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ABSTRACT 
 

During late childhood behavioral changes, such as increased risk-taking and emotional reactivity, have 

been associated with the maturation of cortico-cortico and cortico-subcortical circuits.  Understanding 

microstructural changes in both white matter and subcortical regions may aid our understanding of 

how individual differences in these behaviors emerge.  Restriction spectrum imaging (RSI) is a 

framework for modelling diffusion-weighted imaging that decomposes the diffusion signal from a voxel 

into hindered, restricted, and free compartments.  This yields greater specificity than conventional 

methods of characterizing diffusion.  Using RSI, we quantified voxelwise restricted diffusion across the 

brain and measured age associations in a large sample (n=8,086) from the Adolescent Brain and 

Cognitive Development (ABCD) study aged 9-14 years.  Older participants showed a higher restricted 

signal fraction across the brain, with the largest associations in subcortical regions, particularly the 

basal ganglia and ventral diencephalon.  Importantly, age associations varied with respect to the 

cytoarchitecture within white matter fiber tracts and subcortical structures, for example age 

associations differed across thalamic nuclei.  This suggests that age-related changes may map onto 

specific cell populations or circuits and highlights the utility of voxelwise compared to ROI-wise 

analyses.  Future analyses will aim to understand the relevance of this microstructural developmental 

for behavioral outcomes. 
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INTRODUCTION 
 

Brain development during childhood and adolescence is associated with distributed structural 

alterations in both gray matter (GM) and white matter (WM) that occur concurrently with cognitive 

and behavioral development.  WM tracts connect distributed neural networks across cortical and 

subcortical structures that are essential for a multitude of cognitive functions that continue to develop 

into late childhood (Baron Nelson et al., 2019; Peters et al., 2012; Simmonds et al., 2014).  Alterations 

in reward and affective processing are particularly pertinent during adolescence (Casey et al., 2008) 

and are hypothesized to be underpinned by cortico-subcortical circuitry (Casey et al., 2016). The 

precise quantification of the microstructural changes during typical development may provide 

important information for understanding individual differences in cognition and the emergence of 

increased emotional reactivity and risk-taking in this period.  Diffusion tensor imaging (DTI) has 

frequently been used to probe microstructural changes in the brain.  Previous studies have shown 

increases in fractional anisotropy (FA) and decreases in mean diffusivity (MD) throughout the brain 

across childhood and into young adulthood, with variability in the trajectory of microstructural 

development across different brain regions (for review see Lebel & Deoni, 2018).  Many studies have 

measured developmental changes in DTI metrics within WM (Krogsrud et al., 2016a; Catherine Lebel & 

Beaulieu, 2011; Pohl et al., 2016), but fewer studies have explored DTI changes in deep gray matter 

structures, in part due to the inadequacies of DTI for studying complex cytoarchitecture and the lower 

signal-to-noise ratio (SNR) when estimating FA in particular (Farrell et al., 2007).  Despite this, in one 

study, increases in FA from 5-30 years appeared to be larger in subcortical regions compared to the 

WM tracts (Lebel et al., 2008). 

 

The diffusion tensor model only allows the expression of a single principal direction of diffusion and is 

unable to adequately represent mixtures of neurite orientations within a voxel.  Recent advances in 

diffusion data acquisition, including multiple b-value acquisitions and high angular resolution diffusion 

imaging (HARDI), have enabled more complex models of tissue microstructure, taking into account 

multiple tissue compartments, multiple fiber populations in WM and orientated structure of neurites 

(axons and dendrites) within GM and WM.  Restriction spectrum imaging (RSI; (Brunsing et al., 2017; 

White et al., 2013; White et al., 2013, 2014) uses multiple b-value HARDI data to model the diffusion-

weighted signal as emanating from multiple tissue compartments, reflecting free, hindered and 

restricted water, with different intrinsic diffusion properties.  The hindered compartment is thought to 

primarily represent extracellular space although may also describe diffusion within intracellular spaces 

with dimensions larger than the diffusion length scale (typically, ~10µm, for the diffusion sequences 

used in human imaging studies).  The restricted compartment is thought to primarily represent 

intracellular space, within cells or processes of dimensions smaller than the diffusion length scale.  Free 

water diffusion primarily represents cerebrospinal fluid (CSF) or intravascular spaces.  Within each 

voxel, RSI models the diffusion signal as a linear mixture of these different compartments.  Spherical 

deconvolution (SD) is used to reconstruct the fiber orientation distribution (FOD) in each voxel for each 

compartment. 
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Using RSI, we can quantify the relative proportion of restricted, hindered and free water diffusion 

within each voxel of the brain.  The signal fraction for each compartment is normalized by total 

diffusion signal across all compartments (restricted normalized total signal fraction, RNT; hindered 

normalized total signal fraction, HNT; free normalized total signal fraction, FNT1).  Moreover, from the 

spherical harmonic coefficients (SH) from the RSI model, we can estimate the signal fraction of 

restricted normalized directional (anisotropic) diffusion (RND) and restricted normalized isotropic 

diffusion (RNI).  By dividing RND by RNT we can additionally estimate the relative proportion of 

directional to isotropic diffusion specifically within the restricted compartment (restricted directional 

fraction (RDF), and how this changes with age.  There are several developmental processes that can 

modulate the relative proportion of restricted to hindered diffusion within a voxel (see Table 1).  For 

example, myelination increases RNT relative to HNT by both decreasing the extracellular space and 

decreasing the exchange of water molecules across the axonal membrane.  Dendritic sprouting, 

arborization and increases in neurite density can also increase the RNT by decreasing the proportion of 

extracellular space within a voxel.  The relative size and shape of restricted compartments will then 

differentially modulate isotropic and anisotropic diffusion. 

 

RSI has been used in several different applications (Carper et al., 2017; Loi et al., 2016; Reas et al., 

2017, 2020), but has not previously been used to study developmental changes in late childhood.  

However, similar multi-compartment models, such as neurite orientation dispersion and density 

imaging (NODDI), have been shown to be more sensitive to developmental changes than DTI metrics 

(Genc, Malpas, et al., 2017).  Neurite density index (NDI), from the NODDI model, which reflects the 

intracellular volume fraction, was positively associated with age across all WM tracts in several recent 

studies (Geeraert et al., 2019; Genc, Malpas, et al., 2017; Lynch et al., 2020; Mah et al., 2017).  

However, the orientation dispersion index (ODI), a measure of the degree of dispersion of intracellular 

diffusion, showed no age associations, suggesting that WM development across childhood and 

adolescence is not associated with changes in neurite coherence (Genc, Malpas, et al., 2017; Lynch et 

al., 2020). Increases in the intracellular volume fraction from the NODDI model have also been shown 

to significantly increase with age from 8-13 years in subcortical regions.  These results suggest that age 

related increases in restricted diffusion measured with more sensitive multi-compartment models are 

apparent in both WM and deep GM.  Although NODDI is a useful model for describing intracellular 

diffusion, NDI is limited in that it represents a measure of the total intracellular volume fraction; in 

contrast, RSI can delineate isotropic and anisotropic diffusion within the restricted compartment.  For 

example, in voxels with crossing fibers that are oriented perpendicular to one another, ODI will be 

estimated to be very high; whereas RND will provide a more accurate estimation of the anisotropy of 

the two coherent crossing fibers.  RSI therefore provides differential information about intracellular 

diffusion within each voxel compared to previously explored multi-compartment models. 

 
1 The free normalized total signal fraction (FNT) is equivalent to the free normalized isotropic signal fraction (FNI) from Release 4.0 of the 

ABCD Study.  These are equivalent because there is no directional component to the free water compartment, but was renamed here for 

consistency with RNT and HNT. 
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In the current study, we have used longitudinal data across two time points to estimate age-related 

changes in tissue microstructure in WM and subcortical regions.  We have used data from Release 4.0 

of the Adolescent Brain and Cognitive Development (ABCD) Study to measure whole-brain voxelwise 

age associations with the total restricted, hindered and free water signal fractions, as well as the 

restricted isotropic and anisotropic signal fractions form the RSI model.  The large sample size (n=8086) 

and small age range at each time point (9-11 years at baseline; 11-14 years at follow-up) provides high 

precision to delineate microstructural changes with age across the brain. 

 

Table 1. Outline of how different developmental cellular processes can modulate both the hindered and restricted signal fractions. 

 

Developmental processes Effect on diffusion Hindered 

normalized 

total signal 

fraction (HNT) 

Restricted 

normalized 

total signal 

fraction (RNT)  

Myelination Reduces volume of extracellular space 

Reduces permeability of axonal membranes, resulting 

in less exchange of water molecules between 

intracellular and extracellular spaces 

Decrease 

 

Increase 

Increase in neurite diameter with 

constant neurite density   

Diameter of neurites will not exceed typical diffusion 

length scale, therefore will not alter the magnitude of 

the measured water displacement, but will reduce the 

volume of extracellular space 

Decrease Increase 

Dendritic sprouting Arborization will reduce the volume of the extracellular 

space 

Decrease Increase 

Increase in cell body size with constant 

cell density (<<typical diffusion length 

scale) 

Reduces volume of extracellular space, therefore 

increasing the restricted signal fraction, but will not 

alter the magnitude of the measured water 

displacement 

Decrease Increase 

Increase in cell body size with constant 

cell density (>>typical diffusion length 

scale) 

Restricted signal fraction will increase until >>typical 

diffusion length scale. Beyond this diffusion will appear 

hindered  

Increase Decrease 

Increase in number of mature 

astrocytes, with spongiform 

morphologies 

Mature astrocytes have greater permeability relative to 

neurons causing greater exchange of water molecules 

between intracellular and extracellular spaces resulting 

in less restricted diffusion 

Increase Decrease 

Recruitment/Activation of microglia Activated microglia show reduced elongated processes 

that become thicker, increased cell body size (~8m), 

and greater clustering together. This reduces the 

volume of the extracellular space. 

Decrease Increase 
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METHODS 

Sample 

The ABCD study is a longitudinal study across 21 data acquisition sites following 11,880 children 

starting at 9-11 years.  This paper uses baseline and two-year follow up (FU) data from the NIMH Data 

Archive ABCD Collection Release 4.0 (DOI:  10.15154/1523041).  The ABCD cohort is epidemiologically 

informed (Garavan et al., 2018), including participants from demographically diverse backgrounds, and 

has an embedded twin cohort and many siblings.  Exclusion criteria for participation in the ABCD Study 

were limited to: 1) lack of English proficiency in the child; 2) the presence of severe sensory, 

neurological, medical or intellectual limitations that would inhibit the child’s ability to comply with the 

protocol; 3) an inability to complete an MRI scan at baseline.  The study protocols are approved by the 

University of California, San Diego Institutional Review Board.  Parent/caregiver permission and child 

assent were obtained from each participant. 

 

All statistical analyses included 14,043 observations with 8,086 unique subjects, such that 5,957 

participants had data at two time points.  Participants were aged from 107-166 months (8.9-13.8 

years).  Observations were included in the final sample if the participant had complete data across 

sociodemographic factors (household income, highest parental education, ethnicity), available genetic 

data (to provide ancestry information using the top 10 principal components), available imaging data 

that passed all inclusion criteria and available information regarding acquisition scanner ID and 

software version.  In the ABCD Study, Release 4.0, there are 19,658 available scans with scanner 

information (12% missingness).  Of these scans, 2,655 were excluded for not meeting the 

recommended imaging inclusion criteria outlined in the Release 4.0 release notes and supplementary 

table 1 (imaging scans were included if: imgincl_dmri_include==1 & imgincl_t1w_include==1 & 

mrif_score<3), and an additional 90 observations were excluded for poor registration defined below (in 

Atlas Registration).  The final sample included all remaining observations that had complete data for 

the previously listed information.  Table 2 shows the demographics of the final sample used for 

statistical analysis stratified by time-point.  Participants who had completed their 2 year FU in Release 

4.0 were more likely to have higher household income and have male assigned as their sex at birth.  

This may reflect differences in recruitment procedures over the course of recruitment in order to 

ensure the final sample reflected the demographics of the US population as closely as possible. 
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Baseline 2 Year FU p 

n 8086 5957  
interview_age (months), mean (SD) 119.21 (7.52) 143.22 (7.76) <0.001 

sex = M, n (%) 4158 (51.4) 3203 (53.8) 0.006 

household.income, n (%) 
    <0.001  

[<50K] 2215 (27.4) 1381 (23.2)  
[>=50K & <100K] 2311 (28.6) 1687 (28.3)  

[>=100K] 3560 (44.0) 2889 (48.5)  
high.educ, n (%) 

    0.461  
< HS Diploma 291 ( 3.6) 215 ( 3.6)  

HS Diploma/GED 599 ( 7.4) 462 ( 7.8)  
Some College 2029 (25.1) 1421 (23.9)  

Bachelor 2197 (27.2) 1612 (27.1)  
Post Graduate Degree 2970 (36.7) 2247 (37.7)  

race.4level, n (%) 
    0.366  

White 5460 (68.2) 4094 (69.3)  
Black 1042 (13.0) 714 (12.1)  
Asian 171 ( 2.1) 119 ( 2.0)  

Other/Mixed 1330 (16.6) 978 (16.6)  
ethnicity, n (%)   0.269 

hisp = Yes (%) 1583 (19.6) 1121 (18.8)  
rel_group_id (twin status), n (%)   0.847 

Singleton (1) 7433 (91.9) 5464 (91.7)  

Twin (2) 643 ( 8.0) 484 ( 8.1)  

Triplet (3) 10 ( 0.1) 9 ( 0.2)  

 

Table 2. Demographics of the sample.  Demographic data is shown for age in months (mean, (SD)), sex at birth, household income, 

parental education, self-declared race, endorsement of Hispanic ethnicity and self-declared twin/triplet status (n, (%)).  These factors are 

stratified by time point: baseline and 2-year FU.  There were significant differences in income and sex at birth for those who had 2-year FU 

data in Release 4.0 indicative of differences in the demographics of participants as they were recruited.  Participants recruited earlier in 

the study were more likely to have higher household income and be born male.  All of these variables are controlled for in all statistical 

analyses to account for this.  Variable names from the tabulated data release are included in the table for replication. 

 

MRI acquisition 

The ABCD MRI data were collected across 21 research sites using Siemens Prisma, GE 750 and Philips 

Achieva and Ingenia 3T scanners.  Scanning protocols were harmonized across sites. Full details of 

structural and diffusion imaging acquisition protocols used in the ABCD study have been described 

previously (Casey et al., 2018; Hagler et al., 2019) so only a short overview is given here. dMRI data 

were acquired in the axial plane at 1.7mm isotropic resolution with multiband acceleration factor 3. 

Diffusion-weighted images were collected with seven b=0 s/mm2 frames and 96 non-collinear gradient 

directions, with 6 directions at b=500 s/mm2, 15 directions at b=1000 s/mm2, 15 directions at b=2000 
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s/mm2, and 60 directions at b=3000 s/mm2. T1-weighted images were acquired using a 3D 

magnetization-prepared rapid acquisition gradient echo (MPRAGE) scan with 1mm isotropic resolution 

and no multiband acceleration.  3D T2-weighted fast spin echo with variable flip angle scans were 

acquired at 1mm isotropic resolution with no multiband acceleration. 

Image Processing  

The processing steps for diffusion and structural MR data are outlined in detail in Hagler et al., (2019). 

Briefly, dMRI data were corrected for eddy current distortion using a diffusion gradient model-based 

approach (Zhuang et al., 2006).  To correct images for head motion, we rigid-body-registered each 

frame to the corresponding volume synthesized from a robust tensor fit, accounting for image contrast 

variation between frames.  Dark slices caused by abrupt head motion were replaced with values 

synthesized from the robust tensor fit, and the diffusion gradient matrix was adjusted for head rotation 

(Hagler et al., 2009, 2019).  Spatial and intensity distortions caused by B0 field inhomogeneity were 

corrected using FSL’s topup (Andersson et al., 2003) and gradient nonlinearity distortions were 

corrected for each frame (Jovicich et al., 2006).  The dMRI data were registered to T1w structural 

images using mutual information (Wells et al., 1996) after coarse pre-alignment via within-modality 

registration to atlas brains. dMRI data were then resampled to 1.7 mm isotropic resolution, equal to 

the dMRI acquisition resolution. 

T1w and T2w structural images were corrected for gradient nonlinearity distortions using scanner-

specific, nonlinear transformations provided by MRI scanner manufacturers (Jovicich et al., 2006; Wald 

et al., 2001) and T2w images are registered to T1w images using mutual information (Wells et al., 

1996). Intensity inhomogeneity correction was performed by applying smoothly varying, estimated B1-

bias field (Hagler et al., 2019). Images were rigidly registered and resampled into alignment with a pre-

existing, in-house, averaged, reference brain with 1.0 mm isotropic resolution (Hagler et al., 2019). 

Microstructural models  

Restriction spectrum imaging (RSI)  

The RSI model was fit to the diffusion data to model the diffusion properties of the cerebral tissue 

(Nathan S. White et al., 2013, 2014). RSI estimates the relative fraction that separable pools of water 

within a tissue contribute to the diffusion signal, based on their intrinsic diffusion characteristics.  Free 

water (e.g., CSF) is defined by unimpeded water diffusion.  Hindered diffusion follows a Gaussian 

displacement pattern characterised by the presence of neurites, glia and other cells.  This includes 

water both within the extracellular matrix and certain intracellular spaces with dimensions larger than 

the diffusion length scale (typically, ~10m, for the diffusion sequences used in human imaging studies 

(Nathan S. White et al., 2013)).  Restricted diffusion describes water within intracellular spaces 

confined by cell membranes and follows a non-Gaussian pattern of displacement.  Imaging scan 

parameters determine the sensitivity of the diffusion signal to diffusion within these separable pools.  

At intermediate b-values (b=500-2500s/mm2), the signal is sensitive to both hindered and restricted 
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diffusion; whereas, at high b-values (b≥3000s/mm2), the signal is primarily sensitive to restricted 

diffusion.  The hindered and restricted compartments are modeled as fourth order spherical harmonic 

(SH) functions and the free water compartment is modelled using zeroth order SH functions. The axial 

diffusivity (AD) is held constant, with a value of 1 × 10-3 mm2/s for the restricted and hindered 

compartments.  For the restricted compartment, the radial diffusivity (RD) is fixed to 0 mm2/s. For the 

hindered compartment, RD is fixed to 0.9 × 10-3 mm2/s. For the free water compartment the isotropic 

diffusivity is fixed to 3 × 10-3 mm2/s.  Theoretically, any increases in the tortuosity of the hindered 

compartment, for example due to a decrease in the volume of the extracellular space, will decrease 

the effective diffusivity in the hindered compartment; however, in our model we are assuming the 

hindered diffusivity is constant.  Spherical deconvolution (SD) is used to reconstruct the fiber 

orientation distribution (FOD) in each voxel from the restricted compartment.  The restricted 

directional measure, RND, is the norm of the SH coefficients for the second and fourth order SH 

coefficients (divided by the norm of all the coefficients across the restricted, hindered and free water 

compartments).  This models oriented diffusion emanating from multiple directions within a voxel.  

The restricted isotropic measure, RNI, refers to the spherical mean of the FOD across all orientations 

(zeroth order SH divided by the norm of all the coefficients across the restricted, hindered and free 

water compartments).  The sum of these measures is the restricted normalized total signal fraction, 

RNT. 

 In this study we explore associations between age and the rotation-invariant features of the 

restricted compartment FOD.  For a detailed description of the derivation of the RSI model see (N.S. 

White et al., 2013; Nathan S. White et al., 2013). We extracted a measure of the restricted isotropic 

and restricted anisotropic diffusion signal. Within each voxel the total diffusion signal, S, can be 

represented as  þ = ∑ ��ýþ��ýþ  

where ��ýþ is a SH basis function of order ý and degree þ of the FOD corresponding to the Ąth 

compartment, and ��ýþ are the corresponding SH coefficients. The total restricted normalized signal 

fraction (RNT), normalized by all compartments, is defined as follows: 

 ýþÿ = ||��ýĀþ,ý,þ||2||��ýþ||2  

 
The total hindered normalized signal fraction (HNT), normalized by all compartments, is defined as 

follows: 

 ÿþÿ = ||��ÿĀ�ÿ,ý,þ||2||��ýþ||2  

 

The total free water normalized signal fraction (FNT), normalized by all compartments, is defined as 

follows: 
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 �þÿ = ||��āýĀĀ,ý,þ||2||��ýþ||2  

 

The measure of the restricted normalized isotropic signal fraction is given by the coefficient of the 

zeroth order SH coefficient, ��ýĀþ,ý=0,þ=0, where ĄýĀþ is the restricted compartment, normalized by the 

Euclidian norm of all ��ýþ and termed RNI:  

 ýþĀ = ||��ýĀþ,ý=0,þ=0||2||��ýþ||2  

 

The measure of the restricted normalized directional signal fraction is given by the norm of ��ýĀþ,ý>0,þ, 

where ý > 0 , and ĄýĀþ is the restricted compartment, and is termed RND: 

 ýþ� =  ||��ýĀþ ,ý>0,þ||2||��ýþ||2  

 

These normalized RSI measures are unitless and range from 0 to 1.  Given that RNI and RND are both 

normalized by the SH coefficient across all compartments, changes in the overall restricted or hindered 

signal fractions can modulate both of these measures similarly.  To determine the relative contribution 

of isotropic to anisotropic diffusion solely within the restricted compartment we estimated the 

proportion of RND over RNT, termed RDF. 

 ý�� = ýþ�ýþÿ  

 

The magnitude of diffusion that we are sensitive to is dependent on the diffusion scan parameters.  

Typical diffusion times used in clinical DWI scans are approximately 10–50ms corresponding to average 

molecular displacements on the order of 10μm (Mukherjee et al., 2008).  Any water displacements 

smaller than this scale would not result in detectable dephasing, regardless of b-value, therefore would 

not lead to changes in the measured diffusion coefficient.  However, changes in cell size <~10μm could 

alter the relative signal fractions of hindered and restricted diffusion in a voxel.  Diffusion estimated in 

these compartments is also dependent on the permeability of cellular membranes; greater exchange 

across intracellular and extracellular space will mean that diffusion will appear more hindered rather 

than restricted.  Table 1 outlines the expected changes to the hindered and restricted signal fractions 

following example microstructural developmental processes. 

Diffusion tensor imaging 

The diffusion tensor model (Basser et al., 1994; Basser & Pierpaoli, 1996) was used to calculate 

fractional anisotropy (FA) and mean diffusivity (MD). Diffusion tensor parameters were calculated 
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using a standard, linear estimation approach with log-transformed diffusion-weighted (DW) signals 

(Basser et al., 1994). Tensor matrices were diagonalized using singular value decomposition, obtaining 

three eigenvectors and three corresponding eigenvalues. FA and MD were calculated from the 

eigenvalues (Basser & Pierpaoli, 1996). 

Atlas registration 

To allow for voxelwise analysis, subjects’ imaging data were aligned using a multimodal nonlinear 

elastic registration algorithm. At the end of the preprocessing steps outlined in Image Processing and 

described in detail in Hagler et al. (2019), subjects’ structural images and diffusion parameter maps 

were aligned to an ABCD-specific atlas, using a custom diffeomorphic registration method (Holland & 

Dale, 2011). The ABCD-specific atlas was constructed from n=17,636 ABCD participants aged 9-14 years 

using an iterative procedure, consisting of an initial affine registration, followed by a multi-scale, multi-

channel elastic diffeomorphic registration. Eleven input channels were used for the multimodal 

registration:  3D T1, zeroth and second order SH coefficients from the restricted FOD, zeroth order SH 

coefficient from the hindered and free water FODs, white matter and grey matter segmentations.  

After each iteration, morphed volumes for each subject were averaged to create an updated atlas, and 

then the process was repeated until convergence.  Participants with poor registration to atlas were 

excluded from the average and subsequent statistical analyses.  Poor registration was defined as a 

mean voxelwise correlation to atlas across channels <0.8 (see Sample for number excluded). 

Labelling regions of interest (ROI) 

Major white matter tracts were labelled using AtlasTrack, a probabilistic atlas-based method for 

automated segmentation of white matter fiber tracts (Hagler et al., 2009, 2019). Unilateral binary 

masks for each ROI (except the CC, Fmaj and Fmin which are interhemispheric) were created by 

thresholding at 0.9 probability across the ROI meaning that in a given voxel at least 90% of participants 

showed that ROI label. A list of WM tract ROIs used in this study is listed in Supplementary Table 2.  

Subcortical structures were labeled using the Freesurfer 5.3 segmentation (Fischl et al., 2002).  

Subjects’ native space Freesurfer parcellations were warped to the atlas space and averaged across 

subjects.  Bilateral binary masks for each ROI were created using a probabilistic threshold of 0.9 with 

the same meaning as above.  Additional subcortical nuclei, not available in the FreeSurfer 

segmentation, were labeled by registering readily available, downloadable, high spatial resolution 

atlases to our atlas space.  The Pauli atlas was generated using T1 and T2 scans from 168 typical adults 

from the Human Connectome Project (HCP) (Pauli et al., 2018).  The Najdenovska thalamic nuclei atlas 

was generated using a k-means algorithm taking as inputs the mean FOD SH coefficients from within a 

Freesurfer parcellation of the thalamus, using adult HCP data from 70 subjects (Najdenovska et al., 

2018).  Bilateral binary masks were created for all ROIs in atlas space.  All subcortical ROIs and 

abbreviations are listed in Supplementary Table 3. 
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Statistical analysis 

Voxelwise analyses: Univariate general linear mixed effects models (GLMMs) were applied at each 

voxel to test the associations between age and diffusion metrics (RNT, HNT, FNT, RNI, RND, RDF, FA 

and MD) as the dependent variables.  All of the main results shown are from a linear model (model 

below) with age included as a single predictor in long format and the longitudinal component modelled 

as a random effect of subject.  Results were also compared against a model with an age*sex 

interaction and are reported in the supplementary analyses.  Given the genetic relatedness within the 

sample, family relatedness was also controlled for as a random effect.  Given the demographic 

diversity in the sample, all statistical analyses controlled for the sociodemographic variables household 

income, parental education and Hispanic ethnicity and the top 10 genetic principal components were 

used to account for ancestry effects in lieu of self-declared race.  Additional fixed effects included 

scanner ID, MRI software version and motion (average frame-wise displacement in mm). 

 ��þÿ�: � ~ ÿąă + Āăą + ĀĀāÿĀĂăþĀąÿÿā/ÿāĀ + Āāÿÿÿăÿ Ā� + ĀĀĄāĄÿÿă ăăÿĀÿĀÿ + þĀāÿĀÿ + (1|ĀĂĀĀăāā)+ (1|ĄÿþÿýĆ) +  � 

 

Whole-brain voxelwise analyses were corrected for multiple comparisons at an alpha level of 0.05 

using a Bonferroni correction across 156,662 voxels to provide a voxelwise corrected threshold of p = 

0.05 / 156,662 = 3.19e-7, corresponding to |t| = 4.98. This provides a conservative estimate of 

significant developmental effects as the true number of independent tests is likely to be smaller than 

this.  Unthresholded t-statistic maps are presented in the main figures with the Bonferroni significance 

threshold marked on the colorbar.  This provides a comprehensive description of the continuous 

distribution of effects beyond this conservative boundary.  All imaging metrics were rank normalized 

prior to statistical analysis to adhere to normality assumptions of the linear model. 

 

Region-of-interest (ROI) Analyses: ROI analyses were also conducted using the same GLMM.  The 

dependent variable for each ROI for each diffusion metric was calculated by taking the mean diffusion 

metric across the voxels within each ROI mask.  Violin plots were generated to show the variability in 

voxelwise effects across all voxels within each ROI mask in order to highlight the heterogeneity of 

developmental effects within each ROI.  ROI analyses were corrected for multiple comparisons at an 

alpha level of 0.05 using a Bonferroni correction across 49 ROIs to provide a voxelwise corrected 

threshold of p = 0.05 / 49 = 0.0010, corresponding to |t| = 3.08.  All ROIs were rank normalized prior to 

statistical analysis to adhere to normality assumptions of the linear model. 

 

All statistical analyses were conducted using custom code in MATLAB v2017a.  Code will be available 

on GITHUB. 
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Estimation of scanner and software version effects: Scanner and software effects were estimated 

across the brain by estimating a mean voxelwise change in pseudo-R2 (∆āĀăĂĂĀý2) from a full model 

(all predictors) to a reduced model (either no dummy-coded scanner or software version predictors).   

 ���� ��þÿ�: � ~ ÿąă + Āăą + ĀĀāÿĀĂăþĀąÿÿā/ÿāĀ + Āāÿÿÿăÿ Ā� + ĀĀĄāĄÿÿă ăăÿĀÿĀÿ + þĀāÿĀÿ+ (1|ĀĂĀĀăāā) + (1|ĄÿþÿýĆ) +  � �ÿþ�ýÿþ ��þÿ� ÿ: � ~ ÿąă + Āăą + ĀĀāÿĀĂăþĀąÿÿā/ÿāĀ + ĀĀĄāĄÿÿă ăăÿĀÿĀÿ + þĀāÿĀÿ + (1|ĀĂĀĀăāā)+ (1|ĄÿþÿýĆ) +  � �ÿþ�ýÿþ ��þÿ� Ā: � ~ ÿąă + Āăą + ĀĀāÿĀĂăþĀąÿÿā/ÿāĀ + Āāÿÿÿăÿ Ā� + þĀāÿĀÿ + (1|ĀĂĀĀăāā)+ (1|ĄÿþÿýĆ) +  � 

 

Pseudo-ý2 was calculated using the below equation where �̂ is a matrix of the voxelwise predicted 

imaging values for a given modality generated by the full or reduced model, and �  is the matrix of 

voxelwise observed imaging values.  The variance of �̂ and � (across participants) was averaged across 

voxels before dividing to produce the pseudo-ý2 estimate as a mean estimate across voxels. 

 ýăÿÿ ăĀąăýĄÿĀă āĀăĂĂĀ ý2 = þăÿÿ (ăÿÿ(�̂))þăÿÿ(ăÿÿ(�))  

 ∆āĀăĂĂĀý2 was calculated by taking the difference between the pseudo-ý2 estimates for the full and 

reduced models. ∆āĀăĂĂĀý2 = ýā���2 2 ýýĀÿ2  

 
The variance in each imaging metric explained by scanner and software version predictors (as defined 

using ∆āĀăĂĂĀý2) is outlined in supplementary table 4. 
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RESULTS 

Mean voxelwise RSI metrics across participants 

The RSI model estimates diffusion within different compartments and these metrics are normalized 

into signal fractions in order to determine the relative proportion of restricted, hindered and free 

water diffusion within each voxel.  Figure 1A-F shows mean voxelwise maps across participants of 

these normalized signal fractions.  The restricted normalized total signal fraction (RNT) was largest 

within the WM and lowest within the GM.  In contrast, the hindered normalized total signal fraction 

(HNT) was largest within the GM and lowest within the WM.  The free water normalized total signal 

fraction (FNT) was low in brain tissue and high within the CSF.  These normalized metrics sum to 1, 

therefore increases in the relative signal fraction of one of these compartments with age will result in 

decreases in at least one other compartment.  Within the restricted compartment specifically we have 

separated the proportion of isotropic and directional diffusion into dissociable metrics (figure 1G-L).  

The restricted normalized directional signal fraction (RND) shows a much greater contrast between 

WM and GM (with higher values in WM) compared to the restricted normalized isotropic signal 

fraction (RNI).  Increases in RNT with age will lead to increases in both RNI and RND; however, the 

specific microstructural changes occurring can lead to differential changes in RNI compared to RND.  

We have calculated the proportion of restricted directional over the total restricted diffusion (RDF) in 

order to determine changes in the relative proportion of isotropic to anisotropic diffusion with age.  

Mean values of RDF were greater within WM voxels compared to GM voxels reflecting the greater 

contrast in RNI vs RND in WM.  These maps can be compared to T1-weighted images shown in Figure 

1M,N. 
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Figure 1. Voxelwise mean maps of diffusion metrics and T1-weighted images. Top panel: voxelwise mean maps for RSI 

metrics across different compartments: RNT (A,B), HNT (C,D) and FNT (E,F).  Middle panel: voxelwise mean maps for RSI 

metrics within the restricted compartment: RNI (G,H), RND (I,J) and RDF (K,L).  Bottom panel: voxelwise mean T1-weighted 

images (M,N). 
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Age associations in WM across the different RSI compartments 

Voxelwise associations between age and RNT were positive across the brain, such that the proportion 

of the diffusion signal within each voxel that was restricted increased with age (Figure 3A,B).  The 

largest voxelwise effects were found in subcortical regions.  Inverse associations were found for the 

hindered signal fraction, as expected given the normalization across these metrics (Figure 3C,D).  

Voxelwise age associations with FNT were also negative across GM and WM voxels, positive within the 

ventricles and limited with subcortical structures (Figure 3E,F).  However, it is important to note that 

the proportion of free water within the brain tissue is very small as highlighted in the mean voxelwise 

FNT maps (Fig 1E,F), therefore although these age associations are significant across subjects the 

relative magnitude of the effect compared to changes in RNT and HNT is very low.  There were no age 

associations with FNT within the deep GM structures. 

 

A probabilistic atlas-based method for automated segmentation was used to determine ROIs for the 

major WM fiber tracts.  Color coded voxelwise FA maps highlight the primary direction of diffusion 

across the brain (Fig 3G,H) and enable comparison of where the main WM fiber tracts are located.  

Larger versions of the same maps with WM fiber tracts labeled are shown in supplementary figure 1.  

Voxelwise age associations were extracted for each WM fiber tract in order to determine the 

distribution of effects within these ROIs.  Violin plots highlight the heterogeneity of age-related 

changes in these RSI metrics within the WM fibers (Figure 3I-K).  Moreover, these figures demonstrate 

the proportion of voxels above and below the conservative Bonferroni corrected threshold for whole-

brain voxelwise statistical significance (red dotted line).  ROI analyses were also conducted on the 

mean RSI metric within each fiber tract.  For RNT and HNT, all WM fiber tracts showed highly 

significant age associations indicative of a global increase in the restricted signal fraction with age.  

Interestingly, WM tracts with voxels near to or innervating subcortical regions appeared to show the 

greatest heterogeneity and largest age associations, for example the anterior thalamic radiations 

(ATR), the corticospinal tract (CST), which innervates the ventral diencephalon (VDC), the superior 

cortico-striate (SCS) and the striatal inferior frontal cortex (SIFC) tract.  The forceps minor (Fmin) and 

bilateral fornix (Fnx) showed the smallest age associations across the RSI compartments.  

Supplementary tables 5-7 show summary statistics for the voxelwise and ROIwise analyses within each 

WM fiber tract for RNT, HNT and FNT. 

 

There were no significant voxelwise age-by-sex interaction effects for RNT, HNT or FNT at the 

Bonferroni corrected significance threshold.  Voxelwise age associations in a model without an age-by-

sex interaction were highly correlated with a model including the interaction term (supplementary 

figure 2A-C).  All main effects presented are from models without an age-by-sex interaction. 
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Figure 2. Associations between age and RSI compartment signal fractions. Voxelwise t-statistics for the association between age and 

RNT (A,B), HNT (C,D) and FNT (E,F) across different brain slices.  Effects are unthresholded. Voxelwise Bonferroni corrected significance 

threshold (|t|=4.98) is marked on the colorbar.  Outlines of the subcortical FreeSurfer ROIs are overlaid for the thalamus, caudate, 

pallidum, putamen, ventral diencephalon, amygdala and hippocampus to orient the reader. G,H) Color coded FA showing the primary 

diffusion direction in each voxel from the tensor model.  Larger versions of the same slices with WM fiber tracts labeled are shown in 

supplementary figure 1.  I-K) Violin plots show the distribution of voxelwise t-statistics extracted from each WM fiber tract.  Red dotted 

lines show voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics from ROI analyses for the mean RSI metrics 

from each WM fiber tract. Green dotted line shows ROI Bonferroni corrected significance threshold (|t|=3.08). Plots are shown for RNT 

(G), HNT (H) and FNT (I).  WM tract ROI abbreviations described in Supplementary Table 2.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.06.04.447102doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.447102
http://creativecommons.org/licenses/by-nc/4.0/


Age associations in WM within the restricted compartment 

Voxelwise associations between age and both RNI and RND were positive across the brain reflecting 

the increase in the total restricted signal fraction.  Voxelwise age associations with RNI were 

widespread across the brain and largest in deep GM structures (Figure 4A,B).  Voxelwise associations 

with RND were smaller than RNI and more concentrated along the center of the main WM tracts 

(Figure 4C,D).  Voxelwise associations with RDF (the fraction of restricted directional diffusion over 

RNT) were negative across the WM highlighting that the relative proportion of directional to isotropic 

diffusion within the restricted compartment decreased with age i.e. the proportion of isotropic 

restricted diffusion increased at a greater rate compared to the proportion of directional diffusion 

(Figure 4E,F). 

 

Voxelwise age associations were extracted for each WM fiber tract in order to determine the 

distribution of effects within these regions.  Violin plots highlight the heterogeneity of age-related 

changes in these RSI metrics within the WM fibers (Figure 4I-K).  Moreover, these figures demonstrate 

the proportion of voxels above and below the conservative Bonferroni corrected threshold for whole-

brain voxelwise statistical significance (red dotted line).  ROI analyses were also conducted on the 

mean RSI metric within each fiber tract.  For both RNI and RND, all WM fiber tracts showed significant 

positive age associations.  The most significant ROI age effects for RNI were for the bilateral SCS, right 

SLF, and right CgH.  The most significant ROI age effects for RND were for the bilateral SCS, and right 

ATR.  For RDF, the most significant ROI age associations were found for the forceps major (FMaj), right 

inferior longitudinal fasciculus (ILF) and the right uncinate fasciculus (UF).  Supplementary tables 8-10 

show summary statistics for the voxelwise and ROIwise analyses within each WM fiber tract for RNI, 

RND and RDF. 

 

Reflective of the RNT results, for age associations with RNI in particular, WM tracts with voxels near to 

or innervating subcortical regions appeared to show the greatest heterogeneity and largest voxelwise 

age associations, particularly the ATR, SCS and SIFC.  This can clearly be seen for the SCS, where voxels 

in inferior portions of the tract overlapping with the putamen (Pu) ROI showed greater positive 

associations than voxels superior to the putamen within the SCS (supplementary figure 3A). Voxels that 

showed greater associations for RNI and RND within the SCS and overlaying with the Pu showed 

diffusion primarily in the anterior-posterior (green) direction, whereas more dorsal voxels showed 

diffusion primarily oriented in the dorsal-ventral (blue) direction as expected for diffusion along the 

SCS.  This suggests greater age-related changes in restricted diffusion in voxels where the SCS 

potentially innervates the Pu.  Similarly, along the ATR, age associations were greater in voxels 

overlapping with the thalamus and lower in voxels closer to the forceps minor (Fmin) (supplementary 

figure 3B).  The difference in age associations between the FMaj and Fmin highlights a posterior-

anterior gradient of development across the WM.   
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There were no significant voxelwise age-by-sex interaction effects for RNI, RND or RDF at the 

Bonferroni corrected significance threshold.  Voxelwise age associations in a model without an age-by-

sex interaction were highly correlated with a model including the interaction term (supplementary 

figure 2D-F).  All main effects presented are from models without an age-by-sex interaction. 

 

 
Figure 3. Associations between age and RSI metrics within the restricted compartment. Voxelwise t-statistics for the association 

between age and RNI (A,B), RND (C,D) and RDF (E,F) across different brain slices.  Effects are unthresholded. Voxelwise Bonferroni 

corrected significance threshold (|t|=4.98) is marked on the colorbar.  Outlines of the subcortical FreeSurfer ROIs are overlaid for the 

thalamus, caudate, pallidum, putamen, ventral diencephalon, amygdala and hippocampus to orient the reader.  G,H) Color coded FA 

showing the primary diffusion direction in each voxel from the tensor model.  Larger versions of the same slices with WM fiber tracts 

labeled are shown in supplementary figure 1.  I-K) Violin plots show the distribution of voxelwise t-statistics extracted from each WM fiber 

tract.  Red dotted lines show voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics from ROI analyses for the 

mean RSI metrics from each WM fiber tract. Green dotted line shows ROI Bonferroni corrected significance threshold (|t|=3.08). Plots are 

shown for RNI (G), RND (H) and RDF (I).  WM tract ROI abbreviations are outlined in Supplementary Table 2.  
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Age associations in subcortical regions across the different RSI compartments 

RNT was positively and highly significantly associated with age across subcortical regions, particularly 

within the basal ganglia.  The only negative associations were found in voxels along the border 

between the Pu and globus pallidus (GP) and along the border of the caudate (Ca).  The inverse 

relationship was found for HNT, as expected given the normalization of the RSI metrics.  Voxelwise age 

effects were heterogeneous in magnitude across and within subcortical regions.  Voxelwise FODs, 

averaged across participants, show the orientation structure of diffusion in each voxel and are colored 

based on the mean diffusion direction (Supplementary Figure 4).  There was clear variability in the 

orientation structure of diffusion within gross subcortical ROIs and the surrounding WM, which likely 

contributes to the variability in voxelwise effects within these regions.  We registered external 

subcortical atlases to our ABCD atlas in order to create finer subcortical parcellations to localize age-

related effects within large subcortical structures.  These included midbrain nuclei (Pauli et al., 2018) 

and thalamic nuclei (Najdenovska et al., 2018). 

 

Voxels in the GP, Pu, the surrounding WM between and ventral to these structures, and voxels within 

the ventral diencephalon (VDC) showed the largest age associations with RNT and HNT (Figure 5A-N).  

Increases in RNT with age were found across the thalamic nuclei (Figure 5A,B,H,I) with the largest 

associations in more anterior nuclei.  Voxelwise associations were the most heterogeneous within the 

VDC (Figure 5E,L).  Within the VDC, voxels showing the largest RNT age associations were found within 

the substantia nigra pars compacta (SNpc), substantia nigra pars reticulata (SNpr) and the red nucelus 

(RN) (Figure 5C,D,J,K).  ROI analyses, reflecting age associations with mean RSI metrics within each 

region, showed significant associations across all ROIs for RNT and HNT (except for the age association 

with HNT in the mamillary nucleus).  There were limited age associations with FNT across subcortical 

regions.  Supplementary tables 5-7 show summary statistics for the voxelwise and ROIwise analyses 

within each subcortical ROI for RNT, HNT and FNT. 
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Figure 4. Age associations across diffusion compartments within subcortical regions. Voxelwise t-statistics  for the association between 

age and RNT (A-D), HNT (H-K) and FNT (O-R) across different axial brain slices moving from superior (top) to inferior (bottom). Effects are 

unthresholded. Voxelwise Bonferroni corrected significance threshold (|t|=4.98) is marked on the colorbar. Outlines of the Aseg, Pauli and 

Najdenovska ROIs are overlaid.  Violin plots show the distribution of voxelwise age associations in each ROI for each RSI metric.  Red 

dotted lines show voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics from ROI analyses for the mean RSI 

metrics from each subcortical ROI. Green dotted line shows ROI Bonferroni corrected significance threshold (|t|=3.08). Plots are shown for 

RNT (E-G), HNT (L-N) and FNT (S-U).  Subcortical ROI abbreviations are outlined in Supplementary Table 3. 
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Age associations in subcortical regions within the restricted compartment 

RNI was positively associated with age across all subcortical regions with the largest effects within the 

basal ganglia, particularly the GP, Pu and SN (Figure 6A-G).  Voxelwise age associations within the 

thalamus (Thal) were largest in more anterior nuclei particularly along the lateral edge of the ventral 

anterior (VA) and ventro-lateral-ventral (VLV) nuclei (Figure 6A,B).  ROI analyses showed a similar 

magnitude of effects across the thalamic nuclei for RNI.  Age-related changes in RND were smaller in 

magnitude than RNI and more heterogeneous across voxels within and around subcortical regions 

(Figure 6H-N).  The largest voxelwise age associations were primarily in voxels in the midbrain region, 

particularly the SN and RN, as well as the Pu, GP and Thal.  Those regions also showed the largest ROI 

age associations.  Negative age associations with RND were found in voxels along the border between 

the Pu and GP and along the border of the Ca (figure 6H,I); these effects were also seen for RNT. 

Within the Thal, there were a number of voxels within the anterior (A), VLV and pulvinar (P) nuclei that 

showed no significant age association.  The largest positive age associations were found in the A, VA 

and medial dorsal (tMD) nuclei (Figure 6M).  The heterogeneity in age effects across the Thal was 

particularly clear when looking at the ROI analysis for each nucleus.  Across the Thal and VDC, the 

largest effects seemed to occur in voxels with diffusion occurring primarily within the anterior-

posterior direction (Supplementary Figure 4).  The most significant associations with RDF were in the 

GP, posterior nuclei of the thalamus, the substantia nigra pars reticulata, the hypothalmus and voxels 

along the border between the Pu and GP(Figure 6O-U).  These were the regions that showed the 

largest difference in age associations between RNI and RND highlighting that the relative proportion of 

directional to isotropic diffusion within the restricted compartment decreased with age in these 

regions.  Supplementary tables 8-10 show summary statistics for the voxelwise and ROIwise analyses 

within each subcortical ROI for RNI, RND and RDF. 

 

Supplementary Figure 5 shows images of the most significant voxelwise age associations zoomed in on 

specific ROIs in order to highlight examples of how these associations occurred in voxels with particular 

diffusion orientation.  Supplementary Figure 5A shows a coronal view of an area of RNI age 

associations extending ventral to the GP with diffusion occurring primarily in the lateral-medial (L-M) 

direction, which is likely to represent the anterior commissure; however, this location is difficult to 

distinguish from the ventral pallidum (VP), which sits below the anterior commissure.  When looking in 

the sagittal view (supplementary figure 5B), we can see that these associations extend through the 

ventral striatum and head of the caudate.  These effects appear to occur in voxels with diffusion in 

both the L-M and anterior-posterior (A-P) direction.  The largest RNI and RND age effects in the VDC 

were seen in voxels with diffusion primarily in the A-P direction (Supplementary Figure 5C).  Across the 

Thal, RNI and RND effects were larger in anterior nuclei where diffusion was also primarily in the A-P 

direction and along the intersection between the A, VA and VLV nuclei with diffusion in multiple 

directions (Supplementary Figure 5D,E). 
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Figure 5. Age associations within the restricted compartment across subcortical regions. Voxelwise t-statistics  for the association 

between age and RNI (A-D), RND (H-K) and RDF (O-R) across different axial brain slices moving from superior (top) to inferior (bottom). 

Effects are unthresholded. Voxelwise Bonferroni corrected significance threshold (|t|=4.98) is marked on the colorbar. Outlines of the 

Aseg, Pauli and Najdenovska ROIs are overlaid.  Violin plots show the distribution of voxelwise age associations in each ROI for each RSI 

metric.  Red dotted lines show voxelwise Bonferroni corrected significance threshold. Bar plots show t-statistics from ROI analyses for the 

mean RSI metrics from each subcortical ROI. Green dotted line shows ROI Bonferroni corrected significance threshold (|t|=3.08). Plots are 

shown for RNI (E-G), RND (L-N) and RDF (S-U).  Subcortical ROI abbreviations are outlined in Supplementary Table 2. 
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Age associations with DTI metrics 

Supplementary figures 6-7 show the voxelwise and ROIwise age associations with MD and FA from the 

diffusion tensor model.  Supplementary tables 11-12 show summary statistics for the voxelwise and 

ROIwise analyses within each WM fober tract and subcortical ROI for MD and FA.  In general, there was 

a strong but inverse correspondence between the MD and RNI age associations across the WM and 

subcortical regions.  However, there were subtle differences in the magnitude of effects across ROIs 

highlighting the different models used to estimate these measures.  There were larger differences 

between the FA and RND associations.  Namely, the magnitude of the FA associations was much 

smaller than RND, such that a larger sample would be required to detect age-related FA associations.  

However, the pattern of associations across the brain was similar. 
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DISCUSSION 
 

In this study, we have shown highly statistically significant age associated increases in restricted 

(primarily intracellular) diffusion across WM and subcortical GM in a large sample (n=8,086) of children 

from 9 to 14 years.  This is the largest study to date measuring age associations in diffusion metrics at 

this age and utilizing novel RSI measures.  Across both gray and WM, increasing age was associated 

with an increase in the proportion of restricted diffusion, RNT, and a decrease in the proportion of 

hindered, HNT, and free water, FNT.  The largest age-related changes were found within the basal 

ganglia, namely the GP, and the VDC.  Within the restricted compartment, the proportion of restricted 

isotropic diffusion, RNI, increased at a greater rate with age than directional diffusion, RND, resulting in 

a relative increase in the isotropic compared to directional signal fraction across the brain.  These 

differences were most pronounced in the GP, posterior nuclei of the Thal and the midbrain nuclei.  

Voxelwise age associations were highly variable within subcortical regions and WM fiber tracts.  Within 

subcortical regions in particular, the pattern of age associations appeared to follow changes in the 

orientation of the diffusion.  This suggests that we can identify distinct age associations within 

subcomponents of subcortical structures that may be associated with differing functional circuits as 

indicated by differences in cytoarchitecture.  This highlights the benefit of measuring voxelwise 

compared to ROI-wise associations and utilizing high resolution parcellations of subcortical structures 

that reflect known histologic and functional subdivisions within deep gray matter nuclei such as the 

Thal. 

White Matter associations with age 

There was a robust increase in the proportion of restricted to hindered and free water from 9-14 years 

across the WM, which was associated with an increase in both isotropic and directional diffusion.  In 

general, RNI showed more widespread effects across the WM compared to RND, which showed larger 

age associations along the centers of WM tracts where axonal coherence is highest.  In many voxels, 

increases in both RNI and RND reflected increases in the overall proportion of the restricted signal 

fraction relative to the hindered and free water compartments.  To tease apart differences in the 

magnitude of the RNI and RND associations with age we estimated the relative proportion of restricted 

directional diffusion over the total restricted signal fraction, RDF.  The negative voxelwise associations 

between RDF and age highlighted that the proportion of restricted directional diffusion within the 

restricted compartment was decreasing with age i.e. directional diffusion was increasing with age at a 

lower rate than isotropic diffusion.  This was seen in both GM and WM.  There were some regions, 

such as the Pu, that showed limited RDF effects, highlighting that there were similar increases in the 

restricted isotropic and directional fractions in this region.  Increases in isotropic diffusion can be 

driven by both an increase in the size or number of structures with a spherical or compact shape, and 

multiple cylindrical structures in the same voxel oriented such that anisotropic diffusion is occurring in 

all directions appearing as isotropic.  Therefore, an increase in the complexity of neuronal connections 

and crossing fibers at angles smaller than can be resolved could lead to an increase in the relative 
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contribution of isotropic compared to directional diffusion within the restricted compartment with age.  

This is in contrast to previous work using the NODDI model in which orientation dispersion (a measure 

of the degree of dispersion of neurites) was not found to increase with age (Chang et al., 2015; Genc, 

Seal, et al., 2017; Mah et al., 2017).  This may reflect increased statistical power in this study to detect 

an association or key differences in the diffusion model and metrics estimated.  Future work comparing 

multiple multi-compartment diffusion models using large developmental samples will be required to 

tease apart these differences. 

 

The largest and most heterogeneous voxelwise effects across WM fibers, particularly for RNI, were 

within the ATR, SCS and SIFC, such that significant ROI associations appeared to be driven by voxels 

within or near subcortical structures.  For the SCS, the tractography used to generate the SCS tract ROI 

included termination points in the striatum (Hagler et al., 2019), therefore the overlap of the SCS ROI 

and the Pu ROI is likely indicating voxels in which the SCS is innervating the Pu.  The greater age 

associations in this region suggests there may be greater age-related changes in WM microstructure at 

this innervation point.  The same could be seen for the ATR; in the original tractography all streamlines 

for the ATR were set to terminate on one end of the thalamus and not pass through the thalamus.  The 

greater age-related associations in anterior thalamic nuclei innervated by the ATR may highlight 

specific refinement of particular circuits involving these nuclei.  These analyses highlight the 

importance of measuring voxelwise associations to avoid the misleading impression of homogeneity of 

effects across the entirety of WM tracts.  This has been eloquently shown previously using a similar 

model of intracellular diffusion (Lynch et al., 2020). 

 

In the corpus callosum (CC), RNI and RND both increased with age, however, the magnitude of the age 

associations differed along the posterior-anterior axis.  Voxels in the Fmaj, showed a greater age effect 

than voxels in the Fmin, which connects the lateral and medial surfaces of the frontal lobes and is the 

frontal portion of the CC.  Our results support previous evidence from other developmental samples 

showing a greater age effect of intracellular diffusion metrics in the splenium or forceps major 

compared to the genu or forceps minor (Geeraert et al., 2019; Genc, Seal, et al., 2017; Mah et al., 

2017) and the more extended development of frontal-temporal connections (Genc, Seal, et al., 2017; 

C. Lebel et al., 2008; Catherine Lebel & Beaulieu, 2011; Tamnes et al., 2010).  This mirrors the 

posterior-anterior sequence of myelination in developing infants (Bird et al., 1989; Kinney et al., 1988), 

suggesting differences in the time-course of myelination across the CC may be contributing to the 

effects here.  In addition, Genc et al found that from 4 to 19 years, age showed a greater positive 

association with apparent fiber density (a measure of the intracellular volume fraction) in posterior 

relative to anterior portions of the CC (Genc et al., 2018).  This suggests that changes in axonal 

diameter and/or myelination, that can contribute to increases in the restricted volume fraction, likely 

occur at a different rate depending on the location in the CC.  Different sections of the CC connect 

different cortical regions within distinct functional networks.  Nonuniformity in the development of 

these interhemispheric connections may reflect age-dependent maturation of cognitive and behavioral 

processes.  More protracted developmental changes in frontal circuitry may underpin the later 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.06.04.447102doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.447102
http://creativecommons.org/licenses/by-nc/4.0/


development of cognitive control in adolescence and become more prominent as the children get 

older (Casey et al., 2008). 

Subcortical associations with age 

Previous studies have highlighted significant changes in FA and MD across subcortical regions (Baron 

Nelson et al., 2019; Lebel et al., 2008; Simmonds et al., 2014), with regions of the basal ganglia showing 

greater percentage change from 5-30 years than many WM tracts (Lebel et al., 2008), in agreement 

with the results reported here.  From 8-13 years, Mah et al (2017) found that NDI from the NODDI 

model, a measure of the intracellular volume fraction, showed the largest percent increase in the GP 

(10-13% change) followed by the Pu, hippocampus, amygdala and Thal (3-7% change) and found no 

age association in the Ca.  Although the RSI and NODDI models are very different, NDI, similar to RNT, 

captures the total intracellular volume fraction in a voxel.  As the intracellular volume fraction 

increases in a voxel, the magnitude of water displacement reduces, thereby decreasing MD.  Indeed, 

NDI has previously been shown to correlate negatively with MD (Zhang et al., 2012), and in the current 

study MD showed age associations in the opposite direction to RNT (as expected).  Indeed, our RNT 

results were very similar to the NDI effects reported by Mah et al., apart from a significant age 

association in the caudate.  This may reflect the greater sensitivity of the RSI model parameters to age-

related changes in cytoarchitecture of the caudate and/or increased statistical power in this study to 

detect an association. 

 

By using voxelwise analyses we were able to measure the heterogeneity of developmental effects 

within subcortical regions highlighting the benefit of using voxelwise compared to ROI-wise analyses.    

There was a clear pattern of age associations across the different thalamic nuclei, particularly for RND.  

Najdenovska et al (2018) generated the thalamic nuclei ROIs by clustering contiguous voxels with 

similar orientation microstructure (determined by the FODs) validating their results against a 

histological atlas (Najdenovska et al., 2018).  When overlaying these ROIs on the average FODs 

measured in our sample (Supplementary Figure 4), we could see that the boundaries of the different 

nuclei indeed adhered to changes in the primary orientation of diffusion.  Within anterior nuclei (A, VA, 

tMD), where age associations were greatest for RNI and RND, diffusion primarily occurred in the 

anterior-posterior orientation (green), whereas within posterior nuclei (VLV, VLD, C, P), diffusion 

primarily occurred within the lateral-medial (red) orientation.  The tMD nucleus of the thalamus is 

reciprocally interconnected with the prefrontal cortex and receives input from striatal, medial 

temporal, midbrain and basal forebrain structures (Groenewegen, 1988; Groenewegen et al., 1993; 

Ray & Price, 1993; Tanaka, 1976; Tobias, 1975; Vertes et al., 2015) .  It is well positioned to play a 

modulatory role within fronto-striatal-thalamo-cortical circuits thought to be important for several 

cognitive and emotional processes (Haber & Calzavara, 2009; Mitchell & Chakraborty, 2013; Ouhaz et 

al., 2018).  Structural and functional connectivity of these thalamo-cortical connections has been 

shown to increase across childhood and adolescence (Alkonyi et al., 2011; Fair, 2010), and is thought to 

underpin behavioral changes in cognitive control and emotional reactivity during adolescence.  
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Moreover, there were highly significant age associations with RNI in the region ventral to the GP and 

Ca, which encompasses both the ventral pallidum, ventral striatum (nucleus accumbens and olfactory 

tubercle) and bed of the nucleus stria terminalis (often referred to as the extended amygdala, as well 

as the anterior commissure (Zaborszky et al., 2015).  These regions are highly interconnected with 

subcortical and cortical regions, particularly in frontal cortex, creating circuits integral for incentive-

based learning, reward processing and decision-making (Barkley-Levenson & Galván, 2014; Delgado, 

2007; Haber & Knutson, 2010).  Microstructural changes within the thalamus and the ventral forebrain 

may be indicative of the refinement of these circuits in late childhood.  

 

There were also statistically robust and heterogeneous associations within the VDC.  The VDC is a 

group of structures that are poorly defined on T1w imaging, however, by calculating the mean 

voxelwise FODs across subjects, we could clearly see variability in the orientation of diffusion within 

this large region highlighting the presence of potentially distinct cytoarchitecture.  Changes in the 

orientation of the FODs also appeared to adhere to estimated outlines of finer subcortical parcellations 

that include many of the nuclei within the VDC from the Pauli atlas (Pauli et al., 2018).  Indeed, the 

strongest and most significant associations between age and RNI and RND were in voxels oriented 

primarily in the anterior-posterior direction within and around the SN adjacent to the ventral 

tegmental area (VTA), which may reflect microstructural changes within the extensive dopaminergic 

projections from these regions to the basal ganglia and medial forebrain.  Fibers from the SN and 

striatum also directly innervate the lateral edge of the VA nucleus where we see high isotropy and 

crossing diffusion orientations (Kultas-ilinsky & Ilinsky, 1990; Sakai et al., 1998).  Our findings may 

signal increased innervation of the Thal from the SN and/or striatum and/or increased myelination of 

axons in these pathways.  This further suggests that these findings may reflect maturation of cortico-

striatal-thalamic pathways that may be important for processes of motor control, cognition and self-

regulation that are developing in this age range.  Indeed, FA in the internal capsule, basal ganglia and 

Thal has been shown to partially mediate improved performance on particular cognitive tasks with 

increasing age from 9-12 years (Baron Nelson et al., 2019). 

 

Voxels within the GP showed the largest age associations with RNI, followed by the Pu.  These basal 

ganglia regions form part of parallel frontal, temporal and parietal cortical circuits that are involved in a 

number of cognitive and motor functions (Alexander et al., 1986; Middleton & Strick, 2000).  Overall 

mean restricted isotropic diffusion across subjects was much larger in the GP than other subcortical 

regions, which may reflect higher myelin content in the GP compared to the Pu (Lanciego et al., 2012).  

Moreover, throughout adolescence, there is a large increase in iron concentration, estimated by 

increased susceptibility on T2* weighted imaging, within the GP (Larson et al, 2020).  This iron related 

effect has been shown to correlate with DTI metrics in these deep GM structures (Pfefferbaum et al., 

2010); therefore, increasing iron accumulation may be contributing to the RNI developmental effects 

that we observe in this region.  Further research is required to determine the extent to which iron 

content effects the estimation of diffusion metrics. 
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Microstructural changes underlying alterations in restricted diffusion 

There are several biological processes that may increase restricted diffusion in the WM, such as 

increasing myelination, neurite density and/or axon coherence.  Increasing myelination reduces the 

permeability of myelinated axons and decreases the volume of the extracellular space in a voxel 

increasing the restricted signal fraction.  Previous studies using NODDI have shown age-related 

changes in NDI (a measure of the intracellular volume fraction similar to RNT) in a similar age range in 

the WM (Chang et al., 2015; Genc, Seal, et al., 2017; Mah et al., 2017) and increases in NDI have been 

associated with both increases in the myelin volume fraction using MRI (Geeraert et al., 2019) and 

post-mortem histology from patients with demyelination (Grussu et al., 2017).  In general, there has 

been a lack of evidence for increasing myelination in late childhood as measured with magnetization 

transfer (Geeraert et al., 2019; Moura et al., 2016; Pangelinan et al., 2016).  However, given histological 

findings that myelination continues into adulthood (Benes, 1989; Yakovlev & Lecours, 1967), these 

myelin changes may be very subtle, and require large sample sizes and/or longitudinal studies, such as 

this, to detect.  Little is known about how changes in myelination directly impact RSI measures 

specifically; however, in a demyelinated genetic mouse model, regions with reduced myelin showed 

reduced intraneurite volume fraction, estimated using a similar spherical deconvolution method 

(Kaden et al., 2016).  Increased myelination with development may underlie the age effects observed 

here; however, this is only one of many biological processes that can alter restricted diffusion, as 

described in Table 1, therefore further work is needed to elucidate the exact neurobiological processes 

contributing to the effects reported here. 

 

Subcortical gray matter has a more complex cytoarchitecture than cortical gray matter and WM fiber 

bundles consisting of many cell bodies of stellate shape, dendrites, terminal arbors and synapses that 

do not follow a coherent structure.  Nevertheless, examination of the mean estimated FODs from the 

RSI model showed complex orientation structure within these regions.  Developmental increases in the 

restricted signal fraction within the deep gray matter nuclei could be driven by increases in 

myelination, neurite density, dendritic sprouting or increases in cell size less than the typical diffusion 

length scale.  These microstructural possibilities are outlined in Table 1.  As mentioned previously, 

increases in restricted isotropic diffusion measured by RSI can be modulated by both structures with a 

spherical or compact shape less than the diffusion length scale, such as neuronal cell bodies or 

microglia, within which diffusion is isotropic, and also by multiple cylindrical structures in the same 

voxel oriented such that anisotropic diffusion is occurring in all directions.  By using RSI we can detect 

differences in diffusion orientation at a much finer resolution than with the tensor model allowing us 

to more precisely understand the underlying microstructural changes occurring during late childhood 

and adolescent development. 

DTI vs RSI 

In the current study, age-related changes in RNT were very similar (but opposite in sign) to those 

observed in MD, estimated from the diffusion tensor model.  As diffusion becomes more restricted, 
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MD within a voxel will decrease.  Our analyses showed greater age-related changes in MD compared to 

FA from 9-14 years, whereas previous studies have shown relatively greater percent changes in FA 

compared to MD across WM tracts in particular (Krogsrud et al., 2016b; C. Lebel et al., 2008). These 

studies are difficult to compare directly due to different sample sizes and age ranges.  Furthermore, 

most studies estimate MD using diffusion MRI data acquired at lower b-values (below b=2000 s/mm2) 

than the current study (which includes many directions at b=3000 s/mm2).  At higher b-values, around 

b≥3000s/mm2, the signal from the hindered compartment is attenuated and the measured diffusion 

signal is dominated by the restricted compartment.  If maturational changes are predominantly 

occurring within the restricted compartment our DTI measures may be more sensitive to age-related 

changes than DTI metrics from studies with lower b-value acquisitions.  Further work empirically 

comparing age-related changes on DTI metrics calculated with different acquisition parameters is 

required. 

Limitations 

Although the effects in this study are highly significant due to the large sample size, the magnitude of 

the voxelwise effects is very small.  This has been observed across large-scale imaging studies making it 

clear that published effects are inflated by small sample sizes and publication bias (Dick et al., 2021).  

Using large sample sizes we are now able to estimate effect sizes with much greater precision.  Small 

effects are perhaps not surprising given that causal associations among variables are highly complex 

and a single association is unlikely to be very large.  These large sample studies can provide new norms 

for expected effect sizes.  Moreover, the data in the current study only included two timepoints, 

therefore we were unable to disentangle regional differences in the developmental trajectory of these 

RSI metrics from 9-14 years.  Imaging data were also rank normalized to make the assumptions of 

normality in the statistical analysis valid, therefore we did not measure non-linear age associations as 

the non-linear aspect of the rank normalization could introduce apparent non-linearities.  With future 

ABCD Study data releases with more longitudinal time-points, future work should aim to map the 

shape of developmental trajectories of these RSI metrics.  Finally, given the increased T2 shortening of 

the diffusion signal with increased iron concentrations, future work should aim to understand the 

implications of this for diffusion models. 

Conclusions 

This is the largest study to date measuring longitudinal age associations with diffusion metrics across 

the brain.  We have demonstrated highly significant increases in the proportion of restricted diffusion 

across the WM and within deep gray matter nuclei.  The heterogeneity of effects along WM tracts and 

within subcortical GM structures highlights the importance of voxelwise analyses to provide a more 

fine-grained understanding of how the brain is changing with age.  Given the importance of both 

subcortical-subcortical and subcortical-cortical circuitry in the development of multiple cognitive and 

behavioral dimensions during this period (Casey et al., 2016), robust microstructural changes occurring 

in subcortical regions and associated WM tracts may indicate important refinement of these 
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developing circuits.  Understanding whether individual differences in the age-related structural 

covariance of these measures associates with differential behavioral profiles will provide a promising 

new avenue for future research. 
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