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ABSTRACT

During late childhood behavioral changes, such as increased risk-taking and emotional reactivity, have
been associated with the maturation of cortico-cortico and cortico-subcortical circuits. Understanding
microstructural changes in both white matter and subcortical regions may aid our understanding of
how individual differences in these behaviors emerge. Restriction spectrum imaging (RSI) is a
framework for modelling diffusion-weighted imaging that decomposes the diffusion signal from a voxel
into hindered, restricted, and free compartments. This yields greater specificity than conventional
methods of characterizing diffusion. Using RSI, we quantified voxelwise restricted diffusion across the
brain and measured age associations in a large sample (n=8,086) from the Adolescent Brain and
Cognitive Development (ABCD) study aged 9-14 years. Older participants showed a higher restricted
signal fraction across the brain, with the largest associations in subcortical regions, particularly the
basal ganglia and ventral diencephalon. Importantly, age associations varied with respect to the
cytoarchitecture within white matter fiber tracts and subcortical structures, for example age
associations differed across thalamic nuclei. This suggests that age-related changes may map onto
specific cell populations or circuits and highlights the utility of voxelwise compared to ROI-wise
analyses. Future analyses will aim to understand the relevance of this microstructural developmental
for behavioral outcomes.
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INTRODUCTION

Brain development during childhood and adolescence is associated with distributed structural
alterations in both gray matter (GM) and white matter (WM) that occur concurrently with cognitive
and behavioral development. WM tracts connect distributed neural networks across cortical and
subcortical structures that are essential for a multitude of cognitive functions that continue to develop
into late childhood (Baron Nelson et al., 2019; Peters et al., 2012; Simmonds et al., 2014). Alterations
in reward and affective processing are particularly pertinent during adolescence (Casey et al., 2008)
and are hypothesized to be underpinned by cortico-subcortical circuitry (Casey et al., 2016). The
precise quantification of the microstructural changes during typical development may provide
important information for understanding individual differences in cognition and the emergence of
increased emotional reactivity and risk-taking in this period. Diffusion tensor imaging (DTI) has
frequently been used to probe microstructural changes in the brain. Previous studies have shown
increases in fractional anisotropy (FA) and decreases in mean diffusivity (MD) throughout the brain
across childhood and into young adulthood, with variability in the trajectory of microstructural
development across different brain regions (for review see Lebel & Deoni, 2018). Many studies have
measured developmental changes in DTl metrics within WM (Krogsrud et al., 2016a; Catherine Lebel &
Beaulieu, 2011; Pohl et al., 2016), but fewer studies have explored DTl changes in deep gray matter
structures, in part due to the inadequacies of DTI for studying complex cytoarchitecture and the lower
signal-to-noise ratio (SNR) when estimating FA in particular (Farrell et al., 2007). Despite this, in one
study, increases in FA from 5-30 years appeared to be larger in subcortical regions compared to the
WM tracts (Lebel et al., 2008).

The diffusion tensor model only allows the expression of a single principal direction of diffusion and is
unable to adequately represent mixtures of neurite orientations within a voxel. Recent advances in
diffusion data acquisition, including multiple b-value acquisitions and high angular resolution diffusion
imaging (HARDI), have enabled more complex models of tissue microstructure, taking into account
multiple tissue compartments, multiple fiber populations in WM and orientated structure of neurites
(axons and dendrites) within GM and WM. Restriction spectrum imaging (RSI; (Brunsing et al., 2017;
White et al., 2013; White et al., 2013, 2014) uses multiple b-value HARDI data to model the diffusion-
weighted signal as emanating from multiple tissue compartments, reflecting free, hindered and
restricted water, with different intrinsic diffusion properties. The hindered compartment is thought to
primarily represent extracellular space although may also describe diffusion within intracellular spaces
with dimensions larger than the diffusion length scale (typically, ~10um, for the diffusion sequences
used in human imaging studies). The restricted compartment is thought to primarily represent
intracellular space, within cells or processes of dimensions smaller than the diffusion length scale. Free
water diffusion primarily represents cerebrospinal fluid (CSF) or intravascular spaces. Within each
voxel, RSI models the diffusion signal as a linear mixture of these different compartments. Spherical
deconvolution (SD) is used to reconstruct the fiber orientation distribution (FOD) in each voxel for each
compartment.
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Using RSI, we can quantify the relative proportion of restricted, hindered and free water diffusion
within each voxel of the brain. The signal fraction for each compartment is normalized by total
diffusion signal across all compartments (restricted normalized total signal fraction, RNT; hindered
normalized total signal fraction, HNT; free normalized total signal fraction, FNT!). Moreover, from the
spherical harmonic coefficients (SH) from the RSI model, we can estimate the signal fraction of
restricted normalized directional (anisotropic) diffusion (RND) and restricted normalized isotropic
diffusion (RNI). By dividing RND by RNT we can additionally estimate the relative proportion of
directional to isotropic diffusion specifically within the restricted compartment (restricted directional
fraction (RDF), and how this changes with age. There are several developmental processes that can
modulate the relative proportion of restricted to hindered diffusion within a voxel (see Table 1). For
example, myelination increases RNT relative to HNT by both decreasing the extracellular space and
decreasing the exchange of water molecules across the axonal membrane. Dendritic sprouting,
arborization and increases in neurite density can also increase the RNT by decreasing the proportion of
extracellular space within a voxel. The relative size and shape of restricted compartments will then
differentially modulate isotropic and anisotropic diffusion.

RSI has been used in several different applications (Carper et al., 2017; Loi et al., 2016; Reas et al.,
2017, 2020), but has not previously been used to study developmental changes in late childhood.
However, similar multi-compartment models, such as neurite orientation dispersion and density
imaging (NODDI), have been shown to be more sensitive to developmental changes than DTl metrics
(Genc, Malpas, et al., 2017). Neurite density index (NDI), from the NODDI model, which reflects the
intracellular volume fraction, was positively associated with age across all WM tracts in several recent
studies (Geeraert et al., 2019; Genc, Malpas, et al., 2017; Lynch et al., 2020; Mah et al., 2017).
However, the orientation dispersion index (ODI), a measure of the degree of dispersion of intracellular
diffusion, showed no age associations, suggesting that WM development across childhood and
adolescence is not associated with changes in neurite coherence (Genc, Malpas, et al., 2017; Lynch et
al., 2020). Increases in the intracellular volume fraction from the NODDI model have also been shown
to significantly increase with age from 8-13 years in subcortical regions. These results suggest that age
related increases in restricted diffusion measured with more sensitive multi-compartment models are
apparent in both WM and deep GM. Although NODDI is a useful model for describing intracellular
diffusion, NDI is limited in that it represents a measure of the total intracellular volume fraction; in
contrast, RSI can delineate isotropic and anisotropic diffusion within the restricted compartment. For
example, in voxels with crossing fibers that are oriented perpendicular to one another, ODI will be
estimated to be very high; whereas RND will provide a more accurate estimation of the anisotropy of
the two coherent crossing fibers. RSI therefore provides differential information about intracellular
diffusion within each voxel compared to previously explored multi-compartment models.

! The free normalized total signal fraction (FNT) is equivalent to the free normalized isotropic signal fraction (FNI) from Release 4.0 of the
ABCD Study. These are equivalent because there is no directional component to the free water compartment, but was renamed here for
consistency with RNT and HNT.
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In the current study, we have used longitudinal data across two time points to estimate age-related

changes in tissue microstructure in WM and subcortical regions. We have used data from Release 4.0

of the Adolescent Brain and Cognitive Development (ABCD) Study to measure whole-brain voxelwise

age associations with the total restricted, hindered and free water signal fractions, as well as the

restricted isotropic and anisotropic signal fractions form the RSI model. The large sample size (n=8086)

and small age range at each time point (9-11 years at baseline; 11-14 years at follow-up) provides high

precision to delineate microstructural changes with age across the brain.

Table 1. Outline of how different developmental cellular processes can modulate both the hindered and restricted signal fractions.

that become thicker, increased cell body size (~8um),
and greater clustering together. This reduces the
volume of the extracellular space.

Developmental processes | Effect on diffusion Hindered Restricted
normalized normalized
total signal total signal

fraction (HNT) | fraction (RNT)
Moyelination | Reduces volume of extracellular space Decrease Increase
Reduces permeability of axonal membranes, resulting
in less exchange of water molecules between
intracellular and extracellular spaces
Increase in neurite diameter with | Diameter of neurites will not exceed typical diffusion Decrease Increase
constant neurite density | length scale, therefore will not alter the magnitude of
the measured water displacement, but will reduce the
volume of extracellular space
Dendritic sprouting | Arborization will reduce the volume of the extracellular Decrease Increase
space
Increase in cell body size with constant | Reduces volume of extracellular space, therefore Decrease Increase
cell density (<<typical diffusion length | increasing the restricted signal fraction, but will not
scale) | alter the magnitude of the measured water
displacement
Increase in cell body size with constant | Restricted signal fraction will increase until >>typical Increase Decrease
cell density (>>typical diffusion length | diffusion length scale. Beyond this diffusion will appear
scale) | hindered
Increase in number of mature | Mature astrocytes have greater permeability relative to Increase Decrease
astrocytes, with spongiform | neurons causing greater exchange of water molecules
morphologies | between intracellular and extracellular spaces resulting
in less restricted diffusion
Recruitment/Activation of microglia | Activated microglia show reduced elongated processes Decrease Increase
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METHODS

Sample

The ABCD study is a longitudinal study across 21 data acquisition sites following 11,880 children
starting at 9-11 years. This paper uses baseline and two-year follow up (FU) data from the NIMH Data
Archive ABCD Collection Release 4.0 (DOI: 10.15154/1523041). The ABCD cohort is epidemiologically
informed (Garavan et al., 2018), including participants from demographically diverse backgrounds, and
has an embedded twin cohort and many siblings. Exclusion criteria for participation in the ABCD Study
were limited to: 1) lack of English proficiency in the child; 2) the presence of severe sensory,
neurological, medical or intellectual limitations that would inhibit the child’s ability to comply with the
protocol; 3) an inability to complete an MRI scan at baseline. The study protocols are approved by the
University of California, San Diego Institutional Review Board. Parent/caregiver permission and child
assent were obtained from each participant.

All statistical analyses included 14,043 observations with 8,086 unique subjects, such that 5,957
participants had data at two time points. Participants were aged from 107-166 months (8.9-13.8
years). Observations were included in the final sample if the participant had complete data across
sociodemographic factors (household income, highest parental education, ethnicity), available genetic
data (to provide ancestry information using the top 10 principal components), available imaging data
that passed all inclusion criteria and available information regarding acquisition scanner ID and
software version. In the ABCD Study, Release 4.0, there are 19,658 available scans with scanner
information (12% missingness). Of these scans, 2,655 were excluded for not meeting the
recommended imaging inclusion criteria outlined in the Release 4.0 release notes and supplementary
table 1 (imaging scans were included if: imgincl_dmri_include==1 & imgincl_tlw_include==1 &
mrif_score<3), and an additional 90 observations were excluded for poor registration defined below (in
Atlas Registration). The final sample included all remaining observations that had complete data for
the previously listed information. Table 2 shows the demographics of the final sample used for
statistical analysis stratified by time-point. Participants who had completed their 2 year FU in Release
4.0 were more likely to have higher household income and have male assigned as their sex at birth.
This may reflect differences in recruitment procedures over the course of recruitment in order to
ensure the final sample reflected the demographics of the US population as closely as possible.
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Baseline 2 Year FU p
h 8086 5957
interview_age (months), mean (SD) 119.21 (7.52) | 143.22(7.76) <0.001
sex =M, n (%) 4158 (51.4) 3203 (53.8) 0.006
household.income, n (%) <0.001

[<50K] | 2215 (27.4) 1381 (23.2)

[>=50K & <100K] | 2311 (28.6) 1687 (28.3)

[>=100K] | 3560 (44.0) 2889 (48.5)

high.educ, n (%) 0.461
< HS Diploma |~ 291 ( 3.6) 215 ( 3.6)

HS Diploma/GED 599 ( 7.4) 462 (7.8)

Some College | 2029 (25.1) 1421 (23.9)

Bachelor | 2197 (27.2) 1612 (27.1)

Post Graduate Degree | 2970 (36.7) 2247 (37.7)

race.4level, n (%) 0.366

White | 5460 (68.2) 4094 (69.3)

Black | 1042 (13.0) 714 (12.1)

Asian [ 171 (2.1) 119 ( 2.0)
Other/Mixed | 1330 (16.6) 978 (16.6)
ethnicity, n (%) 0.269
hisp = Yes (%) | 1583 (19.6) 1121 (18.8)
rel_group_id (twin status), n (%) 0.847
Singleton (1) 7433 (91.9) 5464 (91.7)
Twin (2) 643 ( 8.0) 484 (8.1)
Triplet (3) 10(0.1) 9(0.2)

Table 2. Demographics of the sample. Demographic data is shown for age in months (mean, (SD)), sex at birth, household income,
parental education, self-declared race, endorsement of Hispanic ethnicity and self-declared twin/triplet status (n, (%)). These factors are
stratified by time point: baseline and 2-year FU. There were significant differences in income and sex at birth for those who had 2-year FU
data in Release 4.0 indicative of differences in the demographics of participants as they were recruited. Participants recruited earlier in
the study were more likely to have higher household income and be born male. All of these variables are controlled for in all statistical
analyses to account for this. Variable names from the tabulated data release are included in the table for replication.

MRI acquisition

The ABCD MRI data were collected across 21 research sites using Siemens Prisma, GE 750 and Philips
Achieva and Ingenia 3T scanners. Scanning protocols were harmonized across sites. Full details of
structural and diffusion imaging acquisition protocols used in the ABCD study have been described
previously (Casey et al., 2018; Hagler et al., 2019) so only a short overview is given here. dMRI data
were acquired in the axial plane at 1.7mm isotropic resolution with multiband acceleration factor 3.
Diffusion-weighted images were collected with seven b=0 s/mm?frames and 96 non-collinear gradient
directions, with 6 directions at b=500 s/mm?, 15 directions at b=1000 s/mm?, 15 directions at b=2000
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s/mm?, and 60 directions at b=3000 s/mm?. T1-weighted images were acquired using a 3D
magnetization-prepared rapid acquisition gradient echo (MPRAGE) scan with 1mm isotropic resolution
and no multiband acceleration. 3D T2-weighted fast spin echo with variable flip angle scans were
acquired at Imm isotropic resolution with no multiband acceleration.

Image Processing

The processing steps for diffusion and structural MR data are outlined in detail in Hagler et al., (2019).
Briefly, dMRI data were corrected for eddy current distortion using a diffusion gradient model-based
approach (Zhuang et al., 2006). To correct images for head motion, we rigid-body-registered each
frame to the corresponding volume synthesized from a robust tensor fit, accounting for image contrast
variation between frames. Dark slices caused by abrupt head motion were replaced with values
synthesized from the robust tensor fit, and the diffusion gradient matrix was adjusted for head rotation
(Hagler et al., 2009, 2019). Spatial and intensity distortions caused by BO field inhomogeneity were
corrected using FSL’s topup (Andersson et al., 2003) and gradient nonlinearity distortions were
corrected for each frame (Jovicich et al., 2006). The dMRI data were registered to T1w structural
images using mutual information (Wells et al., 1996) after coarse pre-alignment via within-modality
registration to atlas brains. dMRI data were then resampled to 1.7 mm isotropic resolution, equal to
the dMRI acquisition resolution.

T1lw and T2w structural images were corrected for gradient nonlinearity distortions using scanner-
specific, nonlinear transformations provided by MRI scanner manufacturers (Jovicich et al., 2006; Wald
et al., 2001) and T2w images are registered to T1w images using mutual information (Wells et al.,
1996). Intensity inhomogeneity correction was performed by applying smoothly varying, estimated B1-
bias field (Hagler et al., 2019). Images were rigidly registered and resampled into alignment with a pre-
existing, in-house, averaged, reference brain with 1.0 mm isotropic resolution (Hagler et al., 2019).

Microstructural models

Restriction spectrum imaging (RSI)
The RSI model was fit to the diffusion data to model the diffusion properties of the cerebral tissue

(Nathan S. White et al., 2013, 2014). RSI estimates the relative fraction that separable pools of water
within a tissue contribute to the diffusion signal, based on their intrinsic diffusion characteristics. Free
water (e.g., CSF) is defined by unimpeded water diffusion. Hindered diffusion follows a Gaussian
displacement pattern characterised by the presence of neurites, glia and other cells. This includes
water both within the extracellular matrix and certain intracellular spaces with dimensions larger than
the diffusion length scale (typically, ~10um, for the diffusion sequences used in human imaging studies
(Nathan S. White et al., 2013)). Restricted diffusion describes water within intracellular spaces
confined by cell membranes and follows a non-Gaussian pattern of displacement. Imaging scan
parameters determine the sensitivity of the diffusion signal to diffusion within these separable pools.
At intermediate b-values (b=500-2500s/mm?), the signal is sensitive to both hindered and restricted
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diffusion; whereas, at high b-values (b>3000s/mm?), the signal is primarily sensitive to restricted
diffusion. The hindered and restricted compartments are modeled as fourth order spherical harmonic
(SH) functions and the free water compartment is modelled using zeroth order SH functions. The axial
diffusivity (AD) is held constant, with a value of 1 x 10 mm?/s for the restricted and hindered
compartments. For the restricted compartment, the radial diffusivity (RD) is fixed to 0 mm?/s. For the
hindered compartment, RD is fixed to 0.9 x 103 mm?/s. For the free water compartment the isotropic
diffusivity is fixed to 3 x 103 mm?/s. Theoretically, any increases in the tortuosity of the hindered
compartment, for example due to a decrease in the volume of the extracellular space, will decrease
the effective diffusivity in the hindered compartment; however, in our model we are assuming the
hindered diffusivity is constant. Spherical deconvolution (SD) is used to reconstruct the fiber
orientation distribution (FOD) in each voxel from the restricted compartment. The restricted
directional measure, RND, is the norm of the SH coefficients for the second and fourth order SH
coefficients (divided by the norm of all the coefficients across the restricted, hindered and free water
compartments). This models oriented diffusion emanating from multiple directions within a voxel.
The restricted isotropic measure, RNI, refers to the spherical mean of the FOD across all orientations
(zeroth order SH divided by the norm of all the coefficients across the restricted, hindered and free
water compartments). The sum of these measures is the restricted normalized total signal fraction,
RNT.

In this study we explore associations between age and the rotation-invariant features of the
restricted compartment FOD. For a detailed description of the derivation of the RSI model see (N.S.
White et al., 2013; Nathan S. White et al., 2013). We extracted a measure of the restricted isotropic
and restricted anisotropic diffusion signal. Within each voxel the total diffusion signal, S, can be
represented as

S = Z .Bflmyflm
where Y, is a SH basis function of order [ and degree m of the FOD corresponding to the fth
compartment, and S, are the corresponding SH coefficients. The total restricted normalized signal
fraction (RNT), normalized by all compartments, is defined as follows:

RNT — ||ﬁfREs,l,m||2
[1Brumll2

The total hindered normalized signal fraction (HNT), normalized by all compartments, is defined as
follows:

| |.BfH1ND,l,m | |2

HNT =
1Brumll2

The total free water normalized signal fraction (FNT), normalized by all compartments, is defined as
follows:
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FNT :M
[1Brumll2

The measure of the restricted normalized isotropic signal fraction is given by the coefficient of the
zeroth order SH coefficient, Bf,, . 1=0,m=0, Where frgs is the restricted compartment, normalized by the
Euclidian norm of all Bf;,, and termed RNI:

_ | |ﬁfREs,l=0,m=0 | |2

RNI
1Brumll2

The measure of the restricted normalized directional signal fraction is given by the norm of ¢ 150 m,
where [ > 0, and fzgs is the restricted compartment, and is termed RND:

RND = ”ﬁfREs,l>0,m||z
Briml 2

These normalized RSI measures are unitless and range from 0 to 1. Given that RNI and RND are both
normalized by the SH coefficient across all compartments, changes in the overall restricted or hindered
signal fractions can modulate both of these measures similarly. To determine the relative contribution
of isotropic to anisotropic diffusion solely within the restricted compartment we estimated the
proportion of RND over RNT, termed RDF.

RDF — RND
" RNT

The magnitude of diffusion that we are sensitive to is dependent on the diffusion scan parameters.
Typical diffusion times used in clinical DWI scans are approximately 10—50ms corresponding to average
molecular displacements on the order of 10um (Mukherjee et al., 2008). Any water displacements
smaller than this scale would not result in detectable dephasing, regardless of b-value, therefore would
not lead to changes in the measured diffusion coefficient. However, changes in cell size <~10um could
alter the relative signal fractions of hindered and restricted diffusion in a voxel. Diffusion estimated in
these compartments is also dependent on the permeability of cellular membranes; greater exchange
across intracellular and extracellular space will mean that diffusion will appear more hindered rather
than restricted. Table 1 outlines the expected changes to the hindered and restricted signal fractions
following example microstructural developmental processes.

Diffusion tensor imaging
The diffusion tensor model (Basser et al., 1994; Basser & Pierpaoli, 1996) was used to calculate
fractional anisotropy (FA) and mean diffusivity (MD). Diffusion tensor parameters were calculated
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using a standard, linear estimation approach with log-transformed diffusion-weighted (DW) signals
(Basser et al., 1994). Tensor matrices were diagonalized using singular value decomposition, obtaining
three eigenvectors and three corresponding eigenvalues. FA and MD were calculated from the
eigenvalues (Basser & Pierpaoli, 1996).

Atlas registration

To allow for voxelwise analysis, subjects’ imaging data were aligned using a multimodal nonlinear
elastic registration algorithm. At the end of the preprocessing steps outlined in Image Processing and
described in detail in Hagler et al. (2019), subjects’ structural images and diffusion parameter maps
were aligned to an ABCD-specific atlas, using a custom diffeomorphic registration method (Holland &
Dale, 2011). The ABCD-specific atlas was constructed from n=17,636 ABCD participants aged 9-14 years
using an iterative procedure, consisting of an initial affine registration, followed by a multi-scale, multi-
channel elastic diffeomorphic registration. Eleven input channels were used for the multimodal
registration: 3D T1, zeroth and second order SH coefficients from the restricted FOD, zeroth order SH
coefficient from the hindered and free water FODs, white matter and grey matter segmentations.
After each iteration, morphed volumes for each subject were averaged to create an updated atlas, and
then the process was repeated until convergence. Participants with poor registration to atlas were
excluded from the average and subsequent statistical analyses. Poor registration was defined as a
mean voxelwise correlation to atlas across channels <0.8 (see Sample for number excluded).

Labelling regions of interest (ROI)

Major white matter tracts were labelled using AtlasTrack, a probabilistic atlas-based method for
automated segmentation of white matter fiber tracts (Hagler et al., 2009, 2019). Unilateral binary
masks for each ROI (except the CC, Fmaj and Fmin which are interhemispheric) were created by
thresholding at 0.9 probability across the ROl meaning that in a given voxel at least 90% of participants
showed that ROl label. A list of WM tract ROls used in this study is listed in Supplementary Table 2.
Subcortical structures were labeled using the Freesurfer 5.3 segmentation (Fischl et al., 2002).
Subjects’ native space Freesurfer parcellations were warped to the atlas space and averaged across
subjects. Bilateral binary masks for each ROl were created using a probabilistic threshold of 0.9 with
the same meaning as above. Additional subcortical nuclei, not available in the FreeSurfer
segmentation, were labeled by registering readily available, downloadable, high spatial resolution
atlases to our atlas space. The Pauli atlas was generated using T1 and T2 scans from 168 typical adults
from the Human Connectome Project (HCP) (Pauli et al., 2018). The Najdenovska thalamic nuclei atlas
was generated using a k-means algorithm taking as inputs the mean FOD SH coefficients from within a
Freesurfer parcellation of the thalamus, using adult HCP data from 70 subjects (Najdenovska et al.,
2018). Bilateral binary masks were created for all ROls in atlas space. All subcortical ROls and
abbreviations are listed in Supplementary Table 3.
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Statistical analysis

Voxelwise analyses: Univariate general linear mixed effects models (GLMMs) were applied at each
voxel to test the associations between age and diffusion metrics (RNT, HNT, FNT, RNI, RND, RDF, FA
and MD) as the dependent variables. All of the main results shown are from a linear model (model
below) with age included as a single predictor in long format and the longitudinal component modelled
as a random effect of subject. Results were also compared against a model with an age*sex
interaction and are reported in the supplementary analyses. Given the genetic relatedness within the
sample, family relatedness was also controlled for as a random effect. Given the demographic
diversity in the sample, all statistical analyses controlled for the sociodemographic variables household
income, parental education and Hispanic ethnicity and the top 10 genetic principal components were
used to account for ancestry effects in lieu of self-declared race. Additional fixed effects included
scanner ID, MRI software version and motion (average frame-wise displacement in mm).

Model:Y ~ age + sex + sociodemographics + scanner ID + software version + motion + (1|subject)
+ (1| family) + ¢

Whole-brain voxelwise analyses were corrected for multiple comparisons at an alpha level of 0.05
using a Bonferroni correction across 156,662 voxels to provide a voxelwise corrected threshold of p =
0.05/ 156,662 = 3.19e-7, corresponding to |t| = 4.98. This provides a conservative estimate of
significant developmental effects as the true number of independent tests is likely to be smaller than
this. Unthresholded t-statistic maps are presented in the main figures with the Bonferroni significance
threshold marked on the colorbar. This provides a comprehensive description of the continuous
distribution of effects beyond this conservative boundary. All imaging metrics were rank normalized
prior to statistical analysis to adhere to normality assumptions of the linear model.

Region-of-interest (ROI) Analyses: ROl analyses were also conducted using the same GLMM. The
dependent variable for each ROI for each diffusion metric was calculated by taking the mean diffusion
metric across the voxels within each ROl mask. Violin plots were generated to show the variability in
voxelwise effects across all voxels within each ROl mask in order to highlight the heterogeneity of
developmental effects within each ROI. ROl analyses were corrected for multiple comparisons at an
alpha level of 0.05 using a Bonferroni correction across 49 ROIs to provide a voxelwise corrected
threshold of p = 0.05 / 49 = 0.0010, corresponding to |t| = 3.08. All ROlIs were rank normalized prior to
statistical analysis to adhere to normality assumptions of the linear model.

All statistical analyses were conducted using custom code in MATLAB v2017a. Code will be available
on GITHUB.
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Estimation of scanner and software version effects: Scanner and software effects were estimated
across the brain by estimating a mean voxelwise change in pseudo-R? (ApseudoR?) from a full model
(all predictors) to a reduced model (either no dummy-coded scanner or software version predictors).

Full Model:Y ~ age + sex + sociodemographics + scanner ID + software version + motion
+ (1|subject) + (1|family) + €

Reduced Model 1: Y ~ age + sex + sociodemographics + software version + motion + (1|subject)
+ (1| family) + €

Reduced Model 2: Y ~ age + sex + sociodemographics + scanner ID + motion + (1|subject)
+ (1| family) + €

Pseudo-R? was calculated using the below equation where Y is a matrix of the voxelwise predicted
imaging values for a given modality generated by the full or reduced model, and Y is the matrix of
voxelwise observed imaging values. The variance of ¥ and Y (across participants) was averaged across
voxels before dividing to produce the pseudo-R? estimate as a mean estimate across voxels.

mean (var(?))

Mean voxelwise pseudo R* =
mean(var(Y))

ApseudoR? was calculated by taking the difference between the pseudo-R? estimates for the full and
reduced models.

The variance in each imaging metric explained by scanner and software version predictors (as defined

using ApseudoRz) is outlined in supplementary table 4.
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RESULTS

Mean voxelwise RSI metrics across participants

The RSI model estimates diffusion within different compartments and these metrics are normalized
into signal fractions in order to determine the relative proportion of restricted, hindered and free
water diffusion within each voxel. Figure 1A-F shows mean voxelwise maps across participants of
these normalized signal fractions. The restricted normalized total signal fraction (RNT) was largest
within the WM and lowest within the GM. In contrast, the hindered normalized total signal fraction
(HNT) was largest within the GM and lowest within the WM. The free water normalized total signal
fraction (FNT) was low in brain tissue and high within the CSF. These normalized metrics sumto 1,
therefore increases in the relative signal fraction of one of these compartments with age will result in
decreases in at least one other compartment. Within the restricted compartment specifically we have
separated the proportion of isotropic and directional diffusion into dissociable metrics (figure 1G-L).
The restricted normalized directional signal fraction (RND) shows a much greater contrast between
WM and GM (with higher values in WM) compared to the restricted normalized isotropic signal
fraction (RNI). Increases in RNT with age will lead to increases in both RNI and RND; however, the
specific microstructural changes occurring can lead to differential changes in RNI compared to RND.
We have calculated the proportion of restricted directional over the total restricted diffusion (RDF) in
order to determine changes in the relative proportion of isotropic to anisotropic diffusion with age.
Mean values of RDF were greater within WM voxels compared to GM voxels reflecting the greater
contrast in RNI vs RND in WM. These maps can be compared to T1-weighted images shown in Figure
1M,N.
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Voxelwise mean maps by diffusion compartment
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Figure 1. Voxelwise mean maps of diffusion metrics and T1-weighted images. Top panel: voxelwise mean maps for RS/
metrics across different compartments: RNT (A,B), HNT (C,D) and FNT (E,F). Middle panel: voxelwise mean maps for RS/
metrics within the restricted compartment: RNI (G,H), RND (I,J) and RDF (K,L). Bottom panel: voxelwise mean T1-weighted
images (M,N).



https://doi.org/10.1101/2021.06.04.447102
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.04.447102; this version posted November 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Age associations in WM across the different RSI compartments

Voxelwise associations between age and RNT were positive across the brain, such that the proportion
of the diffusion signal within each voxel that was restricted increased with age (Figure 3A,B). The
largest voxelwise effects were found in subcortical regions. Inverse associations were found for the
hindered signal fraction, as expected given the normalization across these metrics (Figure 3C,D).
Voxelwise age associations with FNT were also negative across GM and WM voxels, positive within the
ventricles and limited with subcortical structures (Figure 3E,F). However, it is important to note that
the proportion of free water within the brain tissue is very small as highlighted in the mean voxelwise
FNT maps (Fig 1E,F), therefore although these age associations are significant across subjects the
relative magnitude of the effect compared to changes in RNT and HNT is very low. There were no age
associations with FNT within the deep GM structures.

A probabilistic atlas-based method for automated segmentation was used to determine ROIs for the
major WM fiber tracts. Color coded voxelwise FA maps highlight the primary direction of diffusion
across the brain (Fig 3G,H) and enable comparison of where the main WM fiber tracts are located.
Larger versions of the same maps with WM fiber tracts labeled are shown in supplementary figure 1.
Voxelwise age associations were extracted for each WM fiber tract in order to determine the
distribution of effects within these ROIs. Violin plots highlight the heterogeneity of age-related
changes in these RSI metrics within the WM fibers (Figure 31-K). Moreover, these figures demonstrate
the proportion of voxels above and below the conservative Bonferroni corrected threshold for whole-
brain voxelwise statistical significance (red dotted line). ROl analyses were also conducted on the
mean RSI metric within each fiber tract. For RNT and HNT, all WM fiber tracts showed highly
significant age associations indicative of a global increase in the restricted signal fraction with age.
Interestingly, WM tracts with voxels near to or innervating subcortical regions appeared to show the
greatest heterogeneity and largest age associations, for example the anterior thalamic radiations
(ATR), the corticospinal tract (CST), which innervates the ventral diencephalon (VDC), the superior
cortico-striate (SCS) and the striatal inferior frontal cortex (SIFC) tract. The forceps minor (Fmin) and
bilateral fornix (Fnx) showed the smallest age associations across the RSI compartments.
Supplementary tables 5-7 show summary statistics for the voxelwise and ROlwise analyses within each
WM fiber tract for RNT, HNT and FNT.

There were no significant voxelwise age-by-sex interaction effects for RNT, HNT or FNT at the
Bonferroni corrected significance threshold. Voxelwise age associations in a model without an age-by-
sex interaction were highly correlated with a model including the interaction term (supplementary
figure 2A-C). All main effects presented are from models without an age-by-sex interaction.
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Figure 2. Associations between age and RSI compartment signal fractions. Voxelwise t-statistics for the association between age and
RNT (A,B), HNT (C,D) and FNT (E,F) across different brain slices. Effects are unthresholded. Voxelwise Bonferroni corrected significance
threshold (|t|=4.98) is marked on the colorbar. Outlines of the subcortical FreeSurfer ROIs are overlaid for the thalamus, caudate,
pallidum, putamen, ventral diencephalon, amygdala and hippocampus to orient the reader. G,H) Color coded FA showing the primary
diffusion direction in each voxel from the tensor model. Larger versions of the same slices with WM fiber tracts labeled are shown in
supplementary figure 1. I-K) Violin plots show the distribution of voxelwise t-statistics extracted from each WM fiber tract. Red dotted
lines show voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics from ROl analyses for the mean RSI metrics
from each WM fiber tract. Green dotted line shows ROl Bonferroni corrected significance threshold (|t|=3.08). Plots are shown for RNT
(G), HNT (H) and FNT (). WM tract ROI abbreviations described in Supplementary Table 2.
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Age associations in WM within the restricted compartment

Voxelwise associations between age and both RNl and RND were positive across the brain reflecting
the increase in the total restricted signal fraction. Voxelwise age associations with RNl were
widespread across the brain and largest in deep GM structures (Figure 4A,B). Voxelwise associations
with RND were smaller than RNI and more concentrated along the center of the main WM tracts
(Figure 4C,D). Voxelwise associations with RDF (the fraction of restricted directional diffusion over
RNT) were negative across the WM highlighting that the relative proportion of directional to isotropic
diffusion within the restricted compartment decreased with age i.e. the proportion of isotropic
restricted diffusion increased at a greater rate compared to the proportion of directional diffusion
(Figure 4E,F).

Voxelwise age associations were extracted for each WM fiber tract in order to determine the
distribution of effects within these regions. Violin plots highlight the heterogeneity of age-related
changes in these RSI metrics within the WM fibers (Figure 41-K). Moreover, these figures demonstrate
the proportion of voxels above and below the conservative Bonferroni corrected threshold for whole-
brain voxelwise statistical significance (red dotted line). ROl analyses were also conducted on the
mean RSI metric within each fiber tract. For both RNl and RND, all WM fiber tracts showed significant
positive age associations. The most significant ROI age effects for RNI were for the bilateral SCS, right
SLF, and right CgH. The most significant ROI age effects for RND were for the bilateral SCS, and right
ATR. For RDF, the most significant ROI age associations were found for the forceps major (FMaj), right
inferior longitudinal fasciculus (ILF) and the right uncinate fasciculus (UF). Supplementary tables 8-10
show summary statistics for the voxelwise and ROlwise analyses within each WM fiber tract for RNI,
RND and RDF.

Reflective of the RNT results, for age associations with RNI in particular, WM tracts with voxels near to
or innervating subcortical regions appeared to show the greatest heterogeneity and largest voxelwise
age associations, particularly the ATR, SCS and SIFC. This can clearly be seen for the SCS, where voxels
in inferior portions of the tract overlapping with the putamen (Pu) ROl showed greater positive
associations than voxels superior to the putamen within the SCS (supplementary figure 3A). Voxels that
showed greater associations for RNl and RND within the SCS and overlaying with the Pu showed
diffusion primarily in the anterior-posterior (green) direction, whereas more dorsal voxels showed
diffusion primarily oriented in the dorsal-ventral (blue) direction as expected for diffusion along the
SCS. This suggests greater age-related changes in restricted diffusion in voxels where the SCS
potentially innervates the Pu. Similarly, along the ATR, age associations were greater in voxels
overlapping with the thalamus and lower in voxels closer to the forceps minor (Fmin) (supplementary
figure 3B). The difference in age associations between the FMaj and Fmin highlights a posterior-
anterior gradient of development across the WM.
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There were no significant voxelwise age-by-sex interaction effects for RNI, RND or RDF at the
Bonferroni corrected significance threshold. Voxelwise age associations in a model without an age-by-
sex interaction were highly correlated with a model including the interaction term (supplementary
figure 2D-F). All main effects presented are from models without an age-by-sex interaction.
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Figure 3. Associations between age and RSI metrics within the restricted compartment. VVoxelwise t-statistics for the association
between age and RNI (A,B), RND (C,D) and RDF (E,F) across different brain slices. Effects are unthresholded. Voxelwise Bonferroni
corrected significance threshold ([t|=4.98) is marked on the colorbar. Outlines of the subcortical FreeSurfer ROIs are overlaid for the
thalamus, caudate, pallidum, putamen, ventral diencephalon, amygdala and hippocampus to orient the reader. G,H) Color coded FA
showing the primary diffusion direction in each voxel from the tensor model. Larger versions of the same slices with WM fiber tracts
labeled are shown in supplementary figure 1. I-K) Violin plots show the distribution of voxelwise t-statistics extracted from each WM fiber
tract. Red dotted lines show voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics from ROl analyses for the
mean RSI metrics from each WM fiber tract. Green dotted line shows ROl Bonferroni corrected significance threshold ([t[=3.08). Plots are
shown for RNI (G), RND (H) and RDF (I). WM tract ROl abbreviations are outlined in Supplementary Table 2.
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Age associations in subcortical regions across the different RSI compartments

RNT was positively and highly significantly associated with age across subcortical regions, particularly
within the basal ganglia. The only negative associations were found in voxels along the border
between the Pu and globus pallidus (GP) and along the border of the caudate (Ca). The inverse
relationship was found for HNT, as expected given the normalization of the RSI metrics. Voxelwise age
effects were heterogeneous in magnitude across and within subcortical regions. Voxelwise FODs,
averaged across participants, show the orientation structure of diffusion in each voxel and are colored
based on the mean diffusion direction (Supplementary Figure 4). There was clear variability in the
orientation structure of diffusion within gross subcortical ROls and the surrounding WM, which likely
contributes to the variability in voxelwise effects within these regions. We registered external
subcortical atlases to our ABCD atlas in order to create finer subcortical parcellations to localize age-
related effects within large subcortical structures. These included midbrain nuclei (Pauli et al., 2018)
and thalamic nuclei (Najdenovska et al., 2018).

Voxels in the GP, Pu, the surrounding WM between and ventral to these structures, and voxels within
the ventral diencephalon (VDC) showed the largest age associations with RNT and HNT (Figure 5A-N).
Increases in RNT with age were found across the thalamic nuclei (Figure 5A,B,H,l) with the largest
associations in more anterior nuclei. Voxelwise associations were the most heterogeneous within the
VDC (Figure 5E,L). Within the VDC, voxels showing the largest RNT age associations were found within
the substantia nigra pars compacta (SNpc), substantia nigra pars reticulata (SNpr) and the red nucelus
(RN) (Figure 5C,D,J,K). ROI analyses, reflecting age associations with mean RSI metrics within each
region, showed significant associations across all ROls for RNT and HNT (except for the age association
with HNT in the mamillary nucleus). There were limited age associations with FNT across subcortical
regions. Supplementary tables 5-7 show summary statistics for the voxelwise and ROlwise analyses
within each subcortical ROl for RNT, HNT and FNT.
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Figure 4. Age associations across diffusion compartments within subcortical regions. Voxelwise t-statistics for the association between
age and RNT (A-D), HNT (H-K) and FNT (O-R) across different axial brain slices moving from superior (top) to inferior (bottom). Effects are
unthresholded. Voxelwise Bonferroni corrected significance threshold (|t|=4.98) is marked on the colorbar. Outlines of the Aseg, Pauli and
Najdenovska ROIs are overlaid. Violin plots show the distribution of voxelwise age associations in each ROI for each RSI metric. Red
dotted lines show voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics from ROl analyses for the mean RSI
metrics from each subcortical ROI. Green dotted line shows ROI Bonferroni corrected significance threshold ([t[=3.08). Plots are shown for
RNT (E-G), HNT (L-N) and FNT (S-U). Subcortical ROl abbreviations are outlined in Supplementary Table 3.
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Age associations in subcortical regions within the restricted compartment

RNI was positively associated with age across all subcortical regions with the largest effects within the
basal ganglia, particularly the GP, Pu and SN (Figure 6A-G). Voxelwise age associations within the
thalamus (Thal) were largest in more anterior nuclei particularly along the lateral edge of the ventral
anterior (VA) and ventro-lateral-ventral (VLV) nuclei (Figure 6A,B). ROl analyses showed a similar
magnitude of effects across the thalamic nuclei for RNI. Age-related changes in RND were smaller in
magnitude than RNl and more heterogeneous across voxels within and around subcortical regions
(Figure 6H-N). The largest voxelwise age associations were primarily in voxels in the midbrain region,
particularly the SN and RN, as well as the Pu, GP and Thal. Those regions also showed the largest ROI
age associations. Negative age associations with RND were found in voxels along the border between
the Pu and GP and along the border of the Ca (figure 6H,1); these effects were also seen for RNT.
Within the Thal, there were a number of voxels within the anterior (A), VLV and pulvinar (P) nuclei that
showed no significant age association. The largest positive age associations were found in the A, VA
and medial dorsal (tMD) nuclei (Figure 6M). The heterogeneity in age effects across the Thal was
particularly clear when looking at the ROl analysis for each nucleus. Across the Thal and VDC, the
largest effects seemed to occur in voxels with diffusion occurring primarily within the anterior-
posterior direction (Supplementary Figure 4). The most significant associations with RDF were in the
GP, posterior nuclei of the thalamus, the substantia nigra pars reticulata, the hypothalmus and voxels
along the border between the Pu and GP(Figure 60-U). These were the regions that showed the
largest difference in age associations between RNI and RND highlighting that the relative proportion of
directional to isotropic diffusion within the restricted compartment decreased with age in these
regions. Supplementary tables 8-10 show summary statistics for the voxelwise and ROlwise analyses
within each subcortical ROl for RNI, RND and RDF.

Supplementary Figure 5 shows images of the most significant voxelwise age associations zoomed in on
specific ROIs in order to highlight examples of how these associations occurred in voxels with particular
diffusion orientation. Supplementary Figure 5A shows a coronal view of an area of RNI age
associations extending ventral to the GP with diffusion occurring primarily in the lateral-medial (L-M)
direction, which is likely to represent the anterior commissure; however, this location is difficult to
distinguish from the ventral pallidum (VP), which sits below the anterior commissure. When looking in
the sagittal view (supplementary figure 5B), we can see that these associations extend through the
ventral striatum and head of the caudate. These effects appear to occur in voxels with diffusion in
both the L-M and anterior-posterior (A-P) direction. The largest RNl and RND age effects in the VDC
were seen in voxels with diffusion primarily in the A-P direction (Supplementary Figure 5C). Across the
Thal, RNl and RND effects were larger in anterior nuclei where diffusion was also primarily in the A-P
direction and along the intersection between the A, VA and VLV nuclei with diffusion in multiple
directions (Supplementary Figure 5D,E).
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Figure 5. Age associations within the restricted compartment across subcortical regions. Voxelwise t-statistics for the association
between age and RNI (A-D), RND (H-K) and RDF (O-R) across different axial brain slices moving from superior (top) to inferior (bottom).
Effects are unthresholded. VVoxelwise Bonferroni corrected significance threshold ([t[=4.98) is marked on the colorbar. Outlines of the
Aseg, Pauli and Najdenovska ROIs are overlaid. Violin plots show the distribution of voxelwise age associations in each ROI for each RSI
metric. Red dotted lines show voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics from ROl analyses for the
mean RSI metrics from each subcortical ROI. Green dotted line shows ROI Bonferroni corrected significance threshold ([t[=3.08). Plots are
shown for RNI (E-G), RND (L-N) and RDF (S-U). Subcortical ROI abbreviations are outlined in Supplementary Table 2.
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Age associations with DTI metrics

Supplementary figures 6-7 show the voxelwise and ROlwise age associations with MD and FA from the
diffusion tensor model. Supplementary tables 11-12 show summary statistics for the voxelwise and
ROlwise analyses within each WM fober tract and subcortical ROl for MD and FA. In general, there was
a strong but inverse correspondence between the MD and RNI age associations across the WM and
subcortical regions. However, there were subtle differences in the magnitude of effects across ROIs
highlighting the different models used to estimate these measures. There were larger differences
between the FA and RND associations. Namely, the magnitude of the FA associations was much
smaller than RND, such that a larger sample would be required to detect age-related FA associations.
However, the pattern of associations across the brain was similar.
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DISCUSSION

In this study, we have shown highly statistically significant age associated increases in restricted
(primarily intracellular) diffusion across WM and subcortical GM in a large sample (n=8,086) of children
from 9 to 14 years. This is the largest study to date measuring age associations in diffusion metrics at
this age and utilizing novel RSI measures. Across both gray and WM, increasing age was associated
with an increase in the proportion of restricted diffusion, RNT, and a decrease in the proportion of
hindered, HNT, and free water, FNT. The largest age-related changes were found within the basal
ganglia, namely the GP, and the VDC. Within the restricted compartment, the proportion of restricted
isotropic diffusion, RNI, increased at a greater rate with age than directional diffusion, RND, resulting in
a relative increase in the isotropic compared to directional signal fraction across the brain. These
differences were most pronounced in the GP, posterior nuclei of the Thal and the midbrain nuclei.
Voxelwise age associations were highly variable within subcortical regions and WM fiber tracts. Within
subcortical regions in particular, the pattern of age associations appeared to follow changes in the
orientation of the diffusion. This suggests that we can identify distinct age associations within
subcomponents of subcortical structures that may be associated with differing functional circuits as
indicated by differences in cytoarchitecture. This highlights the benefit of measuring voxelwise
compared to ROI-wise associations and utilizing high resolution parcellations of subcortical structures
that reflect known histologic and functional subdivisions within deep gray matter nuclei such as the
Thal.

White Matter associations with age

There was a robust increase in the proportion of restricted to hindered and free water from 9-14 years
across the WM, which was associated with an increase in both isotropic and directional diffusion. In
general, RNl showed more widespread effects across the WM compared to RND, which showed larger
age associations along the centers of WM tracts where axonal coherence is highest. In many voxels,
increases in both RNI and RND reflected increases in the overall proportion of the restricted signal
fraction relative to the hindered and free water compartments. To tease apart differences in the
magnitude of the RNI and RND associations with age we estimated the relative proportion of restricted
directional diffusion over the total restricted signal fraction, RDF. The negative voxelwise associations
between RDF and age highlighted that the proportion of restricted directional diffusion within the
restricted compartment was decreasing with age i.e. directional diffusion was increasing with age at a
lower rate than isotropic diffusion. This was seen in both GM and WM. There were some regions,
such as the Pu, that showed limited RDF effects, highlighting that there were similar increases in the
restricted isotropic and directional fractions in this region. Increases in isotropic diffusion can be
driven by both an increase in the size or number of structures with a spherical or compact shape, and
multiple cylindrical structures in the same voxel oriented such that anisotropic diffusion is occurring in
all directions appearing as isotropic. Therefore, an increase in the complexity of neuronal connections
and crossing fibers at angles smaller than can be resolved could lead to an increase in the relative
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contribution of isotropic compared to directional diffusion within the restricted compartment with age.
This is in contrast to previous work using the NODDI model in which orientation dispersion (a measure
of the degree of dispersion of neurites) was not found to increase with age (Chang et al., 2015; Genc,
Seal, et al., 2017; Mah et al., 2017). This may reflect increased statistical power in this study to detect
an association or key differences in the diffusion model and metrics estimated. Future work comparing
multiple multi-compartment diffusion models using large developmental samples will be required to
tease apart these differences.

The largest and most heterogeneous voxelwise effects across WM fibers, particularly for RNI, were
within the ATR, SCS and SIFC, such that significant ROl associations appeared to be driven by voxels
within or near subcortical structures. For the SCS, the tractography used to generate the SCS tract ROI
included termination points in the striatum (Hagler et al., 2019), therefore the overlap of the SCS ROI
and the Pu ROl is likely indicating voxels in which the SCS is innervating the Pu. The greater age
associations in this region suggests there may be greater age-related changes in WM microstructure at
this innervation point. The same could be seen for the ATR; in the original tractography all streamlines
for the ATR were set to terminate on one end of the thalamus and not pass through the thalamus. The
greater age-related associations in anterior thalamic nuclei innervated by the ATR may highlight
specific refinement of particular circuits involving these nuclei. These analyses highlight the
importance of measuring voxelwise associations to avoid the misleading impression of homogeneity of
effects across the entirety of WM tracts. This has been eloquently shown previously using a similar
model of intracellular diffusion (Lynch et al., 2020).

In the corpus callosum (CC), RNI and RND both increased with age, however, the magnitude of the age
associations differed along the posterior-anterior axis. Voxels in the Fmaj, showed a greater age effect
than voxels in the Fmin, which connects the lateral and medial surfaces of the frontal lobes and is the
frontal portion of the CC. Our results support previous evidence from other developmental samples
showing a greater age effect of intracellular diffusion metrics in the splenium or forceps major
compared to the genu or forceps minor (Geeraert et al., 2019; Genc, Seal, et al., 2017; Mah et al.,
2017) and the more extended development of frontal-temporal connections (Genc, Seal, et al., 2017,
C. Lebel et al., 2008; Catherine Lebel & Beaulieu, 2011; Tamnes et al., 2010). This mirrors the
posterior-anterior sequence of myelination in developing infants (Bird et al., 1989; Kinney et al., 1988),
suggesting differences in the time-course of myelination across the CC may be contributing to the
effects here. In addition, Genc et al found that from 4 to 19 years, age showed a greater positive
association with apparent fiber density (a measure of the intracellular volume fraction) in posterior
relative to anterior portions of the CC (Genc et al., 2018). This suggests that changes in axonal
diameter and/or myelination, that can contribute to increases in the restricted volume fraction, likely
occur at a different rate depending on the location in the CC. Different sections of the CC connect
different cortical regions within distinct functional networks. Nonuniformity in the development of
these interhemispheric connections may reflect age-dependent maturation of cognitive and behavioral
processes. More protracted developmental changes in frontal circuitry may underpin the later
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development of cognitive control in adolescence and become more prominent as the children get
older (Casey et al., 2008).

Subcortical associations with age

Previous studies have highlighted significant changes in FA and MD across subcortical regions (Baron
Nelson et al., 2019; Lebel et al., 2008; Simmonds et al., 2014), with regions of the basal ganglia showing
greater percentage change from 5-30 years than many WM tracts (Lebel et al., 2008), in agreement
with the results reported here. From 8-13 years, Mah et al (2017) found that NDI from the NODDI
model, a measure of the intracellular volume fraction, showed the largest percent increase in the GP
(10-13% change) followed by the Pu, hippocampus, amygdala and Thal (3-7% change) and found no
age association in the Ca. Although the RSI and NODDI models are very different, NDI, similar to RNT,
captures the total intracellular volume fraction in a voxel. As the intracellular volume fraction
increases in a voxel, the magnitude of water displacement reduces, thereby decreasing MD. Indeed,
NDI has previously been shown to correlate negatively with MD (Zhang et al., 2012), and in the current
study MD showed age associations in the opposite direction to RNT (as expected). Indeed, our RNT
results were very similar to the NDI effects reported by Mah et al., apart from a significant age
association in the caudate. This may reflect the greater sensitivity of the RSI model parameters to age-
related changes in cytoarchitecture of the caudate and/or increased statistical power in this study to
detect an association.

By using voxelwise analyses we were able to measure the heterogeneity of developmental effects
within subcortical regions highlighting the benefit of using voxelwise compared to ROI-wise analyses.
There was a clear pattern of age associations across the different thalamic nuclei, particularly for RND.
Najdenovska et al (2018) generated the thalamic nuclei ROIs by clustering contiguous voxels with
similar orientation microstructure (determined by the FODs) validating their results against a
histological atlas (Najdenovska et al., 2018). When overlaying these ROIs on the average FODs
measured in our sample (Supplementary Figure 4), we could see that the boundaries of the different
nuclei indeed adhered to changes in the primary orientation of diffusion. Within anterior nuclei (A, VA,
tMD), where age associations were greatest for RNl and RND, diffusion primarily occurred in the
anterior-posterior orientation (green), whereas within posterior nuclei (VLV, VLD, C, P), diffusion
primarily occurred within the lateral-medial (red) orientation. The tMD nucleus of the thalamus is
reciprocally interconnected with the prefrontal cortex and receives input from striatal, medial
temporal, midbrain and basal forebrain structures (Groenewegen, 1988; Groenewegen et al., 1993;
Ray & Price, 1993; Tanaka, 1976; Tobias, 1975; Vertes et al., 2015) . It is well positioned to play a
modulatory role within fronto-striatal-thalamo-cortical circuits thought to be important for several
cognitive and emotional processes (Haber & Calzavara, 2009; Mitchell & Chakraborty, 2013; Ouhaz et
al., 2018). Structural and functional connectivity of these thalamo-cortical connections has been
shown to increase across childhood and adolescence (Alkonyi et al., 2011; Fair, 2010), and is thought to
underpin behavioral changes in cognitive control and emotional reactivity during adolescence.
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Moreover, there were highly significant age associations with RNI in the region ventral to the GP and
Ca, which encompasses both the ventral pallidum, ventral striatum (nucleus accumbens and olfactory
tubercle) and bed of the nucleus stria terminalis (often referred to as the extended amygdala, as well
as the anterior commissure (Zaborszky et al., 2015). These regions are highly interconnected with
subcortical and cortical regions, particularly in frontal cortex, creating circuits integral for incentive-
based learning, reward processing and decision-making (Barkley-Levenson & Galvan, 2014; Delgado,
2007; Haber & Knutson, 2010). Microstructural changes within the thalamus and the ventral forebrain
may be indicative of the refinement of these circuits in late childhood.

There were also statistically robust and heterogeneous associations within the VDC. The VDC is a
group of structures that are poorly defined on T1w imaging, however, by calculating the mean
voxelwise FODs across subjects, we could clearly see variability in the orientation of diffusion within
this large region highlighting the presence of potentially distinct cytoarchitecture. Changes in the
orientation of the FODs also appeared to adhere to estimated outlines of finer subcortical parcellations
that include many of the nuclei within the VDC from the Pauli atlas (Pauli et al., 2018). Indeed, the
strongest and most significant associations between age and RNI and RND were in voxels oriented
primarily in the anterior-posterior direction within and around the SN adjacent to the ventral
tegmental area (VTA), which may reflect microstructural changes within the extensive dopaminergic
projections from these regions to the basal ganglia and medial forebrain. Fibers from the SN and
striatum also directly innervate the lateral edge of the VA nucleus where we see high isotropy and
crossing diffusion orientations (Kultas-ilinsky & llinsky, 1990; Sakai et al., 1998). Our findings may
signal increased innervation of the Thal from the SN and/or striatum and/or increased myelination of
axons in these pathways. This further suggests that these findings may reflect maturation of cortico-
striatal-thalamic pathways that may be important for processes of motor control, cognition and self-
regulation that are developing in this age range. Indeed, FA in the internal capsule, basal ganglia and
Thal has been shown to partially mediate improved performance on particular cognitive tasks with
increasing age from 9-12 years (Baron Nelson et al., 2019).

Voxels within the GP showed the largest age associations with RNI, followed by the Pu. These basal
ganglia regions form part of parallel frontal, temporal and parietal cortical circuits that are involved in a
number of cognitive and motor functions (Alexander et al., 1986; Middleton & Strick, 2000). Overall
mean restricted isotropic diffusion across subjects was much larger in the GP than other subcortical
regions, which may reflect higher myelin content in the GP compared to the Pu (Lanciego et al., 2012).
Moreover, throughout adolescence, there is a large increase in iron concentration, estimated by
increased susceptibility on T2* weighted imaging, within the GP (Larson et al, 2020). This iron related
effect has been shown to correlate with DTl metrics in these deep GM structures (Pfefferbaum et al.,
2010); therefore, increasing iron accumulation may be contributing to the RNI developmental effects
that we observe in this region. Further research is required to determine the extent to which iron
content effects the estimation of diffusion metrics.
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Microstructural changes underlying alterations in restricted diffusion

There are several biological processes that may increase restricted diffusion in the WM, such as
increasing myelination, neurite density and/or axon coherence. Increasing myelination reduces the
permeability of myelinated axons and decreases the volume of the extracellular space in a voxel
increasing the restricted signal fraction. Previous studies using NODDI have shown age-related
changes in NDI (a measure of the intracellular volume fraction similar to RNT) in a similar age range in
the WM (Chang et al., 2015; Genc, Seal, et al., 2017; Mah et al., 2017) and increases in NDI have been
associated with both increases in the myelin volume fraction using MRI (Geeraert et al., 2019) and
post-mortem histology from patients with demyelination (Grussu et al., 2017). In general, there has
been a lack of evidence for increasing myelination in late childhood as measured with magnetization
transfer (Geeraert et al., 2019; Moura et al., 2016; Pangelinan et al., 2016). However, given histological
findings that myelination continues into adulthood (Benes, 1989; Yakovlev & Lecours, 1967), these
myelin changes may be very subtle, and require large sample sizes and/or longitudinal studies, such as
this, to detect. Little is known about how changes in myelination directly impact RSI measures
specifically; however, in a demyelinated genetic mouse model, regions with reduced myelin showed
reduced intraneurite volume fraction, estimated using a similar spherical deconvolution method
(Kaden et al., 2016). Increased myelination with development may underlie the age effects observed
here; however, this is only one of many biological processes that can alter restricted diffusion, as
described in Table 1, therefore further work is needed to elucidate the exact neurobiological processes
contributing to the effects reported here.

Subcortical gray matter has a more complex cytoarchitecture than cortical gray matter and WM fiber
bundles consisting of many cell bodies of stellate shape, dendrites, terminal arbors and synapses that
do not follow a coherent structure. Nevertheless, examination of the mean estimated FODs from the
RSI model showed complex orientation structure within these regions. Developmental increases in the
restricted signal fraction within the deep gray matter nuclei could be driven by increases in
myelination, neurite density, dendritic sprouting or increases in cell size less than the typical diffusion
length scale. These microstructural possibilities are outlined in Table 1. As mentioned previously,
increases in restricted isotropic diffusion measured by RSI can be modulated by both structures with a
spherical or compact shape less than the diffusion length scale, such as neuronal cell bodies or
microglia, within which diffusion is isotropic, and also by multiple cylindrical structures in the same
voxel oriented such that anisotropic diffusion is occurring in all directions. By using RSI we can detect
differences in diffusion orientation at a much finer resolution than with the tensor model allowing us
to more precisely understand the underlying microstructural changes occurring during late childhood
and adolescent development.

DTl vs RSI

In the current study, age-related changes in RNT were very similar (but opposite in sign) to those
observed in MD, estimated from the diffusion tensor model. As diffusion becomes more restricted,
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MD within a voxel will decrease. Our analyses showed greater age-related changes in MD compared to
FA from 9-14 years, whereas previous studies have shown relatively greater percent changes in FA
compared to MD across WM tracts in particular (Krogsrud et al., 2016b; C. Lebel et al., 2008). These
studies are difficult to compare directly due to different sample sizes and age ranges. Furthermore,
most studies estimate MD using diffusion MRI data acquired at lower b-values (below b=2000 s/mm?)
than the current study (which includes many directions at b=3000 s/mm?). At higher b-values, around
b>3000s/mm?, the signal from the hindered compartment is attenuated and the measured diffusion
signal is dominated by the restricted compartment. If maturational changes are predominantly
occurring within the restricted compartment our DTI measures may be more sensitive to age-related
changes than DTI metrics from studies with lower b-value acquisitions. Further work empirically
comparing age-related changes on DTl metrics calculated with different acquisition parameters is
required.

Limitations

Although the effects in this study are highly significant due to the large sample size, the magnitude of
the voxelwise effects is very small. This has been observed across large-scale imaging studies making it
clear that published effects are inflated by small sample sizes and publication bias (Dick et al., 2021).
Using large sample sizes we are now able to estimate effect sizes with much greater precision. Small
effects are perhaps not surprising given that causal associations among variables are highly complex
and a single association is unlikely to be very large. These large sample studies can provide new norms
for expected effect sizes. Moreover, the data in the current study only included two timepoints,
therefore we were unable to disentangle regional differences in the developmental trajectory of these
RSI metrics from 9-14 years. Imaging data were also rank normalized to make the assumptions of
normality in the statistical analysis valid, therefore we did not measure non-linear age associations as
the non-linear aspect of the rank normalization could introduce apparent non-linearities. With future
ABCD Study data releases with more longitudinal time-points, future work should aim to map the
shape of developmental trajectories of these RSI metrics. Finally, given the increased T2 shortening of
the diffusion signal with increased iron concentrations, future work should aim to understand the
implications of this for diffusion models.

Conclusions

This is the largest study to date measuring longitudinal age associations with diffusion metrics across
the brain. We have demonstrated highly significant increases in the proportion of restricted diffusion
across the WM and within deep gray matter nuclei. The heterogeneity of effects along WM tracts and
within subcortical GM structures highlights the importance of voxelwise analyses to provide a more
fine-grained understanding of how the brain is changing with age. Given the importance of both
subcortical-subcortical and subcortical-cortical circuitry in the development of multiple cognitive and
behavioral dimensions during this period (Casey et al., 2016), robust microstructural changes occurring
in subcortical regions and associated WM tracts may indicate important refinement of these


https://doi.org/10.1101/2021.06.04.447102
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.04.447102; this version posted November 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

developing circuits. Understanding whether individual differences in the age-related structural
covariance of these measures associates with differential behavioral profiles will provide a promising
new avenue for future research.
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