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Abstract

Background: BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the
accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical
models of protein-coding genes based on provided evidence and, then predicts protein-coding genes
in genomic sequences using both the extrinsic evidence and statistical models. For training and
prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1
uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The
BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and
BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel
genome project where both RNA-seq and protein data are available, the best option is to run both
pipelines independently, and to pick one, likely better output. Therefore, one or another type of the
extrinsic evidence would remain unexploited.

Results: We present TSEBRA, a software that selects gene predictions (transcripts) from the
sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of
overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We
show in computational experiments on genomes of 11 species that TSEBRA achieves higher
accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares
favorably with the combiner tool EVidenceModeler.

Conclusion: TSEBRA is an easy-to-use and fast software tool. It can be used in concert with
the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and
homologous protein evidence.
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Background 1

Currently, the National Center for Biotechnology Information’s (NCBI) GenBank [1] hosts 7,978 2

eukaryotic genomes, with 3,208 of these genomes lacking an annotation of protein-coding genes. 3

Notably, 746 genome annotations out of existing 4,770 ones were generated by NCBI [2, 3]. The 4

original authors frequently omit an annotation step and many publicly available genomes remain 5

not annotated. Furthermore, re-annotation may be in order for many of the annotated genomes as 6

more related sequence data has become available, or annotation methods have been improved since 7

their initial application. Thus, there is a need for accurate automated annotation methods that use 8

all available data and are easily accessible to bioinformatics teams. 9

The most useful data to support accurate genome annotation are transcriptomic sequence data, 10

e.g. RNA-sequencing (RNA-seq) data, from the same species and protein sequences from species 11

that are sufficiently closely related to the target species in the tree of life. RNA-seq reads spliced 12

aligned to a genomic region are used to infer likely intron intervals [4] in protein-coding genes. In a 13

similar way, likely exon and intron boundaries can be inferred using homologous proteins because 14

segments of gene structures are often highly conserved [5]. Protein evidence has the advantage that 15

it maps only to protein-coding genes, but with the downside that it depends on the degree of 16

sequence conservation, which may differ between genes and available species. In contrast, RNA-seq 17

is usually obtained from the same species and then, free of this dependency, covers only genes and 18

spliced isoforms that are expressed in a sample. However, RNA-seq could be generated from 19

non-coding genes; sequencing errors may render accurate alignments difficult. Ever-increasing 20

throughput has resulted in large databases of RNA-seq. For example, the NCBI Sequence Read 21

Archive (SRA) [6] hosts more than 36 petabytes of data, while the protein database OrthoDB [7] 22

contains more than 37 million sequences. 23

Genome annotation methods that use statistical models of gene structures such as splice site 24

patterns in addition to the evidence from RNA-seq and homology, are arguably best suited for 25

whole-genome annotation [8]. BRAKER, a popular pipeline of competitive accuracy [9], has two 26

modes of a genome annotation process supported by extrinsic evidence. BRAKER1 uses 27

GeneMark-ET [10–12] together with AUGUSTUS [13–17] and relies on RNA-seq data to support 28

gene finder training and accurate prediction of gene structures. BRAKER2 [18] exploits spliced 29

alignments of homologous proteins as a source of extrinsic evidence for genome annotation with 30

GeneMark-EP+ [19] and AUGUSTUS. 31

When heterogeneous extrinsic evidence sources are available, some genome annotation tools like 32

MAKER2 [20] and GeMoMa [21] integrate these different sources directly into the annotation 33

protocol. Some, like the recent FINDER [22], perform protein-spliced alignments only with proteins 34

that are mapped to genes missed by RNA-seq-based methods. On the other hand, FINDER does 35

not use RNA-seq evidence to assess or compare homology-based gene models. A different approach 36

is to first generate multiple whole-genome annotations and then to use a combiner tool that takes 37

various gene predictions as input with diverse sources of extrinsic evidence and constructs a genome 38

annotation that is on average more accurate than any input genome annotation. Some previously 39

developed combiner tools built their own gene structure model in the form of a graph and report a 40

gene structure either based on the consensus of all available data, e.g. IPred [23], or as the result of 41

a machine learning procedure such as most likely parse of an HMM, e.g. Combiner [24], 42

JIGSAW [25], Evigan [26], ExonHunter [27]. A prominent combiner tool is the openly accessible 43

EVidenceModeler (EVM) [28]. It uses a weighted consensus from all available evidence sources to 44

predict a gene structure. EVM was successfully used to produce several high-quality annotations of 45

novel genomes [29,30]. 46

In our approach, we first generate several sets of whole-genome gene predictions based on a 47

single type of extrinsic evidence (i.e. by BRAKER1 and BRAKER2). We use a new combiner tool 48

that scores and ranks these predictions (transcripts) based on heterogeneous evidence. Then, we 49

select those with higher rank into a newly constructed genome annotation which is on average more 50

accurate than any whole-genome annotation provided in the input. Up to now, the BRAKER suite 51

has so far not been able to achieve a prediction accuracy that is reliably superior to either 52
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single-source evidence mode when using RNA-seq and proteins simultaneously [31,32]. Nevertheless, 53

BRAKER users often have both types of extrinsic data available for a target genome. Incidentally, 54

most of the previously mentioned combiner tools are either not publicly available anymore, lack 55

support, or are very difficult to use for combining BRAKER1 and BRAKER2 predictions. 56

Therefore, we present Transcript Selector for BRAKER (TSEBRA), a fast software tool for 57

selecting gene predictions from the output of two branches of the BRAKER eukaryotic gene 58

prediction suite based on all the heterogeneous extrinsic evidence. TSEBRA achieves high accuracy 59

and is easy to use. We show that it delivers a significant increase in accuracy with respect to the 60

input annotations generated by BRAKER1 and BRAKER2. 61

Implementation 62

TSEBRA uses a set of arbitrarily many gene prediction files in GTF format together with a set of 63

files of heterogeneous extrinsic evidence to produce a combined output. From the whole set of 64

transcripts contained in the gene predictions, TSEBRA must select those that are more reliably 65

supported by a full complement of extrinsic evidence; these transcripts constitute the output. Less 66

reliably supported transcripts are filtered out. The rational of TSEBRA’s approach is as follows. 67

Taking a union of gene predictions generated by two or more gene finding tools makes a set of 68

predictions with improved sensitivity but with lower specificity. A non-trivial task is to remove some 69

predictions and increase specificity with little decrease of sensitivity. This task is tantamount to 70

identification of likely false positives and filtering them out. TSEBRA solves exactly this problem. 71

TSEBRA uses extrinsic evidence in the form of intron regions or start/stop codon positions to 72

evaluate and filter transcripts from gene predictions. These must be provided in a GFF file that 73

includes two attributes in the last column ’mult=’, a number specifying its multiplicity – the 74

number of alignments that support it, and ’src=’ determining its source, e.g., ’src=P’ for evidence 75

from a protein alignment. The mult attribute is used to specify multiplicities larger than one. 76

TSEBRA takes three sets of different hyperparameters from a configuration file. More precisely, 77

it takes a weight for any evidence source, four transcript score thresholds and two low evidence 78

support thresholds. The weights are used to compute transcript scores and the transcript score 79

thresholds are used for comparing transcripts. The low evidence support thresholds consist of 80

minimum fractions of intron or start/stop codon support. We recommend the application of the 81

default hyperparameters provided in the TSEBRA configuration file to be used in a standard use 82

case. 83

The workflow of TSEBRA is as follows: 84

1. Take a union of transcripts predicted by BRAKER1 and BRAKER2 while merging identical 85

transcripts. 86

2. Compute vectors of support scores for all transcripts. 87

3. Identify all pairs of transcripts with overlapping coding regions. 88

4. Compare all pairs of overlapping transcripts by a transcript comparison rule using the 89

extrinsic evidence and mark some of them for exclusion. 90

5. Remove all transcripts marked for exclusion by the transcript comparison rule. 91

6. Remove all transcripts with low evidence support. 92

7. Combine the remaining transcripts into a final set of predictions with groups of overlapping 93

transcripts making sets of alternative isoforms. 94

The output of TSEBRA is the set of genes (with alternative isoforms) in GTF format. 95

In step 6, a transcript is removed if the fractions of introns and start/stop codons supported by 96

extrinsic evidence are lower than the low evidence support thresholds. In step 7, genes are the 97
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single-linkage clusters of transcripts where two transcripts are in the same gene if they overlap (and 98

could be alternative splice forms). Two transcripts are considered to overlap if they share at least 99

three adjacent protein-coding nucleotides on the same strand and in the same reading frame. Note 100

that a transcript ’marked for exclusion’ in step 4 is still compared to all overlapping transcripts and 101

may cause removal of another transcript. This filtering step is different from a simplistic approach 102

that would first score transcripts and then apply a fixed threshold to their score. In our approach, 103

the transcripts with strongest local support are kept, and those that are discarded can still have 104

strong support in absolute terms if transcripts with even stronger support overlap. 105

As a special case, TSEBRA may be used with a single gene prediction file to filter for the ones 106

with the strongest evidence support. This may be useful for a genome annotation with many 107

transcript isoforms per gene. 108

Transcript scores 109

Four transcript scores s1, . . . , s4 characterize the support of features of a transcript, here introns (i) 110

or start/stop-codons (s), by all extrinsic evidence E represented by hints. A hint h is either an 111

intron region or start/stop codon position together with an identifier of its original source 112

src(h) ∈ O and its multiplicity mult(h) ∈ {1, 2 . . .}. O is a set of original sources, e.g. O = {P,R}, 113

if protein data and RNA-seq were used, but could also contain further elements, e.g. when variants 114

of RNA-seq sequencing technologies shall be distinguished [32]. Multiplicity mult(h) is the number 115

of alignments from the same source that supports hint h. A hint supports a transcript feature if all 116

identifying characteristics match, i.e. sequence name, start/stop position, feature type, and strand. 117

Consider a particular transcript and let F be the set of all of its features. Define Ff ⊂ F as all 118

features in F of type f ∈ {i, s}. The relative support of a transcript feature is 119

rf :=
|Ff ∩ E|

|Ff |
.

Score s1 := ri is the relative support of the transcript’s introns (f = i) by the evidence E and 120

s2 := rs is the fraction of start/stop codons supported by E. 121

A weight wo with o ∈ O is assigned to each evidence source. The absolute quantity of 122

supporting hints for a transcript feature f is the weighted sum of all supporting hints: 123

af :=
∑

h∈E∩Ff

w
src(h) ·mult(h) (f ∈ {i, s}).

The scores s3 := ai and s4 := as measure the abundance of extrinsic evidence that support the 124

introns or the start/stop codons of a transcript, see Figure 1 for an example. 125

Pairwise transcript comparison rule 126

The pairwise transcript comparison rule compares two transcripts with respect to their support of 127

extrinsic evidence using the transcript scores. One or no transcript is marked for exclusion when 128

comparing two overlapping transcripts, see Figure 2. The differences of all transcript scores (of the 129

same type) are compared to a score specific threshold, in order from s1 to s4. When the threshold 130

is exceeded for the first time, the comparison rule terminates and the transcript with the smaller 131

value for the current score is marked as the transcript that will be excluded from the combined gene 132

set. Neither transcript is marked for removal if all differences are less than or equal to the 133

associated thresholds. 134

Default hyperparameters 135

The TSEBRA suite includes a set of default hyperparameters, which are recommended for usage in 136

a standard use case – to combine BRAKER1 and BRAKER2 – so that users are not required to set 137
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Figure 1. Example of how extrinsic evidence in form of spliced alignments from homologous
proteins (blue) or RNA-seq reads (red) is used to determine scores for the support of a transcript
(green). Likely exon-intron borders are inferred from the alignments to create intron hints. The start
and stop codons of the protein alignments are used to create start and stop codon hints, respectively.
The transcript scores utilize them to quantify the support of the transcript structure.

the hyperparameters themselves. Evidence sources in a standard BRAKER1 and BRAKER2 output 138

are: protein database (P), EST database (E), combined EST/protein database (C), and manual 139

anchored (M). The default weights for these are wP = 0.1, wE = 10, wC = 5 and wM = 1. A 140

transcript has low evidence support in this default setting if the fraction of supported introns is less 141

than 0.75 and the supported start/stop-codon fraction is less than 1.0. The score specific thresholds 142

are ε1 = 0, ε2 = 0.5, ε3 = 25, ε4 = 10. We have shown that TSEBRA using default parameters 143

performs with high accuracy across several species, see Results and discussion. 144

Results and discussion 145

We compared the accuracy of TSEBRA in two experiments. First, we compared TSEBRA to 146

BRAKER1 and BRAKER2 in their standard use modes, and second, we compared TSEBRA with 147

EVM. 148

Accuracy assessment metrics 149

Specificity (Sp), sensitivity (Sn), and their harmonic mean – the F1-score – were the measures of 150

gene prediction accuracy. Accuracy values were examined at the gene, transcript, and exon levels. 151

A predicted gene is considered correct, if it is identical to at least one annotated alternative splicing 152

isoform. A reference transcript t is considered as correctly predicted by transcript t′, if t and t′ 153

completely agree on their sets of CDS (exons). Two CDS are considered to agree if they are located 154

in the same strand and both pairs of sequence coordinates are identical. 155

Comparison with BRAKER1 and BRAKER2 156

Complete genome annotations generated independently by BRAKER1 and BRAKER2 (both 157

BRAKER v.2.1.5) for 11 eukaryotic species (Table S1 in Supplementary Information) were processed 158

by TSEBRA with default hyperparameters. For each genome, we used its ‘standard’ annotation to 159

compute the accuracies of the sets of gene predictions made by BRAKER1, BRAKER2, and 160

TSEBRA. BRAKER1 was supported by extrinsic evidence in form of RNA-seq reads aligned to the 161

genome of interest. RNA-seq hints were sampled with VARUS [33] from SRA for each genome with 162

HISAT2 [34] as an alignment tool. BRAKER2 was supported by protein data sets selected earlier 163
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Figure 2. Comparison rule for two transcripts using extrinsic evidence, either one or none of the
transcripts is marked for removal; sj are transcript scores and εj are score specific thresholds with
j ∈ {1, 2, · · · , 4}.

while testing BRAKER2 [18]. For each of the three model species with genome annotations curated 164

multiple times, A. thaliana, C. elegans, and D. melanogaster, we used proteins from three sets of 165

species varied with respect to minimal evolutionary distance to the query species. Each protein set 166

included proteins from a large clade, e.g. Plantae, Metazoa, and Arthropoda, of the query species. 167

The three sets per species excluded either (i) proteins from the query species itself, (ii) all species of 168

the same family or (iii) all species of the same order. The corresponding sets of proteins could 169

provide more or less precise evidence for gene prediction depending on the degree of saturation by 170

closely related species. The level (i) offers the largest number of close relatives while the level (iii) 171

provides the least number of them and the least precise evidence for a query species. We used 172

proteins from the corresponding sets of species selected at the level (iii) for the other eight species. 173

TSEBRA (with default hyperparameters) had a higher accuracy than either BRAKER1 or 174

BRAKER2 across all 11 species and nearly all test settings, see Table 1. The F1-score of TSEBRA 175

was on average 7.78 percent points higher on gene level, 4.53 percent points higher on transcript 176

level, and 2.06 percent points higher on CDS level than the maximum F1-score of BRAKER1 and 177

BRAKER2. Note that for some species, the BRAKER1 F1–score was higher than the one for 178

BRAKER2 and vice versa for other species. The directionality was strongly correlated between the 179

CDS, transcript, and gene levels. For a user, it is difficult to figure out which mode of BRAKER 180

would perform better for a genome of interest. Using TSEBRA is supposed to resolve this 181

uncertainty. TSEBRA generates a higher increase in specificity than in sensitivity: on average Sn 182

increased by 0.52 percent points for all evaluation levels while Sp increased by 8.78 percent points. 183

This was likely caused by the setting of parameters filtering out a majority of transcripts with low 184

support from extrinsic evidence. 185

Our tests showed that a single parameter set is sufficient for TSEBRA working with BRAKER1 186

and BRAKER2 across all the tested genomes, therefore, a change (training) of the set of parameters 187

for each new genome may not be needed. The number of transcripts per gene selected by TSEBRA 188

was on average 1.07 which is at the same level as BRAKER2, and lower than the average of 1.20 189

observed for BRAKER1. 190
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Table 1. F1-score on CDS, transcript, and gene level for BRAKER1 (RNA-seq hints), BRAKER2
(protein hints of type (iii)), TSEBRA EVM, EVM using comparable evidence, and TSEBRA (default
hyperparameter) with hints generated by the BRAKER runs. For A. thal, C. ele., D. mel., a set
of genome partitions, each totaling 90% of the genome size, was sampled for the evaluation of all
methods. For all other species, the tests were run on the full genomes for BRAKER1, BRAKER2,
and TSEBRA. (See Table S1 in Supplementary Information for full species names and Table S2 in
Supplementary Information for the results with different protein sets.)

CDS level F1-score

BRAKER1 BRAKER2 EVM TSEBRA EVM TSEBRA
A. tha. 81.87 84.01 84.41 86.21 86.90

B. ter. 76.12 72.84 77.80

C. ele. 85.87 81.13 86.14 85.13 84.48
D. mel. 79.82 76.79 79.67 79.89 81.66

D. rer. 74.00 72.23 78.40

M. tru. 71.46 75.11 80.98

P. tep. 68.61 63.90 67.96
P. tri. 78.32 83.40 87.60

R. pro. 53.54 54.49 56.30

T. nig. 53.95 57.97 58.70

X. tro. 74.96 75.89 79.44

Transcript level F1-score

BRAKER1 BRAKER2 EVM TSEBRA EVM TSEBRA
A. tha. 53.78 56.63 57.32 61.35 62.00

B. ter. 33.15 26.49 35.02

C. ele. 53.30 42.71 52.76 54.46 55.94

D. mel. 51.33 46.94 49.90 53.76 55.18

D. rer. 24.99 22.17 33.43

M. tru. 39.04 44.09 51.72

P. tep. 26.14 18.04 28.89

P. tri. 47.04 55.96 62.31

R. pro. 12.84 12.65 15.22

T. nig. 5.74 7.93 9.78

X. tro. 22.88 23.84 31.83

Gene level F1-score

BRAKER1 BRAKER2 EVM TSEBRA EVM TSEBRA
A. tha. 65.51 70.58 70.88 78.35 79.69

B. ter. 38.91 32.18 44.71

C. ele. 63.13 52.29 63.98 68.90 70.78

D. mel. 64.44 61.25 64.94 71.34 73.93

D. rer. 31.49 27.37 44.13

M. tru. 40.03 44.96 54.05

P. tep. 28.59 19.99 33.83

P. tri. 53.11 63.88 73.45

R. pro. 13.64 12.91 16.21

T. nig. 6.59 8.87 11.46

X. tro. 26.40 30.58 41.26

Comparison with EVidenceModeler 191

We also compared the accuracy of TSEBRA with the accuracy of EVidenceModeler (EVM, commit 192

68e724e from GitHub [35]) working to combine BRAKER1 and BRAKER2 predictions with 193

heterogeneous extrinsic evidence. Comparison of TSEBRA and EVM was performed for the 194

genomes of the model species A. thaliana, C. elegans, and D. melanogaster. 195

EVM takes extrinsic evidence in form of spliced alignments from assembled transcripts. This 196

type of evidence is not produced by BRAKER1 utilizing mappings of unassembled reads. To make 197

a comparison between EVM and TSEBRA on the same data, we produced new and comparable 198

extrinsic evidence for EVM (i.e. spliced alignments) and TSEBRA (i.e. intron or start/stop codon 199
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Figure 3. Average gene, transcript, and CDS levels Sn and Sp for all nine combinations of three
model species (A. thal, C. ele., D. mel.) and all test settings ((i), (ii), (iii)) as described for these
model species in Table 1.

hints). We used the protein alignments generated by ProtHint during the BRAKER2 run and 200

assembled spliced alignments from the RNA-seq reads sampled by VARUS. For each locus, we 201

selected the protein alignment produced by ProtHint with the highest DIAMOND [36] score creating 202

a genome-wide set of protein alignments. To produce RNA-seq based hints, we reconstructed 203

transcripts from the RNA-seq reads with Trinity (v2.12.0) [37] and applied PASA (v2.4.1) [38] to 204

assemble and align them. The genomes were partitioned into 400, 000 bp long segments with an 205

overlap of 50, 000 bp between neighboring segments employing the tools provided by EVM. For each 206

partition, EVM was run with transcript and protein evidence from PASA and protein alignments, 207

respectively. TSEBRA was run with the introns from both sets of alignments and the start/stop 208

codons from the protein alignments. We refer to this particular TSEBRA run as TSEBRA EVM. 209

EVM requires that a weight is assigned to each of the four input sources. We used 10% of the 210

total number of partitions to search for a good set of weights for EVM and a set of hyperparameters 211

for TSEBRA. We used the remaining partitions to evaluate the accuracy of TSEBRA EVM. The 212

values of the hyperparameters are available in Supplementary Information Table S3 and Table S4. 213

We compared the accuracy of TSEBRA with EVM, one of the most cited combiner tools to date. 214

EVM was previously used to combine BRAKER with other predictions [39], to combine BRAKER2 215

predictions with RNA-seq evidence [40, 41] or other RNA-seq based predictions [42], and even for 216

combining multiple BRAKER predictions [43]. Still, it is not the most suitable task for EVM to 217

create a BRAKER-only combination. The authors of EVM recommend the use of a set of gene 218

predictions, usually more than two, along with extrinsic evidence, because the strength of EVM is in 219

finding consensus among diverse sources. This is in conflict with the fact that there is no direct way 220

for EVM to use the hints generated by BRAKER and that we were looking for a way to combine 221

only two gene predictions. In addition, EVM reports only one transcript per gene, which limits the 222

completeness of its annotation output in a setting with much evidence for alternative splicing. 223

We compared TSEBRA and EVM to address a question: which is the better method for 224

combining BRAKER1 and BRAKER2 predictions? In a test setting with comparable extrinsic 225

evidence, we evaluated them across three species with three different protein sets each. Both 226

methods have successfully combined the BRAKER1 and BRAKER2 predictions into one set with 227

increased F1-score, see Figure 3. Still, TSEBRA EVM had, compared to EVM, a higher accuracy 228

on average with an average increase of the F1-score at the gene, transcript, and CDS levels of 6.12, 229

3.38, and 0.79 percent points, respectively. These improvements came with an overall increased Sn 230

and Sp for TSEBRA EVM on the transcript and gene levels. Only at the CDS level, both methods 231

had a similar accuracy; EVM had a slightly higher Sn and TSEBRA EVM had a higher Sp. 232

We had to carefully select the test setting since the choice of partition size made a difference to 233
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EVM when it makes models of intergenic regions. An additional difficulty was that the tools used 234

for creating the partitions enforced hard borders, even if they split a transcript. To neutralize this 235

issue, an overlap between partitions was used. 236

TSEBRA executes much faster than EVM, which constructs a complete gene model and 237

evaluates all possible gene structures. TSEBRA, on the other hand, only evaluates the set of 238

explicitly given transcripts as input. In our tests, we ran both methods separately in parallel on a 28 239

multi-core processor, the average runtime of EVM was 35.28 min and of TSEBRA EVM 0.37 min. 240

Conclusions 241

We presented TSEBRA, a tool that selects more reliable gene predictions (transcripts) from the sets 242

of transcripts generated independently by BRAKER1 and BRAKER2. A novel approach to 243

transcript selection was successfully implemented. In computational experiments made with 244

genomes of 11 diverse eukaryotic species we have shown that the set of transcripts selected by 245

TSEBRA matched annotated genes (believed to be the true ones) with higher accuracy than both 246

BRAKER1 and BRAKER2. Note that the combined extrinsic evidence is not used at the step of 247

generation of gene predictions. BRAKER1 and BRAKER2 use disjoint evidence sources also for 248

training statistical gene-finding models. A relative complementarity of the gene sets can be an 249

advantage when they are combined subsequently. The ranking and selection of the final set of 250

transcripts, however, does use both protein and RNA-seq evidence. This approach makes an 251

effective use of both sources of extrinsic evidence for selection of most likely true positive 252

transcripts from the set of candidates, the transcripts generated by BRAKER1 and BRAKER2 253

running in parallel. 254

Thus, TSEBRA makes a useful tool that with help of heterogeneous extrinsic evidence 255

transforms the union of predictions of BRAKER1 and BRAKER2 into a set of gene predictions 256

whose accuracy exceeds the accuracy of both BRAKER1 and BRAKER2 running separately. 257

Availability and requirements 258

Project name: TSEBRA. 259

Project home page: https://github.com/Gaius-Augustus/TSEBRA. 260

Operating system(s): Linux, MacOS. 261

Programming language: Python. 262

Other requirements: Python 3.0 or higher. 263

License: Artistic License 2.0 (see https://opensource.org/licenses/Artistic-2.0). 264

Any restrictions to use by non-academics: Artistic License 2.0 restrictions apply. 265
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NCBI: National Center for Biotechnology Information; RNA-seq: RNA-sequencing; SRA: Sequence Read Archive; 267

EVM: EVidenceModeler; TSEBRA: Transcript Selector for BRAKER; Sp: specificity; Sn: sensitivity. 268
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https://github.com/Gaius-Augustus/TSEBRA/releases/tag/v1.0.1. 273
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27. Brejová B, Brown DG, Li M, Vinař T. ExonHunter: a comprehensive approach to gene
finding. Bioinformatics. 2005;21(suppl 1):i57–i65.

28. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic
gene structure annotation using EVidenceModeler and the Program to Assemble Spliced
Alignments. Genome Biology. 2008;9(1):1–22.

11/12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447316doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447316
http://creativecommons.org/licenses/by/4.0/


29. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The
Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551–556.

30. Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, et al. Sequencing of allotetraploid cotton
(Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature
Biotechnology. 2015;33(5):531–537.
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