479 (100 nM) were applied to monolayers of Vero cells and infection was allowed
560 to proceed in the presence of the mAbs. Virus supernatants were harvested from the
561 cells at 48-72 hpi and passaged again by doubling the amount of antibody for
562 subsequent passage. After 3 passages, mAb-resistant viruses were plaque-purified,
563 their phenotypes were confirmed by neutralization assay and S gene sequences were
564 determined by RT-PCR followed by Sanger sequencing as described previously (31).

565 **Assay for resistance to the generation of neutralization-escape rVSV-SARS2**

566 **mutants**

567 rVSV-SARS2 particles (MOI = 0.05) were incubated with IC₉₀ concentrations of ADI-
568 56443 (0.37 nM) and ADI-56479 (100 nM) for 1 hr at room temperature and the virus-
569 antibody mixture was used to infect Vero cells in 6-well plates. Cells were imaged for
570 eGFP expression at 24 hpi. Virus supernatants were harvested at 48 hpi and the
571 amount of virus produced was determined by titration on Vero cells in the absence of
572 mAbs as described previously (31).

573 **ELISA to detect binding of NTD mAbs to rVSV-SARS2 particles**

574 High-protein binding 96-well ELISA plates (Corning) were coated with normalized
575 amounts of purified parental or the mutant rVSV-SARS2 overnight at 4°C, and blocked
576 with 3% nonfat dry milk in PBS (PBS-milk) for 1 h at 37°C. Plates were washed and
577 incubated with biotinylated ADI-56479 at a concentration starting 0.22 ug/mL with
578 serial 3-fold dilutions in 1% PBS-milk supplemented with 0.1% Tween-20 for 1 h at
579 37°C. Plates were washed three times and incubated with streptavidin-HRP (Pierce
580 Cat#21130) diluted 1:3000 in 1% PBS-milk supplemented with 0.1% Tween-20 for 1
581 h at 37C and detected using 1-Step Ultra TMB-ELISA Substrate Solution (Thermo
582 Fisher Scientific). Plates were read using a Cytaion 5 imager (BioTek) at 450 nm.

583

584 **Acknowledgements**

585 We thank I. Gutierrez, E. Valencia, and L. Polanco for laboratory management. This
586 work was supported in part by National Institutes of Health (NIH) grants R01AI132633
587 (to K.C.), R01AI125462 (to J.R.L.) and R21AI141367 (to J.P.D.). M.E.D. was a Latin
588 American Fellow in the Biomedical Sciences, supported by the Pew Charitable Trusts.
589 R.H.B.III. and R.J.M. were partially supported by the NIH training grant

590 2T32GM007288-45 (Medical Scientist Training Program) at Albert Einstein College of
591 Medicine. K.C. and J.R.L. were also supported by an Einstein Pilot Project grant for
592 SARS-CoV2.

593

594 **Conflict of Interest**

595 K.C. is a member of the scientific advisory boards of Integrum Scientific, LLC and
596 Biovaxys Technology Corp. J.R.L. is a consultant for Celdara Medical. K.C. and R.K.J.
597 are co-inventors on a provisional patent application, assigned to the Albert Einstein
598 College of Medicine (reference no. C-00001406), regarding the recombinant rVSV-
599 SARS2 used in this study. A.Z.W., M.S., C.G.R. and L.M.W. are/were employees of
600 Adimab, LLC, and may hold shares in Adimab, LLC. L.M.W. is an employee of Adagio
601 Therapeutics, Inc., and holds shares in Adagio Therapeutics, Inc. Opinions,
602 conclusions, interpretations, and recommendations are those of the authors and are
603 not necessarily endorsed by the U.S. Army. The mention of trade names or
604 commercial products does not constitute endorsement or recommendation for use by
605 the Department of the Army or the Department of Defense.

606

607 **Bibliography**

608 1. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H,
609 Pei Y-Y, Yuan M-L, Zhang Y-L, Dai F-H, Liu Y, Wang Q-M, Zheng J-J, Xu L,
610 Holmes EC, Zhang Y-Z. 2020. A new coronavirus associated with human
611 respiratory disease in China. *Nature* 579:265–269.

612 2. Dong E, Du H, Gardner L. 2020. An interactive web-based dashboard to track
613 COVID-19 in real time. *Lancet Infect Dis* 20:533–534.

614 3. Siemieniuk RA, Bartoszko JJ, Ge L, Zeraatkar D, Izcovich A, Kum E, Pardo-
615 Hernandez H, Rochwerg B, Lamontagne F, Han MA, Liu Q, Agarwal A,
616 Agoritsas T, Chu DK, Couban R, Darzi A, Devji T, Fang B, Fang C, Flottorp SA,
617 Cusano E. 2020. Drug treatments for covid-19: living systematic review and
618 network meta-analysis. *BMJ* 370:m2980.

619 4. Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K,
620 Danon L. 2021. Risk of mortality in patients infected with SARS-CoV-2 variant
621 of concern 202012/1: matched cohort study. *BMJ* 372:n579.

622 5. Li F. 2016. Structure, function, and evolution of coronavirus spike proteins.
623 *Annu Rev Virol* 3:237–261.

624 6. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020.
625 Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.
626 *Cell* 181:281-292.e6.

627 7. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham
628 BS, McLellan JS. 2020. Cryo-EM structure of the 2019-nCoV spike in the
629 prefusion conformation. *Science* 367:1260–1263.

630 8. Kreml C, Schultze B, Laude H, Herrler G. 1997. Point mutations in the S

631 protein connect the sialic acid binding activity with the enteropathogenicity of
632 transmissible gastroenteritis coronavirus. *J Virol* 71:3285–3287.

633 9. Künkel F, Herrler G. 1993. Structural and functional analysis of the surface
634 protein of human coronavirus OC43. *Virology* 195:195–202.

635 10. Lu G, Wang Q, Gao GF. 2015. Bat-to-human: spike features determining “host
636 jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond. *Trends Microbiol*
637 23:468–478.

638 11. Barnes CO, West AP, Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman
639 PR, Koranda N, Gristick HB, Gaebler C, Muecksch F, Lorenzi JCC, Finkin S,
640 Hägglöf T, Hurley A, Millard KG, Weisblum Y, Schmidt F, Hatzioannou T,
641 Bieniasz PD, Caskey M, Bjorkman PJ. 2020. Structures of Human Antibodies
642 Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent
643 Features of Antibodies. *Cell* 182:828-842.e16.

644 12. Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, Ni M, Wei Y,
645 Mohammadi K, Musser B, Atwal GS, Oyejide A, Goez-Gazi Y, Dutton J,
646 Clemmons E, Staples HM, Bartley C, Klaffke B, Alfson K, Gazi M, Kyratsous
647 CA. 2020. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in
648 rhesus macaques and hamsters. *Science* 370:1110–1115.

649 13. Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, Fulton BO, Yan
650 Y, Koon K, Patel K, Chung KM, Hermann A, Ullman E, Cruz J, Rafique A,
651 Huang T, Fairhurst J, Libertiny C, Malbec M, Lee W-Y, Kyratsous CA. 2020.
652 Studies in humanized mice and convalescent humans yield a SARS-CoV-2
653 antibody cocktail. *Science* 369:1010–1014.

654 14. Hassan AO, Case JB, Winkler ES, Thackray LB, Kafai NM, Bailey AL, McCune

655 BT, Fox JM, Chen RE, Alsoussi WB, Turner JS, Schmitz AJ, Lei T, Shrihari S,
656 Keeler SP, Fremont DH, Greco S, McCray PB, Perlman S, Holtzman MJ,
657 Diamond MS. 2020. A SARS-CoV-2 Infection Model in Mice Demonstrates
658 Protection by Neutralizing Antibodies. *Cell* 182:744-753.e4.

659 15. Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L, Zhu Q, Zhang X, Zheng Y, Geng
660 C, Chai X, He R, Li X, Lv Q, Zhu H, Deng W, Xu Y, Wang Y, Qiao L, Tan Y, Xie
661 XS. 2020. Potent Neutralizing Antibodies against SARS-CoV-2 Identified by
662 High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells.
663 *Cell* 182:73-84.e16.

664 16. Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, Yu J, Shan S, Zhou B, Song S,
665 Tang X, Yu J, Lan J, Yuan J, Wang H, Zhao J, Zhang S, Wang Y, Shi X, Liu L,
666 Zhang L. 2020. Human neutralizing antibodies elicited by SARS-CoV-2
667 infection. *Nature* 584:115–119.

668 17. Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF-W, Sahi V,
669 Figueira A, Guo XV, Cerutti G, Bimela J, Gorman J, Zhou T, Chen Z, Yuen K-
670 Y, Kwong PD, Sodroski JG, Yin MT, Ho DD. 2020. Potent neutralizing
671 antibodies against multiple epitopes on SARS-CoV-2 spike. *Nature* 584:450–
672 456.

673 18. Pinto D, Park Y-J, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S,
674 Culap K, Zatta F, De Marco A, Peter A, Guarino B, Spreafico R, Cameroni E,
675 Case JB, Chen RE, Havenar-Daughton C, Snell G, Telenti A, Virgin HW, Corti
676 D. 2020. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-
677 CoV antibody. *Nature* 583:290–295.

678 19. Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M,

679 Jangra RK, Dieterle ME, Lilov A, Huang D, Tse LV, Johnson NV, Hsieh C-L,
680 Wang N, Nett JH, Champney E, Burnina I, Brown M, Lin S, Sinclair M, Walker
681 LM. 2020. Broad neutralization of SARS-related viruses by human monoclonal
682 antibodies. *Science*.

683 20. Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, Nargi RS, Sutton
684 RE, Suryadevara N, Chen EC, Binshtein E, Shrihari S, Ostrowski M, Chu HY,
685 Didier JE, MacRenaris KW, Jones T, Day S, Myers L, Eun-Hyung Lee F, Crowe
686 JE. 2020. Rapid isolation and profiling of a diverse panel of human monoclonal
687 antibodies targeting the SARS-CoV-2 spike protein. *Nat Med* 26:1422–1427.

688 21. FDA. 2021. Coronavirus (COVID-19) Update: FDA Revokes Emergency Use
689 Authorization for Monoclonal Antibody Bamlanivimab | FDA. FDA NEWS
690 RELEASE.

691 22. CDC. 2021. SARS-CoV-2 Variant Classifications and Definitions.

692 23. McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC,
693 Beltramello M, Chen A, Liu Z, Zatta F, Zepeda S, di Iulio J, Bowen JE, Montiel-
694 Ruiz M, Zhou J, Rosen LE, Bianchi S, Guarino B, Fregni CS, Abdelnabi R,
695 Veesler D. 2021. N-terminal domain antigenic mapping reveals a site of
696 vulnerability for SARS-CoV-2. *Cell* 184:2332-2347.e16.

697 24. Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ,
698 Nargi RS, Sutton RE, Winkler ES, Chen EC, Fouch ME, Davidson E, Doranz
699 BJ, Chen RE, Shi P-Y, Carnahan RH, Thackray LB, Diamond MS, Crowe JE.
700 2021. Neutralizing and protective human monoclonal antibodies recognizing
701 the N-terminal domain of the SARS-CoV-2 spike protein. *Cell* 184:2316-
702 2331.e15.

703 25. Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, Zhang Z, Fan P, Dong Y,
704 Yang Y, Chen Z, Guo Y, Zhang J, Li Y, Song X, Chen Y, Xia L, Fu L, Hou L, Xu
705 J, Chen W. 2020. A neutralizing human antibody binds to the N-terminal
706 domain of the Spike protein of SARS-CoV-2. *Science* 369:650–655.

707 26. Xu C, Wang Y, Liu C, Zhang C, Han W, Hong X, Wang Y, Hong Q, Wang S,
708 Zhao Q, Wang Y, Yang Y, Chen K, Zheng W, Kong L, Wang F, Zuo Q, Huang
709 Z, Cong Y. 2021. Conformational dynamics of SARS-CoV-2 trimeric spike
710 glycoprotein in complex with receptor ACE2 revealed by cryo-EM. *Sci Adv* 7.

711 27. Cerutti G, Guo Y, Zhou T, Gorman J, Lee M, Rapp M, Reddem ER, Yu J,
712 Bahna F, Bimela J, Huang Y, Katsamba PS, Liu L, Nair MS, Rawi R, Olia AS,
713 Wang P, Zhang B, Chuang G-Y, Ho DD, Shapiro L. 2021. Potent SARS-CoV-2
714 neutralizing antibodies directed against spike N-terminal domain target a single
715 supersite. *Cell Host Microbe* 29:819-833.e7.

716 28. Wang N, Sun Y, Feng R, Wang Y, Guo Y, Zhang L, Deng Y-Q, Wang L, Cui Z,
717 Cao L, Zhang Y-J, Li W, Zhu F-C, Qin C-F, Wang X. 2020. Structure-based
718 development of human antibody cocktails against SARS-CoV-2. *Cell Res*
719 31:101–103.

720 29. Wec AZ, Bornholdt ZA, He S, Herbert AS, Goodwin E, Wirchnianski AS, Gunn
721 BM, Zhang Z, Zhu W, Liu G, Abelson DM, Moyer CL, Jangra RK, James RM,
722 Bakken RR, Bohorova N, Bohorov O, Kim DH, Pauly MH, Velasco J, Chandran
723 K. 2019. Development of a Human Antibody Cocktail that Deploys Multiple
724 Functions to Confer Pan-Ebolavirus Protection. *Cell Host Microbe* 25:39-48.e5.

725 30. Bornholdt ZA, Herbert AS, Mire CE, He S, Cross RW, Wec AZ, Abelson DM,
726 Geisbert JB, James RM, Rahim MN, Zhu W, Borisevich V, Banadyga L, Gunn

727 BM, Agans KN, Wirchnianski AS, Goodwin E, Tierney K, Shestowsky WS,
728 Bohorov O, Dye JM. 2019. A Two-Antibody Pan-Ebolavirus Cocktail Confers
729 Broad Therapeutic Protection in Ferrets and Nonhuman Primates. *Cell Host*
730 Microbe 25:49-58.e5.

731 31. Dieterle ME, Haslwanter D, Bortz RH, Wirchnianski AS, Lasso G, Vergnolle O,
732 Abbasi SA, Fels JM, Laudermilch E, Florez C, Mengotto A, Kimmel D, Malonis
733 RJ, Georgiev G, Quiroz J, Barnhill J, Pirofski L-A, Daily JP, Dye JM, Lai JR,
734 Jangra RK. 2020. A Replication-Competent Vesicular Stomatitis Virus for
735 Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. *Cell Host*
736 Microbe 28:486-496.e6.

737 32. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, Muecksch
738 F, Rutkowska M, Hoffmann H-H, Michailidis E, Gaebler C, Agudelo M, Cho A,
739 Wang Z, Gazumyan A, Cipolla M, Luchsinger L, Hillyer CD, Caskey M,
740 Robbiani DF, Bieniasz PD. 2020. Escape from neutralizing antibodies by
741 SARS-CoV-2 spike protein variants. *elife* 9.

742 33. Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I, Monego
743 SD, Pantano E, Manganaro N, Manenti A, Manna R, Casa E, Hyseni I,
744 Benincasa L, Montomoli E, Amaro RE, McLellan JS, Rappuoli R. 2020. SARS-
745 CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent
746 plasma. *BioRxiv* <https://doi.org/10.1101/2020.12.28.424451>.

747 34. Sakharkar M, Rappazzo CG, Wieland-Alter WF, Hsieh C-L, Wrapp D,
748 Esterman ES, Kaku CI, Wec AZ, Geoghegan JC, McLellan JS, Connor RI,
749 Wright PF, Walker LM. 2021. Prolonged evolution of the human B cell response
750 to SARS-CoV-2 infection. *Sci Immunol* 6.

751 35. Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, Cho A,
752 Jankovic M, Schaefer-Babajew D, Oliveira TY, Cipolla M, Viant C, Barnes CO,
753 Bram Y, Breton G, Hägglöf T, Mendoza P, Hurley A, Turroja M, Gordon K,
754 Nussenzweig MC. 2021. Evolution of antibody immunity to SARS-CoV-2.
755 Nature 591:639–644.

756 36. Hartley GE, Edwards ESJ, Aui PM, Varese N, Stojanovic S, McMahon J, Peleg
757 AY, Boo I, Drummer HE, Hogarth PM, O’Hehir RE, van Zelm MC. 2020. Rapid
758 generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid
759 proteins in COVID-19 and convalescence. Sci Immunol 5.

760 37. Briney B, Inderbitzin A, Joyce C, Burton DR. 2019. Commonality despite
761 exceptional diversity in the baseline human antibody repertoire. Nature
762 566:393–397.

763 38. Jones BE, Brown-Augsburger PL, Corbett KS, Westendorf K, Davies J, Cujec
764 TP, Wiethoff CM, Blackbourne JL, Heinz BA, Foster D, Higgs RE,
765 Balasubramaniam D, Wang L, Zhang Y, Yang ES, Bidshahri R, Kraft L, Hwang
766 Y, Žentelis S, Jepson KR, Falconer E. 2021. The neutralizing antibody, LY-
767 CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci
768 Transl Med 13.

769 39. FDA. 2021. EMERGENCY USE AUTHORIZATION (EUA) OF Bamlanivimab
770 AND Etesevimab AUTHORIZED USE.

771 40. FDA. 2021. FACT SHEET FOR HEALTH CARE PROVIDERS EMERGENCY
772 USE AUTHORIZATION (EUA) OF REGEN-COV™ (casirivimab with
773 imdevimab).

774 41. Voss WN, Hou YJ, Johnson NV, Delidakis G, Kim JE, Javanmardi K, Horton

775 AP, Bartzoka F, Paresi CJ, Tanno Y, Chou C-W, Abbasi SA, Pickens W,
776 George K, Boutz DR, Towers DM, McDaniel JR, Billick D, Goike J, Rowe L,
777 Ippolito GC. 2021. Prevalent, protective, and convergent IgG recognition of
778 SARS-CoV-2 non-RBD spike epitopes. *Science*
779 <https://doi.org/10.1126/science.abg5268>.

780 42. Chou T-C, Talalay P. 1984. Quantitative analysis of dose-effect relationships:
781 the combined effects of multiple drugs or enzyme inhibitors. *Adv Enzyme Regul*
782 22:27–55.

783 43. Zhou H, Chen Y, Zhang S, Niu P, Qin K, Jia W, Huang B, Zhang S, Lan J,
784 Zhang L, Tan W, Wang X. 2019. Structural definition of a neutralization epitope
785 on the N-terminal domain of MERS-CoV spike glycoprotein. *Nat Commun*
786 10:3068.

787 44. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK,
788 Sotomayor-González A, Glasner DR, Reyes KR, Gliwa AS, Reddy NP,
789 Sanchez San Martin C, Federman S, Cheng J, Balceruk J, Taylor J, Streithorst
790 JA, Miller S, Kumar GR, Sreekumar B, Chiu CY. 2021. Transmission,
791 infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in
792 California carrying a L452R spike protein mutation. *medRxiv*
793 <https://doi.org/10.1101/2021.03.07.21252647>.

794 45. CDC. 2021. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR
795 Diagnostic Panel.

796 46. Daniel Gietz R, Woods RA. 2002. Transformation of yeast by lithium
797 acetate/single-stranded carrier DNA/polyethylene glycol method, p. 87–96. *In*
798 *Guide to Yeast Genetics and Molecular and Cell Biology - Part B*. Elsevier.

799 47. Rappazzo CG, Tse LV, Kaku CI, Wrapp D, Sakharkar M, Huang D, Deveau
800 LM, Yockachonis TJ, Herbert AS, Battles MB, O'Brien CM, Brown ME,
801 Geoghegan JC, Belk J, Peng L, Yang L, Hou Y, Scobey TD, Burton DR,
802 Nemazee D, Walker LM. 2021. Broad and potent activity against SARS-like
803 viruses by an engineered human monoclonal antibody. *Science* 371:823–829.