

1 **FXa cleaves the SARS-CoV-2 spike protein and blocks cell entry to protect against**
2 **infection with inferior effects in B.1.1.7 variant**

3 Wenjuan Dong^{1,2,†}, Jing Wang^{1,2,†}, Lei Tian^{1,2,†}, Jianying Zhang³, Heather Mead⁴, Sierra A.
4 Jaramillo⁴, Aimin Li⁵, Ross E. Zumwalt⁶, Sean P.J. Whelan⁷, Erik W. Settles⁴, Paul S. Keim⁴,
5 Bridget Marie Barker⁴, Michael A. Caligiuri^{1,2,8*}, and Jianhua Yu^{1,2,8,9,*}

6 ¹Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National
7 Medical Center, Los Angeles, CA 91010, USA

8 ²Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los
9 Angeles, CA 91010, USA

10 ³Department of Computational and Quantitative Medicine, City of Hope National Medical Center,
11 Los Angeles, CA 91010, USA

12 ⁴Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA

13 ⁵Pathology Core of Shared Resources Core, Beckman Research Institute, City of Hope National
14 Medical Center, Los Angeles, CA 91010, USA

15 ⁶ Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA

16 ⁷Department of Molecular Microbiology, Washington University School of Medicine, St. Louis,
17 MO 63110, USA

18 ⁸City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA

19 ⁹ Department of Immuno-Oncology, City of Hope, Los Angeles, CA 91010, USA

20 [†]These authors contributed equally

21 ^{*}Correspondence should be addressed to Jianhua Yu, PhD, jiayu@coh.org; Michael A. Caligiuri,
22 MD, mcaligiuri@coh.org

24 **Short title: FXa cuts spike and blocks COVID-19**

25
26
27
28

29 **Abstract**

30 **The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by infection with**
31 **severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human natural defense**
32 **mechanisms against SARS-CoV-2 are largely unknown. Serine proteases (SPs) including**
33 **furin and TMPRSS2 cleave SARS-CoV-2 spike protein, facilitating viral entry. Here, we**
34 **show that FXa, a SP for blood coagulation, is upregulated in COVID-19 patients compared**
35 **to non-COVID-19 donors and exerts anti-viral activity. Mechanistically, FXa cleaves the**
36 **SARS-CoV-2 spike protein, which prevents its binding to ACE2, and thus blocks viral entry.**
37 **Furthermore, the variant B.1.1.7 with several mutations is dramatically resistant to the anti-**
38 **viral effect of FXa compared to wild-type SARA-CoV-2 *in vivo* and *in vitro*. The anti-**
39 **coagulant rivaroxaban directly inhibits FXa and facilitates viral entry, whereas the indirect**
40 **inhibitor fondaparinux does not. In a lethal humanized hACE2 mouse model of SARS-CoV-**
41 **2, FXa prolonged survival while combination with rivaroxaban but not fondaparinux**
42 **abrogated this protection. These preclinical results identify a previously unknown SP**
43 **function and associated anti-viral host defense mechanism and suggest caution in**
44 **considering direct inhibitors for prevention or treatment of thrombotic complications in**
45 **COVID-19 patients.**

46

47 **Introduction**

48 SARS-CoV-2 is the pathogen responsible for the global COVID-19 pandemic¹. To date, over
49 170,000,000 cases and approximately 3,500,000 deaths have been recorded with a worldwide
50 mortality rate of 2%². The public health and economic consequences have been devastating.
51 Although some strategies such as neutralizing antibodies and vaccines are being developed or
52 testing in the clinic, the pandemic rages on with new concerns regarding the emergence of resistant
53 strains³⁻⁶.

54 Angiotensin-converting enzyme 2 (ACE2) has been identified as the host receptor for SARS-CoV-
55 2^{7,8}. SARS-CoV-2 uses its spike (S) protein to bind to ACE2 and enter host cells. Several host
56 serine proteases (SPs) have been identified as facilitating SARS-CoV-2 entry via cleavage of its S
57 protein into functional S1 and S2 subunits^{9,10}. Furin cuts the S protein at the PRRAR (R-R-A-R685
58 ↓) site into S1 and S2 subunits at virus budding, while TMPRSS2 cleaves at the S2' site (P-S-K-

59 R815 ↓) at virus entry, and both cleavages enhance efficiency of SARS-CoV-2 infection^{9,11}.
60 Another SP family member, coagulation factor Xa (FXa) binds to tissue factor to initiate
61 conversion of prothrombin to thrombin in the clotting cascade¹². The direct FXa inhibitors
62 rivaroxaban, apixaban, and edoxaban, and betrixaban as well as the indirect inhibitor fondaparinux
63 have been developed as clinical anti-coagulants¹³, and several direct inhibitors are currently being
64 evaluated for use in patients at high-risk for COVID-19¹⁴.

65
66 Here we show that FXa inhibits SARS-CoV-2 entry. Mechanistically, FXa binds to and cleaves S
67 protein, which produced a different cleavage pattern than that of furin and TMPRSS2, and blocked
68 S protein binding to ACE2. The effect was pronounced for the ancestral wild type variant, but was
69 diminished in the B.1.1.7 variant. Exogenous FXa protected mice from lethal infection in a
70 humanized hACE2 mouse model of COVID-19 using the wild type variant but not the B.1.1.7
71 variant. The anti-viral effect of FXa was attenuated by the direct FXa inhibitor rivaroxaban (RIVA)
72 but not the indirect inhibitor fondaparinux (FONDA) both *in vivo* and *in vitro*.

73
74

74 **Results**

75 To identify changes in SPs during SARS-CoV-2 infection, we examined their expression in lung
76 samples from COVID-19 patients using an immunohistochemistry assay (IHC). Due to the lack of
77 specific antibodies directly against FXa, we detected FX expression since ~100% FX can be
78 activated to FXa at injury sites when platelets are exposed to both collagen and thrombin¹⁵. Our
79 IHC analysis indicated that thrombin was highly expressed in lungs from COVID-19 patients
80 compared to that from non-COVID-19 patients (Extended Data Fig. 1a), consistent with previous
81 data^{16,17}. We found FX was significantly increased in the lungs of COVID-19 patients compared
82 to non-COVID-19 donors; in contrast, we did not observe consistent upregulation of other tested
83 SPs (Fig. 1a and Extended Data Fig. 1b). We found that FX was also increased in the liver
84 (Extended Data Fig. 1c) and serum, which is the source and carrier of FXa, in COVID-19 patients
85 compared to non-COVID-19 donors (Fig. 1, b and c).

86 To investigate the consequences of increased FXa during SARS-CoV-2 infection, we cloned FXa
87 into the pCDH-mCherry vector and assessed its function using the vesicular stomatitis virus
88 (VSV)-SARS-CoV-2 chimeric virus¹⁸. 293T cells were co-transfected with ACE2 and FXa or

89 control empty vector (EV). After 24 hours, cells were infected by VSV-SARS-CoV-2. The
90 percentage of infected cells (GFP positive cells) was examined at the indicated time points using
91 flow cytometry. Surprisingly, at indicated hours post infection (hpi), compared to EV transfected
92 group, the percentage of infected cells was decreased in FXa transfected group, indicating that the
93 presence of FXa efficiently blocked viral infection (Fig. 1d). SARS-CoV-2 infection depends not
94 only on ACE2 but also TMPRSS2¹⁰. When 293T cells were co-transfected with FXa, ACE2, and
95 TMPRSS2, FXa again blocked viral infection, showing a more pronounced effect during the early
96 time points in the presence of TMPRSS2 (Fig. 1e). To confirm our results, we generated an MA104
97 epithelial kidney cell line stably expressing FXa (MA104-FXa) (Extended Data Fig. 2a). The cells
98 were infected by VSV-SARS-CoV-2 at different MOIs and the infectivity was determined at 16-
99 48 hpi. We found that MA104-FXa cells showed markedly decreased infection at each time point
100 and at all MOIs compared to MA104-EV control cells (Fig. 1f and Extended Data Fig. 2b). The
101 viral titers of the supernatant from the infected MA104-FXa cells at 24 and 48 hpi were
102 significantly decreased compared to that from MA104-EV cells, suggesting over-expressing FXa
103 also impaired viral production (Extended Data Fig. 2c and d). We also compared the role of FXa
104 with other SPs in viral infection of parental MA104 cells. Unlike pretreatment with furin,
105 TMPRSS2, or trypsin, all of which increased VSV-SARS-CoV-2 infection, pre-treatment with
106 FXa inhibited viral infection (Extended Data Fig. 3a and b). Consistent with this, the viral titer of
107 the supernatant from FXa-treated MA104 cells infected with VSV-SARS-CoV-2 was significantly
108 decreased, while the viral titer of infected cells treated with furin, TMPRSS2 or trypsin increased,
109 compared to infected cells treated with vehicle control (PBS) (Extended Data Fig. 3c).

110 Furthermore, to determine if FXa blocks viral infection by targeting SARS-CoV-2 or host cells,
111 we first constructed an FXa-Fc fusion protein expression plasmid and purified the protein from
112 Chinese hamster ovary (CHO) cells. Then, we co-incubated VSV-SARS-CoV-2 with or without
113 FXa-Fc fusion protein *in vitro* for 1 hour before adding the mixture into MA104 cells. The rate of
114 infection was examined at the indicated timepoints. We found that pre-incubation of VSV-SARS-
115 CoV-2 with FXa-Fc fusion protein significantly inhibited viral infection in a dose-dependent
116 manner (from 62.5 pM to 1 μ M), suggesting that FXa could block viral infection by targeting
117 SARS-CoV-2 (Fig. 1, g, h, and Extended Data Fig. 4). Of note, the inactivated FXa had no effect
118 on viral infection (Extended Data Fig. 4). To determine the effects of FXa on viral production, we
119 infected the MA104 cells with VSV-SARS-CoV-2 at a very low MOI (0.001) and with FXa protein

120 at the indicated concentrations. We found that the viral titer showed a dose-dependent decrease
121 with the increase of FXa protein, suggesting that FXa plays an essential role in inhibiting viral
122 production (Extended Data Fig. 5a). To determine whether FXa also inhibits viral infection
123 through interaction with host cells, we preincubated FXa-Fc fusion protein with MA104 cells for
124 1 hour and then washed out the medium before infecting cells with VSV-SARS-CoV-2. We found
125 that FXa-Fc fusion protein pre-treatment with the MA104 cells did not significantly affect viral
126 infection (Extended Data Fig. 5b and c). We next used live SARS-CoV-2 to infect Vero E6 and
127 MA104-EV cells followed by quantitative assessment of viral load using an immuno-plaque assay.
128 We found that pre-incubation FXa with live SARS-CoV-2 prior to infection significantly reduced
129 viral infection in both Vero E6 and MA104 cells compared to buffer control, consistent with the
130 above VSV-SARS-CoV-2 chimeric virus data (Fig. 1, i and j). The anti-viral effect of FXa against
131 live SARS-CoV-2 infection was also confirmed with a traditional plaque assay with Vero E6 cells
132 (Extended Data Fig. 5d). Together, our results showed that FXa, a serine protease that is
133 upregulated following SARS-CoV-2 infection in host cells, inhibited viral infection and thus
134 possessed an anti-viral activity, in distinct contrast to other serine proteases such as furin and
135 TMPRSS2.

136 To study the mechanism(s) of the anti-viral activity of FXa, we compared the binding between
137 FXa and various subunits of SARS-CoV-2 S protein. We found that FXa had the strongest binding
138 affinity toward the full-length S protein and to a lesser extent to subunit S1, subunit S2 and the
139 receptor binding domain (RBD) compared to the control Fc protein (Fig. 2a). Pull-down assay
140 showed that FXa but not the Fc control protein co-precipitated with S protein (Fig. 2b). We then
141 measured the binding affinity of FXa and the full-length S protein. The results showed that the
142 binding affinity of FXa to S protein is in the nanogram range (Fig. 2c). These results suggest that
143 FXa binds to the S protein, which might inhibit viral entry efficiency. Virus entry is followed by
144 important conformational changes of viral proteins via cleavage of the S protein by host SPs. To
145 determine whether FXa could cleave S protein, we incubated full-length S protein with FXa,
146 followed by immunoblotting. Furin and TMPRSS2 served as positive controls, as they are known
147 to induce functional conformational changes of S protein. We found that full-length S was cut into
148 three fragments by FXa with the size of approximately 60 KD, then 50 KD and 29 KD (Fig. 2d),
149 consistent with *in silico* prediction of two FXa cleavage sites on S protein, Ile-(Asp/Glu)-Gly-Arg
150 (R1000) and Gly-Arg (R567) (Fig. 2e). This cleavage pattern was in contrast to that of furin and

151 TMPRSS2, which both cut full-length S protein into the ~80 KD subunit S1. Cleavage by FXa did
152 not produce the ~80 KD subunit S1.

153 Given that FXa could cut S protein into different sizes, we used ELISA to determine whether
154 cleavage by FXa affected binding of the S protein to ACE2. The ELISA data indicated that S
155 protein pre-treated with FXa resulted in decreased binding affinity to ACE2 (Fig. 3a). Flow
156 cytometry further confirmed this result, demonstrate that FXa-pre-treated S protein could not
157 efficiently bind to ACE2-expressing HEK293T cells (Fig. 3, b and c). We also showed that FXa
158 still bound to S protein when S protein was already bound to ACE2 (Fig. 3, d, e and f), yet FXa
159 still cleaved the S protein bound to ACE2 (Extended Data Fig. 6). Overall, our results indicate that
160 FXa could be an efficient inhibitor of viral entry via its interaction with S protein.

161 An emergent SARS-CoV-2 strain has been found to substitute aspartic acid-614 for glycine
162 (D614G) in the S protein¹⁹. Thus, we tested whether FXa had similar functional interactions with
163 the D614G S protein. FXa could still bind with and cleave the D614G S protein (Extended Data
164 Fig. 7a-c), and the binding affinity between ACE2 and D614G S protein decreased if S protein
165 was pretreated with FXa (Extended Data Fig. 7d and e).

166 COVID-19 patients with an increased risk of thrombosis are treated with direct FXa inhibitors
167 (e.g., rivaroxaban) or indirect inhibitors (e.g., fondaparinux)^{14,20}. We therefore asked if
168 rivaroxaban (RIVA) or fondaparinux (FONDA) affect the anti-viral activity of FXa. Neither
169 RIVA nor FONDA blocked the binding of FXa to S protein (Fig. 3g), and neither drug alone had
170 any effect on VSV-SARS-CoV-2 infectivity; however, the direct FXa inhibitor RIVA blocked
171 FXa-induced anti-viral activity, whereas the indirect FXa inhibitor FONDA did not (Fig. 3, h and
172 i). We measured viral titers in the supernatants collected from this inhibitor experiment, which
173 confirmed that RIVA but not FONDA significantly reduced FXa-induced anti-viral activity
174 (Extended Data Fig. 8a). Furthermore, cleavage assay showed that the direct FXa inhibitor RIVA
175 but not the indirect inhibitor FONDA inhibited cleavage of S protein by FXa (Fig. 3j). Consistent
176 with this, pretreatment of the mixture of S protein and FXa with RIVA or FONDA, followed by
177 incubation with ACE2, showed that RIVA but not FONDA significantly diminished the effect of
178 FXa on inhibiting the binding of S protein to ACE2 as demonstrated by ELISA, presumably by
179 inhibiting cleavage of S protein by RIVA but not by FONDA (Fig. 3k). The ELISA results in
180 Figure 3k were validated by flow cytometry analysis (Fig. 3l and Extended Data Fig. 8b). Our data
181 indicate that the direct rather than indirect inhibitor of FXa could diminish FXa-mediated blockade

182 of viral entry by inhibiting the cleavage of S protein by FXa so that intact S protein can efficiently
183 bind to ACE2. We repeated these experiments with live SARS-CoV-2 and MA104 cells
184 demonstrating identical results (Fig. 3m).

185 To evaluate the potential effect of FXa *in vivo*, we used humanized K18-hACE2 mice as an
186 infection model of SARS-CoV-2^{21,22} and inoculated them with 3×10^5 pfu SARS-CoV-2, followed
187 by intranasal administration of the FXa-Fc protein or two controls, saline and the Fc protein. The
188 body weight of the mice was monitored. We found that the majority of mice in the untreated and
189 Fc-treated groups exhibited a dramatic decrease in their body weight at day 5 and were euthanized
190 at that time or shortly thereafter, while three of the five mice treated with FXa-Fc started the
191 recovery of their body weight at day 7 (Fig. 4a). The FXa-Fc treated group lived significantly
192 longer than the two control groups, with no difference between the control groups (Fig. 4b). We
193 isolated RNA and used quantitative real-time PCR to measure the viral load in trachea, lung, and
194 brain tissues. Viral load in the FXa-Fc treated group was approximately 1,000-fold lower than that
195 of the two control groups, indicating that FXa-Fc significantly restricted SARS-CoV-2 infection
196 *in vivo* (Fig. 4, c, d, and e). Consistent with this, IHC showed that expression of viral nucleocapsid
197 protein (NP) was also markedly decreased in the brain and lung tissues from the FXa-Fc treated
198 group compared to the untreated and Fc-treated group (Fig. 4f). The histological study showed that
199 FXa-Fc-treated mice had more intact lung structure and less pathological damage compared to the
200 two control groups (Fig. 4f). To evaluate the effects of the two types of FXa inhibitors, the direct
201 inhibitor RIVA and the indirect inhibitor FONDA *in vivo*, we were administrated into FXa-treated
202 (intranasally) SARS-CoV-2-infected mice. Consistent with the *in vitro* data, we found that direct
203 FXa inhibitor RIVA significantly blocked the anti-viral and survival advantage afforded by
204 intranasal administration of FXa-Fc, while the indirect FXa inhibitor FONDA had no significant
205 effect on the anti-viral and survival advantage afforded by intranasal administration of FXa-Fc
206 alone (Fig. 5, a-e). These *in vivo* results with live SARS-CoV-2 provide preclinical support for
207 the use of an indirect FXa inhibitor such as FONDA as an anti-coagulant when preventing or
208 treating thrombotic complications of COVID-19, while avoiding the use of a direct FXa inhibitor
209 such as the anti-coagulant RIVA under similar clinical circumstances.

210 A variant of SARS-CoV-2 (known as B.1.1.7), which was emerged with a large number of
211 mutations, may be associated with an increased transmissibility and risk of death compared with
212 other variants^{23,24}. By analyzing the S protein sequence of the B.1.1.7 variant, we found there is a

213 nonsynonymous mutation A570D in the S protein close to the predicted FXa cleavage site. In order
214 to evaluate the effect of the anti-viral function of FXa on the variant, we infected the Vero E6 and
215 MA104 cells with the original emergent SARS-CoV-2 (wild-type; WT) or B.1.1.7 virus pretreated
216 with different concentrations of FXa. The immuno-plaque results showed that the anti-viral effect
217 of FXa was significantly and dramatically decreased against B.1.1.7 variant infection compared to
218 the WT infection (Fig. 6a). Furthermore, the results were confirmed by viral infection with various
219 MOIs, which showed that FXa could still block WT infection even at a very high MOI (MOI=8),
220 but had little effect on B.1.1.7 infection blockade at the same MOI (Fig. 6b). To figure out the
221 mechanism of this difference, we detected the binding affinity between FXa and WT S protein or
222 B.1.1.7 S protein. Both ELISA and flow cytometry results showed that FXa had a significantly
223 lower binding affinity with B.1.1.7 S protein compared to that with WT S protein (Fig. 6, c and d),
224 indicating that the mutants on B.1.1.7 S protein blocked FXa anti-viral effect by affecting the
225 binding affinity of FXa to the S protein. We also tested the effects of the direct and indirect FXa
226 inhibitors in the B.1.1.7 variant infection using the WT strain as control. We found that RIVA
227 could efficiently block the anti-viral effect of FXa in a dose-dependent manner starting as low as
228 0.05 μ g/ml dose, while FONDA did not even at the high dose of 50 μ g/ml, against the B.1.1.7
229 variant infection in both Vero E6 and MA104 hosts (Extended Data Fig. 9a and b). These data
230 were validated in similar experiments with gradient concentrations of FXa in both Vero E6 and
231 MA104 hosts (Extended Data Fig. 10 and 11).

232 Next, we compared the anti-viral effect of FXa against WT and B.1.1.7 infection *in vivo*.
233 Consistent with the *in vitro* data, we found that the anti-viral and survival advantage afforded by
234 FXa-Fc was abolished or significantly decreased in the B.1.1.7 variant-infected group compared
235 to the WT-infected group (Fig. 7, a-d). Collectively, our data demonstrate that the variant B.1.1.7
236 strain with a mutated spike protein was resistant to the FXa inhibition *in vitro* and *in vivo* compared
237 to the WT strain, which might explain the higher transmission²⁵⁻²⁷ and mortality²⁸ rates for this
238 dangerous variant of concern.

239

240

241 **Discussion**

242 Here we identify a novel mechanism of human host anti-viral defense involving FXa at the time
243 of SARS-CoV-2 infection, which binds to and cleaves viral S protein, blocking viral entry into
244 host cells. Exogenous administration of FXa reduced viral load and protected a humanized hACE2
245 mouse model of COVID-19 from lethal infection, an effect that was attenuated by a direct but not
246 indirect FXa inhibitor and anti-coagulant, which has implications for clinical therapeutic
247 responses.

248 SARS-CoV-2 is a newly emergent human pathogen that utilizes the ACE2 receptor to enter host
249 cells. Proteolytic processing S protein by SPs such TMPRSS2, furin, and trypsin enhances the
250 binding affinity between host ACE2 and the processed S protein¹⁰. In the course of infection,
251 unlike the immune tolerance exhibited by bats, in human SARS-CoV-2 at times excessively
252 activates the inflammatory components of the immune system of humans leading to the cytokine
253 release syndrome²⁹, which can be fatal in some, yet non-existent in others with the same exposure
254³⁰. Therefore, identification of the body's natural defense mechanisms against SARS-CoV-2 is
255 important for developing effective prevention as well as therapeutic strategies. Our report here of
256 a natural defense mechanism involving the binding to and cleavage of the SARS-CoV-2 S protein
257 by FXa, effectively blocking viral entry into host cells, may lead to the development of such
258 strategies. Like TMPRSS2 and furin, FXa belongs to the family of SPs that each cleave S protein,
259 but have different cleavage targets and subsequent effects on viral entry into host cells. TMPRSS2
260 and furin cleave the S protein at the S1/S2 site of at RRAR (685R), followed by the S2' site KPSKR
261 (R856), resulting in priming the SARS-CoV-2 fusion step. How the FXa cleavage of the S protein
262 blocks entry of SARS-CoV-2 into host cells is currently unknown. But our *in silico* modeling,
263 which is supported by experimental evidence, indicates that the cleavage sites of FXa on S protein
264 are at Ile-(Asp/Glu)-Gly-Arg (R1000) or Gly-Arg (R567), distinct from the S1/S2 or the S2' site.
265 This likely results in a unique conformational change of the S protein when forming a syncytium³¹.
266 The most conserved region of the RBD is between amino acids 306 to 527, which is close to the
267 FXa cleavage site (R567)⁸. As such, the cleavage by FXa near the RBD may adversely impact the
268 conserved conformation of the RBD. The S protein is a type 1 viral fusion protein with two
269 conserved heptad repeat regions, HR-N (916-950) and HR-C (1150-1185), which may form a 6-
270 helix bundle allowing for a better fusion between the viral and host cell membranes^{32,33}. The two

271 likely cleavage sites of FXa are located within the HR-N and the HR-C repeat and could impair
272 the formation of a hetero-stranded complex, impairing the fusion process.

273 The B.1.1.7 variant of concern emerged in the United Kingdom in September 2020 and has
274 demonstrated higher transmissibility²⁵⁻²⁷ and mortality²⁸. It has been shown that some vaccines
275 and neutralizing antibodies have lower efficacy from B.1.1.7 variant infection than WT strain
276 infection³⁴⁻³⁸. However, the reason for its poor outcomes remained elusive³⁹. Our description of
277 the previously unknown FXa barrier to SARS-COV-2 infection and its differential effect on the
278 B.1.1.7 variant is a possible, or at least partial, explanation. Our data showed that the variant
279 B.1.1.7 strain with a mutated spike protein was resistant to the FXa inhibition *in vitro* and *in vivo*
280 compared to the WT strain. Therefore, the host anti-viral defense system depending on FXa maybe
281 not strong enough to protect people from B.1.1.7 variant infection. The basis for the variant
282 differential could be the A570D mutation, which only emerged as a dominant change in the B.1.1.7
283 variant near the FXa cleavage site. FXa showed a significantly lower binding affinity with B.1.1.7
284 S protein compared to that with WT S protein, which might be affected by the A570D mutation in
285 the B.1.1.7 S protein. But the spike protein structure is complex and dynamic, which means more
286 distal differences could also play a role.

287 FXa is required for the conversion of prothrombin to thrombin in the clotting cascade¹², and may
288 have a role in inflammation⁴⁰. Both of these processes are dysregulated in some patients with
289 COVID-19^{30,41}. Although it is likely that the viral defense mechanism that we have described here
290 is active and important in controlling SARS-CoV-2 infection in asymptomatic and mildly
291 symptomatic individuals, the endogenous overexpression of FXa during serious SARS-CoV-2
292 infection may also contribute to the pathogenesis and complications of COVID-19, especially the
293 thrombotic events^{41,42}. Therefore, the use of FXa as a therapeutic agent is straightforward. There
294 could be at least two alternative pathways forward in considering FXa as a therapeutic agent for
295 severe SARS-CoV-2 infection. The first would be to co-administer an indirect FXa inhibitor as an
296 anti-coagulant in combination with the FXa-Fc fusion protein described in this report or with a
297 recombinant FXa, because we show that the indirect FXa inhibitor fondaparinux does not interfere
298 with FXa's cleavage of S protein or its therapeutic effect against the live virus *in vivo*. The second
299 approach would be to modify the chemical structure of FXa such that its enzymatic activity for
300 cleavage of the S protein is retained while that of prothrombin conversion is lost. This latter
301 approach might also be considered as a preventative approach for individuals who are not

302 vaccinated and are highly susceptible to severe COVID-19 or those same individuals who are
303 vaccinated yet fail to develop effective immunity to SARS-CoV-2.

304 There are four clinically approved direct FXa inhibitors, including rivaroxaban, apixaban,
305 edoxaban as well as betrixaban) and one indirect FXa inhibitor fondaparinux for use as anti-
306 thrombotic agents in patients with hypercoagulable states⁴³. Our study showed that in the presence
307 of a direct inhibitor of FXa, rivaroxaban, the anti-SARS-CoV-2 activity of FXa is affected not by
308 the binding of the S protein but by the cleavage of the S protein. Further, rivaroxaban completely
309 abrogates the decrease in viral load and the protective effect against lethal SARS-CoV-2 infection
310 conferred by exogenous FXa. Our study suggests that the use of direct FXa inhibitors such as
311 rivaroxaban, in patients highly susceptible for severe COVID-19 as is currently being evaluated in
312 a number of studies¹⁴, should likely proceed with caution as it is at least conceivable from our
313 work that such studies could result in an increase in viral load. Importantly, the FXa indirect
314 inhibitor , fondaparinux, which we found to not block the protective effects of FXa against SARS-
315 CoV-2, has been found to be safe and efficacious for venous thrombosis prophylaxis in
316 hospitalized COVID-19 patients²⁰.

317 The factors responsible for predicting clinical outcomes in patients stricken with COVID-19
318 remain incomplete⁴⁴. Here we show that the precursor FX of FXa is upregulated in COVID-19
319 patients. We identify a new mechanism of anti-viral defense in human and prove its importance
320 in a transgenic animal model that mimics the human disease. Our work would suggest that future
321 studies should examine the quality and quantity of FXa enzymatic activity against the SARS-CoV-
322 2 S protein to determine if it can improve our understanding of who may be most susceptible to
323 SARS-CoV-2 infection and who might be treated with an FXa indirect anti-coagulant inhibitor.

324

325

326 REFERENCES

327

328 1 Hu, B., Guo, H., Zhou, P. & Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. *Nat Rev Microbiol*, doi:10.1038/s41579-020-00459-7 (2020).

329 2 Worldometer. *Worldometer's COVID-19 data.*, <https://www.worldometers.info/coronavirus/country/us/> (2020).

330 3 Polack, F. P. *et al.* Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *N Engl J Med* **383**, 2603-2615, doi:10.1056/NEJMoa2034577 (2020).

331 4 Li, W. *et al.* High Potency of a Bivalent Human VH Domain in SARS-CoV-2 Animal Models. *Cell* **183**, 429-441 e416, doi:10.1016/j.cell.2020.09.007 (2020).

332 5 Shi, R. *et al.* A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. *Nature* **584**, 120-124, doi:10.1038/s41586-020-2381-y (2020).

333 6 Dai, L. *et al.* A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS. *Cell* **182**, 722-733 e711, doi:10.1016/j.cell.2020.06.035 (2020).

334 7 Meyerowitz, E. A., Richterman, A., Gandhi, R. T. & Sax, P. E. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. *Ann Intern Med*, doi:10.7326/M20-5008 (2020).

335 8 Wang, Q. *et al.* Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. *Cell* **181**, 894-904 e899, doi:10.1016/j.cell.2020.03.045 (2020).

336 9 Hoffmann, M., Kleine-Weber, H. & Pohlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. *Mol Cell* **78**, 779-784 e775, doi:10.1016/j.molcel.2020.04.022 (2020).

337 10 Hoffmann, M. *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280 e278, doi:10.1016/j.cell.2020.02.052 (2020).

338 11 Bestle, D. *et al.* TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. *Life Sci Alliance* **3**, doi:10.26508/lsa.202000786 (2020).

339 12 Golino, P. *et al.* Involvement of tissue factor pathway inhibitor in the coronary circulation of patients with acute coronary syndromes. *Circulation* **108**, 2864-2869, doi:10.1161/01.CIR.0000105900.21445.3D (2003).

340 13 Lu, G. *et al.* A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. *Nat Med* **19**, 446-451, doi:10.1038/nm.3102 (2013).

341 14 Al-Horani, R. A. Potential Therapeutic Roles for Direct Factor Xa Inhibitors in Coronavirus Infections. *Am J Cardiovasc Drugs* **20**, 525-533, doi:10.1007/s40256-020-00438-6 (2020).

342 15 Koklic, T., Majumder, R., Weinreb, G. E. & Lentz, B. R. Factor XA binding to phosphatidylserine-containing membranes produces an inactive membrane-bound dimer. *Biophys J* **97**, 2232-2241, doi:10.1016/j.bpj.2009.07.043 (2009).

343 16 Chen, J., Wu, H., Yu, Y. & Tang, N. Pulmonary alveolar regeneration in adult COVID-19 patients. *Cell Res* **30**, 708-710, doi:10.1038/s41422-020-0369-7 (2020).

344 17 George, P. M., Wells, A. U. & Jenkins, R. G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. *Lancet Respir Med* **8**, 807-815, doi:10.1016/S2213-2600(20)30225-3 (2020).

345 18 Zang, R. *et al.* Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. *Proc Natl Acad Sci U S A* **117**, 32105-32113, doi:10.1073/pnas.2012197117 (2020).

346 19 Korber, B. *et al.* Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. *Cell* **182**, 812-827 e819, doi:10.1016/j.cell.2020.06.043 (2020).

372 20 Russo, V. *et al.* Thromboprofilaxys With Fondaparinux vs. Enoxaparin in Hospitalized COVID-19
373 Patients: A Multicenter Italian Observational Study. *Front Med (Lausanne)* **7**, 569567,
374 doi:10.3389/fmed.2020.569567 (2020).

375 21 Oladunni, F. S. *et al.* Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting
376 enzyme 2 transgenic mice. *Nature communications* **11**, 6122, doi:10.1038/s41467-020-19891-7
377 (2020).

378 22 Dong, W. *et al.* The K18-hACE2 Transgenic Mouse Model Recapitulates Non-Severe and Severe
379 COVID-19 in Response to Infectious Dose of SARS-CoV-2 Virus. 2021.2005.2008.443244,
380 doi:10.1101/2021.05.08.443244 %J bioRxiv (2021).

381 23 Volz, E. *et al.* Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. *Nature* **593**, 266-
382 269, doi:10.1038/s41586-021-03470-x (2021).

383 24 Davies, N. G. *et al.* Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7.
384 *Nature* **593**, 270-274, doi:10.1038/s41586-021-03426-1 (2021).

385 25 Volz, E. *et al.* Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. *Nature*,
386 doi:10.1038/s41586-021-03470-x (2021).

387 26 Davies, N. G. *et al.* Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7.
388 *Nature*, doi:10.1038/s41586-021-03426-1 (2021).

389 27 Davies, N. G. *et al.* Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.
390 *Science*, doi:10.1126/science.abg3055 (2021).

391 28 Grint, D. J. *et al.* Case fatality risk of the SARS-CoV-2 variant of concern B.1.1.7 in England, 16
392 November to 5 February. *Euro Surveill* **26**, doi:10.2807/1560-7917.ES.2021.26.11.2100256 (2021).

393 29 Irving, A. T., Ahn, M., Goh, G., Anderson, D. E. & Wang, L. F. Lessons from the host defences of
394 bats, a unique viral reservoir. *Nature* **589**, 363-370, doi:10.1038/s41586-020-03128-0 (2021).

395 30 Jose, R. J. & Manuel, A. COVID-19 cytokine storm: the interplay between inflammation and
396 coagulation. *Lancet Respir Med* **8**, e46-e47, doi:10.1016/S2213-2600(20)30216-2 (2020).

397 31 Jaimes, J. A., Millet, J. K. & Whittaker, G. R. Proteolytic Cleavage of the SARS-CoV-2 Spike Protein
398 and the Role of the Novel S1/S2 Site. *iScience* **23**, 101212, doi:10.1016/j.isci.2020.101212 (2020).

399 32 Xia, S. *et al.* Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike
400 protein. *Cell Mol Immunol* **17**, 765-767, doi:10.1038/s41423-020-0374-2 (2020).

401 33 Huang, Y., Yang, C., Xu, X. F., Xu, W. & Liu, S. W. Structural and functional properties of SARS-CoV-
402 2 spike protein: potential antivirus drug development for COVID-19. *Acta Pharmacol Sin* **41**, 1141-
403 1149, doi:10.1038/s41401-020-0485-4 (2020).

404 34 Wu, K. *et al.* Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine. *N Engl J Med*,
405 doi:10.1056/NEJMc2102179 (2021).

406 35 Collier, D. A. *et al.* Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. *Nature*,
407 doi:10.1038/s41586-021-03412-7 (2021).

408 36 Edara, V. V. *et al.* Infection and mRNA-1273 vaccine antibodies neutralize SARS-CoV-2 UK variant.
409 *medRxiv*, doi:10.1101/2021.02.02.21250799 (2021).

410 37 Wang, P. *et al.* Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. *Nature*,
411 doi:10.1038/s41586-021-03398-2 (2021).

412 38 Shen, X. *et al.* SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by
413 ancestral spike vaccines. *Cell Host Microbe*, doi:10.1016/j.chom.2021.03.002 (2021).

414 39 Plante, J. A., B. M. Mitchell, K. S. Plante, K. Debbink, S. C. Weaver, V. D. Menachery. The variant
415 gambit: COVID-19's next move. *Cell Host Microbe* **29**,
416 doi:https://doi.org/10.1016/j.chom.2021.02.020 (2021).

417 40 Bukowska, A. *et al.* Coagulation factor Xa induces an inflammatory signalling by activation of
418 protease-activated receptors in human atrial tissue. *Eur J Pharmacol* **718**, 114-123,
419 doi:10.1016/j.ejphar.2013.09.006 (2013).

420 41 Al-Samkari, H. *et al.* COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-
421 CoV-2 infection. *Blood* **136**, 489-500, doi:10.1182/blood.2020006520 (2020).
422 42 Wichmann, D. *et al.* Autopsy Findings and Venous Thromboembolism in Patients With COVID-19:
423 A Prospective Cohort Study. *Ann Intern Med* **173**, 268-277, doi:10.7326/M20-2003 (2020).
424 43 Rupprecht, H. J. & Blank, R. Clinical pharmacology of direct and indirect factor Xa inhibitors. *Drugs*
425 **70**, 2153-2170, doi:10.2165/11538030-000000000-00000 (2010).
426 44 Richardson, S. *et al.* Presenting Characteristics, Comorbidities, and Outcomes Among 5700
427 Patients Hospitalized With COVID-19 in the New York City Area. *JAMA* **323**, 2052-2059,
428 doi:10.1001/jama.2020.6775 (2020).

429

430 **Methods**

431 **Patient sample collection**

432 Patients were collected and tested positive for SARS-CoV-2 at City of Hope. Autopsy samples
433 were provided by Dr. Ross Zumwalt at the University of New Mexico School of Medicine. The
434 concentration of FXa in the serum of patient samples was measured using ELISA (LS-F10420-1,
435 LSBIO). The protocols for human specimen collection were approved by the institutional review
436 board of City of Hope.

437 **Cells**

438 Monkey kidney epithelial-derived MA104 cells were maintained in medium 199 supplemented
439 with 10% FBS, penicillin (100 U/ml), and streptomycin (100 µg/ml). To overexpress FXa in
440 MA104 cells, the cells were infected with lentivirus encoding FXa to generate MA104-FXa cells.
441 Monkey kidney epithelium-derived Vero cells, Vero E6 cells, human embryonic kidney-derived
442 HEK293T cells, and Chinese hamster ovary (CHO) cells were cultured in DMEM with 10% FBS,
443 penicillin (100 U/ml), and streptomycin (100 µg/ml). All cell lines were routinely tested to confirm
444 absence of mycoplasma using the MycoAlert Plus Mycoplasma Detection Kit from Lonza
445 (Walkersville, MD).

446 **VSV-SARS-CoV-2 infection**

447 The VSV-SARS-CoV-2 chimeric virus expressing GFP was kindly provided by Sean Whelan at
448 Washington University School of Medicine. The virus is decorated with SARS-CoV-2 S protein
449 in place of the native glycoprotein (G)¹. For VSV-SARS-CoV-2 infection, MA104 cells were
450 seeded 24 hours before the infection at a confluence of 70% in a 96-well plate. VSV-SARS-CoV-
451 2 virus and varying amounts (12.5 µg/ml, 25 µg/ml, 50 µg/ml, and 100 µg/ml) of the FXa-Fc

452 fusion protein were co-incubated at 37°C for 1 hour and then were added to the cells. To assess
453 the effect of FXa inhibitors, FXa protein was preincubated with or without 50 µg/ml rivaroxaban
454 or fondaparinux separately for 1 hour at room temperature. Infectivity was assessed by detecting
455 GFP fluorescence using a Zeiss fluorescence microscope (AXIO observer 7) and/or determined by
456 the percentage of GFP(+) cells analyzed using a Fortessa X20 flow cytometer (BD Biosciences)
457 at 16, 24, 36, and 48 hours post infection (hpi). To determine viral production, Vero cells were
458 pre-seeded for 24 hours and infected with the supernatants collected from MA104 cells infected
459 by VSV-SARS-CoV at 24 or 48 hpi. The supernatants were diluted by 5-fold before the viral
460 production assay.

461 **Generation and purification of FXa**

462 CHO cells were transduced with a pCDH lentiviral vector expressing FXa to produce the FXa-Fc
463 fusion protein for functionality assays. For this purpose, FXa fused with human IgG4 was
464 reconstructed as previously reported². mCherry was co-expressed with FXa for FACS-sorting to
465 purify transduced cells using a FACS Aria II cell sorter (BD Biosciences, San Jose, CA, USA).
466 Conditional supernatants from lentivirus-infected CHO cells sorted by FACS were used to purify
467 the FXa-Fc fusion protein using a protein G column (89927, Thermo Fisher). For *in vivo* testing,
468 the protein G column-purified FXa-Fc fusion protein was desalted using fast protein liquid
469 chromatography (FPLC).

470 **SARS-CoV-2 neutralization, cell infection, plaque assay, and immunoplaque assay**

471 The following reagent was obtained through BEI Resources, NIAID, NIH: SARS-Related
472 Coronavirus 2, Isolate USA-WA1/2020, NR-52281 (wild-type, WT) and SARS-Related
473 Coronavirus 2, Isolate USA/CA_CDC_5574/2020, NR-54011 (B.1.1.7). Virus isolates were
474 passaged in Vero E6 cells (ATCC CRL-1586) as previously described³. Virus concentration was
475 determined using immunoplaque assay (also called focus forming assay)⁴. For the plaque assay,
476 120 pfu SARS-CoV-2 was incubated with diluted sera for 2 hours at 37 °C. Then Vero E6 cells
477 were infected with 250 µl virus-sera mixture for 1 hour. After infection, the medium containing
478 virus was removed, and overlay medium containing FBS-free DMEM and 2% low-melting point
479 agarose was added. At 72 hours post infection, infected cells were fixed by 4% paraformaldehyde
480 (PFA) overnight, and stained with 0.2% crystal violet. For the immunoplaque assay, 100 pfu of
481 live SARS-CoV-2 variants were incubated with diluted sera for 1 hour and then the virus antibody

482 mixture was added to Vero E6 cells for 1 hour at 37°C. After 1 hour the virus containing medium
483 was removed, overlayed with medium containing methylcellulose and 2% FBS DMEM, and
484 incubated at 37°C. At 24 hours after infection, infected cells were fixed by 4% paraformaldehyde
485 for 20 minutes at room temperature and then permeabilized by 0.5% Triton X-100/ PBS solution
486 for 210 minutes at room temperature. SARS-CoV-2 viral nucleocapsid protein (NP) was detected
487 using the anti-NP protein antibody (PA5-81794, Thermo Fisher) diluted 1:10000 in 0.1% tween-
488 20/1%BSA/PBS solution as a primary antibody, followed by detecting with an anti-rabbit
489 secondary antibody (ab6721, Abcam) at a 1:20,000 dilution. Plates were washed three times
490 between antibody solutions using 0.5% tween-20 in PBS. The plates were developed using
491 TrueBlue Peroxidase Substrate (5510-0030, Sera Care) and then scanned using Immunospot S6
492 Sentry (C.T.L Analyzers). Neutralization titers for the immunoplaque assay are defined as a 50%
493 reduction in plaque forming units relative to the untreated wells.

494 **Assessment of binding between S protein and FXa using ELISA**

495 Full-length coronavirus S protein with His tag (500 ng) (40589-V08B1, Sino Biological),
496 coronavirus S protein S1 subunit with His tag (500 ng) (40591-V08B1, Sino Biological),
497 coronavirus S protein S2 subunit with His tag (500 ng) (40070-V08B, Sino Biological), and
498 coronavirus S protein RBD with His tag (500 ng) (40592-V08B-B, Sino Biological) were used as
499 coating reagents in 96-well plates (3361, Corning). Coated plates were incubated with FXa protein
500 (1 µg/ml) for 2 hours at room temperature. FXa-HRP conjugated anti-human Fc antibody (05-
501 4220, Invitrogen) was used as a detecting antibody. Absorbance was measured at OD450 nm using
502 a Multiskan™ FC Microplate Photometer (Fisher Scientific).

503 **Pull-down assay**

504 HEK293T cells were transduced with a pCDH lentiviral vector expressing the full-length spike (S)
505 protein for 48 hours. The cells were lysed and incubated with FXa-Fc or Fc (10 µg/ml) for 3 hours,
506 then 20 µl protein A agarose resin beads (P-400-25, Invitrogen) were added and incubated
507 overnight. After incubation, the beads were washed and collected. Protein binding between FXa-
508 Fc or Fc and S protein was detected by immunoblotting using an anti-S protein antibody
509 (ab272504, Abcam).

510 **Cleavage assay**

511 One microgram of full-length S protein was treated with 1 μ g of FXa (P8010L, NEB), furin
512 (P8077S, NEB) or TMPRSS2 (TMPRSS2-1856H, Creative BioMart) protein for 3 hours following
513 the manufacturers' instructions. Cleavage was detected using immunoblotting with an anti-S
514 protein antibody. For inhibitor assays, FXa protein was preincubated with or without 50 μ g/ml
515 rivaroxaban or fondaparinux separately for 1 hour in advance at room temperature, then treated
516 with SPs and detected as above. For cleavage assays using S protein-ACE2 complex, 1 μ g S
517 protein and 1 μ g ACE2 were pre-incubated 1 hour prior to incubation with FXa, then treated with
518 SPs and detected as above. Of note, we used different buffer conditions for all binding assays and
519 cleavage assays.

520 **Assessment of binding between S protein and FXa using flow cytometry**

521 HEK293T cells were transduced with lentiviral vector expressing FXa for 48 hours. The cells were
522 incubated with 10 μ g/ml full-length S protein for 20 minutes at room temperature. The cells were
523 then washed and incubated with an anti-S protein antibody for 20 minutes at room temperature,
524 followed by staining with a FITC-labeled secondary antibody (111-605-045, Jackson
525 ImmunoResearch). The percentage of FITC-positive cells was determined using a Fortessa X20
526 flow cytometer (BD Biosciences).

527 **Detection of FXa binding to S protein-ACE2 complex using ELISA**

528 ACE2 protein was used as a coating reagent in 96-well plates, which were incubated with 1 μ g/ml
529 full-length S protein with His tag that had been pretreated with or without FXa (P8010L, NEB) for
530 2 hours at room temperature. An HRP-conjugated anti-His tag antibody (ab1187, Abcam) was
531 used as a detecting antibody. Absorbance was measured at OD450 nm using a Multiskan™ FC
532 Microplate Photometer (Fisher Scientific).

533 **Detection of FXa binding to S protein-ACE2 complex using flow cytometry**

534 HEK293T cells stably expressing ACE2 protein were incubated with full-length S protein or FXa-
535 pretreated full-length S protein for 20 minutes at room temperature. Cells were then washed and
536 incubated with an anti-S protein antibody for 20 minutes at room temperature, followed by staining
537 with an APC-labeled secondary antibody (111-005-003, Jackson ImmunoResearch). The
538 percentage of APC-positive cells was determined using a Fortessa X20 flow cytometer (BD
539 Biosciences).

540 **In vivo infection model**

541 6-8-week-old K18-hACE2 mice were anesthetized with ketamine (80 mg/kg)/xylazine (8 mg/kg)
542 and intranasally infected with 5×10^3 PFU wild type SARS-CoV-2 or B.1.1.7 variant in 25 μ l
543 DMEM, followed by intranasal treatment with PBS, FXa-Fc (200 μ g), or Fc (200 μ g) in 25 μ l
544 DMEM. Infected mice were maintained in BCU isolator cages (Allentown, NJ, USA) in the NAU
545 ABLS3. Mice were then treated with PBS or rivaroxaban (30 mg/kg) via gavage or fondaparinux
546 (30 mg/kg) via intraperitoneal injection for 4 times at a frequency of every other day (30,31). Body
547 weights of mice were monitored daily. Mice were euthanized using ketamine (100 mg/kg)/xylazine
548 (10 mg/kg) when body weights dropped below 20% of their original body weights. RNA was
549 isolated from trachea, lung, and brain tissues to assess viral load using quantitative real-time PCR
550 as described below. Expression of SARS-CoV-2 viral protein NP was examined using
551 immunohistochemistry (IHC) in the trachea, lung, and brain sections from infected mice as
552 described below. Experiments and handling of mice were conducted under federal, state, and local
553 guidelines and with approvals from the Northern Arizona University (20-005) and City of Hope
554 Animal Care and Use Committees.

555 **Quantitative real-time PCR**

556 Mouse tissues were homogenized in DMEM and RNA was isolated using a PureLink RNA
557 isolation kit (K156002, Invitrogen). Viral copy numbers were detected using the One-Step QPCR
558 kit (1725150, BioRad).

559 **H&E and IHC**

560 4- μ m-thick sections were cut from paraffin blocks of lung and liver tissues from COVID-19
561 patients and non-COVID-19 donors. IHC staining with an anti-FXa protein antibody
562 (PIPA529118, Invitrogen), an anti-furin antibody (ab183495, Abcam), an anti-trypsin antibody
563 (ab200997, Abcam), or an anti-plasmin antibody (LS-C150813-1, LSBio) as a primary antibody
564 was performed by the Pathology Shared Resource Core at City of Hope Beckman Research
565 Institute. Stained slides were mounted and scanned for observation.

566 Mouse tissues isolated from experimental mice were placed in 10% neutral buffered formalin for
567 a minimum of 72 hours. After paraffin embedding, 4- μ m-thick sections were cut from the blocks.
568 H&E staining and IHC with anti-NP protein antibody (NB100-56576, Novus) as the primary

569 antibody were performed by the Pathology Shared Resource Core at City of Hope Beckman
570 Research Institute. Stained slides were mounted and scanned for observation.

571 **Statistical analysis**

572 Prism software v.8 (GraphPad, CA, USA) and SAS v.9.4 (SAS Institute. NC, USA) were used to
573 perform statistical analyses. For continuous endpoints that were normally distributed or normally
574 distributed after log transformation such as MFI or copy number, Student's *t* test or paired *t* test
575 was used to compare two independent or matched groups, respectively. One-way ANOVA models
576 or generalized linear models were used to compare three or more independent groups. For data
577 with repeated measures from the same subject, linear mixed models were used to account for the
578 variance and covariance structure due to repeated measures. Survival functions were estimated
579 using the Kaplan–Meier method and compared using the two-sided log rank test. All tests were
580 two-sided. P values were adjusted for multiple comparisons using Holm's procedure. A P value of
581 0.05 or less was considered statistically significant. The p-values are represented as: * <0.05, **
582 <0.01, *** <0.001, and **** <0.0001

583

584 **Methods references**

585 1 Zang, R. *et al.* Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking
586 membrane fusion. *Proc Natl Acad Sci U S A* **117**, 32105-32113, doi:10.1073/pnas.2012197117 (2020).

587 2 Peters, R. T. *et al.* Prolonged activity of factor IX as a monomeric Fc fusion protein. *Blood* **115**,
588 2057-2064, doi:10.1182/blood-2009-08-239665 (2010).

589 3 Stone, N. E. *et al.* Stenoparib, an Inhibitor of Cellular Poly(ADP-Ribose) Polymerase, Blocks
590 Replication of the SARS-CoV-2 and HCoV-NL63 Human Coronaviruses In Vitro. *mBio* **12**,
591 doi:10.1128/mBio.03495-20 (2021).

592 4 Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Growth, detection,
593 quantification, and inactivation of SARS-CoV-2. *Virology* **548**, 39-48,
594 doi:10.1016/j.virol.2020.05.015 (2020).

595

596

597 **ACKNOWLEDGMENTS**

598 This work was supported by grants from the NIH (NS106170, AI129582, CA247550, and
599 CA223400 to J. Yu; CA210087, CA068458, and CA163205 to M.A. Caligiuri), the Leukemia and

600 Lymphoma Society (1364-19 to J. Yu), The California Institute for Regenerative Medicine
601 (DISC2COVID19-11947 to J. Yu), and The Flinn Foundation grant 2304 (PK and BB) and
602 Arizona Board of Regents TRIF award (PK).

603

604 **AUTHORS' CONTRIBUTIONS**

605 J. Yu, M.A. Caligiuri, and W. Dong conceived and designed the project. J. Yu, M.A. Caligiuri, W.
606 Dong, J. Wang, L. Tian, H. Mead, S. Jaramillo, E. Settles, P. Keim and B. Barker designed and
607 supervised experiments conducted in the laboratories. Dong, J. Wang, L. Tian, J. Zhang, A. Li,
608 performed experiments and/or data analyses. R. Zumwalt provided the COVID-19 patient samples.
609 S. Whelan provided VSV-SARS-CoV-2. W. Dong, L. Tian, E. Settles, P. Keim, B. Barker, J. Yu,
610 and M.A. Caligiuri wrote, reviewed and/or revised the paper. All authors discussed the results and
611 commented on the manuscript.

612

613 **DECLARATION OF INTERESTS**

614 No author has a direct conflict of interest relevant to this research to declare.

615

616

617

618

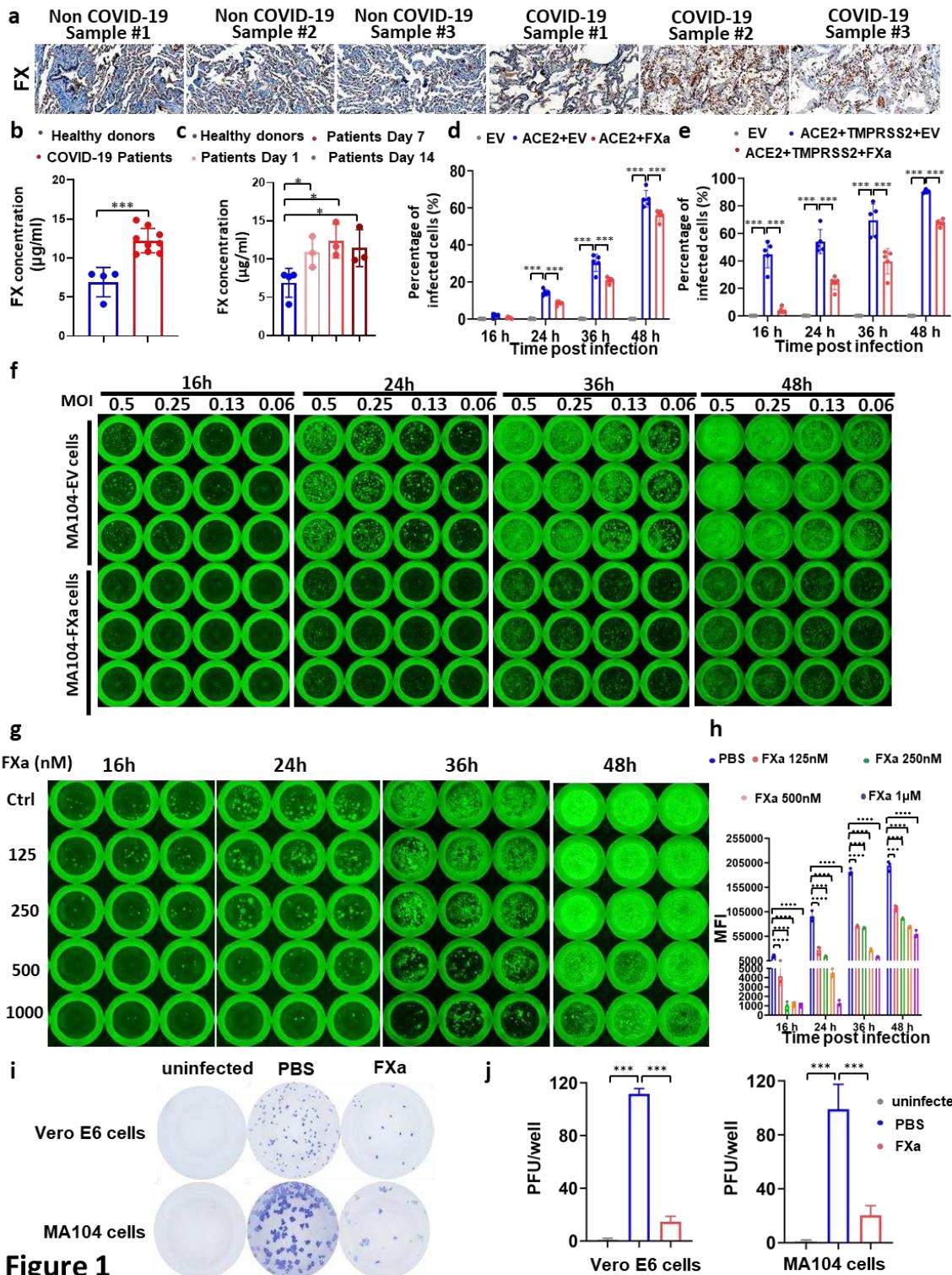
619

620

621

622

623


624

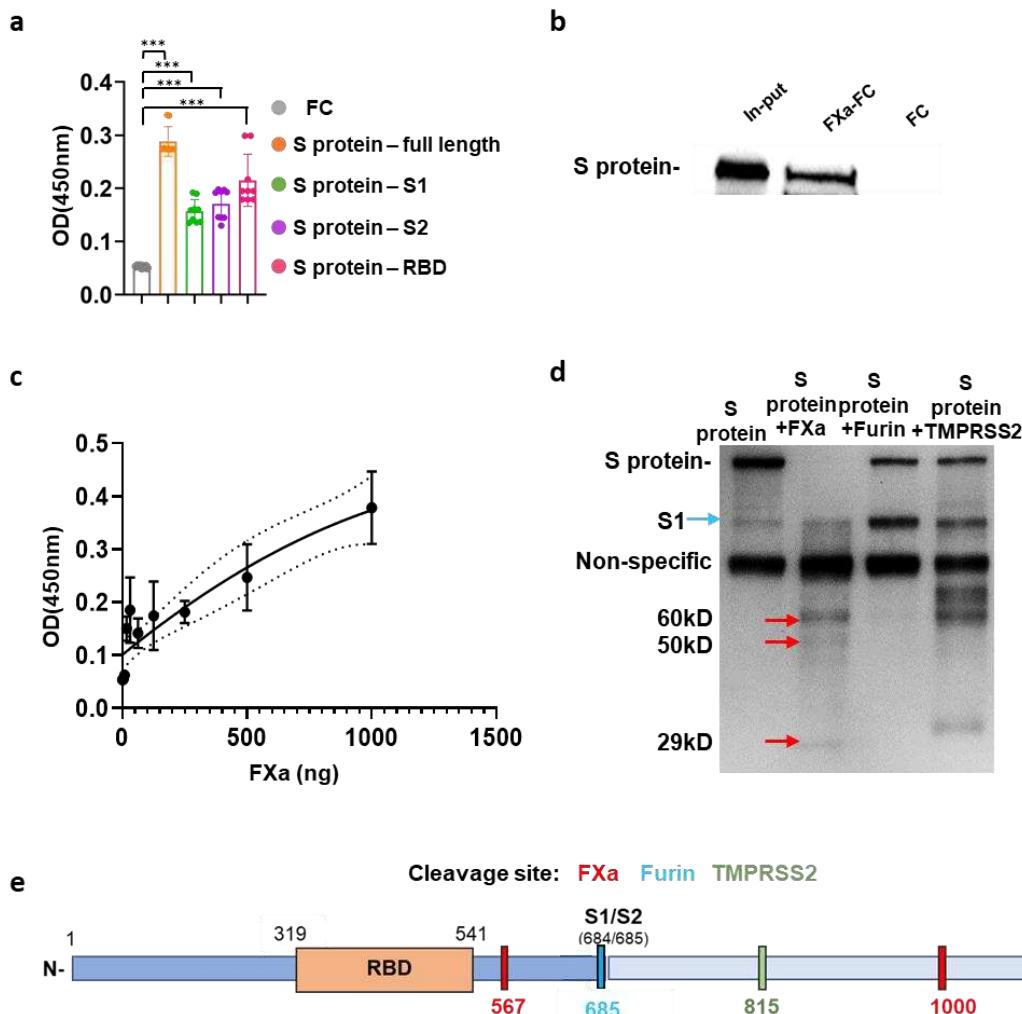
625

626

627

628 **Figures and Figure legends**

Figure 1


629

630 **Fig. 1. FXa inhibits wild-type SARS-CoV-2 infection by targeting viral particles. (a and b)**
631 FX protein levels in lungs (a) or serum (b) of COVID-19 patients vs. non-COVID-19 donors, using
632 IHC (a) and ELISA (b), respectively. (c) FX concentrations in serum of COVID-19 patients as
633 shown post diagnosis of infection were measured by ELISA. (d and e) HEK293T cells co-
634 transfected with ACE2 and FXa or an EV in the absence (d) or presence (e) of TMPRSS2 were
635 infected by VSV-SARS-CoV-2, and quantified by flow cytometry at 16, 24, 36, and 48 hpi. (f)
636 MA104 cells transduced with FXa (MA104-FXa) or EV (MA104-EV) were infected by VSV-
637 SARS-CoV-2 and imaged at 16, 24, 36, and 48 hpi by fluorescence microscopy. (g and h) VSV-
638 SARS-CoV-2 was preincubated with FXa at indicated concentrations 1 hour before infection. Cells
639 were imaged at 16, 24, 36, and 48 hpi by fluorescence microscopy (g) and the corresponding
640 infectivity was measured by flow cytometry (h). (i and j). MA104 and Vero E6 cells were infected
641 with live wild-type SARS-CoV-2. At 24 hpi, infectivity was measured by immune-plaque assay
642 (i). (j) The summary data of (i). Experiments in i are representative of two independent experiments
643 with similar data, and the other data are representative of at least three independent experiments.
644 For all panels, error bars indicate standard deviation (SD), and statistical analyses were performed
645 by Student's t tests (b-e) and linear mixed model (h). *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤
646 0.0001; n.s, not significant.

647

648

649

Figure 2

650

651

652 **Fig. 2. FXa suppresses viral entry by binding to and cleaving the SARS-CoV-2 S protein. (a)**
653 The binding affinity of FXa with full-length wild-type S protein, subunit S1, subunit S2, and RBD
654 was quantified by ELISA. **(b and c)** The interaction between FXa protein and full-length S protein
655 was examined by pull-down assay (b). The binding affinity at indicated concentrations of FXa was
656 measured by ELISA (c). **(d)** The cleavage of S protein by furin, TMPRSS2, and FXa was analyzed
657 by immunoblotting. **(e)** Schema of the cleavage sites for furin, TMPRSS2 and FXa on the full-
658 length S protein. **(f)** 293 T cells were co-transfected with a S protein expression plasmid and
659 various amounts of an FXa expression plasmid. S protein cleavage by FXa inside of cells was
660 analyzed by immunoblotting. All data are representative of at least three independent experiments.
661 Experiments in b and d are representative of three independent experiments with similar data. For

662 all panels, error bars indicate SD, and statistical analyses were performed by one-way ANOVA
663 models. ***P ≤ 0.001.

664

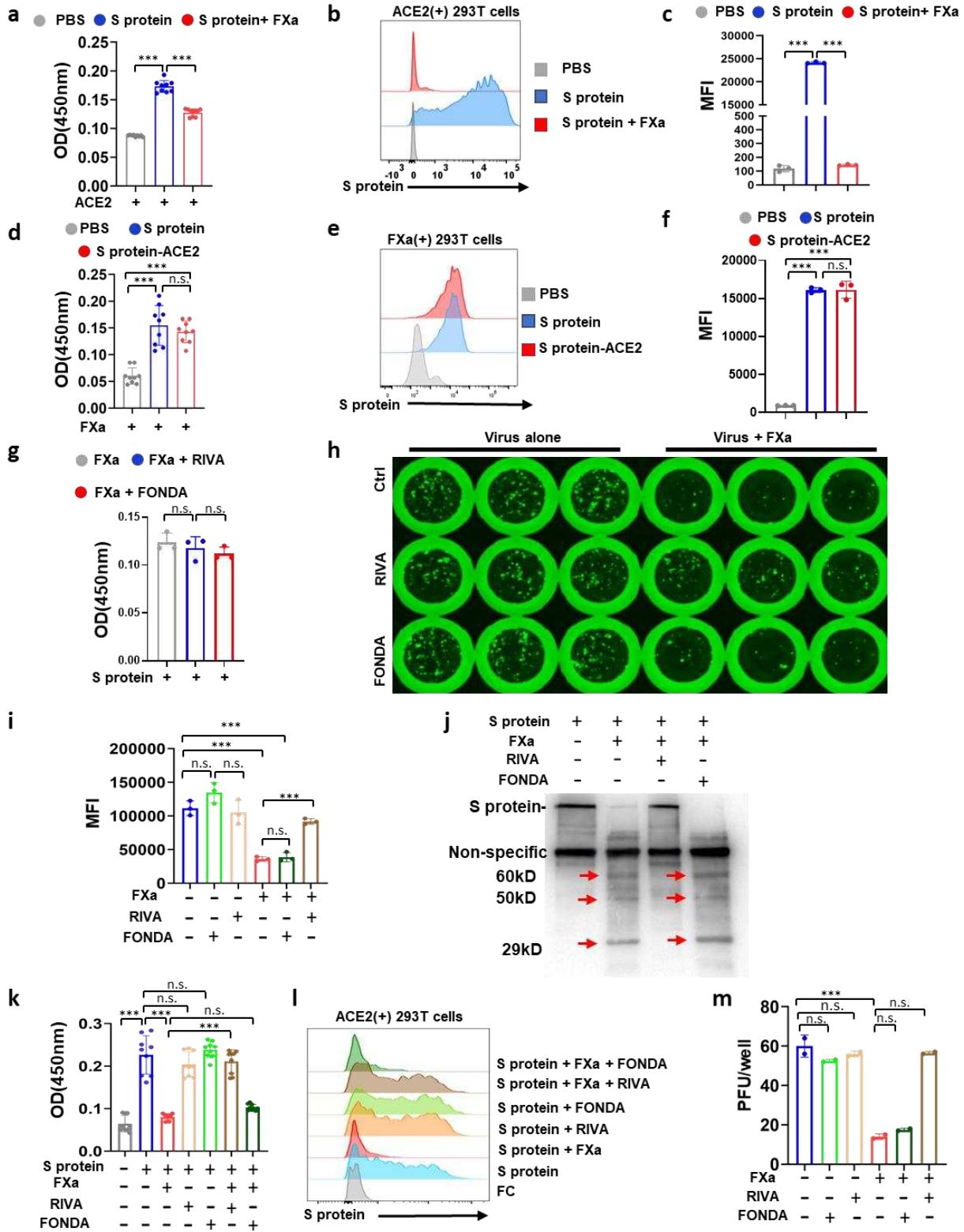
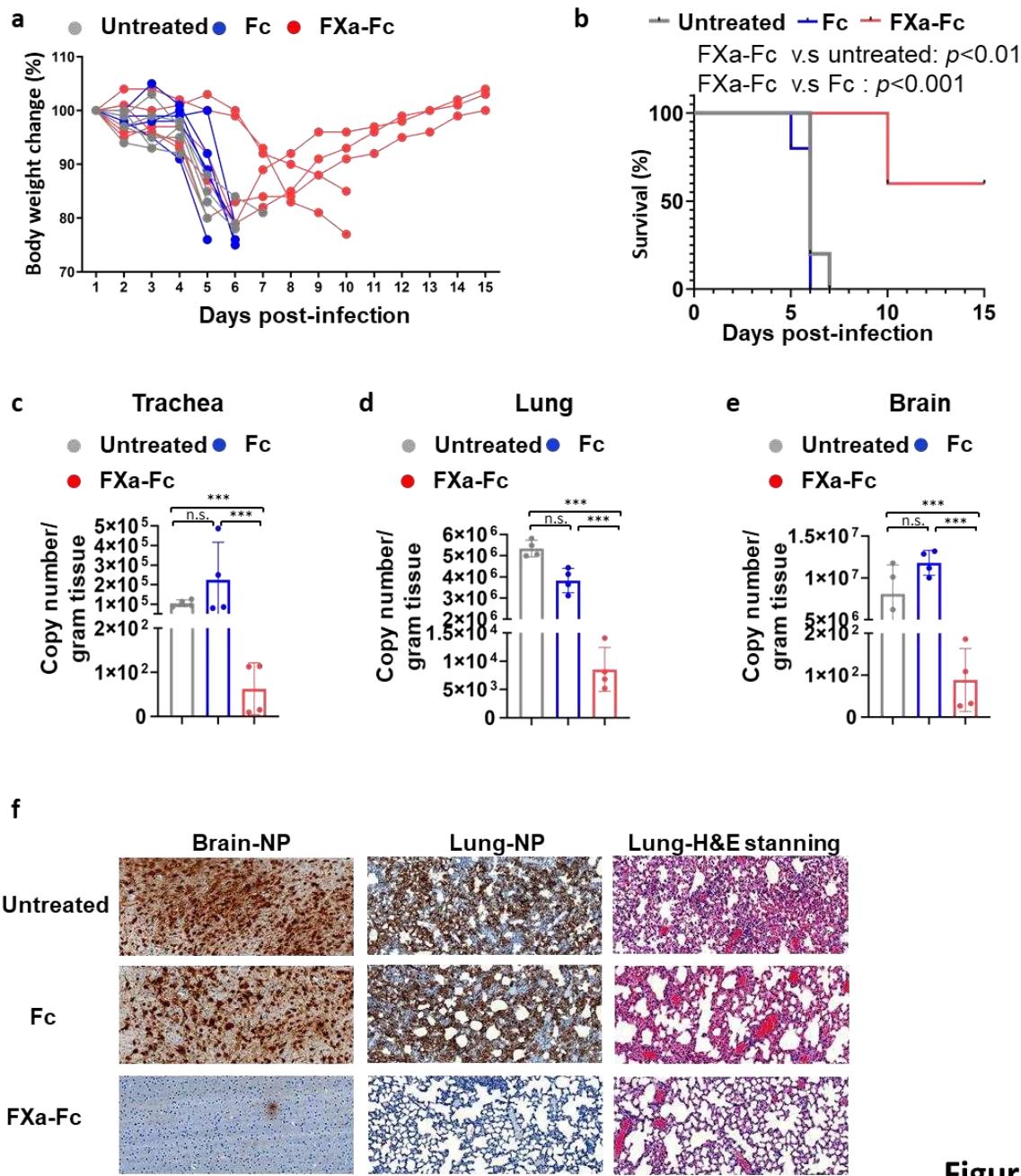



Figure 3

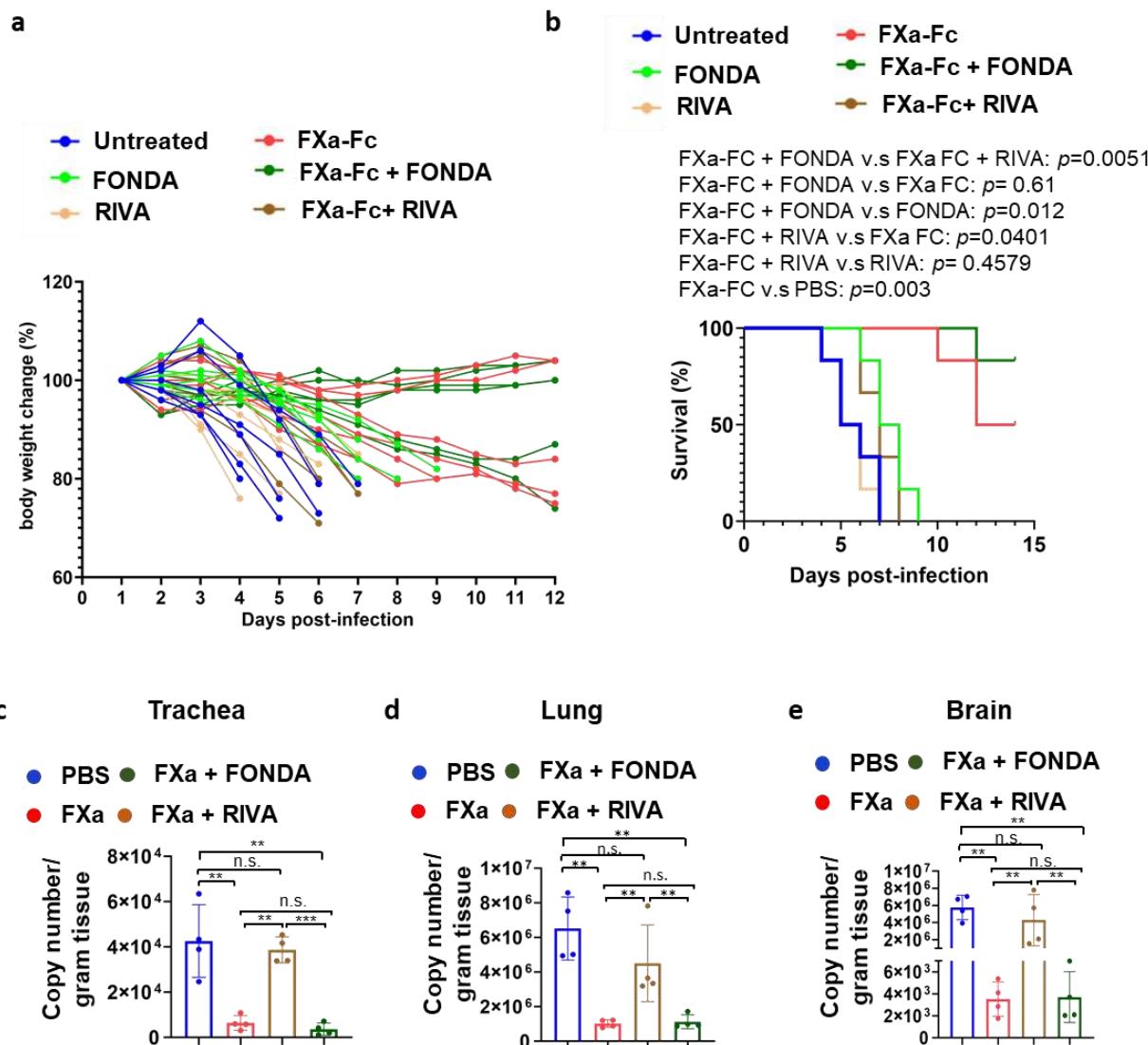
667 **Fig. 3. FXa cleavage blocks the binding between S protein and ACE2.** (a) The binding between
668 ACE2 with S protein or FXa-pretreated S protein was measured by ELISA. (b and c) The binding
669 between S protein or FXa-pretreated S protein and ACE2 expressed on 293T cells was measured
670 by flow cytometry (b and c, summary data). (d) The binding of FXa with S protein, S protein-
671 ACE2 complex, or PBS control, assessed by ELISA. (e and f) The binding between the S protein
672 or the S protein-ACE2 complex with FXa expressed on 293T cells. PBS served as control for S
673 protein and S protein-ACE2 complex. (g) The effect of RIVA or FONDA on the binding of FXa
674 with S protein was measured by ELISA. (h and i) The infectivity of FXa-pretreated vs. untreated
675 VSV-SARS-CoV-2 in MA104 cells in the presence or absence of RIVA or FONDA was examined
676 with fluorescent microscopy (h) and flow cytometry (i). (j) S protein cleavage by FXa in the
677 presence or absence of RIVA or FONDA was examined by immunoblot. (k and l) FXa pretreated
678 with or without RIVA or FONDA was incubated with S protein, followed by assessing the binding
679 capability of these S proteins with ACE2 coated on a plate (j) or expressed on 293T cells (l). (m)
680 The infectivity of FXa-pretreated vs. untreated live SARS-CoV-2 in MA104 cells in the presence
681 or absence of RIVA or FONDA was examined using an immune-plaque assay. All data are
682 representative of at least three independent experiments. Experiments in h and j are representative
683 of three independent experiments with similar data. For all panels, error bars indicate SD, and
684 statistical analyses were performed by one-way ANOVA models. ***P ≤ 0.001; n.s., not
685 significant.

686

Figure 4

687

688

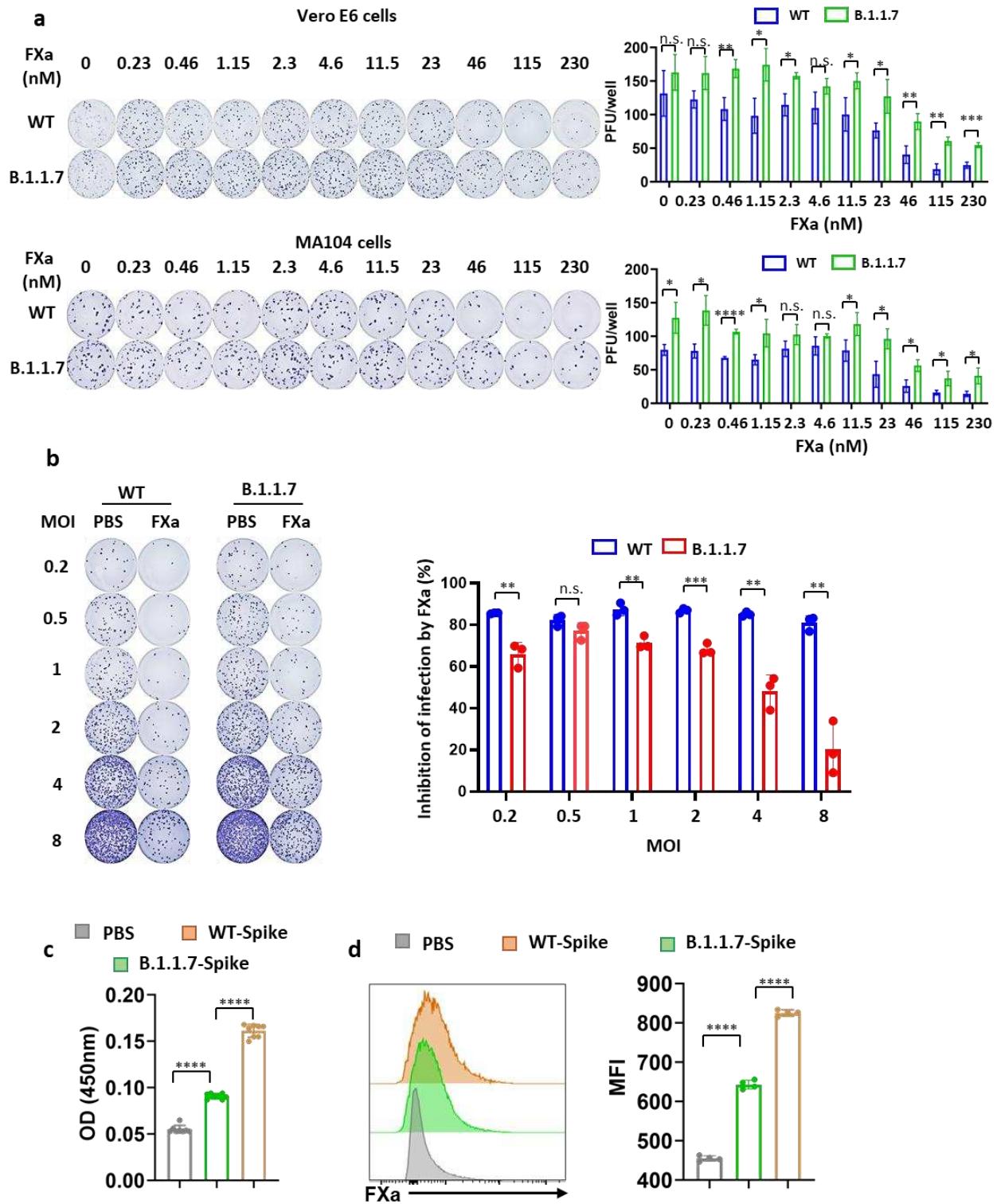

689 **Fig. 4. The effect of FXa protein on WT SARS-CoV-2 infection in a K18-hACE2 mouse**
 690 **model of COVID-19. (a and b)** Body weight (a) and survival (b) of mice infected with 3×10^5
 691 PFU SARS-CoV-2 WT strain and treated with or without FXa-Fc fusion protein. Fc-protein was
 692 used as control. (c-e) Viral load in the tracheas (c), lungs (d), and brains (e) of mice treated with
 693 or without FXa-Fc fusion protein or Fc control was assessed by Q-PCR. (f) The presence of SARS-

694 CoV-2 was determined using IHC staining with an antibody against viral nucleocapsid protein
 695 (NP) in the brain and lung of mice treated with FXa-Fc or Fc-protein. Pathological analysis of the
 696 lung of mice treated with or without FXa-Fc or Fc-protein as performed by H&E staining. For all
 697 panels, error bars indicate SD, and statistical analyses were performed by one-way ANOVA
 698 models (c, d, e) and log-rank test (b). ***P ≤ 0.001; n.s, not significant.

699

700

701

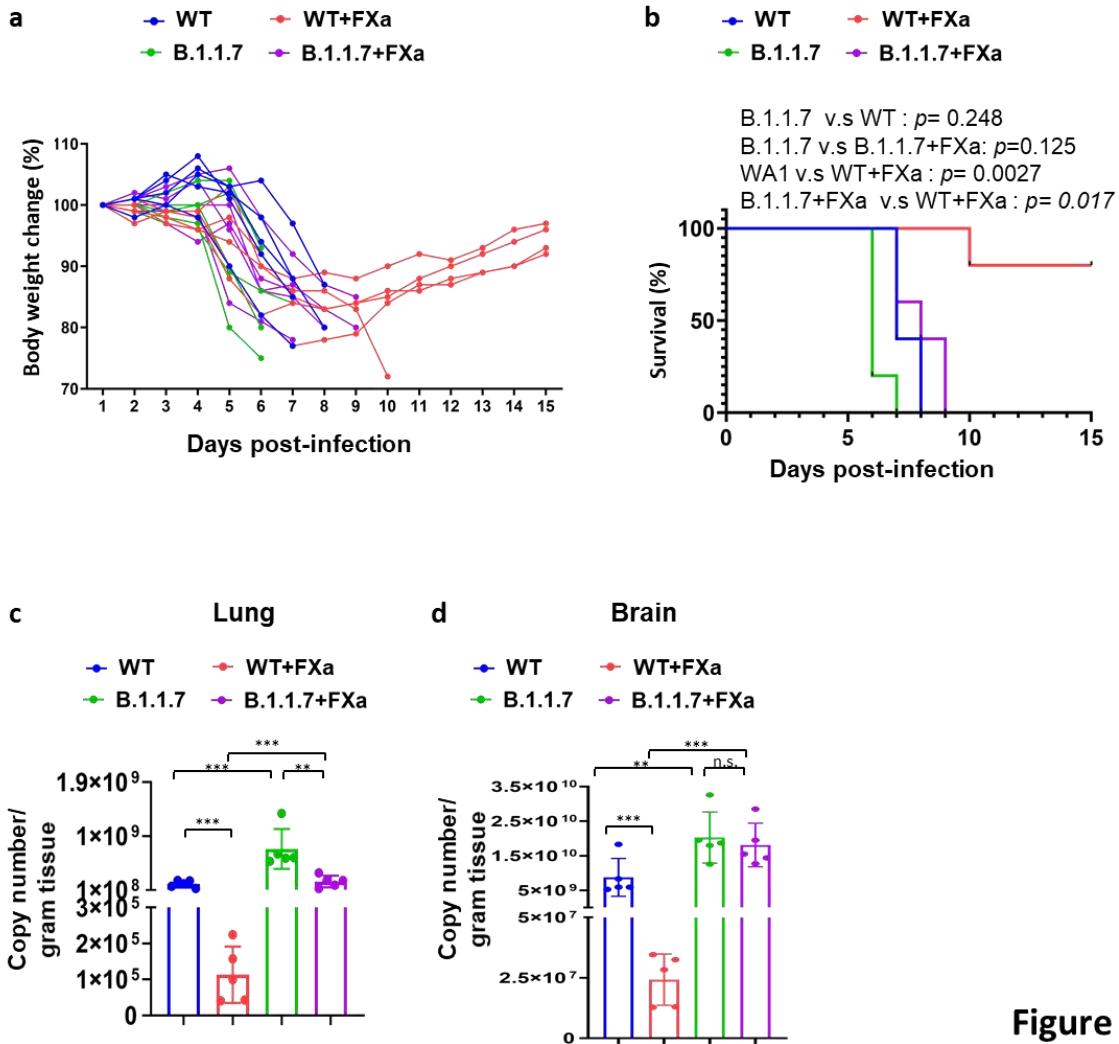


702

703

Figure 5

704 **Fig. 5. The effect of the direct FXa inhibitor RIVA and the indirect inhibitor FONDA on**
705 **FXa-mediated protection of K18-hACE2 mice from WT SARS-CoV-2 infection. (a and b)**
706 Body weight (a) and survival (b) of mice infected with 3×10^5 PFU SARS-CoV-2 (WT-1) and
707 treated with or without FXa-Fc in the presence or absence of RIVA or FONDA. (c-e) Viral load
708 in the trachea (c), lung (d), and brain (e) of mice treated with or without FXa-Fc in the presence or
709 absence of RIVA or FONDA was assessed by Q-PCR. For all panels, error bars indicate SD, and
710 statistical analyses were performed by one-way ANOVA models (c, d, e) and log-rank test (b).
711 **P \leq 0.01; ***P \leq 0.001; n.s, not significant.


712

713

Figure 6

714 **Fig. 6. FXa blocks the B.1.1.7 variant infection less efficiently compared to the WT SARS-
715 CoV-2 due to different binding affinity to the corresponding S protein. (a)** MA104 and Vero
716 E6 cells were infected with either the live wild-type or the B.1.1.7 variant of SARS-CoV-2
717 pretreated with different doses of FXa. At 24 hpi, infectivity was measured by immune-plaque
718 assay. The representative infection and the summary data are presented at the left and right,
719 respectively. **(b)** MA104 and Vero E6 cells were infected with live wild-type or the B.1.1.7 SARS-
720 CoV-2 variant pretreated with FXa at different MOIs. At 24 hpi, infectivity was measured by
721 immune-plaque assay (left panel) and the infection inhibition ratio induced by FXa at different
722 MOIs are summarized (right panel). **(c)** The binding FXa with wild-type S protein or B.1.1.7
723 variant S protein, assessed by ELISA. **(d)** The binding between wild-type S protein or B.1.1.7
724 variant S protein with FXa expressed on 293T cells, assessed by flow cytometry. PBS serves as
725 control. For all panels, error bars indicate SD, and statistical analyses were performed by one-way
726 ANOVA models. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001; n.s, not significant.

727

729 **Fig. 7. The effect of FXa protein on live B.1.1.7 variant infection in in a lethal humanized**
730 **hACE2 mouse model of SARS-CoV-2 infection. (a and b) Body weight (a) and survival (b) of**
731 **mice infected with 3×10^5 PFU wild-type SARS-CoV-2 or B.1.1.7 variant and treated with or**
732 **without FXa-Fc fusion protein. (c and d) Viral load in the lung (c) and brain (d) of mice treated**
733 **with or without FXa-Fc fusion protein was assessed by quantitative PCR. For all panels, error bars**
734 **indicate SD, and statistical analyses were performed by one-way ANOVA models (c and d) and**
735 **log-rank test (b). ***P ≤ 0.001 ; n.s, not significant.**

736
737