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Abstract 90 

Primary age-related tauopathy (PART) is a form of Alzheimer-type neurofibrillary degeneration occurring 91 

in the absence of amyloid-beta (A³) plaques. While PART shares some features with Alzheimer disease 92 

(AD), such as progressive accumulation of neurofibrillary tangle pathology in the medial temporal lobe 93 

and other brain regions, it does not progress extensively to neocortical regions. Given this restricted 94 

pathoanatomical pattern and variable symptomatology, there is a need to reexamine and improve upon 95 

how PART is neuropathologically assessed and staged. We performed a retrospective autopsy study in 96 

a collection (n=174) of post-mortem PART brains and used logistic regression to determine the extent to 97 

which a set of clinical and neuropathological features predict cognitive impairment. We compared Braak 98 

staging, which focuses on hierarchical neuroanatomical progression of AD tau and A³ pathology, with 99 

quantitative assessments of neurofibrillary burden using computer-derived positive pixel counts on 100 

digitized whole slide images of sections stained immunohistochemically with antibodies targeting 101 

abnormal hyperphosphorylated tau (p-tau) in the entorhinal region and hippocampus. We also assessed 102 

other factors affecting cognition, including aging-related tau astrogliopathy (ARTAG) and atrophy. We 103 

found no association between Braak stage and cognitive impairment when controlling for age (p=0.76). 104 

In contrast, p-tau burden was significantly correlated with cognitive impairment even when adjusting for 105 

age (p=0.03). The strongest correlate of cognitive impairment was cerebrovascular disease, a well-known 106 

risk factor (p<0.0001), but other features including ARTAG (p=0.03) and hippocampal atrophy (p=0.04) 107 

were also associated. In contrast, sex, APOE, psychiatric illness, education, argyrophilic grains, and 108 

incidental Lewy bodies were not. These findings support the hypothesis that comorbid pathologies 109 

contribute to cognitive impairment in subjects with PART. Quantitative approaches beyond Braak staging 110 

are critical for advancing our understanding of the extent to which age-related tauopathy changes impact 111 

cognitive function. 112 

Keywords: PART, dementia, Aging, Braak, ARTAG113 
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Introduction 114 

It is widely recognized that abnormal hyperphosphorylated tau (p-tau) deposition is a ubiquitous feature 115 

of the aging human brain, observed in both cognitively normal subjects and in those with a range of 116 

clinical features, including cognitive, motor and psychiatric symptoms [37]. The causes of tauopathy are 117 

diverse, and include both genetic and environmental risk factors [48].  Autosomal dominant mutations in 118 

the tau gene (MAPT) cause frontotemporal lobar degeneration and common risk alleles, notably the 119 

MAPT 17q21.31 H1 haplotype, are associated with sporadic tauopathies including progressive 120 

supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease (AGD) [12]. 121 

Abnormal p-tau deposition is also seen following exposure to repetitive head trauma in contact sports 122 

and other contexts in the setting of chronic traumatic encephalopathy (CTE) [43]. Neurofibrillary tangles 123 

(NFT) are also a component of Alzheimer disease (AD), where they are associated amyloid-beta deposits 124 

[16]. 125 

Although it is generally understood that autopsy studies are critical for establishing definitive 126 

diagnoses, the neuropathology of the tauopathies is complex and overlapping. Further, non-impaired 127 

individuals often display significant amounts of p-tau accumulation, complicating our understanding of 128 

the contribution of such brain changes to symptomatology. Approaches to assessing tauopathy in post-129 

mortem tissues continue to evolve. Neuropathologically, tauopathies can be differentiated by the 130 

neuroanatomical regionality of p-tau aggregates, cell type involvement (i.e., neurons versus glia), 131 

preferential isoform accumulation, and filament ultrastructure. Based upon these differentiating features, 132 

validated neuropathological diagnostic consensus criteria have been devised and, in some cases, 133 

undergone revision.  Examples include revision of the AD diagnostic criteria, and consensus criteria for 134 

CTE [41, 46].The term aging-related tau astrogliopathy (ARTAG), which was described in recent 135 

consensus criteria on various patterns of astrocytic p-tau observed in aging, has been especially helpful 136 

for differentiating age-related changes from CTE, both of which have perivascular p-tau deposits, but with 137 

differences in cell types involved [38, 42]. The introduction of criteria for primary age-related tauopathy 138 
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(PART) to describe individuals who develop AD-type neurofibrillary pathology with or without dementia 139 

in the absence of significant amyloid deposition helped to better define this entity and differentiated it 140 

from AD [17]. Understanding age-related tauopathy is of critical importance in the context of diagnosis 141 

and staging of all the tauopathies given its extremely high prevalence and importance as a co-morbidity 142 

in essentially all studies evaluating tauopathy. 143 

There has been controversy surrounding the PART consensus criteria since their introduction [11, 144 

19], and there have been a substantial number of recent clinicopathological studies focused on 145 

understanding this pathological presentation [4, 6, 7, 29, 33, 36, 51, 52, 60]. Given the close clinical and 146 

neuropathological similarities between PART and AD such that historically the two entities were classified 147 

together, accumulating evidence has highlighted differences.  Clinically, the average age is higher for 148 

individuals who have PART than those with AD and patients with PART are more often female [35]. 149 

Patients with PART pathology are more often cognitively normal, but a subset have mild cognitive 150 

impairment or amnestic dementia, and this correlates with p-tau severity [17]. Among symptomatic 151 

individuals with a neuropathological diagnosis of PART, nearly half had been clinically diagnosed with 152 

AD compared with 86% of those with autopsy-confirmed AD, indicating that despite diagnostic 153 

uncertainty, clinicians recognize differences between the two [59]. One retrospective study identified 154 

other factors including depression, Braak stage, and history of stroke, as independent predictors of 155 

cognitive impairment [6].  Another found that those with PART had a sparing of semantic memory 156 

compared to those with AD, suggesting that there is a distinct difference in clinical presentation [8]. 157 

Longitudinal analyses found that subjects with PART have a significantly slower clinical decline after 158 

becoming symptomatic than those with AD across multiple neuropsychological domains [60].   159 

One limitation of most published studies on PART is that they rely on retrospective analysis of 160 

previously collected datasets (e.g., the National Alzheimer9s Coordinating Center database, NACC) with 161 

predefined neuropathological measures that may not fully capture all the clinically relevant features [45]. 162 

Further, findings might not be generalizable to other populations, and a lack of uniform analysis and 163 
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quantitation might lead to bias. Critically, the Braak staging system was specifically developed for 164 

assessment of tau pathology in the context of AD, and has not been rigorously tested in amyloid-negative 165 

subjects, so the extent to which it is valid for staging p-tau pathology in PART is unclear. Additionally, the 166 

Braak stage represents a hierarchical progression of the regional spread of neurofibrillary tangles, but 167 

does not directly measure the severity or burden of p-tau, but this has been incorporated into some 168 

operationalized frameworks [2]. Because the pathology in PART generally remains predominantly in the 169 

medial temporal lobe, this hierarchical pathoanatomical system may sub-optimally measure severity of 170 

the disease. There are numerous approaches to assessing lesion burden of p-tau and other pathologies 171 

[10, 28, 30, 31, 40, 41, 44, 63], including cell counting and stereology [3, 5, 13, 21, 27, 64]. While each 172 

of these approaches have intrinsic advantages, they are limited in that they are labor intensive and for 173 

this reason and others, these methods have not been widely adopted in neuropathology laboratories [20, 174 

62]. One approach that may have potential to better assess p-tau in PART is using computer-assisted 175 

quantitative morphometrics on digital whole slide images, which may be well suited for staging PART.  176 

Here, we studied a cohort of autopsy-confirmed subjects with PART, enabling us to reexamine 177 

how tau pathology manifests in PART. We compared Braak staging with computer-assisted quantitative 178 

measures of p-tau burden, and used logistic regression to assess their contribution to cognitive 179 

impairment. Using this cohort, we were able to explore critical co-morbid pathologies (e.g., 180 

cerebrovascular disease), and further assess neuropathological changes that are not available in existing 181 

publicly available datasets, including atrophy and ARTAG.  182 
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Methods 183 

 184 

Patient samples 185 

 186 

Formalin-fixed paraffin embedded (FFPE) tissue from the frontal cortex and hippocampus as well as 187 

fresh-frozen tissue from frontal cortex were derived from autopsy brains from a subset of individuals from 188 

a previously described collection [61]. Specifically, the cohort included cases from the Oregon Health 189 

Sciences University (Portland, OR, USA), Banner Sun Health Research Institute (Sun City, AZ, USA), 190 

Emory (Atlanta, GA, USA), Northwestern (Evanston, IL, USA), the University of Pennsylvania 191 

(Philadelphia, PA, USA), University of Pittsburgh (Pittsburgh, PA, USA), University of Texas 192 

Southwestern Medical Center (Dallas, TX, USA), and the Medical University of Vienna (Vienna, Austria). 193 

Clinical inclusion criteria included being cognitively normal or having a diagnosis of mild cognitive 194 

impairment (MCI) or dementia with a recorded clinical dementia rating (CDR), Mini-Mental State 195 

Examination (MMSE), or postmortem clinical chart review CDR score within two years of death [22, 47]. 196 

CDR and MMSE scores were used to assign subjects into either cognitively normal or cognitively 197 

impaired groups. Individuals who had a CDR score of 0.5 or above or MMSE score below 26 were 198 

considered to be cognitively impaired while subjects with a CDR score of 0 or MMSE score 26 or above 199 

were considered cognitively normal [39].  If an individual had both MMSE score and CDR score, the most 200 

recent score was used, and if both scores were given on the same date, the CDR score was used. 201 

Comprehensive neuropathological assessments were performed at the contributing institutions. 202 

Neuropathological criteria for PART included (1) cases that had a Braak stage of 0-IV and (2) Consortium 203 

to Establish a Registry for Alzheimer's Disease (CERAD) neuritic plaque severity score of 0 [10, 44].  204 

Neuropathological exclusion criteria consisted of other neurodegenerative diseases including AD, Lewy 205 

body disease, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), chronic traumatic 206 

encephalopathy (CTE), Pick disease, Guam amyotrophic lateral-sclerosis-parkinsonism-dementia, 207 

subacute sclerosing panencephalitis, globular glial tauopathy. Data pertaining to Braak stage, CERAD, 208 
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Lewy body pathology (incidental), cerebrovascular disease, infarcts (vascular brain injury), microinfarcts, 209 

and argyrophilic grains, were derived from neuropathologic studies performed at respective centers. The 210 

presence of aging-related tau astrogliopathy (ARTAG) was determined on p-tau immunohistochemical 211 

stains described below [38].  212 

 213 

Atrophy score 214 

 215 

Given that no widely accepted validated system for assessing hippocampal atrophy on human brain 216 

sections exists, we devised a semiquantitative scoring system and applied it to low power images of 217 

hematoxylin & eosin-stained sections counterstained with Luxol fast blue. We defined atrophy severity 218 

as the magnitude of ventricular dilatation (hydrocephalus ex vacuo) relative to the size of the hippocampal 219 

formation. If there was no apparent ventricular dilatation or atrophy, then a score of 0 was assigned.  If 220 

there was appreciable atrophy, but the dorsoventral height of the ventricle was less than the height of the 221 

thickest section of CA1, then a score of 1 (mild) was assigned. If the magnitude of ventricular dilatation 222 

exceeded the thickness of CA1, then a score of 2 (moderate) was given. If the total area of the ventricle 223 

area was greater than the area of the hippocampus proper, a score of 3 (severe) was assigned. This 224 

score was derived only in the subset of cases where the entire temporal horn of the lateral ventricle was 225 

available included in the provided section (n=24). 226 

 227 

Immunohistochemistry 228 

 229 

Immunohistochemistry (IHC) and hematoxylin & eosin (H&E) stains were performed on FFPE sections 230 

(5 ¿m) that were prepared from blocks of hippocampus and frontal cortex for supplemental 231 

neuropathological analyses (see below).  Sections mounted on positively charged slides were dried 232 

overnight at room temperature. IHC was performed on a Leica Bond III automated stainer, according to 233 

the manufacturer9s protocols (Leica Microsystems, Buffalo Grove, IL, USA). IHC was performed using 234 
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antibodies to hyper-phosphorylated tau (p-tau, AT8, 1:1000, Fisher Scientific, Waltham, MA) and beta-235 

amyloid (A³, 6E10, 1:1000, Covance, Princeton, NJ, USA). A³ stains were confirmed to be negative to 236 

ensure that there were no neuritic or diffuse plaques present (CERAD score of 0) for all cases. For each 237 

set of slides stained, a known severe AD case was included as a batch control. 238 

 239 

Computer-assisted morphometric analysis 240 

 241 

Whole slide images (WSI) were prepared from glass slides that were scanned using an Aperio CS2 (Leica 242 

Biosystems, Wetzlar Germany) digital slide scanner. Quantitative analysis of the tau burden was 243 

performed in selected regions in the hippocampi using the following methodology; WSI were 244 

neuroanatomically segmented using Aperio ImageScope software into the hippocampus proper (i.e., 245 

dentate, cornu ammonis, and subiculum) and the adjacent cortex that we termed the entorhinal region, 246 

which variably includes posterior portions of the parahippocampal gyrus with remnants of the (trans-247 

)entorhinal region or lingual gyrus. Staining was measured in these areas separately and together using 248 

a modified version of the Aperio positive pixel count (Version 9) based on the intensities of the positive 249 

control sample in each batch to determine the area of immunoreactivity. Data were normalized using the 250 

number of positive pixel counts to the total area creating a 0-1 p-tau burden scale. 251 

 252 

Genetic analysis 253 

 254 

High-throughput isolation of DNA was performed using the MagMAX DNA Multi-Sample Ultra 2.0 Kit on 255 

KingFisher Flex robotic DNA isolation system (Thermofisher, Waltham, MA). 20-40 mg of fresh frozen 256 

brain tissue were placed into a deep-well plate and treated with 480 ul of Proteinase K mix (Proteinase 257 

K, Phosphate Buffered Saline [pH 7.4], Binding Enhancer) and incubated overnight at 65°C	at 800 rpm 258 

on a shaking plate. Genomic DNA was isolated and purified using magnetic particles. DNA quality control 259 

was performed using a nanodrop spectrophotometer (concentration > 50ng/ul, 260/280 ratio 1.7-2.2). 260 
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Genotyping was performed using single nucleotide polymorphism (SNP) microarrays (Infinium Global 261 

Screening Array v2.4. or the Infinium OmniExpress-24, Illumina, San Diego CA). Raw genotype files were 262 

converted to PLINK-compatible files using GenomeStudio software (Illumina, San Diego CA). MAPT 263 

haplotype was determined using the rs8070723 H2 tagging SNP. APOE genotype was provided by the 264 

collaborating center. For analyses, the APOE status was collapsed into a binary variable of the presence 265 

or absence of APOE ·4. 266 

 267 

Statistical analysis 268 

 269 

All statistical tests were performed using the statistical software Statistical Package for the Social 270 

Sciences (SPSS) (IBM, Chicago, Il).  Data was visualized using the ggplot2 package in project R or Excel 271 

(Microsoft, Redmond, Washington). Binary measurements (yes/no) were created for pathological, 272 

clinical, demographic, and genetic variables. Specifically, variables were extracted from the pathological 273 

diagnosis and binary measurements (yes/no) were created for the following variables: argyrophilic grains, 274 

Lewy body pathology (incidental), cerebrovascular disease, and infarcts (vascular brain injury). 275 

Additionally, the same process was done for clinical variables: history of psychiatric illness and education 276 

(for this study, defined as at least some college).   277 

Descriptive statistics were used to identify differences between the cognitively normal and 278 

cognitively impaired PART groups for clinical, pathological, and genetic variables. Differences were 279 

detected using Ç2 tests or exact Ç2 if any cell size included < 5 participants.  A t-test was performed to 280 

determine if age differed significantly between normal and cognitively groups.  Next, an unadjusted binary 281 

logistic regression was performed to determine what genetic, clinical, and pathological variables were 282 

associated with being cognitively impaired within our PART cohort. Lastly, a multivariable model was 283 

created to determine what extent Braak NFT stage and the computer-assisted morphometrics were able 284 

to predict cognitive impairment in PART when adjusting for age. Statistical significance was determined 285 

if ³ < 0.05. Not all data was available on the subjects.  286 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447553doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447553
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 287 

 288 

One hundred seventy-four neuropathologically confirmed amyloid-negative subjects were included in this 289 

study (Table 1, Figure 1).  The overall mean age was 83.2 with a range of 52.9-105.1 years.  Of these, 290 

124 subjects (mean age 81.0, range = 52.9-102.4) had no cognitive impairment and 50 (mean age 88.3, 291 

range = 69.8-105.1) had some degree of cognitive impairment, with either mild cognitive impairment 292 

(MCI) or dementia. The majority of subjects who were cognitively impaired were 80+ years of age (Figure 293 

2). The Braak NFT stage ranged from 0 to IV with the majority of cognitively impaired subjects having a 294 

Braak NFT score of II to IV. A higher percentage of females had cognitive impairment (62.0%) compared 295 

to those who were cognitively normal (49.2%).  296 

We observed several differences among subjects with cognitive impairment compared to those 297 

who were cognitively normal. First, cognitively impaired PART subjects were more likely to be older (age 298 

of testing 81.0 vs. 88.3, p < 0.0001), have cerebrovascular disease (42.0% vs. 4.8%, p < 0.0001) and 299 

have hippocampal age-related tau astrogliopathy (ARTAG; 38.3% vs. 21.6%, p < 0.05) compared to 300 

cognitively normal subjects (Table 1).  However, education, history of psychiatric illness, argyrophilic 301 

grains, incidental Lewy body pathology, infarcts, presence of an APOE ·2 allele, presence of APOE ·4 302 

allele, and MAPT haplotype status did not significantly affect cognitive status (p > 0.05 for all conditions).  303 

In our main unadjusted analysis, we assessed the extent to which a series of clinical, 304 

neuropathological, and genetic variables predicted cognitive impairment in our PART cohort (Table 2).  305 

We found that age and cerebrovascular disease were the strongest predictors of cognitive impairment (p 306 

< 0.0001 for both cases).  ARTAG and hippocampal atrophy were also significant predictors, but to a 307 

lesser extent (p < 0.05 for both cases). There were more reported men and subjects with a history of 308 

psychiatric illness, argyrophilic grains, incidental Lewy body pathology, infarcts, and microinfarcts in the 309 

cognitively impaired PART group, however none of these predictors was significantly different (p > 0.05 310 

for all conditions). APOE ·4 (at least 1 ·4 allele) was reported more in the cognitively normal PART group 311 

but did not reach significance. Braak NFT stage significantly predicted cognitive impairment (p < 0.05). 312 
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Additionally, the computer-assisted morphometrics in the entorhinal region, hippocampus proper, and 313 

the combined region were significantly associated with cognitive impairment (p = 0.0001, Figure 3A-C, 314 

Table 3). Lastly, when the Braak NFT stage was correlated with computer-assisted morphometrics in the 315 

combined region (p < 0.001), there was a high degree of variability between the Braak NFT stage and 316 

the computer-assisted combined region morphometrics (Figure 3D).  317 

Finally, using a multivariable model, we assessed whether any measurements for p-tau predicted 318 

cognitive impairment when controlling for age.  In this adjusted analysis, we found that computer-assisted 319 

morphometrics used to capture p-tau burden in the hippocampus proper and combined region were 320 

significantly associated with cognitive impairment in PART (p < 0.05 for both cases). However, the 321 

computer-assisted morphometrics in the entorhinal region were not associated with cognitive impairment 322 

yet there was a trend toward statistical significance (p = 0.068). The Braak NFT stage was not able to 323 

predict cognitive impairment when controlling for age (p = 0.73, Table 3, Figure 4).  324 
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Discussion 325 

Since the neuropathological criteria for PART were proposed, the terminology has been widely adopted, 326 

but controversy persists, especially around its relationship to Alzheimer disease (AD). Delineating the 327 

histological/cellular features that are associated with cognitive impairment in PART is critical for 328 

advancing our understanding of the pathology and determining the extent to which it overlaps with AD.  329 

The fact that subjects with PART, as with AD neuropathologic change, can range in their cognitive status 330 

from normal to demented, raises the question as to whether cognitive reserve/resilience plays a role or 331 

alternatively whether we are not adequately capturing the relevant features, such as common 332 

comorbidities or other factors. This study, by using a large autopsy cohort with multivariate analyses, 333 

directly addresses these critical questions. The goal was to leverage our collection of post-mortem PART 334 

brains to characterize the clinical, pathological, and genetic features that are associated with cognitive 335 

impairment in PART. Additionally, we sought to compare Braak stage with pathology burden measures 336 

derived from p-tau immunohistochemistry that quantifies severity independently of neuroanatomical 337 

vulnerability. To overcome intra-center variability in tau pathology measures, we reassessed each case 338 

histologically to maximize accuracy. 339 

We found that all of our PART definite cases had p-tau restricted mainly to the MTL (Braak NFT 340 

stage <IV), which is consistent with and supports other previous studies investigating PART [4, 17, 34]. 341 

Cases ranged in cognitive impairment with the majority of subjects being cognitively normal, and 342 

consistent with prior data, the PART subjects tended to be older than individuals with AD [17, 59]. The 343 

results of our study confirm those of previous autopsy studies showing that cerebrovascular disease 344 

predicts cognitive impairment in PART [6, 49]. Interestingly, we did not see a strong correlation between 345 

cognitive impairment and microinfarcts, while others have shown a correlation with cognition in the oldest 346 

old [14]. We did however, find novel, unreported associations of increased age, hippocampal atrophy, 347 

and ARTAG with cognitive impairment in our PART definite cohort.  Similar to what has been reported 348 

by those utilizing the NACC database, our results verify those with a higher Braak NFT stage are 349 

associated with more rapid cognitive decline [33]. 350 
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While these associations have yet to be reported in PART, there are numerous studies showing 351 

that age, atrophy, and ARTAG may be associated with cognitive impairment [9, 23, 32, 50, 53].  352 

Surprisingly, we did not see increased odds of the Braak NFT stage being associated with cognitive 353 

impairment when controlling for age as has been reported in other studies [6].  However, we did find that 354 

using computer-assisted morphometrics to assess p-tau burden in the entorhinal region, hippocampus, 355 

and combined region was able to significantly predict cognitive impairment, similar to other studies [1, 356 

13].  While Braak NFT staging is the most widely employed approach for assessing p-tau, it is limited in 357 

that it primarily focuses on regionality and not disease burden [25].  Other studies have employed both 358 

manual and computer assisted quantitative approaches that may capture aspects of pathological features 359 

with more power [24, 26, 56]. However, a majority of these approaches focuses on AD which may not be 360 

relevant in the context of PART, where p-tau pathology does not progress in the same hierarchical 361 

manner proposed by Braak in AD [10, 16].  Hence this study highlights several new methodologies to 362 

assess p-tau burden, which our results suggest to be a more accurate predicator of clinical symptomology 363 

in those with PART.  364 

In addition to assessing p-tau burden, we also examined the effect of APOE status in PART as a 365 

predictor for cognitive impairment. APOE ·4 has been strongly suggested as an important predictor of 366 

cognitive decline in AD while APOE ·2 has been shown to be protective [15, 18, 54, 58].  However, many 367 

of these studies have been performed in AD cohorts, and in aging cohorts there has been evidence 368 

suggesting  the ·4 allele is not a risk factor for cognitive impairment [57].  Our data agree with that reported 369 

by Small et al. as we did not see an association with APOE ·4 and cognitive impairment, which might be 370 

explained by the fact that we studied a pathologically confirmed amyloid-negative cohort. Recent work 371 

has suggested that APOE may exacerbate tau pathology independently of amyloid deposition [55]. Here, 372 

we failed to detect an association of cognitive impairment in PART with the MAPT H1 haplotype; future 373 

larger studies with more statistical power are required to delineate the genetic architecture of PART.   374 

This study had notable limitations. There was a relatively small number of subjects in the 375 

cognitively impaired PART group (n=50), which may weaken our power to predict cognitive impairment.  376 
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Additionally, because a majority of our subjects were not from longitudinally studied prospective cohorts, 377 

we were unable to obtain certain lifestyle variables, such as actual years of education and concussion 378 

history, which could potentially significantly affect our model. However, given that diagnosing PART pre-379 

mortem is currently challenging, it would be impractical to create such a prospective cohort. We would 380 

also like to highlight the association we observed with ARTAG and cognitive status might be only due to 381 

collinearity between p-tau severity and ARTAG, with p-tau probably the driving pathology and the ARTAG 382 

association being significant because of its potential dependence on p-tau.  Lastly, our study was limited 383 

to pathology of the medial temporal lobe and frontal cortex. A more exhaustive study would have 384 

incorporated a greater number of brain regions to more extensively address other potential tau-related 385 

pathologies.   386 

In summary, our findings are consistent with the hypothesis that PART is an amyloid-independent 387 

tauopathy, primarily affecting the medial temporal lobe, which can present with cognitive impairment. 388 

Several demographic and neuropathological variables including age, ARTAG, cerebrovascular disease, 389 

hippocampal atrophy, Braak NFT stage, and p-tau computer assessments were significantly associated 390 

with cognitive impairment in our PART cohort. The Braak NFT stage was not a significant predictor of 391 

cognitive impairment when controlling for age, while the computer-assistant morphometrics were. These 392 

data strongly suggest that neuroanatomical staging used in AD may not be as relevant to PART given 393 

the pathology minimally spreads beyond the medial temporal lobe. Novel techniques to measure p-tau 394 

burden can further our understanding of PART pathology and associated clinical and genetic features. 395 
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Figure 1 404 

 405 

Figure 1. Comparison of amyloid and tau pathology in primary age-related tauopathy 406 

(PART) versus Alzheimer disease (AD). (A) Immunohistochemical staining using antisera 407 

to hyperphosphorylated tau in an AD brain shows marked hyperphosphorylated tau (p-tau)-408 

containing neurofibrillary tangles (NFT) in the hippocampus which extends past the collateral 409 

sulcus into the parahippocampal gyrus and other neocortical regions. (B, C) Subjects with mild 410 

to severe PART have elevated p-tau levels in the hippocampus predominantly restricted to the 411 

medial temporal lobe. (D, E, F) Subjects with AD neuropathologic change have abundant A³-412 

containing plaques in neocortical structures, whereas those with PART have sparse or none. 413 

These neuropathologic changes in AD and PART are seen in association with varying degree 414 

of cognitive impairment ranging from cognitively normal to demented.   415 

 416 

 417 

 418 

 419 
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Figure 2 420 

 421 

Figure 2. Distribution of age, Braak neurofibrillary tangle (NFT) stage and cognitive 422 

status. (A) The number of normal and cognitively impaired subjects across the age spectrum. 423 

(B) The number of cognitively normal and impaired subjects by Braak stage. (C)  The number 424 

of subjects across the aging spectrum by Braak stage.  425 
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Figure 3 426 

 427 

Figure 3. Computer-assisted morphometrics to assess pathological tau burden. (A, B) 428 

Quantitative assessment of hyperphosphorylated tau (p-tau) burden was performed on whole 429 

slide images of the hippocampus stained for p-tau (AT8) using immunohistochemistry. Positive 430 

pixel counts were determined in two regions (hippocampus proper and entorhinal region). 431 

Results were normalized to the total area assessed. A third summary score of the total p-tau 432 

burden of the medial temporal lobe was calculated by summing positive pixels in both. (C)  High 433 

power image shows high intensity in red, medium intensity in yellow and negative staining in 434 

blue. (D) Parallel plot showing the relationship between Braak stage and the computer 435 
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morphometric quantification of p-tau using the normalized medial temporal lobe (hippocampus 436 

and entorhinal region). Scale bar = 150 ¿m.   437 
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Figure 4 438 

 439 

Figure 4. Pathological tau burden in normal and cognitively impaired subjects across the 440 

aging spectrum. (A-C) Generalized linear models of age versus tau burden show significant 441 

differences between cognitively normal and cognitively impaired subjects in the hippocampus 442 

proper (p = 0.047), and combined entorhinal region and hippocampus regions (p < 0.048), but 443 

not in the entorhinal region alone (p = 0.07). (D) Generalized linear model of age vs Braak NFT 444 

staging did not show significant differences between cognitively normal and cognitively impaired 445 

subjects (p = 0.73).  446 
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