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ABSTRACT

Objective

We sought to apply natural language processing to the task of automatic risk of bias assessment in
preclinical literature, which could speed the process of systematic review, provide information to guide
research improvement activity, and support translation from preclinical to clinical research.

Materials and Methods

We use 7,840 full-text publications describing animal experiments with yes/no annotations for five risk
of bias items. We implement a series of models including baselines (support vector machine, logistic
regression, random forest), neural models (convolutional neural network, recurrent neural network with
attention, hierarchical neural network) and models using BERT with two strategies (document chunk
pooling and sentence extraction). We tune hyperparameters to obtain the highest F1 scores for each risk
of bias item on the validation set and compare evaluation results on the test set to our previous regular
expression approach.

Results

The F1 scores of best models on test set are 82.0% for random allocation, 81.6% for blinded assessment
of outcome, 82.6% for conflict of interests, 91.4% for compliance with animal welfare regulations and
46.6% for reporting animals excluded from analysis. Our models significantly outperform regular
expressions for four risk of bias items.

Conclusion

For random allocation, blinded assessment of outcome, conflict of interests and animal exclusions,
neural models achieve good performance, and for animal welfare regulations, BERT model with
sentence extraction strategy works better.
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BACKGROUND

Systematic review is a type of literature review that attempts to collate all empirical evidence relevant
to a pre-specified research question. It uses explicit and systematic methods to minimize bias and
provide more reliable findings than narrative review [1]. After the collection of research publications
which meet prespecified inclusion criteria, a critical step is the reporting of strategies designed to reduce
risks of bias (RoB) in the included publications, which is central to the assessment of the reliability of
the research findings [2]. The current procedure for risk of bias assessment in literature is that it usually
performed separately by two independent investigators, working with an adjudicator to resolve any
disagreements. This is both time-consuming and prone to error. As the number of publications
describing experimental studies increases rapidly, it has become increasingly difficult for researchers
to keep up to date with progress in their field and the findings of systematic reviews are weakened.
Therefore, automation tools would accelerate this process and increase reliability. Such tools would
also be useful in evaluating the impact of measures designed to improve the quality and completeness
of research reporting (NPQIP [3], ICARus [4], MDAR [5]) and in measuring the impact of institutional
research improvement activities [6].

Systematic reviewers have advocated the use of automated approaches to assist risk of bias assessment,
using human effort and machine automation in mutually reinforcing ways [7]. The development of
machine learning and natural language processing (NLP), including neural models and transfer learning,
provides opportunities to create robust tools for risk of bias assessment. For clinical trials,
RobotReviewer trains support vector machines on 6,610 full texts with pseudo labels derived from
1,400 unique strings of bias domains from the Cochrane Database of Systematic Reviews, which
achieves overall accuracy around 71.1% [8]. Zhang et al consider the supported sentence annotations
of bias domains as ‘rationales’ and use them to train the convolutional neural networks [9] which
improves the performance by 5% compared to baseline models [10]. Millard et al apply logistic
regressions on 1,467 full-text clinical reports for sentence and document classification separately and
achieves the area under the ROC curve larger than 72% for randomisation sequence generation,
allocation concealment and blinding [11]. Menke et al have reported the performance of a proprietary
tool ‘SciScore’ [12] which trains the conditional random fields [13] on 250 research articles with
manually labelled entity mentions for random allocation and blinding. The training corpus is randomly
selected from the PubMed Open Access articles, and the portion of clinical or preclinical publications
is not clear.

Compared with clinical trials, animal studies are conducted in relatively small teams, are reported in a
different style, have been shown to have lower reporting of strategies to reduce risks of bias [14], and
are susceptible to different risks of bias [15]. Hence, separate tools for RoB assessment in preclinical
literature are necessary. Bahor et al. have previously reported the use of regular expressions with rule-
based string matching to recognize phrases related to RoB reporting in experimental animal studies,
which requires many hand-crafted term selections [16]. NLP-based approaches may achieve more
robust results in the preclinical literature compared with non-learning algorithms.

OBJECTIVE

We aim to apply natural language processing to assist automatic risk of bias assessment in the
preclinical literature. We implement and compare the performance of eight classification models
ranging from baseline approaches to more recent state-of-the-art NLP models for five risk of bias items,
and provide recommendations for model selection.

MATERIALS AND METHODS

We consider the risk of bias assessment as a typical text classification task. A classification model
cannot be trained from the plain text directly and we need to convert text information to analysable data.
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The core concept is to map each document to a matrix consisting of fixed-dimension word vectors or
embeddings [17], then train a classification model to map these numeric text representations to the
binary RoB label (yes/no). For representation methods, we explore bag-of-words, word2vec [18],
doc2vec [19] and embeddings from BERT [20]. For classification models, we implement baseline
models (support vector machine, logistic regression, random forest), neural models (convolutional
neural network, recurrent neural network with attention, hierarchical neural network) and BERT models
using two strategies, which are described in greater detail below. The different approaches are
summarized in Figure 1, and training details are given in supplementary materials.

Dataset

We use a collection of full-text publications which have been annotated for risks of bias [21] in
systematic reviews in three research domains (focal ischaemic stroke [22], chemotherapy-induced
peripheral neuropathy [23], and psychotic disorders [24]) and in two studies assessing the effectiveness
of interventions to improve reporting quality across in vivo research (NPQIP [3] and IICARus [4]). The
risk of bias labels are at the document level (1 for reported, O for not reported) and each was derived
from the annotations of two independent investigators followed by an internal validation process. We
consider five risk of bias domains: (1) Random Allocation (RA): animals are randomly allocated to
treatment or control groups; (2) Blinded Assessment of Outcome (BAO): group identity is concealed
from the scientist measuring the outcome; (3) Compliance with Animal Welfare Regulations (CAWR):
researchers report that they complied with relevant animal welfare regulations; (4) Conflict of Interests
(CI): authors report any relationship which might be perceived to introduce a potential conflict of
interests, or the absence of such a relationship; (5) Animal Exclusions (AE): a statement of whether or
not all animals, all data and all outcomes measured are accounted for and presented in the final analysis.
Some example sentences indicating the reporting for each risk of bias item are displayed in Table 1.

Publications are all in PDF format and we converted them to plain text using Xpdf
(https://www.xpdfreader.com). We converted all text to lower case and used regular expressions to
remove references, citations, URLs, digits, non-ASCII characters and text which precedes the
“Introduction” section, because they are irrelevant to the risk of bias reporting. We used Stanford
CoreNLP [25] for word and sentence tokenization. After removing invalid records (for instance where
text conversion failed), 7,840 full-text publications had annotations for RA, BAO and AE, and 7,089
had annotations for CAWR and CI. We combined publications from different source projects and
randomly allocated them to training (80%), validation (10%) and test (10%) sets. Summary statistics of
the dataset are shown in Table 2.

Table 1: Percentage of papers reporting each risk of bias item, and example sentences from full texts
indicating the reporting.

Risk of bias item Reporting percentage Positive example
...arandomisation code is used to allocate animals
to treatment group...
...the midbrain sections from each animal were
Blinded assessment of outcome 30.6% screened for ... by a person unaware of the
treatment condition of the animals...
The authors declare that they have no competing

Random allocation 27.5%

Conflict of interests 78.0% .

interests.

...experiments were performed in accordance with
Animal welfare regulations 31.5% protocols by the Institutional Animal Care and Use

Committee at...
. cases in which the lesion was assessed to
Animal exclusions 12.2% involve less than <50% of the dopamine neurons,
the animal was excluded from...
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Table 2: Data statistics. Samples for random allocation, blinded assessment of outcome and animal
exclusions consist of 7,840 records; samples for compliance of animal welfare regulations and conflict
of interests consist of 7,089 records.

Samples for RA, BAO, AE Samples for CAWR, CI
Train Valid Test Train Valid Test
No. documents 6272 784 784 5671 708 710
Avg no. tokens per document 4977 5112 5077 4947 5057 4964
Avg no. sentences per document 180 186 184 178 182 178
Avg no. tokens per sentence 28 28 28 28 28 28
Baselines

We explore three text representation methods in baseline models: 1) bag-of-words, 2) word2vec and 3)
doc2vec. Bag-of-words (bow) uses word frequency within the document to represent its importance.
Considering less important words with high frequency such as ‘the’ and ‘a’, TF-IDF (term frequency-
inverse document frequency) weighting is applied, which normalizes the word frequency in a document
by multiplying a log-scale of the inverse of the frequency of documents where the word occurred [26].
Word2vec is a neural language model which learns to map words to continuous vectors. It can preserve
the semantic relationship among words and can either be generated from the learning process jointly
within the classification model or fine-tuned on pre-trained word vectors from other language tasks. As
the preclinical literature belongs to the biomedical domain, we use the 200-dimensional word vectors
induced on a combination of PubMed and PMC texts with texts extracted from a recent English
Wikipedia dump, using the skip-gram model with a window size of 5 [27]. Doc2vec is an unsupervised
method which learns to represent a document by a dense vector. There are two approaches for training
the dense vector: Distributed Memory (DM) and Distributed Bag-of-Words (DBOW), which is
suggested to yield better performance when used together [19].

We explore three baseline classifiers: Support Vector Machine (SVM), logistic regression and random
forest. SVM and logistic regression are linear classifiers, which are trained to map the word embeddings
to the target RoB label to minimize a hinge loss function and log loss function separately [28]. Random
forest is an ensemble-based non-parametric method which combines a number of decision trees trained
on various sub-samples [29].

Neural models

We explore three neural models: Convolutional Neural Network (CNN), a powerful model for text
classification [9]; Recurrent Neural Network (RNN) which is good at modelling sequential text data
[30]; and Hierarchical Attention Network (HAN) [31] which takes the hierarchical structure among
word, sentence and document into consideration. The critical elements in the model architecture are
described below and shown in Supplementary Figure 1-3.

CNN. We use the classic one-layer CNN [9] for document classification. The main characteristic of
CNN is the convolutional layer where multiple filter windows (2D matrices) with different sizes are
applied to filter out information. Let x[i: j] denote the matrix extracted from row i to row j of the
document matrix. For one document matrix x € R**? and one filter f € R"“ (where s is the document
length, d is the embedding dimension and # is the filter size), the convolution layer sequentially extracts
a submatrix which has the same dimension as filter f and does the sum operation of the element-wise
product between x[i:i — h + 1] and f. This generates a summarised feature vector w € R*~*! of the
document matrix x by filter £ with filter size A. For filter size A, multiple filters are used to capture
different features.
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The output vectors from the convolutional layer are then passed through an activation function such as
ReL.U to add more non-linearity, and a pooling layer, which extracts the maximum value of each vector.
A dropout layer, which randomly sets some values in the vectors to zero, is applied to prevent over-
fitting. A final linear transformation is applied to map the vector concatenated from the pooling layer
into two numeric values, representing separately whether or not the document reported the RoB item.

RNN with attention. Recurrent neural network (RNN) is a type of neural network which builds
connections over time steps [32]. In the hidden layer, by combining the weighted hidden representations
from the previous word and the next word (if it is applied bidirectionally) through a Tanh operation, a
basic recurrent neural structure can retain information in the text from both directions. RNN can handle
any-length texts and but if the sequence is very long, it is difficult to keep the information from very
earlier steps to later steps because of the exploding or vanishing gradient problem [33]. Two variants of
RNN, LSTM [30] and GRU [34] are designed to solve this long-term dependencies problem, which
uses multiple gates (forget gate, input gate and output gate in LSTM; reset gate, update gate and output
gate in GRU) for each word embedding to control the information we need to flow straight, forget,
store and update to the next step.

In the general RNN structure, the output from the hidden layer is obtained by simply taking the hidden
state of the last RNN cell, which loses some information from other RNN cells; or averaging hidden
states of all RNN cells, which treats words at different positions equally. However, the same word may
play a different role in the decision of the classification when it occurs in different sentences or contexts.

A global context matrix (€ R*"Y is created to learn the importance of each word in the document
(similar to the attention mechanisim described in HAN). The attention module is then added to learn
and emphasize the word contributions to the entire document sequence [35].

HAN. Words contribute differently to an individual sentence and sentences contribute differently to the
whole document. HAN is proposed to imitate this hierarchical structure of documents, having two levels
of attention modules applied at word-level and sentence-level [31]. After the RNN hidden layer, in the
word-level attention module, the hidden representations of each word in a sentence are multiplied by a
local word context vector, which is trained to learn the importance of each word in the sentence. The
representation vector of each sentence is then summarised from those weighted word representations.
Similarly, in sentence-level attention, the hidden representations of each sentence in the document are
multiplied by a global sentence context vector, which is trained to learn the importance of each sentence
in the document. Then a document representation vector is obtained from those new weighted sentence
representations. After an activation function and a linear transformation, we then output the probability
for RoB items. With the hierarchical structure, HAN can generate ranking scores for sentences, which
can be used to extract the most relevant sentences and provided to users to allow them to make a
judgment on the veracity of the machine decision.

BERT models

One limitation of word embeddings like word2vec is that the representation vector of a given word is
fixed and independent, regardless of context. Contextualized representation models like BERT [20]
address this issue. BERT extracts the contextualized embeddings by training a deep bidirectional
encoder from transformers [36] on the BooksCorpus and English Wikipedia. The Transformer structure
mainly consists of identical blocks, and each block contains sub-modules based on multi-head self-
attention and a feed-forward neural network. It dispenses with recurrence and convolutions, and
achieves state-of-the-art performance on many natural language processing tasks [36]. The pre-trained
BERT can be fine-tuned with a simple additional output layer for downstream tasks. BERT uses
WordPiece with a 30,000 token vocabulary for tokenization, which handles rare words better than the
‘pure’ word embeddings and more efficiently than character embeddings [37].
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Previous work shows that the domain corpus used for pre-training affects the performance of the
downstream task [38]. Since our task is conducted on preclinical texts, we use the pre-trained weights
from BioBERT to initialize the model, which applies the same architecture as BERT and is pre-trained
on combinations of text corpora including BookCorpus, English Wikipedia, PubMed abstracts and
PubMed Central full-text articles [39].

One drawback of BERT is that it can only accept embeddings of maximum 512 tokens as input, which
limits the usage for tasks with long documents. There are other transformer models designed for long
documents, such as Longformer [40] which can process a maximum of 4096 tokens. However, this is
still computationally expensive, and our full-text publications contain 5000 tokens on average. To solve
this issue, we propose two strategies.

BERT with Document Chunk Pooling (BERT-DCP). We split documents into text chunks, apply
BioBERT to each chunk, and pool the hidden states from different chunks using multiple strategies.
This is similar to the structure applied in the classification of clinical notes for patient smoking status
[41], with some modifications as shown in Supplementary Figure 4. After the WordPiece tokenization,
considering a document with s tokens, the document is split into m=[s/510] chunks (excluding the first
token [CLS] indicating classification and separation token [SEP] for sentence segmentation). The input
representation of the document is X € R™312% where h is the hidden dimension throughout the
embedding layer and encoder layers in BioBERT. Instead of taking the hidden states from the last
encoder layer, we perform the average pooling operation over several encoder layers to obtain the
output. We summarize across tokens within each chunk with five different options: 1) max pooling, 2)
average pooling, 3) concatenate output from max pooling and average pooling, 4) use hidden states of
the [CLS] token, 5) concatenate hidden states of all tokens. After two pooling layers, we explore three
head layers (linear/convolutional/LLSTM) for the downstream classification task. The convolution and
LSTM head use the same architecture as described previously. Unlike convolution or LSTM head, the
linear head cannot handle sequences of different lengths, so we add another pooling layer to obtain the
fixed-dimension output. The pooling methods use the same options applied in the second pooling layer,
with the exclusion of ‘concatenate hidden states of all tokens’, which does not generate a fixed-
dimension output.

BERT with Sentence Extraction (BERT-SE). Instead of using the full-text document as input, we
extract the most relevant sentences to the risk of bias description. We first use scispaCy [42] to split a
document into sentences, and then apply SentenceTransformers [43] to obtain a vector for each
individual sentence. We also feed a description sentence of each RoB item (see descriptions in Dataset)
to the SentenceTransformers and obtain the corresponding representative vectors. For each individual
document, we calculate the cosine similarity score between each sentence vector and the vector of the
RoB description sentence. We take the first k sentences with the highest similarity scores, i.e. the most
k relevant sentences, to form a new shorter passage. We then fine-tune the DistilBERT [44] model (a
smaller, faster and lighter version of BERT), with a linear/convolution/LSTM head on the new passage,
to generate the probabilities of RoB reporting. The sentence extraction process is unsupervised and is
independent of the actual training process.

RESULTS

The results of eight models from three categories (baselines, neural models, and models using BERT
with two strategies) on the validation set are shown in Table 3. For baseline models, all items achieve
F1 score over 48% and particularly, models for compliance with animal welfare regulations show good
performance, with F1 around 90%. For the selection of text representation methods, from our
experiments, bag-of-words is not robust and prone to over-fitting. Doc2vec gives the best results across
all items, because the training sample texts for doc2vec are closer to the preclinical domain, while the
pre-trained word2vec vectors are induced from the more general biomedical corpus. For model
selection, logistic regression achieves the best performance for random allocation to treatment or
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control, blinded assessment of outcome and conflict of interests; while for compliance with animal
welfare regulations and animal exclusions, SVM performs better.

Neural models are more robust to hyperparameter tuning than baseline models in our experience. For
random allocation, blinded assessment of outcome and conflict of interests, neural models improve the
performance by 14% to 30% over baseline models, and the difference of results among three neural
models are not obvious. For compliance with animal welfare regulations, neural models do not show
advantages over baselines, with performance reduction ranging from 4% to 14%. For animal exclusions,
weight balancing strategy and under-sampling do not reduce the effect of data imbalance issue, and the
training process is prone to over-fitting.

Models using BERT with the two strategies described do not outperform neural models, except item
CAWR, which has 3%~4% improvement. This is reasonable because in the document chunk pooling
strategy, we do not take any advantages of BERT structure by freezing all the encoder layers, and
multiple pooling strategies help little to address this limitation; in the sentence extraction strategy,
although we can fine-tune DistilBERT, we still lose some information by using shorter texts extracted
from full publications. We have not been able to evaluate the performance of sentence extraction
modules, which requires further sentence-level annotations.

With the best model and its optimal setting for each risk of bias item, we evaluate and compare the
performance with the regular expression approach on the test set. Note that we select RNN with
attention as the optimal model for blinded assessment of outcome rather than BERT with document
chunk pooling strategy, considering the negligible improvement (0.1%) and complexity of pre-
processing by the latter approach. From Table 4, our NLP models improve performance by between
13% and 36% for four RoB items tested, and these improvements are significant with p < 0.05 according
to McNemar’s test [45].

Supplementary Table 1 demonstrates the prediction and sentence extraction function of our models on
an example paper which reports RA, BAO and AE, but does not report CI and CAWR. Unlike the
previous rule-based approaches which output yes/no label only, our models can be used to extract the
most relevant sentences from full text, which can enhance the judgment from the prediction
probabilities, or provide signals whether users need to re-check the full texts. In Supplementary Table
1, sentences extracted for RA, BAO and AE indicate the clear relation with the items and positive
evidence for the prediction probabilities, while sentences extracted for CI and CAWR do not show any
relation with the items, which proves the predictions in a different direction.
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Table 3: Performance of best model in three categories (baseline, neural model, and BERT models with
two strategies) for risk of bias items on the validation set.

RoB item | Model F1 Recall Precision
SVM 51.9 72.2 40.5

LogReg 55.3 73.7 443

RF 67.2 79.9 58.1

Random CNN 86.4 93.2 81.8
allocation | RNN+Attn 87.2 92.4 83.7
HAN 86.2 91.3 83.1
BERT-DCP 85.4 92.7 80.1

BERT-SE 80.6 82.0 82.0

SVM 59.3 67.8 52.7

LogReg 60.0 69.1 53.0

. RF 57.8 68.3 50.2
as‘:l;‘;‘:fm CNN 824 885 77.8
of outcome RNN+Attn 83.0 91.1 77.2
HAN 81.3 86.4 77.5
BERT-DCP 83.1 91.8 77.0

BERT-SE 79.9 84.7 79.8

SVM 67.1 79.7 57.9

LogReg 68.8 76.1 62.8

RF 65.1 68.5 61.9

Conflict of | CNN 84.5 86.8 84.1
interests RNN+Attn 82.9 85.4 82.0
HAN 83.2 84.7 82.8
BERT-DCP 79.5 84.6 76.8

BERT-SE 64.0 64.3 70.9

SVM 90.1 96.3 84.6

LogReg 87.6 85.4 89.9
Compliance | RF 88.8 89.7 88.0
of animal | CNN 86.9 83.3 92.4
welfare RNN+Attn 76.3 77.6 78.3
regulations | HAN 79.3 77.9 84.5
BERT-DCP 93.8 92.1 95.8

BERT-SE 94.0 94.6 93.8

SVM 39.0 64.3 28.0

LogReg 41.4 62.5 31.0

RF 48.8 44.6 53.8

Animal CNN 60.2 73.6 54.2
exclusions | RNN+Attn 58.0 68.3 54.3
HAN 53.4 58.4 54.0
BERT-DCP 56.2 77.0 46.8

BERT-SE 36.7 56.6 29.2
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Table 4: Performance of the best NLP model and regular expression approach for each risk of bias item
on the test set. A regular expression approach has not been developed for animal exclusions.

RoB item Model/Approach F1 Recall  Precision
Random allocation RNN+Attn 82.0 86.8 79.5
Regular expression 68.8 96.4 53.6
Blinded assessment of outcome RNN+Attn . 81.6 87.8 78.2
Regular expression 68.3 59.8 79.6
. . CNN 82.7 80.6 86.2
Conflict of interests Regular expression 48.7 33.8 87.1
Compliance with animal welfare regulation BERT-SE . oL o1.4 92.0
Regular expression 55.2 40.9 85.2
CNN 46.6 56.5 45.0

Animal exclusions .
Regular expression -- - -

DISCUSSION

We have shown that different models are optimal for the detection of reporting of different risks of bias.
CNN is the best choice for conflict of interests and RNN with attention works well for random allocation
to groups and blinded assessment of outcome. For compliance with animal welfare regulations, models
using BERT with sentence extraction strategy achieve the best performance. For animal exclusions,
CNN achieves the best performance on the validation set, but no approach provides reliable
performance on the test set. Compared with the previous regular expression approach, the F1 scores for
four risk of bias items are between 13% and 36% higher, indicating a substantial improvement. The
sentence extraction function can provide potentially relevant sentences as clues for users making
judgment.

We analyse all positive samples and use RNN with attention module to output attention scores for
tokens in each individual paper, thus we can extract the most important words in the decision of
classification task. The five most important words are {"randomly", "induced", "supported",
"randomized", "increase"} for random allocation, {"blind", "by", "observer", "experimenter",
"investigator"} for blinded assessment of outcome, {"interest", "of", "no", "authors", "statement"} for
conflict of interests, {"animal", "care", "procedures", "figure", "committee"} for animal welfare
regulations, and {"excluded", "were", "from", "included", "died" } for animal exclusions (Figure 2). This

may help future rule-based approaches development.

Among the incorrect records, our models are more likely to conclude that papers report random
allocation, blinded assessment of outcome and animal exclusions (false positive greater than false
negative), and less likely to predict that papers report conflict of interests and animal welfare regulation
(false negative greater than false positive, Figure 3). To analyse sources of error we randomly selected
10 incorrect records for each item from the test set. Our models did not recognise phrases like ‘unaware’
for blinded assessment but considered that ‘animals are randomly selected for testing’ indicated random
allocation to the experimental group. It may be that most records in our training set describe random
allocation based on the presence of the word ‘random’ and blinded assessment based on the word
‘blind’, and that our training corpus did not have sufficient examples of alternative valid descriptions
for these to be learned. We also found two records where a conflict of interests was given before the
‘Introduction’ section or after the ‘Reference’ section, where we had removed the relevant text in the
text processing stage.

The code for predicting probabilities of risk of bias reporting in preclinical full texts is available at
https://github.com/qianyingw/rob-pome. The levels of performance achieved make these tools suitable
for research improvement activity where several hundred publications are to be evaluated. For instance,
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for random allocation in a corpus of 1000 manuscripts, this approach would estimate prevalence within
3% of the true value and for 100 publications, within 10% of the true value (see calculations at
https://github.com/camaradesuk/confidence_intervals_simulation). Given that the changes sought in
research improvement activities are at least of this magnitude, we consider the performance of these
tools in determining the reporting of risk of bias items to be such that they are suitable for deployment
in a research improvement context. Similarly, they are suitable for the evaluation of risk of bias in large
corpuses such as collections in the preclinical systematic reviews. However, they are not yet at the level
where they are appropriate for the evaluation of individual publications.

Our work has several limitations. First, our training dataset includes publications drawn from three
datasets focusing on specific disease models (focal ischaemic stroke, chemotherapy-induced peripheral
neuropathy, psychotic disorders), as well as two datasets from unselected preclinical studies published
in PLOS One and Nature. This may influence the generalizability of our findings. Second, PDF to text
conversion loses document structure and we cannot identify the main sections of publications. This
introduces some noise (for instance text from figures and tables) to our training corpus. Tools like
GROBID (https://github.com/kermitt2/grobid) can convert PDFs to structured XML but it highly
depends on the quality of PDF, and in our experience it does not work well for some preclinical
publications. However, enhanced approaches to PDF conversion, and increased availability of
publications in XML format, means that this approach may become feasible in the future.

In future work we will seek to improve performance further, using datasets involving more journals and
a wider range of preclinical experiments (both disease modelling and mechanistic studies), and will
exploit diseases and texts from structured PubMed XMLs, which may yield better performance. We
will continue improving the attribution of animal exclusions to achieve more reliable performance and
we will develop approaches for other risk of bias items including sample size calculation and allocation
concealment. We will also develop a user-friendly function embedded in the preclinical systematic
review facility SyRF (http://syrf.org.uk/) and a standalone API, enabling usage to others.

CONCLUSION

We explore multiple text classification models, from baselines to recent NLP techniques and
demonstrate the advantages of neural models and BERT models for risk of bias assessment in preclinical
literature. BERT models work well for animal welfare regulations, while CNN/RNN achieves better
performance for random allocation, blinded assessment of outcome, conflict of interests and animal
exclusions. We encourage the use of NLP techniques to assist risk of bias assessment and reduce
workflow for the preclinical systematic review. If computational limitations require the implementation
of a single tool, we recommend neural models like CNNs. The performance of these tools is such that
they could be deployed in automated approaches to monitor risks of bias reporting as part of institutional
research improvement activities.
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Figure 1: Overall methods of text representations and classification models being tested.
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Figure 2: Most important words in the decision of classification for each risk of bias item, based on the
average attention scores from RNN output over all positive samples.
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Figure 3: Percentages of false positive, false negative, true positive and true negative of each optimal
model for the corresponding risk of bias item on the test set.
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