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Abstract

Primary age-related tauopathy (PART) is a form of Alzheimer-type neurofibrillary degeneration occurring
in the absence of amyloid-beta (AB) plaques. While PART shares some features with Alzheimer disease
(AD), such as progressive accumulation of neurofibrillary tangle pathology in the medial temporal lobe
and other brain regions, it does not progress extensively to neocortical regions. Given this restricted
pathoanatomical pattern and variable symptomatology, there is a need to reexamine and improve upon
how PART is neuropathologically assessed and staged. We performed a retrospective autopsy study in
a collection (n=174) of post-mortem PART brains and used logistic regression to determine the extent to
which a set of clinical and neuropathological features predict cognitive impairment. We compared Braak
staging, which focuses on hierarchical neuroanatomical progression of AD tau and A pathology, with
quantitative assessments of neurofibrillary burden using computer-derived positive pixel counts on
digitized whole slide images of sections stained immunohistochemically with antibodies targeting
abnormal hyperphosphorylated tau (p-tau) in the entorhinal region and hippocampus. We also assessed
other factors affecting cognition, including aging-related tau astrogliopathy (ARTAG) and atrophy. We
found no association between Braak stage and cognitive impairment when controlling for age (p=0.76).
In contrast, p-tau burden was significantly correlated with cognitive impairment even when adjusting for
age (p=0.03). The strongest correlate of cognitive impairment was cerebrovascular disease, a well-known
risk factor (p<0.0001), but other features including ARTAG (p=0.03) and hippocampal atrophy (p=0.04)
were also associated. In contrast, sex, APOE, psychiatric illness, education, argyrophilic grains, and
incidental Lewy bodies were not. These findings support the hypothesis that comorbid pathologies
contribute to cognitive impairment in subjects with PART. Quantitative approaches beyond Braak staging
are critical for advancing our understanding of the extent to which age-related tauopathy changes impact
cognitive function.

Keywords: PART, dementia, Aging, Braak, ARTAG
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Introduction

It is widely recognized that abnormal hyperphosphorylated tau (p-tau) deposition is a ubiquitous feature
of the aging human brain, observed in both cognitively normal subjects and in those with a range of
clinical features, including cognitive, motor and psychiatric symptoms [37]. The causes of tauopathy are
diverse, and include both genetic and environmental risk factors [48]. Autosomal dominant mutations in
the tau gene (MAPT) cause frontotemporal lobar degeneration and common risk alleles, notably the
MAPT 17921.31 H1 haplotype, are associated with sporadic tauopathies including progressive
supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease (AGD) [12].
Abnormal p-tau deposition is also seen following exposure to repetitive head trauma in contact sports
and other contexts in the setting of chronic traumatic encephalopathy (CTE) [43]. Neurofibrillary tangles
(NFT) are also a component of Alzheimer disease (AD), where they are associated amyloid-beta deposits

[16].

Although it is generally understood that autopsy studies are critical for establishing definitive
diagnoses, the neuropathology of the tauopathies is complex and overlapping. Further, non-impaired
individuals often display significant amounts of p-tau accumulation, complicating our understanding of
the contribution of such brain changes to symptomatology. Approaches to assessing tauopathy in post-
mortem tissues continue to evolve. Neuropathologically, tauopathies can be differentiated by the
neuroanatomical regionality of p-tau aggregates, cell type involvement (i.e., neurons versus glia),
preferential isoform accumulation, and filament ultrastructure. Based upon these differentiating features,
validated neuropathological diagnostic consensus criteria have been devised and, in some cases,
undergone revision. Examples include revision of the AD diagnostic criteria, and consensus criteria for
CTE [41, 46].The term aging-related tau astrogliopathy (ARTAG), which was described in recent
consensus criteria on various patterns of astrocytic p-tau observed in aging, has been especially helpful
for differentiating age-related changes from CTE, both of which have perivascular p-tau deposits, but with

differences in cell types involved [38, 42]. The introduction of criteria for primary age-related tauopathy
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(PART) to describe individuals who develop AD-type neurofibrillary pathology with or without dementia
in the absence of significant amyloid deposition helped to better define this entity and differentiated it
from AD [17]. Understanding age-related tauopathy is of critical importance in the context of diagnosis
and staging of all the tauopathies given its extremely high prevalence and importance as a co-morbidity

in essentially all studies evaluating tauopathy.

There has been controversy surrounding the PART consensus criteria since their introduction [11,
19], and there have been a substantial number of recent clinicopathological studies focused on
understanding this pathological presentation [4, 6, 7, 29, 33, 36, 51, 52, 60]. Given the close clinical and
neuropathological similarities between PART and AD such that historically the two entities were classified
together, accumulating evidence has highlighted differences. Clinically, the average age is higher for
individuals who have PART than those with AD and patients with PART are more often female [35].
Patients with PART pathology are more often cognitively normal, but a subset have mild cognitive
impairment or amnestic dementia, and this correlates with p-tau severity [17]. Among symptomatic
individuals with a neuropathological diagnosis of PART, nearly half had been clinically diagnosed with
AD compared with 86% of those with autopsy-confirmed AD, indicating that despite diagnostic
uncertainty, clinicians recognize differences between the two [59]. One retrospective study identified
other factors including depression, Braak stage, and history of stroke, as independent predictors of
cognitive impairment [6]. Another found that those with PART had a sparing of semantic memory
compared to those with AD, suggesting that there is a distinct difference in clinical presentation [8].
Longitudinal analyses found that subjects with PART have a significantly slower clinical decline after

becoming symptomatic than those with AD across multiple neuropsychological domains [60].

One limitation of most published studies on PART is that they rely on retrospective analysis of
previously collected datasets (e.g., the National Alzheimer's Coordinating Center database, NACC) with
predefined neuropathological measures that may not fully capture all the clinically relevant features [45].

Further, findings might not be generalizable to other populations, and a lack of uniform analysis and
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quantitation might lead to bias. Critically, the Braak staging system was specifically developed for
assessment of tau pathology in the context of AD, and has not been rigorously tested in amyloid-negative
subjects, so the extent to which it is valid for staging p-tau pathology in PART is unclear. Additionally, the
Braak stage represents a hierarchical progression of the regional spread of neurofibrillary tangles, but
does not directly measure the severity or burden of p-tau, but this has been incorporated into some
operationalized frameworks [2]. Because the pathology in PART generally remains predominantly in the
medial temporal lobe, this hierarchical pathoanatomical system may sub-optimally measure severity of
the disease. There are numerous approaches to assessing lesion burden of p-tau and other pathologies
[10, 28, 30, 31, 40, 41, 44, 63], including cell counting and stereology [3, 5, 13, 21, 27, 64]. While each
of these approaches have intrinsic advantages, they are limited in that they are labor intensive and for
this reason and others, these methods have not been widely adopted in neuropathology laboratories [20,
62]. One approach that may have potential to better assess p-tau in PART is using computer-assisted

quantitative morphometrics on digital whole slide images, which may be well suited for staging PART.

Here, we studied a cohort of autopsy-confirmed subjects with PART, enabling us to reexamine
how tau pathology manifests in PART. We compared Braak staging with computer-assisted quantitative
measures of p-tau burden, and used logistic regression to assess their contribution to cognitive
impairment. Using this cohort, we were able to explore critical co-morbid pathologies (e.g.,
cerebrovascular disease), and further assess neuropathological changes that are not available in existing

publicly available datasets, including atrophy and ARTAG.
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Methods

Patient samples

Formalin-fixed paraffin embedded (FFPE) tissue from the frontal cortex and hippocampus as well as
fresh-frozen tissue from frontal cortex were derived from autopsy brains from a subset of individuals from
a previously described collection [61]. Specifically, the cohort included cases from the Oregon Health
Sciences University (Portland, OR, USA), Banner Sun Health Research Institute (Sun City, AZ, USA),
Emory (Atlanta, GA, USA), Northwestern (Evanston, IL, USA), the University of Pennsylvania
(Philadelphia, PA, USA), University of Pittsburgh (Pittsburgh, PA, USA), University of Texas
Southwestern Medical Center (Dallas, TX, USA), and the Medical University of Vienna (Vienna, Austria).
Clinical inclusion criteria included being cognitively normal or having a diagnosis of mild cognitive
impairment (MCI) or dementia with a recorded clinical dementia rating (CDR), Mini-Mental State
Examination (MMSE), or postmortem clinical chart review CDR score within two years of death [22, 47].
CDR and MMSE scores were used to assign subjects into either cognitively normal or cognitively
impaired groups. Individuals who had a CDR score of 0.5 or above or MMSE score below 26 were
considered to be cognitively impaired while subjects with a CDR score of 0 or MMSE score 26 or above
were considered cognitively normal [39]. If an individual had both MMSE score and CDR score, the most
recent score was used, and if both scores were given on the same date, the CDR score was used.
Comprehensive neuropathological assessments were performed at the contributing institutions.
Neuropathological criteria for PART included (1) cases that had a Braak stage of 0-1V and (2) Consortium
to Establish a Registry for Alzheimer's Disease (CERAD) neuritic plaque severity score of 0 [10, 44].
Neuropathological exclusion criteria consisted of other neurodegenerative diseases including AD, Lewy
body disease, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), chronic traumatic
encephalopathy (CTE), Pick disease, Guam amyotrophic lateral-sclerosis-parkinsonism-dementia,

subacute sclerosing panencephalitis, globular glial tauopathy. Data pertaining to Braak stage, CERAD,
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Lewy body pathology (incidental), cerebrovascular disease, infarcts (vascular brain injury), microinfarcts,
and argyrophilic grains, were derived from neuropathologic studies performed at respective centers. The
presence of aging-related tau astrogliopathy (ARTAG) was determined on p-tau immunohistochemical

stains described below [38].

Atrophy score

Given that no widely accepted validated system for assessing hippocampal atrophy on human brain
sections exists, we devised a semiquantitative scoring system and applied it to low power images of
hematoxylin & eosin-stained sections counterstained with Luxol fast blue. We defined atrophy severity
as the magnitude of ventricular dilatation (hydrocephalus ex vacuo) relative to the size of the hippocampal
formation. If there was no apparent ventricular dilatation or atrophy, then a score of 0 was assigned. If
there was appreciable atrophy, but the dorsoventral height of the ventricle was less than the height of the
thickest section of CA1, then a score of 1 (mild) was assigned. If the magnitude of ventricular dilatation
exceeded the thickness of CA1, then a score of 2 (moderate) was given. If the total area of the ventricle
area was greater than the area of the hippocampus proper, a score of 3 (severe) was assigned. This
score was derived only in the subset of cases where the entire temporal horn of the lateral ventricle was

available included in the provided section (n=24).

Immunohistochemistry

Immunohistochemistry (IHC) and hematoxylin & eosin (H&E) stains were performed on FFPE sections
(5 pum) that were prepared from blocks of hippocampus and frontal cortex for supplemental
neuropathological analyses (see below). Sections mounted on positively charged slides were dried
overnight at room temperature. IHC was performed on a Leica Bond Ill automated stainer, according to

the manufacturer’s protocols (Leica Microsystems, Buffalo Grove, IL, USA). IHC was performed using
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antibodies to hyper-phosphorylated tau (p-tau, AT8, 1:1000, Fisher Scientific, Waltham, MA) and beta-
amyloid (AB, 6E10, 1:1000, Covance, Princeton, NJ, USA). AB stains were confirmed to be negative to
ensure that there were no neuritic or diffuse plaques present (CERAD score of 0) for all cases. For each

set of slides stained, a known severe AD case was included as a batch control.

Computer-assisted morphometric analysis

Whole slide images (WSI) were prepared from glass slides that were scanned using an Aperio CS2 (Leica
Biosystems, Wetzlar Germany) digital slide scanner. Quantitative analysis of the tau burden was
performed in selected regions in the hippocampi using the following methodology; WSI were
neuroanatomically segmented using Aperio ImageScope software into the hippocampus proper (i.e.,
dentate, cornu ammonis, and subiculum) and the adjacent cortex that we termed the entorhinal region,
which variably includes posterior portions of the parahippocampal gyrus with remnants of the (trans-
Jentorhinal region or lingual gyrus. Staining was measured in these areas separately and together using
a modified version of the Aperio positive pixel count (Version 9) based on the intensities of the positive
control sample in each batch to determine the area of immunoreactivity. Data were normalized using the

number of positive pixel counts to the total area creating a 0-1 p-tau burden scale.

Genetic analysis

High-throughput isolation of DNA was performed using the MagMAX DNA Multi-Sample Ultra 2.0 Kit on
KingFisher Flex robotic DNA isolation system (Thermofisher, Waltham, MA). 20-40 mg of fresh frozen
brain tissue were placed into a deep-well plate and treated with 480 ul of Proteinase K mix (Proteinase
K, Phosphate Buffered Saline [pH 7.4], Binding Enhancer) and incubated overnight at 65°C at 800 rpm
on a shaking plate. Genomic DNA was isolated and purified using magnetic particles. DNA quality control

was performed using a nanodrop spectrophotometer (concentration > 50ng/ul, 260/280 ratio 1.7-2.2).
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Genotyping was performed using single nucleotide polymorphism (SNP) microarrays (Infinium Global
Screening Array v2.4. or the Infinium OmniExpress-24, lllumina, San Diego CA). Raw genotype files were
converted to PLINK-compatible files using GenomeStudio software (lllumina, San Diego CA). MAPT
haplotype was determined using the rs8070723 H2 tagging SNP. APOE genotype was provided by the
collaborating center. For analyses, the APOE status was collapsed into a binary variable of the presence

or absence of APOE €4.

Statistical analysis

All statistical tests were performed using the statistical software Statistical Package for the Social
Sciences (SPSS) (IBM, Chicago, Il). Data was visualized using the ggplot2 package in project R or Excel
(Microsoft, Redmond, Washington). Binary measurements (yes/no) were created for pathological,
clinical, demographic, and genetic variables. Specifically, variables were extracted from the pathological
diagnosis and binary measurements (yes/no) were created for the following variables: argyrophilic grains,
Lewy body pathology (incidental), cerebrovascular disease, and infarcts (vascular brain injury).
Additionally, the same process was done for clinical variables: history of psychiatric illness and education
(for this study, defined as at least some college).

Descriptive statistics were used to identify differences between the cognitively normal and
cognitively impaired PART groups for clinical, pathological, and genetic variables. Differences were
detected using x2 tests or exact x2 if any cell size included < 5 participants. A t-test was performed to
determine if age differed significantly between normal and cognitively groups. Next, an unadjusted binary
logistic regression was performed to determine what genetic, clinical, and pathological variables were
associated with being cognitively impaired within our PART cohort. Lastly, a multivariable model was
created to determine what extent Braak NFT stage and the computer-assisted morphometrics were able
to predict cognitive impairment in PART when adjusting for age. Statistical significance was determined

if a < 0.05. Not all data was available on the subjects.
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Results

One hundred seventy-four neuropathologically confirmed amyloid-negative subjects were included in this
study (Table 1, Figure 1). The overall mean age was 83.2 with a range of 52.9-105.1 years. Of these,
124 subjects (mean age 81.0, range = 52.9-102.4) had no cognitive impairment and 50 (mean age 88.3,
range = 69.8-105.1) had some degree of cognitive impairment, with either mild cognitive impairment
(MCI) or dementia. The majority of subjects who were cognitively impaired were 80+ years of age (Figure
2). The Braak NFT stage ranged from 0 to IV with the majority of cognitively impaired subjects having a
Braak NFT score of Il to IV. A higher percentage of females had cognitive impairment (62.0%) compared
to those who were cognitively normal (49.2%).

We observed several differences among subjects with cognitive impairment compared to those
who were cognitively normal. First, cognitively impaired PART subjects were more likely to be older (age
of testing 81.0 vs. 88.3, p < 0.0001), have cerebrovascular disease (42.0% vs. 4.8%, p < 0.0001) and
have hippocampal age-related tau astrogliopathy (ARTAG; 38.3% vs. 21.6%, p < 0.05) compared to
cognitively normal subjects (Table 1). However, education, history of psychiatric iliness, argyrophilic
grains, incidental Lewy body pathology, infarcts, presence of an APOE €2 allele, presence of APOE ¢4
allele, and MAPT haplotype status did not significantly affect cognitive status (p > 0.05 for all conditions).

In our main unadjusted analysis, we assessed the extent to which a series of clinical,
neuropathological, and genetic variables predicted cognitive impairment in our PART cohort (Table 2).
We found that age and cerebrovascular disease were the strongest predictors of cognitive impairment (p
< 0.0001 for both cases). ARTAG and hippocampal atrophy were also significant predictors, but to a
lesser extent (p < 0.05 for both cases). There were more reported men and subjects with a history of
psychiatric iliness, argyrophilic grains, incidental Lewy body pathology, infarcts, and microinfarcts in the
cognitively impaired PART group, however none of these predictors was significantly different (p > 0.05
for all conditions). APOE €4 (at least 1 €4 allele) was reported more in the cognitively normal PART group

but did not reach significance. Braak NFT stage significantly predicted cognitive impairment (p < 0.05).
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Additionally, the computer-assisted morphometrics in the entorhinal region, hippocampus proper, and
the combined region were significantly associated with cognitive impairment (p = 0.0001, Figure 3A-C,
Table 3). Lastly, when the Braak NFT stage was correlated with computer-assisted morphometrics in the
combined region (p < 0.001), there was a high degree of variability between the Braak NFT stage and
the computer-assisted combined region morphometrics (Figure 3D).

Finally, using a multivariable model, we assessed whether any measurements for p-tau predicted
cognitive impairment when controlling for age. In this adjusted analysis, we found that computer-assisted
morphometrics used to capture p-tau burden in the hippocampus proper and combined region were
significantly associated with cognitive impairment in PART (p < 0.05 for both cases). However, the
computer-assisted morphometrics in the entorhinal region were not associated with cognitive impairment
yet there was a trend toward statistical significance (p = 0.068). The Braak NFT stage was not able to

predict cognitive impairment when controlling for age (p = 0.73, Table 3, Figure 4).
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Discussion
Since the neuropathological criteria for PART were proposed, the terminology has been widely adopted,
but controversy persists, especially around its relationship to Alzheimer disease (AD). Delineating the
histological/cellular features that are associated with cognitive impairment in PART is critical for
advancing our understanding of the pathology and determining the extent to which it overlaps with AD.
The fact that subjects with PART, as with AD neuropathologic change, can range in their cognitive status
from normal to demented, raises the question as to whether cognitive reserve/resilience plays a role or
alternatively whether we are not adequately capturing the relevant features, such as common
comorbidities or other factors. This study, by using a large autopsy cohort with multivariate analyses,
directly addresses these critical questions. The goal was to leverage our collection of post-mortem PART
brains to characterize the clinical, pathological, and genetic features that are associated with cognitive
impairment in PART. Additionally, we sought to compare Braak stage with pathology burden measures
derived from p-tau immunohistochemistry that quantifies severity independently of neuroanatomical
vulnerability. To overcome intra-center variability in tau pathology measures, we reassessed each case
histologically to maximize accuracy.

We found that all of our PART definite cases had p-tau restricted mainly to the MTL (Braak NFT
stage <IV), which is consistent with and supports other previous studies investigating PART [4, 17, 34].
Cases ranged in cognitive impairment with the majority of subjects being cognitively normal, and
consistent with prior data, the PART subjects tended to be older than individuals with AD [17, 59]. The
results of our study confirm those of previous autopsy studies showing that cerebrovascular disease
predicts cognitive impairment in PART [6, 49]. Interestingly, we did not see a strong correlation between
cognitive impairment and microinfarcts, while others have shown a correlation with cognition in the oldest
old [14]. We did however, find novel, unreported associations of increased age, hippocampal atrophy,
and ARTAG with cognitive impairment in our PART definite cohort. Similar to what has been reported
by those utilizing the NACC database, our results verify those with a higher Braak NFT stage are

associated with more rapid cognitive decline [33].
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While these associations have yet to be reported in PART, there are numerous studies showing
that age, atrophy, and ARTAG may be associated with cognitive impairment [9, 23, 32, 50, 53].
Surprisingly, we did not see increased odds of the Braak NFT stage being associated with cognitive
impairment when controlling for age as has been reported in other studies [6]. However, we did find that
using computer-assisted morphometrics to assess p-tau burden in the entorhinal region, hippocampus,
and combined region was able to significantly predict cognitive impairment, similar to other studies [1,
13]. While Braak NFT staging is the most widely employed approach for assessing p-tau, it is limited in
that it primarily focuses on regionality and not disease burden [25]. Other studies have employed both
manual and computer assisted quantitative approaches that may capture aspects of pathological features
with more power [24, 26, 56]. However, a majority of these approaches focuses on AD which may not be
relevant in the context of PART, where p-tau pathology does not progress in the same hierarchical
manner proposed by Braak in AD [10, 16]. Hence this study highlights several new methodologies to
assess p-tau burden, which our results suggest to be a more accurate predicator of clinical symptomology
in those with PART.

In addition to assessing p-tau burden, we also examined the effect of APOE status in PART as a
predictor for cognitive impairment. APOE €4 has been strongly suggested as an important predictor of
cognitive decline in AD while APOE €2 has been shown to be protective [15, 18, 54, 58]. However, many
of these studies have been performed in AD cohorts, and in aging cohorts there has been evidence
suggesting the €4 allele is not a risk factor for cognitive impairment [57]. Our data agree with that reported
by Small et al. as we did not see an association with APOE ¢4 and cognitive impairment, which might be
explained by the fact that we studied a pathologically confirmed amyloid-negative cohort. Recent work
has suggested that APOE may exacerbate tau pathology independently of amyloid deposition [55]. Here,
we failed to detect an association of cognitive impairment in PART with the MAPT H1 haplotype; future
larger studies with more statistical power are required to delineate the genetic architecture of PART.

This study had notable limitations. There was a relatively small number of subjects in the

cognitively impaired PART group (n=50), which may weaken our power to predict cognitive impairment.
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Additionally, because a majority of our subjects were not from longitudinally studied prospective cohorts,
we were unable to obtain certain lifestyle variables, such as actual years of education and concussion
history, which could potentially significantly affect our model. However, given that diagnosing PART pre-
mortem is currently challenging, it would be impractical to create such a prospective cohort. We would
also like to highlight the association we observed with ARTAG and cognitive status might be only due to
collinearity between p-tau severity and ARTAG, with p-tau probably the driving pathology and the ARTAG
association being significant because of its potential dependence on p-tau. Lastly, our study was limited
to pathology of the medial temporal lobe and frontal cortex. A more exhaustive study would have
incorporated a greater number of brain regions to more extensively address other potential tau-related
pathologies.

In summary, our findings are consistent with the hypothesis that PART is an amyloid-independent
tauopathy, primarily affecting the medial temporal lobe, which can present with cognitive impairment.
Several demographic and neuropathological variables including age, ARTAG, cerebrovascular disease,
hippocampal atrophy, Braak NFT stage, and p-tau computer assessments were significantly associated
with cognitive impairment in our PART cohort. The Braak NFT stage was not a significant predictor of
cognitive impairment when controlling for age, while the computer-assistant morphometrics were. These
data strongly suggest that neuroanatomical staging used in AD may not be as relevant to PART given
the pathology minimally spreads beyond the medial temporal lobe. Novel techniques to measure p-tau

burden can further our understanding of PART pathology and associated clinical and genetic features.
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Table 1. Patient data

Cognitive Status
Overall Normal Impaired* P

Demographics

Average age at testing (range) 83.2 (52.9-105.1) 81.0 (52.9-102.4) 88.3 (69.8-105.1) <0.0001

Total (Male / Female) 174 (82 / 92) 124 (63 / 61) 50 (19/ 31) 0.126™**

Age at last visit (%)

<60 7 (4.0) 7 (5.6) 0(0.0)

60-69 15 (8.6) 14 (11.3) 1(1.7)

70-79 33 (19.0) 30 (24.2) 3(5.2)

80-89 76 (43.7) 45 (36.3) 31 (53.4)

90+ 51 (29.3) 28 (22.6) 23 (39.7)

Education, at least some college (%) 32 (18.4) 15 (78.9) 17 (77.3) 0.89

History of psychiatric illness (%) 45 (25.9) 29 (31.9) 17 (45.9) 0.13
Neuropathological data

Argyrophilic grains 32 (18.4) 12 (9.7) 10 (20.0) 0.06

Lewy body pathology (incidental) 16 (9.2) 11 (8.9) 5(10.0) 0.82

Cerebrovascular disease** 27 (15.5) 6 (4.8) 21 (42.0) <0.0001

Infarcts (vascular brain injury) 37 (21.3) 24 (19.4) 13 (26.0) 0.33

Hippocampus ARTAG positive (%) 43 (24.7) 25 (21.6) 18 (38.3) 0.03
Genetic Data

Presence of 21 APOE &4 allele 22 (12.6) 16 (12.9) 6(11.3) 0.77

Presence of 21 APOE €2 allele 46 (26.4) 27 (21.8) 19 (35.8) 0.06

Presence of 21 MAPT H2 59 (33.9) 42 (36.2) 17 (36.2) 1

* Mild cognitive impairment or dementia, ** excluding cerebral amyloid angiopathy, ***Male sex, significant values in bold (Chi squared

397 test)
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Table 2. Unadjusted odds of being cognitively impaired

OR 95% ClI p value
Characteristic

Age, at testing 1.08 1.04-1.13 <0.0001
Education, y 0.87 0.67-1.12 0.28
Sex 1.69 0.86-3.30 0.13
APOE (at least 1 €4 allele) 0.988 0.36-2.70 0.98
History of psychiatric diagnosis 1.82 0.83-3.98 0.14
Aging-related tau astrogliopathy (ARTAG) 2.26 1.08-4.72 0.03
Argyrophilic grains 2.33 0.94-5.82 0.07
Lewy body pathology (incidental) 1.14 0.38-3.47 0.82
Cerebrovascular disease* 14.24 5.27-38.48 <0.0001
Infarcts (vascular brain injury) 1.46 0.68-3.17 0.33
Microinfarcts 1.05 0.43-2.59 0.91
Hippocampal atrophy 5.32 1.04-27.09 0.04
Braak NFT stage 1.37 1.03-1.83 0.03

Computer-assisted p-tau (AT8) burden (positive pixel counts)

Entorhinal region 1.90 1.31-2.75 0.001
Hippocampus proper 217 1.48-3.20 <0.0001
Entorhinal region & Hippocampus proper 2.12 1.44-3.11 <0.0001

400 * Excluding cerebral amyloid angiopathy, significant values in bold (logistic regression)
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Table 3. Odds of being cognitively impaired at death, adjusted

OR 95% CI p value
Braak NFT stage 1.01 0.72-1.41 0.98
P-tau burden (computer-assisted AT8 IHC positive pixels)
Entorhinal region 1.46 0.97-2.20 0.07
Hippocampus 1.66 1.07-2.57 0.02
Entorhinal region & hippocampus 1.62 1.06-2.49 0.03

402 Significant values in bold (logistic regression)

403
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Figure 1. Comparison of amyloid and tau pathology in primary age-related tauopathy
(PART) versus Alzheimer disease (AD). (A) Immunohistochemical staining using antisera
to hyperphosphorylated tau in an AD brain shows marked hyperphosphorylated tau (p-tau)-
containing neurofibrillary tangles (NFT) in the hippocampus which extends past the collateral
sulcus into the parahippocampal gyrus and other neocortical regions. (B, C) Subjects with mild
to severe PART have elevated p-tau levels in the hippocampus predominantly restricted to the
medial temporal lobe. (D, E, F) Subjects with AD neuropathologic change have abundant AB-
containing plaques in neocortical structures, whereas those with PART have sparse or none.
These neuropathologic changes in AD and PART are seen in association with varying degree

of cognitive impairment ranging from cognitively normal to demented.
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Figure 2. Distribution of age, Braak neurofibrillary tangle (NFT) stage and cognitive
status. (A) The number of normal and cognitively impaired subjects across the age spectrum.
(B) The number of cognitively normal and impaired subjects by Braak stage. (C) The number

of subjects across the aging spectrum by Braak stage.
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428 Figure 3. Computer-assisted morphometrics to assess pathological tau burden. (A, B)
429  Quantitative assessment of hyperphosphorylated tau (p-tau) burden was performed on whole
430 slide images of the hippocampus stained for p-tau (AT8) using immunohistochemistry. Positive
431 pixel counts were determined in two regions (hippocampus proper and entorhinal region).
432 Results were normalized to the total area assessed. A third summary score of the total p-tau
433  burden of the medial temporal lobe was calculated by summing positive pixels in both. (C) High
434  power image shows high intensity in red, medium intensity in yellow and negative staining in

435 blue. (D) Parallel plot showing the relationship between Braak stage and the computer
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436  morphometric quantification of p-tau using the normalized medial temporal lobe (hippocampus

437  and entorhinal region). Scale bar = 150 ym.
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Figure 4. Pathological tau burden in normal and cognitively impaired subjects across the

aging spectrum. (A-C) Generalized linear models of age versus tau burden show significant

differences between cognitively normal and cognitively impaired subjects in the hippocampus

proper (p = 0.047), and combined entorhinal region and hippocampus regions (p < 0.048), but

not in the entorhinal region alone (p = 0.07). (D) Generalized linear model of age vs Braak NFT

staging did not show significant differences between cognitively normal and cognitively impaired

subjects (p = 0.73).
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