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The ubiquity of sex and recombination in nature has eluded unified explanation since the time
of Darwin. Conditions that promote the evolution of recombination, broadly defined as any form
of genetic mixing, are fairly well understood: it is favored when genomes tend to contain more
selectively mismatched combinations of alleles than can be explained by chance alone. Yet, while a
variety of theoretical approaches have been put forth to explain why such conditions would prevail
in natural populations, each has turned out to be of limited scope and applicability. Here, we show,
simply and surprisingly, that natural selection acting on standing heritable variation always creates
conditions favoring the evolution of recombination, in expectation. Specifically, we find that, in
expectation: 1) the mean selective advantage of recombinants is non-negative, 2) the mean selective
advantage of a recombination-competent modifier is non-negative, and 3) the asymptotic frequency
of a recombination-competent modifier is close to one and is independent of the strength of selection.
Remarkably, these findings are independent of the distribution of genic fitnesses in the standing
heritable variation upon which natural selection acts, implying that the source of this variation is
immaterial. Taken together, our findings indicate that: 1) the evolution of recombination should
be promoted in expectation wherever natural selection is operating, and 2) sex and recombination
may have evolved more as a byproduct than as a catalyst of natural selection.

I. INTRODUCTION

The oldest ideas about the evolutionary role of recom-
bination are from Weismann (1889), who argued that sex
provides increased variation for natural selection to act
upon. Since then, the amount of work that has addressed
the evolution of sex and recombination is spectacular. To
preface our developments therefore, we cover some es-
sential background and make reference to some reviews
[3–9] that give a much more complete overview of the
remarkable wealth of previous and current work in this
area. Also, we refer to our companion publications ev0

[1] and ev1 [2] for additional introductory material.
Fisher [10] and Muller [11] first provided concrete

mechanisms for an advantage to recombination. Muller
surmised that in order for separately arising beneficial
mutations to fix in the same genotype, in an asexual pop-
ulation they must arise in the same lineage sequentially,
while in a recombining population, they may arise con-
temporaneously and be subsequently reshuffled into the
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same background. Fisher argued that a single beneficial
mutation, because it arises in a single individual, has a
significant probability of arising on a non-optimal genetic
background. In an asexual population, the beneficial mu-
tation is stuck with this non-optimal background, while
in a recombining population, the background can be
swapped out for a fitter one. If the beneficial mutation is
successful, despite arising on a non-optimal background,
a second beneficial mutation may eventually arise on the
background of the first as it progresses toward fixation. If
this happens in an asexual population, Hill and Robert-
son [12, 13] found that the probability of success of the
second beneficial mutation will be depressed as a con-
sequence of arising in the growing lineage founded by
the first beneficial mutation. Generally speaking, genetic
linkage (the absence of recombination) introduces selec-
tive interference [5] that decreases the efficiency of natu-
ral selection.

Recombination can ameliorate all of these linkage-
induced hindrances to natural selection [14–17], and re-
combining populations should therefore adapt faster [18].
However, the magnitude of this benefit depends very
much upon parameter choices [19]. More fundamentally,
this process provides only a group-level benefit for sex,
and group-level explanations, besides being character-
istically viewed with suspicion in evolutionary biology,
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are unsatisfactory in that they cannot explain the origin
and fixation of sexual reproduction within a single pop-
ulation, nor explain its maintenance by evolution [20].
Therefore it is necessary to study the evolution of recom-
bination within a single population.

To do so requires consideration of an additional “mod-
ifier” gene (or locus), variants of which (or alleles) de-
termine recombination rate. An allele at this locus con-
ferring increased recombination rate is introduced into a
population at low frequency. The questions of interest
are: 1) what is the selective value of this allele? and
2) what is the fate of this allele? A variety of theoretical
studies have modeled the evolution of such recombination
modifiers. These studies have investigated mechanisms
including fluctuating selection [14, 15, 21]; negative epis-
tasis [14, 15, 22, 23]; assortative mating [24]; and finite
population effects, i.e. drift [12, 17, 25–27]. Of these, the
drift-based explanations have come into favor in recent
years as the more promising in explaining the ubiquity
of recombination [28], but the general consensus is that
some fundamental piece of the puzzle is still missing [5].

A modifier can itself be subject to the very recom-
bination it modulates and can thus have limited-term
linkage to the fitness loci whose recombination rate it
modifies. Whether the selective value of recombination
is determined by short-term or long-term effects depends
on how long a modifier will typically remain linked to
the fitness loci whose recombination rate it modifies; a
loosely-linked modifier will be affected by short-term ef-
fects whereas a tightly-linked modifier will be affected by
both short- and long-term effects. We derive the selec-
tive value and dynamics of a recombination-competent
(rec+) modifier under loose and tight modifier linkage.

To address the evolution of sex and recombination, we
have taken a reductionist approach. Our aim is restricted
to studying the effects of one very key process, namely
natural selection, in isolation (no mutation, no drift, etc),
and we distill this problem to what we believe is its most
essential form: we ask, how does the action of natural
selection, by itself, affect the selective value and fate of
recombinants and recombination? In choosing this ap-
proach, we sought analytic tractability and transparency
that might lead to robust new insights into the evolution
of sex and recombination.

In companion papers ev0 [1] and ev1 [2] , we show
that natural selection acting on standing variation has
an encompassing tendency to amplify selectively mis-
matched combinations of alleles, thereby promoting the
evolution of recombination across the products of se-
lection, defined as genotypes that have become locally
prevalent in their respective populations, subpopulations,
demes, or clones through the local action of natural se-
lection. In the present study, we assess how the selec-
tive value of recombinants and recombination are affected
during the process of natural selection within an unstruc-
tured population. In these combined studies, we find that
recombinants are favored and recombination promoted,
in expectation, as an inherent consequence of the dynam-

ics and statistical properties of selective sorting.

II. FITNESS EVOLUTION

As stated above, the goal of the present study is to fo-
cus exclusively on natural selection and ask how natural
selection, by itself, affects the selective value of recom-
binants and recombination. This goal requires a reduc-
tionist approach in which natural selection is studied in
isolation. Consequently, our evolutionary models here
retain only the natural selection terms; other, more com-
plete models that incorporate selection, mutation, drift,
and recombination, may be found in the SM; these are
presented there for completeness and to lay the ground-
work for subsequent studies.

One locus

This model is a continuous-time formulation of evo-
lution by natural selection; the model and its analyses
are not new and have close parallels in [29–34]. We let
ut(x) denote probability density in fitness x at time t
(i.e.,

∫

x
ut(x) = 1 for all t) for an evolving population.

Dropping the subscript t, we have that, under selection
and mutation, u evolves as:

∂tu(x) = (x− x̄)u(x)

where x̄ is mean fitness (x̄ =
∫

x
xut(x)). Let M(ϕ) de-

note the moment-generating function (mgf ) for u(x), i.e.,
M(ϕ) = E[eϕX ], where random variable X has density
u(x). The transformed equation is:

∂tM(ϕ) = ∂ϕM(ϕ)− ∂ϕM(0)M(ϕ).

We define cumulant-generating function (cgf ) C(ϕ) =
lnM(ϕ); noting that ∂ϕC(ϕ) = (∂ϕM(ϕ))/M(ϕ), and
∂tC(ϕ) = (∂tM(ϕ))/M(ϕ) we find that the cgf evolves
as:

∂tC(ϕ) = ∂ϕC(ϕ)− ∂ϕC(0).

This equation is a variant of the transport equation; it
is immediately apparent that the solution will be of the
form Ct(ϕ) = F (ϕ+ t), where F is an arbitrary function.
When boundary condition Ct(0) = 0 ∀ t is applied, it has
solution:

Ct(ϕ) = C0(ϕ+ t)− C0(t) (1)

where the subscripts are now necessary again: Ct(ϕ) is
the cgf of the fitness distribution ut(x) at time t. We
note that the fitness evolution of a population can thus
be projected into the future based only on the present
fitness distribution (i.e., at t = 0).
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Two loci

While many parts of our analyses are true for general
fitness functions, where total fitness is some arbitrary
function z = φ(x, y), we here and in other parts of our
analyses restrict ourselves to additive fitness z = x + y.
Remarkably, however, this restriction to additive fitness
will cease to be necessary in some expressions and key
findings downstream from here. Also, generalizations of
these evolution equations to non-additive functions are
found in the SM.
We now suppose that there are two “genes” that de-

termine fitness. Letting fitness contributions of the two
genes be denoted by x and y, respectively, the total fit-
ness is z = x + y. The extension of the previous one-
dimensional pde is immediate:
Let ut(x, y) denote probability density in fitness con-

tributions x and y at time t for an evolving population.
Dropping the subscripts again, under selection and mu-
tation, u evolves as:

∂tu(x, y) = (x+ y − x̄− ȳ)u(x, y)

The cgf is now two-dimensional: C(ϕ, θ) = lnE[eϕX+θY ],
where random variables X and Y have density u(x, y).
The cgf evolves as:

∂tC(ϕ, θ) = ∂ϕC(ϕ, θ) + ∂θC(ϕ, θ)− ∂ϕC(0, 0)− ∂θC(0, 0).
(2)

This equation is a two-dimensional variant of the trans-
port equation and has more possible solution forms than
the one-dimensional case, namely, solutions can be of the
form: F (t+ ϕ, θ− ϕ), F (t+ θ, ϕ− θ), or F (t+ ϕ, t+ θ).
The consistent solution form is the last of these. When
boundary condition Ct(0, 0) = 0 ∀ t is applied, it has
solution:

Ct(ϕ, θ) = C0(ϕ+ t, θ + t)− C0(t, t) (3)

where the subscripts have again become necessary. We
again note that the evolution of a population can thus
be projected into the future based only on the present
fitness distribution (i.e., at t = 0).

Finitely-many genotypes

The foregoing developments are expressed in terms of
analytical cgf ’s, which implicitly assumes that a popula-
tion is of infinite size and consists of an infinite number
of genotypes. Real populations contain a finite, possibly
even small, number of genotypes. The foregoing develop-
ments are equally applicable when number of genotypes
is finite, in which case the analytical cgf ’s are replaced
with empirical cgf ’s defined as follows:

C̃t(ϕ, θ) = ln
n
∑

j=1

fj(t)e
ϕxj+θyj (4)

where xj and yj are genic fitnesses of genotype j, n is
number of genotypes, and fj(t) is the frequency of geno-
type j at time t. In what follows, fj written as such with
no argument denotes initial frequency, i.e., fj := fj(0).
In many of the developments that follow, we will assume
that genotypes are initially found at equal frequency so
that fj = 1/n for j = 1, 2, ..., n.

Evolution with recombination

Let u(x, ·) denote the marginal density of individuals
carrying genic fitness x at the first locus, and let u(·, y)
denote the marginal density of individuals carrying genic
fitness y at the second locus. Independent evolution at
the two loci means that u(x, y) = u(x, ·)u(·, y). Let x̄

denote the mean of x (x̄ =
∫ +∞

−∞

∫ +∞

−∞
xu(x, y)dxdy). Un-

der recombination, we have the two loci evolving inde-
pendently as follows:

∂tu(x, ·) = (x− x̄)u(x, ·) (5)

∂tu(·, y) = (y − ȳ)u(·, y) (6)

In the previous section, we have shown that trans-
formed versions of the above evolution equations have
the closed-form analytical solutions:

Ct(ϕ, 0) = C0(ϕ+ t, 0)− C0(t, 0)

Ct(0, θ) = C0(0, θ + t)− C0(0, t)

under free recombination. Mean fitness of the rec+ sub-
population at time t is therefore:

z̄r(t) = C
(1,0)
t (0, 0)+C

(0,1)
t (0, 0) = C

(1,0)
0 (t, 0)+C

(0,1)
0 (0, t) .

(7)

Evolution without recombination

For the non-recombining wildtype subpopulation, the
evolution equation has already been presented and ana-
lyzed above. The transformed equation has solution:

Ct(ϕ, θ) = C0(ϕ+ t, θ + t)− C0(t, t) .

Mean fitness at time t is now:

z̄(t) = C
(1,0)
t (0, 0)+C

(0,1)
t (0, 0) = C

(1,0)
0 (t, t)+C

(0,1)
0 (t, t)

(8)

Evolution of fitness differential between rec+

modifier and wildtype

The fitness differential between the rec+ modifier and
wildtype at time t is:

sr(t) = z̄r(t)− z̄(t)

= C
(1,0)
0 (t, 0) + C

(0,1)
0 (0, t)− C

(1,0)
0 (t, t)− C

(0,1)
0 (t, t)

(9)
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where z̄r(t) and z̄(t) are given by Eqs (7) and (8). This
may be equivalently written as:

sr(t) =
d

dt
(C0(t, 0) + C0(0, t)− C0(t, t)) (10)

or as

sr(t) =
d

dt
(C0(t, 0, ..., 0) + C0(0, t, ..., 0) + C0(0, 0, ..., t)

− C0(t, t, ..., t))

for more than two loci.
We note that future dynamics of the fitness differential

is predicted based simply on the distribution of fitnesses
in the initial variation upon which natural selection acts,
i.e., sr(t) depends only on C0(ϕ, θ), the cgf of the initial
fitness distribution.

Asymptotic fitness differential between rec+

modifier and wildtype

Proposition 1. A population initially consists of n dis-
tinct genotypes at equal frequency (this assumption is
relaxed later) characterized by their genic fitness vector
(xi1, xi2, ..., xim), i = 1, 2, ..., n. These values may be
drawn from any multivariate distribution, continuous or
not. The action of natural selection by itself will cause
the fitness of a rec+ modifier to increase relative to its
non-recombining counterpart by an amount given by:

sr(t)
t→∞
−−−→

m
∑

j=1

max
i

(xij)−max
i

(
m
∑

j=1

xij) g 0 (11)

Proof: We employ the fitness differential as defined by
Eq (9) and insert empirical cgf ’s as defined by Eq (4),
giving:

sr(t) =

m
∑

j=1

∑n
i=1 xije

xijt

∑n
i=1 e

xijt
−

∑n
i=1(

∑m
j=1 xij)e

∑
m
j=1

xijt

∑n
i=1 e

∑
m
j=1

xijt

which gives the result by inspection. Inspection is fa-
cilitated by examining the case of two loci whose genic
fitnesses we deonte xi and yi:

sr(t) =
∑n

i=1 xie
xit

∑n
i=1 e

xit
+

∑n
i=1 yie

yit

∑n
i=1 e

yit
−

∑n
i=1(xi + yi)e

(xi+yi)t

∑n
i=1 e

(xi+yi)t

t→∞
−−−→ max

i
(xi) + max

i
(yi)−max

i
(xi + yi) g 0

□

Corollary 1. For the case of two genotypes and two
loci (n = 2 and m = 2) the asymptotic fitness differential
given by Proposition 1 can be rewritten as:

2sr(t)
t→∞
−−−→ |∆x|+ |∆y| − |∆x+∆y| g 0

where ∆x = x2 − x1 and ∆y = y2 − y1.

FIG. 1. Fitness differential between rec+ modifier and wild-
type after one bout of selection: observed (horizontal axis)
and predicted (vertical axis). Initial modifier frequency was
0.1, and plotted are values for recombination rates of r = 0.1
(blue) and r = 0.5 (red). Observed values come from fully-
stochastic simulations. Predicted values are computed using
Eq (11)

Remark: The couples (x1, y1) and (x2, y2) are two in-
dependent draws from some unspecified bivariate distri-
bution. This fact guarantees that ∆x and ∆y are sym-
metric, from which it is apparent that the asymptotic
fitness differential will be zero half of the time.

Corollary 2. We now define random variable Sr to de-
note the asymptotic fitness differential as defined above.
Here we generalize Proposition 1, representing fitness at
each of the m loci by random variables Xj , j = 1, 2, ...,m.
Expected asymptotic fitness differential is:

E[Sr] =
m
∑

j=1

E[X
[n]
j ]− E[Z [n]] g 0

where X
[n]
j denotes the nth order statistic (i.e., maxima)

of Xj, j denotes the jth locus, and Z [n] denotes the nth

order statistic (i.e., maxima) of Z =
∑m

j=1 Xj .

The foregoing expressions very accurately predict the
fitness differential after one bout of selection in simula-
tions (Fig 1), and are surprisingly robust to recombina-
tion rate and initial rec+ frequency.

Dynamics of a rec+ modifier

To understand how natural selection affects the evolu-
tion of recombination, the more directly relevant ques-
tion to ask is how natural selection affects the frequency
of a rec+ modifier.

If a lineage has time-dependent selective advantage
s(t), its frequency ρ(t) evolves as the solution to the lo-
gistic equation:

ρ′(t) = s(t)ρ(t)(1− ρ(t))
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which, with initial condition ρ(0) = ρ0, has solution:

ρ(t) =
(

1 + (ρ−1
0 − 1)e−

∫
t

0
s(u)du

)−1

(12)

At this point, our choice of s(t) will reflect the nature of
the rec+ modifier in question and, in particular, whether
the modifier is loosely or tightly linked to the fitness loci
whose recombination rate it modifies. As we will show,
both cases derive from Eq (10): for the loose-linkage case,
s(t) = ŝr(t) as defined below; for the tight-linkage case,
s(t) = sr(t).

Loose linkage modeled as rec+ dominance

In our simulations, loose linkage is modeled by consid-
ering the rec+ allele at the modifier locus to be dominant,
following Felsenstein [35]. A dominant rec+ modifier,
when paired with rec− wildtype, will result in a pheno-
typically rec+ pair of coupled genomes. While technically
speaking, diploidy is required for dominance, our use
of haploid dominance is substantively indistinguishable
from diploid dominance for our purposes. The pheno-
typic rec+ expression of rec+/rec− pairs means that the
modifier can be dissociated from the fitness loci whose
recombination rate is modified. In this case, what de-
termines the dynamics and fate of the rec+ modifier is
the short-term gain conferred by the modified recombi-
nation rate, i.e., the short-term selective value of recom-
binants. A recessive rec+ modifier, on the other hand,
models tight (or complete) linkage between the modifier
and fitness loci, because only rec+/rec+ pairs will have
the rec+ phenotype. Exchange at the modifier locus in
this case is irrelevant because a rec+ allele can only be
exchanged for another rec+ allele.

III. LOOSELY-LINKED REC+ MODIFIER

Loose linkage gives most conservative case

When a modifier is loosely linked to fitness loci, the
fate of the modifier is only weakly determined by the
selective value of the recombinants it forms. Loose link-
age thus embodies the most conservative case in terms
of the magnitude of natural selection’s effect on recom-
bination. Tight linkage, while increasing the magnitude
of the effect of natural selection, may nevertheless go in
the opposite direction of that determined for the loose-
linkage case. This possibility of opposite effects is implied
in Barton’s identification of a distinction between short-
and long-term effects [14]. In the present manuscript, we
investigate both of these cases and find that, when natu-
ral selection acts in isolation, the effects under loose and
tight linkage are in the same direction, namely favoring
recombination.

Negative covariance: the measure of rec+ advantage
under loose linkage

Incomplete linkage is formulated by letting s(t) =
s̄r(t), defined as follows. We let τ denote the charac-
teristic duration of linkage between modifier and fitness
loci. Tighter linkage will result in larger τ . Under incom-
plete linkage, the mean selective advantage of a modifier
at time t derives directly from Eq (10) and is given by:

s̄r(t) =
1

τ

∫ t+τ

t

sr(u)du

=
1

τ
[Ct(τ, 0) + Ct(0, τ)− Ct(τ, τ)]

=
1

τ
ln

Et[e
τX ]Et[e

τY ]

Et[eτ(X+Y )]
≈ − τσXY (t)

The approximation made by the last step is very accurate
for small τ (see SM) because the two-dimensional Jensen
gaps for numerator and denominator essentially cancel
each other out. In other words, under incomplete linkage,
the selective advantage of a rec+ modifier is −τσXY (t).
As τ grows, we find numerically that these developments
provide a conservative bound: s̄r(t) > −τσXY (t) (see
SM).
Because we are interested primarily in the sign of the

selective value of recombination, we can let τ = 1 without
loss of generality. To make our language precise, we de-
fine “loose linkage” to mean τ = 1, and we let ŝr denote
the selective value of recombination under loose linkage;
we note that the selective value of recombination is equal
to the selective value of recombinants in this case. The
term “incomplete linkage” will refer to τ > 1, and we
let s̄r denote the selective value of recombination under
incomplete linkage (as employed above).

Covariance dynamics

Covariance dynamics can be forecast given only the
distribution of genic fitnesses at time zero; this derives
immediately from Eq (3):

σXY (t) = C
(1,1)
0 (t, t) (13)

where C
(i,j)
t (ϕ, θ) denotes the (i, j)th derivative of the cgf

for genic fitnesses at time t.

Infinitely-many genotypes

We note that if the initial fitness distribution
is normal, covariance remains constant over time:
σXY (t) = σXY (0) ∀ t .
In real populations, the number of genotypes is fi-

nite. Given the marked qualitative difference between
the finite- and infinite-genotypes cases, we will focus pri-
marily on the finite-genotypes case.
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Simulations

Theoretical forecast
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FIG. 2. Covariance forecast. Blue curve is the average of
1000 stochastic, individual-based simulations. Red curve is

the theoretical prediction given by E[C̃
(1,1)
0 (t, t)] (Eq (14)).

We call it a forecast because it is based solely on the distri-
bution of fitnesses at t = 0. Fitnesses were drawn from a
bivariate normal distribuiton with means (0, 0) and standard
deviations (0.2, 0.2) and zero correlation. The initial popula-
tion consisted of ten distinct genotypes in a population of size
N = 2000.

Finitely-many genotypes

Replacing xj and yj in Eq (4) with random variables
Xj and Yj , the future dynamics of expected covariance
may be computed as:

E[σ̃XY (t)] = E[C̃
(1,1)
0 (t, t)] . (14)

This covariance-forecasting equation is shown to be very
accurate in Fig 2.

Without epistasis

We recall that recombinant advantage is −σXY . Here,
we examine the simplest scenario of two loci and two
genotypes. We study how the selection-driven changes
in the frequencies of types (x1, y1) and (x2, y2) within a
single unstructured population change covariance σXY =
σXY (t) over time. We are interested in the net effect
of these changes, given by

∫∞

0
σXY (t)dt; in particular,

we are interested in knowing whether this quantity is
positive (net recombinant disadvantage) or negative (net
recombinant advantage) in expectation.

Proposition 2. Within-population covariance inte-
grated over time is:

∫ ∞

0

σXY (t)dt = q
(x2 − x1)(y2 − y1)

|z2 − z1|
(15)

where q is the initial frequency of the inferior genotype.
And zi = xi + yi.

Proof: We employ Eq (14) to give us covariance dy-
namics as a function of the initial two genotypes. We
let p denote initial frequency of the superior of the two

genotypes, and we let q = 1− p denote initial frequency
of the inferior genotype. Time-integrated covariance is:

∫ ∞

0

σXY (t)dt = (16)

(x2 − x1)(y2 − y1)

∫ ∞

0

pqe(z1+z2)t

(pez1t + qez2t)
2 dt

We note the convenient fact that the integral depends
only on the zi, allowing us to relax the assumption of
additive fitness and revert to the general definition zi =
φ(xi, yi) – a fact we will leverage below. Integration by
parts yields:

∫ ∞

0

σXY (t)dt = q
(x2 − x1)(y2 − y1)

|z2 − z1|
.

□

Now to find the expectation of time-integrated covari-
ance, we must replace xi and yi with random variables
Xi and Yi.

Proposition 3. We define random variables ∆X =
X2−X1, ∆Y = Y2−Y1, and ∆Z = Z2−Z1 = ∆X+∆Y .
The (Xi, Yi) are independently drawn from any distribu-
tion (with any correlation), making ∆X and ∆Y centered
and symmetric. Time-integrated covariance is uncondi-
tionally non-positive in expectation:

E[

∫ ∞

0

σX,Y (t)dt] = qE[
∆X∆Y

|∆Z|
] f 0

This is equivalent to saying that time-averaged selec-
tive advantage of recombinants is unconditionally non-
negative.

Proof: The bivariate distribution governing X and Y
is irrelevant to this proof: no assumption about this dis-
tribution is required. There is also no need to assume
that (∆X,∆Y ) has a density. ∆X and ∆Y are two real-
valued random variables such that: (−∆X,∆Y ) has the
same distribution as (∆X,∆Y ). This is guaranteed by
the fact that ∆X and ∆Y are spacings. We have:

E[∆X∆Y/|∆X +∆Y |] =

E[1∆X∆Y >0∆X∆Y/|∆X +∆Y |]

+ E[1∆X∆Y <0∆X∆Y/|∆X +∆Y |]

= E[1∆X∆Y >0∆X∆Y/|∆X +∆Y |]

+ E[1−∆X∆Y <0(−∆X)∆Y/|∆Y −∆X|]

= E[1∆X∆Y >0∆X∆Y/|∆X +∆Y |]

− E[1∆X∆Y >0∆X∆Y/|∆Y −∆X|]

= E[1∆X∆Y >0∆X∆Y (1/|∆X +∆Y | − 1/|∆Y −∆X|)]

f 0

When ∆X and ∆Y have the same sign as imposed by
the indicator function in the last expectation, we have
|∆X + ∆Y | > |∆Y − ∆X|, from which the inequality
derives. □
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Corollary 3. Proposition 3 holds for divergent expec-
tations.

Proof: Set U = |∆X| and V = |∆Y |; Λ = Max(U, V ),
λ = Min(U, V ). Then you can rewrite the expectation
as:

E[UV {1/(U + V )−1/(|U − V |)}]

= E[λΛ{−2λ/(Λ2 − λ2)}]

= −2E[Λλ2/(Λ2 − λ2)] f 0

Indeed, if the expectation is divergent, then it is always
−∞. This approach removes the need to make the argu-
ment that U + V > |U − V | and avoids the need to take
a difference of expectations. An alternative approach is
given in an expanded statement and proof of Proposition
3 in the SM. □

With epistasis

We now leverage the aforementioned fact that fitness
additivity is not required here and we employ the general
definition of z, namely z = φ(x, y) which we insert into
Eq (16), leading to the following corollary to Proposition
3:

Corollary 4. For any real number ξ, let us consider
a fitness function of the form φξ(x, y) = aX + bY +
ξg(X,Y ), where a, b > 0 and g is a function indepen-
dent of ξ. Let ∆Z(ξ) = φξ(X2, Y2)−φξ(X1, Y1). Assume
that for some ε > 0,

E

[

sup
|ξ|<ε

|∆X∆Y |

|∆Z(ξ)|

]

< ∞, (17)

and that P(∆X∆Y = 0) < 1. Then, there is ε0 ∈ (0, ε),
such that for all ξ ∈ (−ε0, ε0), we have

E

[

∆X∆Y

|∆Z(ξ)|

]

< 0. (18)

Proof. Condition (17) implies that the function h :
(−ε, ε) → R defined via

h(ξ) = E

[

∆X∆Y

|∆Z(ξ)|

]

is continuous. Moreover, since P(∆X∆Y = 0) < 1, pro-
ceeding as in the proof of Proposition 3, we obtain that
h(0) < 0. Hence, by continuity of h, we infer that there
is ε0 ∈ (0, ε) such that h is negative in (−ε0, ε0), which
concludes the proof.

Figure 3 plots the left-hand side of the inequality in
Eq (18) with generalized fitness function:

Z(ξ) = φξ(X,Y ) = aX + bY + ξXY (19)

with a, b > 0 and epistasis parameter ξ ∈ R. This fig-
ure reveals where the interval (−ε0, ε0) lies for different
correlation coefficients. The predicted symmetry of this
interval about zero is corroborated with both Montecarlo
expectations of the left-hand side of Eq (18) as well as
fully-stochastic evolutionary simulations.
We now turn our attention to the analysis of time-

integrated covariance with epistasis for the special case
where total fitness Z is given by Eq (19). As before, we
let ∆Z(ξ) = φξ(X2, Y2) − φξ(X1, Y1) = (a + ξY1)∆X +
(b + ξX2)∆Y . The case where the random variables
(|∆X∆Y |/|∆Z(ξ)|)ξ∈(−ε,ε) are uniformly integrable (i.e.
condition (17) is satisfied) is covered already by Corollary
4. If it is not uniformly integrable, we have the following:

Corollary 5. Assume that the distribution of (Xi, Yi)
has finite support, i.e. there is K > 0 such that P(Xi ∈
[−K,K], Yi ∈ [−K,K]) = 1 and that |ξ| < (a ' b)/K,
where a ' b denotes the minimum between a and b. The
we have:

E

[

|∆X∆Y |

|∆Z(ξ)|

]

= ∞ ⇒ E

[

∆X∆Y

|∆Z(ξ)|

]

= −∞. (20)

The proof for this corollary is in the SM.

Modifier dynamics under incomplete linkage

In foregoing developments, we have shown that the
selective advantage of a rec+ modifier under incomplete
linkage is:

s(t) = s̄r(t) = − τσXY (t) = − τC
(1,1)
0 (t, t) .

Furthermore, we have shown that:

E[

∫ ∞

0

σXY (u)du] f 0 .

Inserting the above expression for s(t) into Eq (12), and
employing Jensen’s inequality, we have:

E[ρ(∞)] g
(

1 + (ρ−1
0 − 1)eτE[

∫
∞

0
σXY (u)du]

)−1

g ρ0

as long as τE[
∫∞

0
σXY (u)du] > ln [ρ0/(1− ρ0)], which

defines the region for which ρ′′(t) > 0; this condition will
hold quite generally for any biologically reasonable prop-
erties of theX and Y . Figure 4 plots asymptotic modifier
frequency, ρ(∞), for the case of n = 10 distinct geno-
types. This figure shows that, under incomplete linkage,
while the average increase in modifier frequency is not
large, it is never negative.
In sum, a dominant rec+ modifier will not decrease in

frequency (on average) as a consequence of natural selec-
tion, despite being only loosely linked to fitness loci. This
effect increases (rec+ modifier grows to higher frequen-
cies) when more genotypes and/or loci are considered.
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a cb

FIG. 3. Effect of epistasis ξ (horizontal axes) on time-integrated covariance (vertical axes) when correlation between genic
fitnesses in the initial population is: a) −0.5, b) 0, and c) +0.5. Theoretical predictions (solid curves) plot Montecarlo
expectations E [∆X∆Y/|∆Z(ξ)|], the left-hand side of Eq (18), where N = 2000 (red) and N = 105 (blue). Red points plot
the means of 500 stochastic simulations with N = 2000. For these plots, we employ the general fitness function given by Eq
(19). These plots support the validity of our conjecture that Z in Eq (16) can be generalized by allowing Z = φ(X,Y ). They
also corroborate our analyses showing that time-integrated covariance is unconditionally negative in the absence of epistasis.
They further corroborate our finding that time-integrated covariance is negative in an epistasis interval that is symmetric about
zero. Finally, they indicate that epistasis must be fairly strong (either positive or negative) to make time-integrated covariance
non-negative.

FIG. 4. Asymptotic modifier frequency under incomplete
linkage. Initial modifier frequency was 0.05, indicted by the
green line. The box-whisker chart plots Montecarlo realiza-
tions of the analytical expression for ρ(∞). Red dots plot
the means of 5000 simulations of natural selection acting in
populations of size 2000. Initially, populations consisted of
10 distinct genotypes at equal frequency. Each genotype was
constructed by drawing genic fitness values X and Y from
a bivariate normal distribution with zero means, variances
equal to 0.04 and correlation specified by the horizontal axis.
Each simulation was run until fixation occurred. Analyti-
cal asymptotic modifier frequency is given by the expression

ρ(∞) =
(

1 + (ρ−1
0 − 1)eτE[

∫
∞

0
σXY (u)du]

)−1

. Parameter τ is

the characteristic duration of linkage between modifier and
fitness loci and was determined to be τ ≈ 2.1. Black and gray
dots plot outliers. Significantly, there are no outliers below
the initial modifier frequency of 0.05.

IV. TIGHTLY-LINKED REC+ MODIFIER

Conveniently, we immediately have the anti-derivative
of sr(t) from Eq (10) from which we have the definite
integral:

∫ t

0

sr(u)du = C0(t, 0) + C0(0, t)− C0(t, t) (21)

We replace
∫ t

0
s(u)du in Eq (12) with

∫ t

0
sr(u)du from Eq

(21), giving the expression for modifier dynamics:

ρ(t) =

(

1 + (ρ−1
0 − 1)

M0(t, t)

M0(0, t)M0(t, 0)

)−1

This expression gives the generalized case for two loci
and holds for any number n of genotypes. The further
generalization to m loci and n genotypes is immediate:

ρ(t) =

(

1 + (ρ−1
0 − 1)

M0(t, t, ..., t)

M0(t, 0, ..., 0)M0(0, t, ..., 0)...M0(0, 0, ..., t)

)−1

(22)
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Infinitely-many alleles

Assuming there are infinitely-many alleles, and suppos-
ing that the distribution of X and Y is bivariate normal,
we have:

ρ(t) =
(

1 + (ρ−1
0 − 1)eσXY (0)t2

)−1

(23)

so modifier dynamics depend critically on the sign of the
covariance of the initial fitnesses: when σXY (0) < 0, then

ρ(t)
t→∞
−−−→ 1; when σXY (0) > 0, then ρ(t)

t→∞
−−−→ 0; and

when σXY (0) = 0, then ρ(t) = f(0) ∀ t. This finding
stands in stark contrast to the case of finitely-many al-
leles in which, as we shall see, modifier frequency for all
practical purposes always ends up at higher frequency
than where it started, quite independently of the bivari-
ate distribution governingX and Y (even when the initial
population has strongly positive correlation between X
and Y ).

Remark: In general, Eq (23) may be written for any

distribution:

ρ(t) =
(

1 + (ρ−1
0 − 1)eh(t)

)−1

(24)

where:

h(t) =
∞
∑

i=2

ti

i!

i−1
∑

j=1

(

i

j

)

κj,i−j(0)

and κi,j(0) is the (i, j)
th cumulant of the initial bivariate

distribution of genic fitnesses X and Y . This expression
is obtained by Taylor expansion of Eq (21). The normal
case can be gleaned from this general expression by re-
calling that for the normal distribution, κi,j(0) = 0 when
i+ j > 2, so that h(t) = κ1,1(0)t

2 = σXY (0)t
2.

Finitely-many alleles

If the number of alleles is finite, we employ the empir-
ical cgf, C̃t(θ, φ), as defined by Eq (4), and the empiri-

cal mgf, M̃t(θ, φ) = eC̃t(θ,φ). Assuming n genotypes are
present in the population in question, and replacing C
with C̃ in Eq (21), we have:

∫ t

0

sr(u)du =
m
∑

j=1

ln

[

n
∑

i=1

fie
xijt

]

− ln

[

n
∑

i=1

fie
∑

m
j=1

xijt

]

. (25)

Assuming for now that fi = 1/n, the expected fre-
quency of the modifier is:

E[ρ(t)] =

E [

(

1 + nm−1(ρ−1
0 − 1)

∑n
i=1 e

∑
m
j=1

Xijt

∏m
j=1(

∑n
i=1 e

Xijt)

)−1

] (26)

From here on, we will restrict ourselves to the case of
m = 2 loci for the sake of presentation. The general
m-locus case is a rather trivial (albeit messy) extension
of these developments. For the two-locus case, Eq (26)
becomes:

E[ρ(t)] =

E [

(

1 + n(ρ−1
0 − 1)

∑n
i=1 e

(Xi+Yi)t

(
∑n

i=1 e
Xit)(

∑n
i=1 e

Yit)

)−1

] (27)

which can be rewritten as:

E[ρ(t)] =

E [

∑

i,j e
(Xi+Yj)t

∑

i ̸=j e
(Xi+Yj)t + (n(ρ−1

0 − 1) + 1)
∑

i e
(Xi+Yi)t

]

(28)

Equation (27) accurately predicts rec+ modifier dynam-
ics as show in Fig 5.
We note that, for the case n = 2, Eq (27) has the

curious alternative form:

E[ρ(t)] =

E [
(

ρ−1
0 + (ρ−1

0 − 1) tanh(∆Xt/2) tanh(∆Y t/2)
)−1

]

where ∆X = X2 −X1 and ∆Y = Y2 − Y1.

Asymptotic modifier frequency

In foregoing developments, we have shown that, after
one “bout” of selection has completed, the fitness ad-
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Simulations

Theoretical prediction
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FIG. 5. Recombination modifier dynamics over the course of
one bout of selection. Red curves plot theoretical predictions
given by Eq (27). Blue curves plot mean trajectory observed
in 500 replicate simulations. Simulations were fully stochastic,
individual-based, with a population size of N = 20, 000. The
recombination-competent modifier conferred a recombination
rate of r = 0.2. The distribution of genic fitnesses X and Y in
the initial population had a bivariate normal distribution with
zero means, standard deviations σX = σY = σ = 0.2 for the
upper curves and σX = σY = σ = 0.05 for the lower curves,
and zero correlation. The initial population consisted of n =
10 distinct genotypes. We note that upper and lower curves
eventually converge to the same asymptotic frequency, as our
theory predicts, despite very different strengths of selection
(very different σ’s).

vantage of a tightly-linked rec+ modifier is non-negative.
This is indeed suggestive of natural selection’s favorable
effect on such a modifier, but it only gives information
about the modifier’s fitness advantage at the end of the
bout of selection. It does not guarantee, for example,
that the modifier’s fitness advantage did not become neg-
ative over the course of the bout of selection and conse-
quently suppress the modifier’s frequency in the process.
This concern is especially relevant in light of our obser-
vation in the remark following Corollary 1 that, for the
case of two loci and two alleles, the modifier’s fitness ad-
vantage after the bout of selection has completed is zero
half of the time.

Proposition 4. A non-recombining population initially
consists of n distinct genotypes. The ith genotype is
characterized by the random vector of genic fitnesses
(Xi1, Xi2, ..., Xim), where m is the number of loci under
selection. This random vector may have any multivariate
distribution, continuous or not. A rec+ modifier is intro-
duced into the population at frequency ρ0. The action of
natural selection by itself will cause the frequency of the
modifier to converge in expectation to:

E[ρ(t)]
t→∞
−−−→ E[1NR/(n

(m−1)(ρ−1
0 − 1) + 1) + 1R] (29)

where conditions NR and R are met when the maximum-
fitness genotype is a non-recombinant and recombinant,
respectively. Specifically, NR is met when the maximum-
fitness genotype has the following property: for any pair
of genic fitnesses (Xij , Xkl), it is the case that i = k.
Condition R is met when NR is not true.

Proof:
The proof is by inspection of Eq (28) and its full m-

locus extrapolation. (Inspection is facilitated by first
considering the case m = 2.)

□

From here, it is easy to see that in theory the modifier
can decrease in frequency to below its initial frequency.
This happens under the worst-case scenario for the mod-
ifier, which is when the correlation coefficient becomes
extremely (unrealistically) close to +1. When the corre-
lation is exactly equal to +1, we have:

E[ρ(t)]
t→∞
−−−→ 1/(n(m−1)(ρ−1

0 − 1) + 1) < ρ(0) (30)

where n g 2 is the number of genotypes in the initial pop-
ulation andm the number of loci constituting a genotype.
Numerical solution of Eq (29), however, reveals that the
correlation coefficient has to be unrealistically close to
one for the modifier to decrease in frequency (Fig 6).

Corollary 6. We generalize Proposition 4 by allow-
ing each genotype i to have its own starting frequency fi
(
∑n

i=1 fi = 1). Expected asymptotic modifier frequency
in this generalized case is:

E[ρ(t)]
t→∞
−−−→ E[1NR

(

Fm−1

ρ−1
0 − 1 + Fm−1

)

+ 1R] (31)

where conditions NR and R are as defined above, and
random variable F is starting frequency (the fi are in-
stances of F).

If F is distributed as one dimension of an
n-dimensional flat Dirichlet distribution (ensuring
∑n

i=1 fi = 1), and m = 2, Eqs (29) and (31) are, for
all practical purposes, equivalent. For m > 2, we have
found numerically that:

E[
Fm−1

ρ−1
0 − 1 + Fm−1

] > 1/(n(m−1)(ρ−1
0 − 1) + 1)

but the left-hand side is still very small, validating the
following Corollary for equal or random starting frequen-
cies.

Corollary 7. If a rec+ modifier is initially at low fre-
quency in a population, it’s final (asymptotic) frequency
is well approximated by the probability that the maximum-
fitness genotype is a virtual recombinant.
More specifically, given that a population initially con-

sists of n genotypes carrying random vectors of genic
fitnesses (Xi1, Xi2, ..., Xim), i = 1, 2, ..., n, the final ex-
pected modifier frequency is effectively equal to the prob-
ability of condition R defined in Proposition 4 above.

Proof:
This corollary comes about by noting that the first

term on the right-hand side of Eq (29) is typically much
smaller than the second term:

E[1NR/(n
(m−1)(ρ−1

0 − 1) + 1)] j E[1R]
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for the case of equal starting frequencies, or:

E[1NR

(

Fm−1

ρ−1
0 − 1 + Fm−1

)

] j E[1R]

for the case of random starting frequencies. This fact is
corroborated by Montecarlo expectations plotted in Fig 6
where this approximation appears indistinguishable from
the exact solution.

□

Corollary 7 allows us to say some things about non-
extreme cases as well. When the initial covariance is
zero, Corollary 7 together with simple combinatorics tell
us the asymptotic frequency is:

σXY (0) = 0 ⇒ E[ρ(∞)] = 1− n−(m−1) (32)

If the heritable variation upon which natural selection
acts is itself a product of previous selection, our compan-
ion papers [1, 2] show that the initial covariance will be
negative. For this case, asymptotic modifier frequency is
even higher:

σXY (0) < 0 ⇒ E[ρ(∞)] > 1− n−(m−1) (33)

from which it is apparent that asymptotic modifier fre-
quency quickly gets very close to one as number of geno-
types and number of loci increase. For example, two
genotypes and ten loci will have an asymptotic modifier
frequency greater than 0.998 when the correlation is neg-
ative. Significantly, Eqs (32) and (33) appear to be fairly
robust to epistasis (SM).
A surprising feature of the asymptotic modifier fre-

quency is the absence of any requirement for information
about the magnitude of selective differences among alle-
les at the different loci. This independence of strength of
selection is illustrated in Fig. 5, where it is corroborated
with simulations. An implication of this finding is that
modifier frequency will converge to the same value even
under weak selection. This fact may speak to concerns,
expressed in previous work [7, 36], about the strength of
selection required for recombination (and sex) to evolve.
And perhaps even more surprising is the fact, shown in

Fig 6, that increase in modifier frequency is substantial
even when the correlation between X and Y is strongly
positive in the initial population. It is only when this cor-
relation gets unrealistically close to +1 that increase in
modifier frequency is substantially reduced. This is sur-
prising because a strongly positive correlation between
genic fitness is precisely the condition that one would ex-
pect to suppress, not favor, recombination (discussed in
[1, 2]). The reason that modifier frequency increases de-
spite positive correlation has to do with the dynamics of
selective sorting, and the fact that these dynamics cause
recombinants to be favored, on average (covariance to
be negative on average), independently of the correlation
between genic fitnesses X and Y in the initial population
or any other feature of those fitnesses for that matter, as
proved in Proposition 3 above.
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FIG. 6. Asymptotic modifier frequency as a function of pos-
itive correlation between genic fitnesses X and Y among the
genotypes initially present in the population, as computed
by Eq (29). Only when the correlation gets unrealistically
close to one does the asymptotic modifier frequency dive to
values that can, in theory, dip below the initial frequency.
Asymptotic modifier frequency for negative correlations is not
plotted; it becomes increasingly close to one as correlation be-
comes increasingly negative. Open circles plot final modifier
frequency in simulated populations of size 2000 with recom-
bination rate of the modifier of r = 0.1.

V. EVOLUTIONARY DYNAMICS WITH
RECOMBINATION

Let ut(x, y) denote probability density in fitness con-
tributions x and y at time t for an evolving population.
Dropping the subscripts, under selection and recombina-
tion, u evolves as:

∂tu(x, y) = (x+ y − x̄− ȳ)u(x, y)

+R(u(x, ·)u(·, y)− u(x, y))

where R is recombination rate. The transformed equa-
tion is:

∂tC(ϕ, θ) = ∂ϕC(ϕ, θ) + ∂θC(ϕ, θ)− ∂ϕC(0, 0)− ∂θC(0, 0)

+R(eC(ϕ,0)+C(0,θ)−C(ϕ,θ) − 1). (34)

whose solution is given by the Ct(ϕ, θ) which satisfies:

Ct(ϕ, θ) = C0(ϕ+ t, θ + t)− C0(t, t)

+R

∫ t

0

(eCs(ϕ,0)+Cs(0,θ)−Cs(ϕ,θ) − 1)ds, (35)

and boundary condition, Ct(0, 0) = 0 ∀ t. This equation
can be solved iteratively for Ct(ϕ, θ).
These developments lead to a variant of Proposition 2:

Proposition 5. A first iteration of Eq (35) yields a
modification of the time-integrated within-population co-
variance given in Proposition 2:
∫ ∞

0

σXY (t)dt ≈ q(1−R)
(x2 − x1)(y2 − y1)

|z2 − z1|
(36)

where q is the initial frequency of the inferior genotype,
and continuous parameter R ∈ [0, 1] is recombination
rate.
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Proof: For the first iteration, we simply replace the
Cs(ϕ, θ) in the exponent by C0(ϕ + s, θ + s) − C0(s, s),
giving:

Ct(ϕ, θ) = C0(ϕ+ t, θ + t)− C0(t, t)

+R

∫ t

0

(eC0(ϕ+s,s)+C0(s,θ+s)−C0(ϕ+s,θ+s)−C0(s,s) − 1)ds.

(37)

which satisfies the boundary condition, Ct(0, 0) = 0 ∀ t.
Then,

∫ ∞

0

σXY (t)dt =

∫ ∞

0

C̃
(1,1)
0 (t, t)dt

= q(1−R)
(x2 − x1)(y2 − y1)

|z2 − z1|

□

If this approximation is accurate, it follows that Propo-
sition 3 also holds for already-recombining populations,
but the magnitude of the negative time-integrated covari-
ance (i.e., the magnitude of the average recombinant ad-
vantage) decreases as recombination rate increases. This
is evidenced by the new factor (1 − R) introduced here.
However, we do not state this formally, as we have not
conducted a thorough analysis and/or exploration of pa-
rameter space to determine the accuracy of this approx-
imation.
From Eq (34), the role of recombination in the evolu-

tion of total mean fitness, z̄ = x̄+ ȳ, is elucidated by the
derivative expressions:

∂tx̄ = σ2
X + σXY

∂tȳ = σ2
Y + σXY

∂tσXY = κ12 + κ21 −RσXY

In the absence of selection, the κ’s will be zero, giving
the prediction that σXY (t) = σXY (0)e

−Rt under neu-
tral evolution. This equation accurately predicts covari-
ance dynamics in simulations of neutral evolution (Fig 7).
With selection, the κ’s will be non-zero and covariance
dynamics are given by:

σXY (t) = σXY (0)e
−Rt +

∫ t

0

eR(γ−t)(κ12(γ)+κ21(γ))dγ

(38)
which also shows good agreement with simulations (Fig
8).

Effect of increasing recombination rate

in an already recombining population

Until now, our focus has been on rec+ modifiers in an
otherwise rec− population. We now examine the case in
which the resident population is rec+ and the modifier

Simulations

Theoretical prediction
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FIG. 7. Covariance dynamics under neutral evolution with re-
combination. Blue dots plot the average of 200 fully stochastic
simulations. The red curve plots our theoretical prediction,
σXY (t) = σXY (0)e−Rt, which derives from Eq (34). Parame-
ters are: N = 10, 000, R = 0.01.
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FIG. 8. Covariance dynamics under adaptive evolution with
recombination. Blue dots plot the average of 200 fully
stochastic simulations. The red curve plots the theoretical
prediction given by Eq (38). Parameters are: N = 10, 000,
R = 0.01.

introduced has a higher recombination rate than the res-
ident population. The evolutionary dynamics model de-
veloped above allows us to address this question. Specifi-
cally, we ask how a further increase in recombination rate
increases the rate of increase in mean fitness. Mean fit-
ness increases as ∂tz̄ = ∂tx̄+∂tȳ = σ2

X+σ2
Y +2σXY , which

increases in recombination rate as ∂R∂tz̄ = 2∂RσXY ,
where σXY is given by Eq (38). This quantity is posi-
tive, as seen in Fig 9.

VI. STATISTICAL MECHANICS OF SEX

We now note a curious connection between the devel-
opments presented here and statistical mechanics. This
section may serve as a springboard for further work. We
believe there is no existing analogue to multilocus evolu-
tion in statistical mechanics, in which case these direc-
tions may bring something new to both fields.
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FIG. 9. Advantage of further increase in recombination rate in
an already-recombining population. This is not selective ad-
vantage as it is commonly defined. Instead, it is how fast the
rate of fitness increase grows with increase in recombination
rate, calculated at the resident recombination rate. Specifi-
cally, it is the quantity ∂R∂tz̄|R=R0

, where R0 is the resident
recombination rate. Parameters are: N = 10, 000, R0 = 0.01.

Statistical mechanics of single-locus evolution

Based on our developments and our use of the empiri-
cal cgf (Eq (4)), when there is only one locus under selec-
tion, the expected number of individuals with genotype
i at time t may be written as:

ïNið =
N

Z
fie

txi

where N = total population size, fi is the initial fre-
quency of genotype i, xi is the fitness of genotype i, and:

Z =
n
∑

i=1

fie
txi .

This expression, derived directly from our initial evolu-
tion equation, makes the connection between Darwinian
evolution and statistical mechanics explicit. We compare
these expressions with the Maxwell-Boltzmann equation
for number of particles in energy state εi:

ïNið =
N

Z
gie

−εi/kT

where

Z =
n
∑

i=1

gie
−εi/kT ,

the partition function.
The analogous quantities are shown in Table I. Fitness

is analogous to minus the energy. This makes sense, be-
cause fitness will tend to increase while energy will tend
to decrease. Time is analogous to the inverse tempera-
ture. So the evolutionary asymptote as time goes to infin-
ity is analogous to decreasing the temperature to absolute

TABLE I. A side-by-side comparison of analogous quantities
in evolutionary dynamics and statistical mechanics.

Evolutionary Dynamics Statistical Mechanics

fitness, xi energy, −εi

time, t inverse temperature, 1/kT

t → ∞ T → 0

zero. We are not the first to notice a connection between
adaptive evolution and statistical mechanics [37–43], but
we believe the particular context is new. The multidi-
mensional case to which we now turn does not appear
have an immediate analogue in statistical mechanics, yet
the extrapolation is straight-forward.

Statistical mechanics of multilocus evolution

Now we extrapolate to multilocus evolution, that
is, evolution in which individuals have two or more
loci under selection. Here, each genome has m loci,
each of which contributes to overall fitness φ. Specif-
ically, genotype i has fitness φ(xi), where vector
xi = (xi1, xi2, ..., xim) quantifies fitness contributions
from each of the m loci. The expected number of indi-
viduals with fitness φ(xi) at time t is now:

ïNið =
N

Z
fie

tφ(xi)

where the partition function is now:

Z =
n
∑

i=1

fie
tφ(xi)

We have found that, as time increases, a population will
tend to evolve negative associations among the fitness
contributions at the different loci. These negative asso-
ciations build up across populations [2] and are gener-
ated within a single population, in expectation, as time
passes. The analogy to statistical mechanics would be
that each energy level has some number m of contribut-
ing factors that determine the energy of that level. As
temperature is reduced, negative associations among the
contributing factors will be generated. For the system to
achieve the lowest possible total energy, the contributing
factors would somehow need to be shuffled (analogous to
recombination).

VII. DISCUSSION

A note about epistasis

Epistasis is non-additivity in genic contributions to
fitness, and negative epistasis is concave non-additivity,
such that total fitness is always less than the sum of genic
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fitnesses. A population at equilibrium will harbor nega-
tive LD if its constituents exibit negative epistasis across
loci. It was once thought that the source of selective im-
balance with the strongest causal link to the evolution of
sex and recombination was negative, or synergistic, epis-
tasis. However, under negative epistasis, recombinants
are initially selectively suppressed on average, because
recombination breaks up well-matched alleles across loci
(it increases diffusion on a concave surface). This initial
suppression of recombinants is eventually reversed, and
recombinants are eventually amplified by selection, on
average, owing to the fact that their fitnesses come from
a distribution with larger variance [44]. Whether or not
recombinants are ultimately successful therefore depends
on the dynamics of recombinant fitness and whether or
not the selective reversal is quick enough to rescue and
amplify recombinants. Barton [15] identified a small in-
terval of weakly negative epistasis, below zero and not
containing it, for which the initial suppression of recom-
binants was small enough and the selective reversal quick
enough to make the recombinants successful on average
[3]. As there is no compelling evidence to suspect that
epistasis in nature tends to fall within this “goldilocks
zone” (or tends to show any general bias away from from
zero) [3, 45, 46], epistasis-based explanations for the evo-
lution of sex fell out of favor.
Here, we find that, under natural selection, there is

an interval for epistasis outside of which the evolution
of recombination would not be favored, but: 1) this in-
terval can be much bigger than that identified under the
equilibrium / negative epistasis explanatory framework
and, more importantly, 2) it always contains zero (Fig
3). Point 2 is especially relevant because it means that
epistasis is not necessary for the evolution of recombina-
tion where natural selection is acting. Point 1 suggests
that even if a persistent bias in epistasis is demonstrated
across the tree of life, it would not invalidate our theory,
as long as the bias is not too large.

Assessment and concluding remarks

Previous studies have found that, when a population
undergoing continuous (non-discrete) mutation and re-
combination achieves equilibrium, a new variant with a
lower recombination rate introduced into the population
at low frequency will always invade [47–49]. This remark-
ably encompassing finding was dubbed a “general reduc-
tion principle” for recombination [47–49] (also for muta-

tion and migration [47, 50]) and has been interpreted as
providing mathematical rigor to the view that the ubiq-
uity of sex and recombination in nature is enigmatic. The
discrepancy between the predictions of these models and
observations in nature, however, may instead point to
the increasingly-accepted view that populations are not
at equilibrium most of the time. Analogies between evo-
lutionary genetics and statistical physics are increasingly
moving toward non-equilibrium thermodynamics as the
more appropriate analogy [51–55].
The setting we analyze in this paper – natural selection

simply acting on heritable variation – is one of a system
not at equilibrium. Even when our initial fitness distri-
bution is the “mutation-selection-balance distribution”
(SM), the fact that no further mutation takes place puts
the system out of equilibrium. The very encompassing
recombination-augmenting tendency we describe in this
paper may perhaps be seen as providing a “general in-
flation principle” of sorts, for the non-equilibrium case.
In light of our findings, recombination is perhaps not the
enigma that it has been thought to be. Selection pres-
sure for recombination should appear anywhere natural
selection is acting. The evolution of sex and recombi-
nation may therefore have evolved less as a catalyst of
adaptation and more as a byproduct.
Acknowledgements Much of this work was

performed during a CNRS-funded visit (P.G.) to the
Laboratoire Jean Kuntzmann, University of Grenoble
Alpes, France, and during a visit to Bielefeld University
(P.G.) funded by Deutsche Forschungsgemeinschaft
(German Research Foundation, DFG) via Priority
Programme SPP 1590 Probabilistic Structures in Evo-
lution, grants BA 2469/5-2 and WA 967/4-2. P.G. and
A.C. received financial support from the USA/Brazil
Fulbright scholar program. P.G. and P.S. received
financial support from National Aeronautics and Space
Administration grant NNA15BB04A. P.G. received
further support from the National Institute Of General
Medical Sciences of the National Institutes of Health
under Award Number R35GM137919 (awarded to
Gideon Bradburd). The authors thank S. Otto and N.
Barton for their thoughts on early stages of this work.
Special thanks go to E. Baake for her thoughts on later
stages of this work and help with key mathematical
aspects. The authors thank D. Chencha, J. Streelman,
R. Rosenzweig and the Biology Department at Georgia
Institute of Technology for critical infrastructure and
computational support.

[1] P. J. Gerrish, B. Galeota-Sprung, F. Cordero,
P. Sniegowski, A. Colato, N. Hengartner, V. Vejalla,
J. Chevallier, and B. Ycart, Natural selection and the ad-
vantage of recombination, Phys. Rev. Lett. In Review
(2021).

[2] P. J. Gerrish, B. Galeota-Sprung, P. Sniegowski,

J. Chevallier, and B. Ycart, Natural selection promotes
the evolution of recombination 1: among selected geno-
types, Physical Review E In Review (2021).

[3] S. P. Otto and T. Lenormand, enResolving the paradox
of sex and recombination, Nat. Rev. Genet. 3, 252 (2002).

[4] N. H. Barton and B. Charlesworth, enWhy sex and re-

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2022. ; https://doi.org/10.1101/2021.06.07.447324doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447324
http://creativecommons.org/licenses/by-nd/4.0/


15

combination?, Science 281, 1986 (1998).
[5] S. P. Otto, enSelective interference and the evolution of

sex, J. Hered. 112, 9 (2021).
[6] S. p. Otto, The evolutionary enigma of sex, Am. Nat.

174, S1 (2009).
[7] J. A. G. M. de Visser and S. F. Elena, enThe evolution

of sex: empirical insights into the roles of epistasis and
drift, Nat. Rev. Genet. 8, 139 (2007).

[8] M. Hartfield and P. D. Keightley, enCurrent hypotheses
for the evolution of sex and recombination, Integr. Zool.
7, 192 (2012).

[9] S. C. Lee, M. Ni, W. Li, C. Shertz, and J. Heitman, enThe
evolution of sex: a perspective from the fungal kingdom,
Microbiol. Mol. Biol. Rev. 74, 298 (2010).

[10] R. A. Fisher, The genetical theory of natural selection

(Oxford Clarendon Press, 1930) p. 302.
[11] H. J. Muller, Some genetic aspects of sex, Am. Nat. 66,

118 (1932).
[12] D. Roze and N. H. Barton, enThe Hill-Robertson effect

and the evolution of recombination, Genetics 173, 1793
(2006).

[13] W. G. Hill and A. Robertson, enThe effect of linkage on
limits to artificial selection, Genet. Res. 8, 269 (1966).

[14] N. H. Barton, enLinkage and the limits to natural selec-
tion, Genetics 140, 821 (1995).

[15] N. H. Barton, enA general model for the evolution of
recombination, Genet. Res. 65, 123 (1995).

[16] N. H. Barton, enGenetic linkage and natural selection,
Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2559
(2010).

[17] S. P. Otto and N. H. Barton, enThe evolution of recombi-
nation: removing the limits to natural selection, Genetics
147, 879 (1997).

[18] J. F. Crow and M. Kimura, Evolution in sexual and asex-
ual populations, Am. Nat. 99, 439 (1965).

[19] Y. Kim and H. A. Orr, enAdaptation in sexuals vs. asex-
uals: clonal interference and the Fisher-Muller model,
Genetics 171, 1377 (2005).

[20] J. M. Smith and J. Maynard-Smith, The evolution of sex,
Vol. 4 (Cambridge University Press Cambridge, 1978).

[21] J. Maynard Smith, The evolution of sex, .
[22] B. Charlesworth, enMutation-selection balance and the

evolutionary advantage of sex and recombination, Genet.
Res. 89, 451 (1990).

[23] S. P. Otto and M. W. Feldman, enDeleterious mutations,
variable epistatic interactions, and the evolution of re-
combination, Theor. Popul. Biol. 51, 134 (1997).

[24] A. Blachford and A. F. Agrawal, enAssortative mating
for fitness and the evolution of recombination, Evolution
60, 1337 (2006).

[25] N. H. Barton and S. P. Otto, enEvolution of recombina-
tion due to random drift, Genetics 169, 2353 (2005).

[26] S. P. Otto and N. H. Barton, enSelection for recombina-
tion in small populations, Evolution 55, 1921 (2001).

[27] P. D. Keightley and S. P. Otto, enInterference among
deleterious mutations favours sex and recombination in
finite populations, Nature 443, 89 (2006).

[28] S. P. Otto, enThe evolutionary enigma of sex, Am. Nat.
174 Suppl 1, S1 (2009).

[29] G. Martin and L. Roques, enThe nonstationary dynamics
of fitness distributions: Asexual model with epistasis and
standing variation, Genetics 204, 1541 (2016).

[30] M.-E. Gil, F. Hamel, G. Martin, and L. Roques, Mathe-
matical properties of a class of integro-differential models

from population genetics, SIAM J. Appl. Math. 77, 1536
(2017).

[31] Y. Anciaux, A. Lambert, O. Ronce, L. Roques, and
G. Martin, enPopulation persistence under high muta-
tion rate: From evolutionary rescue to lethal mutagene-
sis, Evolution 73, 1517 (2019).

[32] P. J. Gerrish and P. D. Sniegowski, enReal time forecast-
ing of near-future evolution, J. R. Soc. Interface 9, 2268
(2012).

[33] R. Bürger, enMoments, cumulants, and polygenic dy-
namics, J. Math. Biol. 30, 199 (1991).

[34] M. Smerlak and A. Youssef, enLimiting fitness distribu-
tions in evolutionary dynamics, J. Theor. Biol. 416, 68
(2017).

[35] J. Felsenstein and S. Yokoyama, enThe evolutionary ad-
vantage of recombination. II. individual selection for re-
combination, Genetics 83, 845 (1976).

[36] S. P. Otto and T. Lenormand, Resolving the paradox of
sex and recombination, Nat. Rev. Genet. 3, 252 (2002).

[37] N. H. Barton and H. P. de Vladar, Statistical mechanics
and the evolution of polygenic quantitative traits (2009).

[38] M. Smerlak, Natural selection as coarsening, J. Stat.
Phys. (2018).
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