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Abstract

Background: BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the
accurate annotation of protein-coding genes in eukaryotic genomes. Fach pipeline trains statistical
models of protein-coding genes based on provided evidence and, then predicts protein-coding genes
in genomic sequences using both the extrinsic evidence and statistical models. For training and
prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1
uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The
BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKERI1 and
BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel
genome project where both RNA-seq and protein data are available, the best option is to run both
pipelines independently, and to pick one, likely better output. Therefore, one or another type of the
extrinsic evidence would remain unexploited.

Results: We present TSEBRA, a software that selects gene predictions (transcripts) from the
sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of
overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We
show in computational experiments on genomes of 11 species that TSEBRA achieves higher
accuracy than either BRAKER]1 or BRAKER2 running alone and that TSEBRA compares
favorably with the combiner tool EVidenceModeler.

Conclusion: TSEBRA is an easy-to-use and fast software tool. It can be used in concert with
the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and
homologous protein evidence.
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Background )
Currently, the National Center for Biotechnology Information’s (NCBI) GenBank [1] hosts 7,978 2
eukaryotic genomes, with 3,208 of these genomes lacking an annotation of protein-coding genes. 3
Notably, 746 genome annotations out of existing 4,770 ones were generated by NCBI |2}[3]. The 4
original authors frequently omit an annotation step and many publicly available genomes remain 5

not annotated. Furthermore, re-annotation may be in order for many of the annotated genomes as
more related sequence data has become available, or annotation methods have been improved since 7
their initial application. Thus, there is a need for accurate automated annotation methods that use s

all available data and are easily accessible to bioinformatics teams. 0
The most useful data to support accurate genome annotation are transcriptomic sequence data, 1o
e.g. RNA-sequencing (RNA-seq) data, from the same species and protein sequences from species 1

that are sufficiently closely related to the target species in the tree of life. RNA-seq reads spliced 12
aligned to a genomic region are used to infer likely intron intervals [4] in protein-coding genes. In a1
similar way, likely exon and intron boundaries can be inferred using homologous proteins because 14
segments of gene structures are often highly conserved [5]. Protein evidence has the advantage that 1
it maps only to protein-coding genes, but with the downside that it depends on the degree of 16
sequence conservation, which may differ between genes and available species. In contrast, RNA-seq
is usually obtained from the same species and then, free of this dependency, covers only genes and 18
spliced isoforms that are expressed in a sample. However, RNA-seq could be generated from 19
non-coding genes; sequencing errors may render accurate alignments difficult. Ever-increasing 2
throughput has resulted in large databases of RNA-seq. For example, the NCBI Sequence Read 21
Archive (SRA) [6] hosts more than 36 petabytes of data, while the protein database OrthoDB [7] 2

contains more than 37 million sequences. 2

Genome annotation methods that use statistical models of gene structures such as splice site 2
patterns in addition to the evidence from RNA-seq and homology, are arguably best suited for 2
whole-genome annotation [8]. BRAKER, a popular pipeline of competitive accuracy [9], has two %
modes of a genome annotation process supported by extrinsic evidence. BRAKERI uses 27
GeneMark-ET [10H12] together with AUGUSTUS [13H17] and relies on RNA-seq data to support 2
gene finder training and accurate prediction of gene structures. BRAKER2 [18] exploits spliced 29
alignments of homologous proteins as a source of extrinsic evidence for genome annotation with 30
GeneMark-EP+ [19] and AUGUSTUS. 3

When heterogeneous extrinsic evidence sources are available, some genome annotation tools like s
MAKER?2 [20] and GeMoMa [21] integrate these different sources directly into the annotation 3

protocol. Some, like the recent FINDER [22], perform protein-spliced alignments only with proteins s
that are mapped to genes missed by RNA-seq-based methods. On the other hand, FINDER, does 3
not use RNA-seq evidence to assess or compare homology-based gene models. A different approach s
is to first generate multiple whole-genome annotations and then to use a combiner tool that takes s
various gene predictions as input with diverse sources of extrinsic evidence and constructs a genome 3
annotation that is on average more accurate than any input genome annotation. Some previously 30
developed combiner tools built their own gene structure model in the form of a graph and report a 4
gene structure either based on the consensus of all available data, e.g. IPred [23], or as the result of &
a machine learning procedure such as most likely parse of an HMM, e.g. Combiner [24], P
JIGSAW [25], Evigan [26], ExonHunter [27]. A prominent combiner tool is the openly accessible s
EVidenceModeler (EVM) [28]. It uses a weighted consensus from all available evidence sources to s
predict a gene structure. EVM was successfully used to produce several high-quality annotations of 4

novel genomes [29}(30]. I

In our approach, we first generate several sets of whole-genome gene predictions based on a a7
single type of extrinsic evidence (i.e. by BRAKER1 and BRAKER2). We use a new combiner tool 4
that scores and ranks these predictions (transcripts) based on heterogeneous evidence. Then, we 29

select those with higher rank into a newly constructed genome annotation which is on average more  so
accurate than any whole-genome annotation provided in the input. Up to now, the BRAKER suite =
has so far not been able to achieve a prediction accuracy that is reliably superior to either 52
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single-source evidence mode when using RNA-seq and proteins simultaneously [31,[32]. Nevertheless, s
BRAKER users often have both types of extrinsic data available for a target genome. Incidentally, s

most of the previously mentioned combiner tools are either not publicly available anymore, lack 55
support, or are very difficult to use for combining BRAKER1 and BRAKER2 predictions. 56
Therefore, we present Transcript Selector for BRAKER (TSEBRA), a fast software tool for 57
selecting gene predictions from the output of two branches of the BRAKER eukaryotic gene 58
prediction suite based on all the heterogeneous extrinsic evidence. TSEBRA achieves high accuracy  so
and is easy to use. We show that it delivers a significant increase in accuracy with respect to the 60
input annotations generated by BRAKER1 and BRAKER2. 61
Implementation 0
TSEBRA uses a set of arbitrarily many gene prediction files in GTF format together with a set of
files of heterogeneous extrinsic evidence to produce a combined output. From the whole set of 64
transcripts contained in the gene predictions, TSEBRA must select those that are more reliably 65

supported by a full complement of extrinsic evidence; these transcripts constitute the output. Less s
reliably supported transcripts are filtered out. The rational of TSEBRA’s approach is as follows. 67

Taking a union of gene predictions generated by two or more gene finding tools makes a set of 68
predictions with improved sensitivity but with lower specificity. A non-trivial task is to remove some e
predictions and increase specificity with little decrease of sensitivity. This task is tantamount to 70

identification of likely false positives and filtering them out. TSEBRA solves exactly this problem. =
TSEBRA uses extrinsic evidence in the form of intron regions or start/stop codon positions to =

evaluate and filter transcripts from gene predictions. These must be provided in a GFF file that 7
includes two attributes in the last column 'mult=’, a number specifying its multiplicity — the 7
number of alignments that support it, and ’src=" determining its source, e.g., ’src=P’ for evidence
from a protein alignment. The mult attribute is used to specify multiplicities larger than one. 7
TSEBRA takes three sets of different hyperparameters from a configuration file. More precisely,

it takes a weight for any evidence source, four transcript score thresholds and two low evidence 78
support thresholds. The weights are used to compute transcript scores and the transcript score 70
thresholds are used for comparing transcripts. The low evidence support thresholds consist of 80
minimum fractions of intron or start/stop codon support. We recommend the application of the 81
default hyperparameters provided in the TSEBRA configuration file to be used in a standard use 8
case. 83
The workflow of TSEBRA is as follows: 8

1. Take a union of transcripts predicted by BRAKER1 and BRAKER2 while merging identical s
transcripts. 86

2. Compute vectors of support scores for all transcripts. 87

3. Identify all pairs of transcripts with overlapping coding regions. 88

4. Compare all pairs of overlapping transcripts by a transcript comparison rule using the 80
extrinsic evidence and mark some of them for exclusion. 9

5. Remove all transcripts marked for exclusion by the transcript comparison rule. o1

6. Remove all transcripts with low evidence support. 0

7. Combine the remaining transcripts into a final set of predictions with groups of overlapping

transcripts making sets of alternative isoforms. 0

The output of TSEBRA is the set of genes (with alternative isoforms) in GTF format. %
In step 6, a transcript is removed if the fractions of introns and start/stop codons supported by o
extrinsic evidence are lower than the low evidence support thresholds. In step 7, genes are the o7

3
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single-linkage clusters of transcripts where two transcripts are in the same gene if they overlap (and
could be alternative splice forms). Two transcripts are considered to overlap if they share at least o
three adjacent protein-coding nucleotides on the same strand and in the same reading frame. Note 100
that a transcript 'marked for exclusion’ in step 4 is still compared to all overlapping transcripts and 1
may cause removal of another transcript. This filtering step is different from a simplistic approach 10
that would first score transcripts and then apply a fixed threshold to their score. In our approach, 103

the transcripts with strongest local support are kept, and those that are discarded can still have 104
strong support in absolute terms if transcripts with even stronger support overlap. 105

As a special case, TSEBRA may be used with a single gene prediction file to filter for the ones 10
with the strongest evidence support. This may be useful for a genome annotation with many 107
transcript isoforms per gene. 108
Transcript scores 100
Four transcript scores si, ..., s4 characterize the support of features of a transcript, here introns (i) 1o
or start/stop-codons (s), by all extrinsic evidence F represented by hints. A hint h is either an 1
intron region or start/stop codon position together with an identifier of its original source 112

sre(h) € O and its multiplicity mult(h) € {1,2...}. O is a set of original sources, e.g. O = {P,R}, s
if protein data and RNA-seq were used, but could also contain further elements, e.g. when variants s
of RNA-seq sequencing technologies shall be distinguished [32]. Multiplicity mult(h) is the number s
of alignments from the same source that supports hint 4. A hint supports a transcript feature if all 116
identifying characteristics match, i.e. sequence name, start/stop position, feature type, and strand. 17

Consider a particular transcript and let F' be the set of all of its features. Define Fy C ' as all 1

features in F' of type f € {i,s}. The relative support of a transcript feature is 119
|Fy N E|
rpi=——
|Fy|
Score s1 := r; is the relative support of the transcript’s introns (f = i) by the evidence E and 120
s9 := 1y is the fraction of start/stop codons supported by E. 121
A weight w, with o € O is assigned to each evidence source. The absolute quantity of 122
supporting hints for a transcript feature f is the weighted sum of all supporting hints: 123
af = Z Wsrc(h) * mUIt(h) (f € {i,S}).
heENF;
The scores s3 := a; and s4 := as; measure the abundance of extrinsic evidence that support the 124
introns or the start/stop codons of a transcript, see for an example. 125
Pairwise transcript comparison rule 126

The pairwise transcript comparison rule compares two transcripts with respect to their support of 17
extrinsic evidence using the transcript scores. One or no transcript is marked for exclusion when 128
comparing two overlapping transcripts, see The differences of all transcript scores (of the 12
same type) are compared to a score specific threshold, in order from s; to s4. When the threshold 1
is exceeded for the first time, the comparison rule terminates and the transcript with the smaller 1
value for the current score is marked as the transcript that will be excluded from the combined gene 1z

set. Neither transcript is marked for removal if all differences are less than or equal to the 133
associated thresholds. 134
Default hyperparameters 135

The TSEBRA suite includes a set of default hyperparameters, which are recommended for usage in 13
a standard use case — to combine BRAKER]1 and BRAKER2 — so that users are not required to set 13

4
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Figure 1. Example of how extrinsic evidence in form of spliced alignments from homologous
proteins (blue) or RNA-seq reads (red) is used to determine scores for the support of a transcript
(green). Likely exon-intron borders are inferred from the alignments to create intron hints. The start
and stop codons of the protein alignments are used to create start and stop codon hints, respectively.
The transcript scores utilize them to quantify the support of the transcript structure.

the hyperparameters themselves. Evidence sources in a standard BRAKER1 and BRAKER2 output 13
are: protein database (P), EST database (E), combined EST/protein database (C), and manual 139
anchored (M). The default weights for these are wp = 0.1, wg = 10,wc =5 and wp; = 1. A 140
transcript has low evidence support in this default setting if the fraction of supported introns is less 1
than 0.75 and the supported start/stop-codon fraction is less than 1.0. The score specific thresholds 12

are €7 = 0,62 = 0.5, €3 = 25, €4 = 10. We have shown that TSEBRA using default parameters 143
performs with high accuracy across several species, see |Results and discussionl 144
Results and discussion 15
We compared the accuracy of TSEBRA in two experiments. First, we compared TSEBRA to 146
BRAKERI1 and BRAKER2 in their standard use modes, and second, we compared TSEBRA with 1
EVM. 148
Accuracy assessment metrics 149

Specificity (Sp), sensitivity (Sn), and their harmonic mean — the F1-score — were the measures of 150
gene prediction accuracy. Accuracy values were examined at the gene, transcript, and exon levels. s
A predicted gene is considered correct, if it is identical to at least one annotated alternative splicing 1

isoform. A reference transcript ¢ is considered as correctly predicted by transcript ¢', if ¢ and ¢’ 153
completely agree on their sets of CDS (exons). Two CDS are considered to agree if they are located 154
in the same strand and both pairs of sequence coordinates are identical. 155
Comparison with BRAKER1 and BRAKER?2 156
Complete genome annotations generated independently by BRAKER1 and BRAKER2 (both 157

BRAKER v.2.1.5) for 11 eukaryotic species (Table S1 in [Supplementary Information|) were processed — 1ss
by TSEBRA with default hyperparameters. For each genome, we used its ‘standard’ annotation to s
compute the accuracies of the sets of gene predictions made by BRAKER1, BRAKER2, and 160
TSEBRA. BRAKERI1 was supported by extrinsic evidence in form of RNA-seq reads aligned to the 1a
genome of interest. RNA-seq hints were sampled with VARUS from SRA for each genome with 16
HISAT2 as an alignment tool. BRAKER2 was supported by protein data sets selected earlier 163

S
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Figure 2. Comparison rule for two transcripts using extrinsic evidence, either one or none of the

transcripts is marked for removal; s; are transcript scores and €; are score specific thresholds with
jef{1,2,--- 4}

while testing BRAKER?2 [18]. For each of the three model species with genome annotations curated
multiple times, A. thaliana, C. elegans, and D. melanogaster, we used proteins from three sets of
species varied with respect to minimal evolutionary distance to the query species. Each protein set
included proteins from a large clade, e.g. Plantae, Metazoa, and Arthropoda, of the query species.
The three sets per species excluded either (i) proteins from the query species itself, (ii) all species of
the same family or (iii) all species of the same order. The corresponding sets of proteins could
provide more or less precise evidence for gene prediction depending on the degree of saturation by
closely related species. The level (i) offers the largest number of close relatives while the level (iii)
provides the least number of them and the least precise evidence for a query species. We used
proteins from the corresponding sets of species selected at the level (iii) for the other eight species.

TSEBRA (with default hyperparameters) had a higher accuracy than either BRAKERI or 174
BRAKER?2 across all 11 species and nearly all test settings, see The Fl-score of TSEBRA 15
was on average 7.78 percent points higher on gene level, 4.53 percent points higher on transcript
level, and 2.06 percent points higher on CDS level than the maximum F1-score of BRAKER]1 and
BRAKER2. Note that for some species, the BRAKER1 Fl-score was higher than the one for
BRAKER2 and wice versa for other species. The directionality was strongly correlated between the
CDS, transcript, and gene levels. For a user, it is difficult to figure out which mode of BRAKER
would perform better for a genome of interest. Using TSEBRA is supposed to resolve this
uncertainty. TSEBRA generates a higher increase in specificity than in sensitivity: on average Sn
increased by 0.52 percent points for all evaluation levels while Sp increased by 8.78 percent points.
This was likely caused by the setting of parameters filtering out a majority of transcripts with low
support from extrinsic evidence.

Our tests showed that a single parameter set is sufficient for TSEBRA working with BRAKER1
and BRAKER?2 across all the tested genomes, therefore, a change (training) of the set of parameters
for each new genome may not be needed. The number of transcripts per gene selected by TSEBRA

was on average 1.07 which is at the same level as BRAKER2, and lower than the average of 1.20
observed for BRAKERI.
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Table 1. Fl-score on CDS, transcript, and gene level for BRAKER1 (RNA-seq hints), BRAKER2
(protein hints of type (iii)), TSEBRA_EVM, EVM using comparable evidence, and TSEBRA (default
hyperparameter) with hints generated by the BRAKER runs. For A. thal, C. ele., D. mel., a set
of genome partitions, each totaling 90% of the genome size, was sampled for the evaluation of all
methods. For all other species, the tests were run on the full genomes for BRAKER1, BRAKER?2,
and TSEBRA. (See Table S1 in [Supplementary Information|for full species names and Table S2 in
[Supplementary Information| for the results with different protein sets.)
CDS level Fl-score

BRAKERI1 BRAKER2 EVM TSEBRA _EVM TSEBRA
A. tha. 81.87 84.01 84.41 86.21 86.90
B. ter. 76.12 72.84 77.80
C. ele. 85.87 81.13 86.14 85.13 84.48
D. mel. 79.82 76.79 79.67 79.89 81.66
D. rer. 74.00 72.23 78.40
M. tru. 71.46 75.11 80.98
P. tep. 68.61 63.90 67.96
P. tri. 78.32 83.40 87.60
R. pro. 53.54 54.49 56.30
T. nig. 53.95 57.97 58.70
X. tro. 74.96 75.89 79.44
Transcript level Fl-score
BRAKERI1 BRAKER2 EVM TSEBRA_EVM TSEBRA
A. tha. 53.78 56.63 57.32 61.35 62.00
B. ter. 33.15 26.49 35.02
C. ele. 53.30 42.71 52.76 54.46 55.94
D. mel. 51.33 46.94 49.90 53.76 55.18
D. rer. 24.99 22.17 33.43
M. tru. 39.04 44.09 51.72
P. tep. 26.14 18.04 28.89
P. tri. 47.04 55.96 62.31
R. pro. 12.84 12.65 15.22
T. nig. 5.74 7.93 9.78
X. tro. 22.88 23.84 31.83
Gene level Fl-score
BRAKERI1 BRAKER2 EVM TSEBRA_EVM TSEBRA
A. tha. 65.51 70.58 70.88 78.35 79.69
B. ter. 38.91 32.18 44.71
C. ele. 63.13 52.29 63.98 68.90 70.78
D. mel. 64.44 61.25 64.94 71.34 73.93
D. rer. 31.49 27.37 44.13
M. tru. 40.03 44.96 54.05
P. tep. 28.59 19.99 33.83
P. tri. 53.11 63.88 73.45
R. pro. 13.64 12.91 16.21
T. nig. 6.59 8.87 11.46
X. tro. 26.40 30.58 41.26
Comparison with EVidenceModeler 101
We also compared the accuracy of TSEBRA with the accuracy of EVidenceModeler (EVM, commit 10
68e¢724e from GitHub [35]) working to combine BRAKERI1 and BRAKER2 predictions with 103
heterogeneous extrinsic evidence. Comparison of TSEBRA and EVM was performed for the 104
genomes of the model species A. thaliana, C. elegans, and D. melanogaster. 105
EVM takes extrinsic evidence in form of spliced alignments from assembled transcripts. This 196
type of evidence is not produced by BRAKERI utilizing mappings of unassembled reads. To make 1o
a comparison between EVM and TSEBRA on the same data, we produced new and comparable 108

extrinsic evidence for EVM (i.e. spliced alignments) and TSEBRA (i.e. intron or start/stop codon 1
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Figure 3. Average gene, transcript, and CDS levels Sn and Sp for all nine combinations of three
model species (A. thal, C. ele., D. mel.) and all test settings ((i), (ii), (iii)) as described for these

model species in

hints). We used the protein alignments generated by ProtHint during the BRAKER2 run and
assembled spliced alignments from the RNA-seq reads sampled by VARUS. For each locus, we
selected the protein alignment produced by ProtHint with the highest DIAMOND [36] score creating
a genome-wide set of protein alignments. To produce RNA-seq based hints, we reconstructed
transcripts from the RNA-seq reads with Trinity (v2.12.0) [37] and applied PASA (v2.4.1) [38] to
assemble and align them. The genomes were partitioned into 400,000 bp long segments with an
overlap of 50,000 bp between neighboring segments employing the tools provided by EVM. For each
partition, EVM was run with transcript and protein evidence from PASA and protein alignments,
respectively. TSEBRA was run with the introns from both sets of alignments and the start/stop
codons from the protein alignments. We refer to this particular TSEBRA run as TSEBRA_EVM.
EVM requires that a weight is assigned to each of the four input sources. We used 10% of the
total number of partitions to search for a good set of weights for EVM and a set of hyperparameters
for TSEBRA. We used the remaining partitions to evaluate the accuracy of TSEBRA_EVM. The
values of the hyperparameters are available in [Supplementary Information| Table S3 and Table S4.

We compared the accuracy of TSEBRA with EVM, one of the most cited combiner tools to date.

EVM was previously used to combine BRAKER with other predictions [39], to combine BRAKER2
predictions with RNA-seq evidence [40,41] or other RNA-seq based predictions [42], and even for
combining multiple BRAKER predictions [43]. Still, it is not the most suitable task for EVM to
create a BRAKER-only combination. The authors of EVM recommend the use of a set of gene
predictions, usually more than two, along with extrinsic evidence, because the strength of EVM is in
finding consensus among diverse sources. This is in conflict with the fact that there is no direct way
for EVM to use the hints generated by BRAKER and that we were looking for a way to combine
only two gene predictions. In addition, EVM reports only one transcript per gene, which limits the
completeness of its annotation output in a setting with much evidence for alternative splicing.

We compared TSEBRA and EVM to address a question: which is the better method for
combining BRAKER1 and BRAKER2 predictions? In a test setting with comparable extrinsic
evidence, we evaluated them across three species with three different protein sets each. Both
methods have successfully combined the BRAKER1 and BRAKER2 predictions into one set with
increased F1-score, see Still, TSEBRA_EVM had, compared to EVM, a higher accuracy
on average with an average increase of the Fl-score at the gene, transcript, and CDS levels of 6.12,
3.38, and 0.79 percent points, respectively. These improvements came with an overall increased Sn
and Sp for TSEBRA_EVM on the transcript and gene levels. Only at the CDS level, both methods
had a similar accuracy; EVM had a slightly higher Sn and TSEBRA_EVM had a higher Sp.

We had to carefully select the test setting since the choice of partition size made a difference to
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EVM when it makes models of intergenic regions. An additional difficulty was that the tools used 23
for creating the partitions enforced hard borders, even if they split a transcript. To neutralize this 23

issue, an overlap between partitions was used. 236
TSEBRA executes much faster than EVM, which constructs a complete gene model and 237
evaluates all possible gene structures. TSEBRA, on the other hand, only evaluates the set of 238

explicitly given transcripts as input. In our tests, we ran both methods separately in parallel on a 28 2
multi-core processor, the average runtime of EVM was 35.28 min and of TSEBRA_EVM 0.37 min. 240

Conclusions "
We presented TSEBRA, a tool that selects more reliable gene predictions (transcripts) from the sets 2
of transcripts generated independently by BRAKERI1 and BRAKER2. A novel approach to 23
transcript selection was successfully implemented. In computational experiments made with 204
genomes of 11 diverse eukaryotic species we have shown that the set of transcripts selected by 25

TSEBRA matched annotated genes (believed to be the true ones) with higher accuracy than both 2
BRAKERI1 and BRAKER2. Note that the combined extrinsic evidence is not used at the step of 27
generation of gene predictions. BRAKERI1 and BRAKER2 use disjoint evidence sources also for 28

training statistical gene-finding models. A relative complementarity of the gene sets can be an 249
advantage when they are combined subsequently. The ranking and selection of the final set of 250
transcripts, however, does use both protein and RNA-seq evidence. This approach makes an 251
effective use of both sources of extrinsic evidence for selection of most likely true positive 252
transcripts from the set of candidates, the transcripts generated by BRAKER1 and BRAKER2 253
running in parallel. 254

Thus, TSEBRA makes a useful tool that with help of heterogeneous extrinsic evidence 255
transforms the union of predictions of BRAKER1 and BRAKER2 into a set of gene predictions 256
whose accuracy exceeds the accuracy of both BRAKER]1 and BRAKER2 running separately. 257
Availability and requirements 258
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