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ABSTRACT 

Objective 

We sought to apply natural language processing to the task of automatic risk of bias assessment in 

preclinical literature, which could speed the process of systematic review, provide information to guide 

research improvement activity, and support translation from preclinical to clinical research.  

Materials and Methods 

We use 7,840 full-text publications describing animal experiments with yes/no annotations for five risk 

of bias items. We implement a series of models including baselines (support vector machine, logistic 

regression, random forest), neural models (convolutional neural network, recurrent neural network with 

attention, hierarchical neural network) and models using BERT with two strategies (document chunk 

pooling and sentence extraction). We tune hyperparameters to obtain the highest F1 scores for each risk 

of bias item on the validation set and compare evaluation results on the test set to our previous regular 

expression approach. 

Results 

The F1 scores of best models on test set are 82.0% for random allocation, 81.6% for blinded assessment 

of outcome, 82.6% for conflict of interests, 91.4% for compliance with animal welfare regulations and 

46.6% for reporting animals excluded from analysis. Our models significantly outperform regular 

expressions for four risk of bias items. 

Conclusion 

For random allocation, blinded assessment of outcome, conflict of interests and animal exclusions, 

neural models achieve good performance, and for animal welfare regulations, BERT model with 

sentence extraction strategy works better. 
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BACKGROUND 

Systematic review is a type of literature review that attempts to collate all empirical evidence relevant 

to a pre-specified research question. It uses explicit and systematic methods to minimize bias and 

provide more reliable findings than narrative review [1]. After the collection of research publications 

which meet prespecified inclusion criteria, a critical step is the reporting of strategies designed to reduce 

risks of bias (RoB) in the included publications, which is central to the assessment of the reliability of 

the research findings [2]. The current procedure for risk of bias assessment in literature is that it usually 

performed separately by two independent investigators, working with an adjudicator to resolve any 

disagreements. This is both time-consuming and prone to error. As the number of publications 

describing experimental studies increases rapidly, it has become increasingly difficult for researchers 

to keep up to date with progress in their field and the findings of systematic reviews are weakened. 

Therefore, automation tools would accelerate this process and increase reliability. Such tools would 

also be useful in evaluating the impact of measures designed to improve the quality and completeness 

of research reporting (NPQIP [3], IICARus [4], MDAR [5]) and in measuring the impact of institutional 

research improvement activities [6]. 

Systematic reviewers have advocated the use of automated approaches to assist risk of bias assessment, 

using human effort and machine automation in mutually reinforcing ways [7]. The development of 

machine learning and natural language processing (NLP), including neural models and transfer learning, 

provides opportunities to create robust tools for risk of bias assessment. For clinical trials, 

RobotReviewer trains support vector machines on 6,610 full texts with pseudo labels derived from 

1,400 unique strings of bias domains from the Cochrane Database of Systematic Reviews, which 

achieves overall accuracy around 71.1% [8]. Zhang et al consider the supported sentence annotations 

of bias domains as 8rationales9 and use them to train the convolutional neural networks [9] which 

improves the performance by 5% compared to baseline models [10]. Millard et al apply logistic 

regressions on 1,467 full-text clinical reports for sentence and document classification separately and 

achieves the area under the ROC curve larger than 72% for randomisation sequence generation, 

allocation concealment and blinding [11]. Menke et al have reported the performance of a proprietary 

tool 8SciScore9 [12] which trains the conditional random fields [13] on 250 research articles with 

manually labelled entity mentions for random allocation and blinding. The training corpus is randomly 

selected from the PubMed Open Access articles, and the portion of clinical or preclinical publications 

is not clear.  

Compared with clinical trials, animal studies are conducted in relatively small teams, are reported in a 

different style, have been shown to have lower reporting of strategies to reduce risks of bias [14], and 

are susceptible to different risks of bias [15]. Hence, separate tools for RoB assessment in preclinical 

literature are necessary. Bahor et al. have previously reported the use of regular expressions with rule-

based string matching to recognize phrases related to RoB reporting in experimental animal studies, 

which requires many hand-crafted term selections [16]. NLP-based approaches may achieve more 

robust results in the preclinical literature compared with non-learning algorithms. 

OBJECTIVE 

We aim to apply natural language processing to assist automatic risk of bias assessment in the 

preclinical literature. We implement and compare the performance of eight classification models 

ranging from baseline approaches to more recent state-of-the-art NLP models for five risk of bias items, 

and provide recommendations for model selection. 

MATERIALS AND METHODS 

We consider the risk of bias assessment as a typical text classification task. A classification model 

cannot be trained from the plain text directly and we need to convert text information to analysable data. 
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The core concept is to map each document to a matrix consisting of fixed-dimension word vectors or 

embeddings [17], then train a classification model to map these numeric text representations to the 

binary RoB label (yes/no). For representation methods, we explore bag-of-words, word2vec [18], 

doc2vec [19] and embeddings from BERT [20]. For classification models, we implement baseline 

models (support vector machine, logistic regression, random forest), neural models (convolutional 

neural network, recurrent neural network with attention, hierarchical neural network) and BERT models 

using two strategies, which are described in greater detail below. The different approaches are 

summarized in Figure 1, and training details are given in supplementary materials. 

Dataset 

We use a collection of full-text publications which have been annotated for risks of bias [21] in 

systematic reviews in three research domains (focal ischaemic stroke [22], chemotherapy-induced 

peripheral neuropathy [23], and psychotic disorders [24]) and in two studies assessing the effectiveness 

of interventions to improve reporting quality across in vivo research (NPQIP [3] and IICARus [4]). The 

risk of bias labels are at the document level (1 for reported, 0 for not reported) and each was derived 

from the annotations of two independent investigators followed by an internal validation process. We 

consider five risk of bias domains: (1) Random Allocation (RA): animals are randomly allocated to 

treatment or control groups; (2) Blinded Assessment of Outcome (BAO): group identity is concealed 

from the scientist measuring the outcome; (3) Compliance with Animal Welfare Regulations (CAWR): 

researchers report that they complied with relevant animal welfare regulations; (4) Conflict of Interests 

(CI): authors report any relationship which might be perceived to introduce a potential conflict of 

interests, or the absence of such a relationship; (5) Animal Exclusions (AE): a statement of whether or 

not all animals, all data and all outcomes measured are accounted for and presented in the final analysis. 

Some example sentences indicating the reporting for each risk of bias item are displayed in Table 1. 

Publications are all in PDF format and we converted them to plain text using Xpdf 

(https://www.xpdfreader.com). We converted all text to lower case and used regular expressions to 

remove references, citations, URLs, digits, non-ASCII characters and text which precedes the 

<Introduction= section, because they are irrelevant to the risk of bias reporting. We used Stanford 

CoreNLP [25] for word and sentence tokenization. After removing invalid records (for instance where 

text conversion failed), 7,840 full-text publications had annotations for RA, BAO and AE, and 7,089 

had annotations for CAWR and CI. We combined publications from different source projects and 

randomly allocated them to training (80%), validation (10%) and test (10%) sets. Summary statistics of 

the dataset are shown in Table 2. 

Table 1: Percentage of papers reporting each risk of bias item, and example sentences from full texts 

indicating the reporting. 

Risk of bias item Reporting percentage  Positive example 

Random allocation 27.5% 
…a randomisation code is used to allocate animals 
to treatment group… 

Blinded assessment of outcome 30.6% 

…the midbrain sections from each animal were 

screened for … by a person unaware of the 

treatment condition of the animals… 

Conflict of interests 78.0% 
The authors declare that they have no competing 

interests. 

Animal welfare regulations 31.5% 

…experiments were performed in accordance with 

protocols by the Institutional Animal Care and Use 

Committee at… 

Animal exclusions 12.2% 

... cases in which the lesion was assessed to 

involve less than <50% of the dopamine neurons, 

the animal was excluded from... 
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Table 2: Data statistics. Samples for random allocation, blinded assessment of outcome and animal 

exclusions consist of 7,840 records; samples for compliance of animal welfare regulations and conflict 

of interests consist of 7,089 records. 

 

Samples for RA, BAO, AE Samples for CAWR, CI 

Train Valid Test Train Valid Test 

No. documents 6272 784 784 5671 708 710 

Avg no. tokens per document 4977 5112 5077 4947 5057 4964 

Avg no. sentences per document 180 186 184 178 182 178 

Avg no. tokens per sentence 28 28 28 28 28 28 

 

Baselines 

We explore three text representation methods in baseline models: 1) bag-of-words, 2) word2vec and 3) 

doc2vec. Bag-of-words (bow) uses word frequency within the document to represent its importance. 

Considering less important words with high frequency such as 8the9 and 8a9, TF-IDF (term frequency-

inverse document frequency) weighting is applied, which normalizes the word frequency in a document 

by multiplying a log-scale of the inverse of the frequency of documents where the word occurred [26]. 

Word2vec is a neural language model which learns to map words to continuous vectors. It can preserve 

the semantic relationship among words and can either be generated from the learning process jointly 

within the classification model or fine-tuned on pre-trained word vectors from other language tasks. As 

the preclinical literature belongs to the biomedical domain, we use the 200-dimensional word vectors 

induced on a combination of PubMed and PMC texts with texts extracted from a recent English 

Wikipedia dump, using the skip-gram model with a window size of  5 [27]. Doc2vec is an unsupervised 

method which learns to represent a document by a dense vector. There are two approaches for training 

the dense vector: Distributed Memory (DM) and Distributed Bag-of-Words (DBOW), which is 

suggested to yield better performance when used together [19]. 

We explore three baseline classifiers: Support Vector Machine (SVM), logistic regression and random 

forest. SVM and logistic regression are linear classifiers, which are trained to map the word embeddings 

to the target RoB label to minimize a hinge loss function and log loss function separately [28]. Random 

forest is an ensemble-based non-parametric method which combines a number of decision trees trained 

on various sub-samples [29].  

Neural models 

We explore three neural models: Convolutional Neural Network (CNN), a powerful model for text 

classification [9]; Recurrent Neural Network (RNN) which is good at modelling sequential text data 

[30]; and Hierarchical Attention Network (HAN) [31] which takes the hierarchical structure among 

word, sentence and document into consideration. The critical elements in the model architecture are 

described below and shown in Supplementary Figure 1-3. 

CNN. We use the classic one-layer CNN [9] for document classification. The main characteristic of 

CNN is the convolutional layer where multiple filter windows (2D matrices) with different sizes are 

applied to filter out information. Let  denote the matrix extracted from row  to row  of the 

document matrix. For one document matrix ∈  and one filter ∈  (where � is the document 

length,  is the embedding dimension and  is the filter size), the convolution layer sequentially extracts 

a submatrix which has the same dimension as filter � and does the sum operation of the element-wise 

product between  and . This generates a summarised feature vector ∈  of the 

document matrix  by filter  with filter size . For filter size , multiple filters are used to capture 

different features.  
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The output vectors from the convolutional layer are then passed through an activation function such as 

ReLU to add more non-linearity, and a pooling layer, which extracts the maximum value of each vector. 

A dropout layer, which randomly sets some values in the vectors to zero, is applied to prevent over-

fitting. A final linear transformation is applied to map the vector concatenated from the pooling layer 

into two numeric values, representing separately whether or not the document reported the RoB item.  

RNN with attention. Recurrent neural network (RNN) is a type of neural network which builds 

connections over time steps [32]. In the hidden layer, by combining the weighted hidden representations 

from the previous word and the next word (if it is applied bidirectionally) through a Tanh operation, a 

basic recurrent neural structure can retain information in the text from both directions. RNN can handle 

any-length texts and but if the sequence is very long, it is difficult to keep the information from very 

earlier steps to later steps because of the exploding or vanishing gradient problem [33]. Two variants of 

RNN, LSTM [30] and GRU [34] are designed to solve this long-term dependencies problem, which 

uses multiple gates (forget gate, input gate and output gate in LSTM; reset gate, update gate and output 

gate in GRU)  for each word embedding to control the information we need to flow straight, forget, 

store and update to the next step. 

In the general RNN structure, the output from the hidden layer is obtained by simply taking the hidden 

state of the last RNN cell, which loses some information from other RNN cells; or averaging hidden 

states of all RNN cells, which treats words at different positions equally. However, the same word may 

play a different role in the decision of the classification when it occurs in different sentences or contexts. 

A global context matrix (∈ ) is created to learn the importance of each word in the document 

(similar to the attention mechanisim described in HAN). The attention module is then added to learn 

and emphasize the word contributions to the entire document sequence [35]. 

HAN. Words contribute differently to an individual sentence and sentences contribute differently to the 

whole document. HAN is proposed to imitate this hierarchical structure of documents, having two levels 

of attention modules applied at word-level and sentence-level [31]. After the RNN hidden layer, in the 

word-level attention module, the hidden representations of each word in a sentence are multiplied by a 

local word context vector, which is trained to learn the importance of each word in the sentence. The 

representation vector of each sentence is then summarised from those weighted word representations. 

Similarly, in sentence-level attention, the hidden representations of each sentence in the document are 

multiplied by a global sentence context vector, which is trained to learn the importance of each sentence 

in the document. Then a document representation vector is obtained from those new weighted sentence 

representations. After an activation function and a linear transformation, we then output the probability 

for RoB items. With the hierarchical structure, HAN can generate ranking scores for sentences, which 

can be used to extract the most relevant sentences and provided to users to allow them to make a 

judgment on the veracity of the machine decision. 

BERT models 

One limitation of word embeddings like word2vec is that the representation vector of a given word is 

fixed and independent, regardless of context. Contextualized representation models like BERT [20] 

address this issue. BERT extracts the contextualized embeddings by training a deep bidirectional 

encoder from transformers [36] on the BooksCorpus and English Wikipedia. The Transformer structure 

mainly consists of identical blocks, and each block contains sub-modules based on multi-head self-

attention and a feed-forward neural network. It dispenses with recurrence and convolutions, and 

achieves state-of-the-art performance on many natural language processing tasks [36]. The pre-trained 

BERT can be fine-tuned with a simple additional output layer for downstream tasks. BERT uses 

WordPiece with a 30,000 token vocabulary for tokenization, which handles rare words better than the 

8pure9 word embeddings and more efficiently than character embeddings [37].  
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Previous work shows that the domain corpus used for pre-training affects the performance of the 

downstream task [38]. Since our task is conducted on preclinical texts, we use the pre-trained weights 

from BioBERT to initialize the model, which applies the same architecture as BERT and is pre-trained 

on combinations of text corpora including BookCorpus, English Wikipedia, PubMed abstracts and 

PubMed Central full-text articles [39]. 

One drawback of BERT is that it can only accept embeddings of maximum 512 tokens as input, which 

limits the usage for tasks with long documents. There are other transformer models designed for long 

documents, such as Longformer [40] which can process a maximum of 4096 tokens. However, this is 

still computationally expensive, and our full-text publications contain 5000 tokens on average. To solve 

this issue, we propose two strategies. 

BERT with Document Chunk Pooling (BERT-DCP). We split documents into text chunks, apply 

BioBERT to each chunk, and pool the hidden states from different chunks using multiple strategies. 

This is similar to the structure applied in the classification of clinical notes for patient smoking status 

[41], with some modifications as shown in Supplementary Figure 4. After the WordPiece tokenization, 

considering a document with s tokens, the document is split into m=+s/510, chunks (excluding the first 

token [CLS] indicating classification and separation token [SEP] for sentence segmentation). The input 

representation of the document is , where h is the hidden dimension throughout the 

embedding layer and encoder layers in BioBERT. Instead of taking the hidden states from the last 

encoder layer, we perform the average pooling operation over several encoder layers to obtain the 

output. We summarize across tokens within each chunk with five different options: 1) max pooling, 2) 

average pooling, 3) concatenate output from max pooling and average pooling, 4) use hidden states of 

the [CLS] token, 5) concatenate hidden states of all tokens. After two pooling layers, we explore three 

head layers (linear/convolutional/LSTM) for the downstream classification task. The convolution and 

LSTM head use the same architecture as described previously. Unlike convolution or LSTM head, the 

linear head cannot handle sequences of different lengths, so we add another pooling layer to obtain the 

fixed-dimension output. The pooling methods use the same options applied in the second pooling layer, 

with the exclusion of 8concatenate hidden states of all tokens9, which does not generate a fixed-

dimension output. 

BERT with Sentence Extraction (BERT-SE). Instead of using the full-text document as input, we 

extract the most relevant sentences to the risk of bias description. We first use scispaCy [42] to split a 

document into sentences, and then apply SentenceTransformers [43] to obtain a vector for each 

individual sentence. We also feed a description sentence of each RoB item (see descriptions in Dataset) 

to the SentenceTransformers and obtain the corresponding representative vectors. For each individual 

document, we calculate the cosine similarity score between each sentence vector and the vector of the 

RoB description sentence. We take the first k sentences with the highest similarity scores, i.e. the most 

k relevant sentences, to form a new shorter passage. We then fine-tune the DistilBERT [44] model (a 

smaller, faster and lighter version of BERT), with a linear/convolution/LSTM head on the new passage, 

to generate the probabilities of RoB reporting. The sentence extraction process is unsupervised and is 

independent of the actual training process. 

RESULTS 

The results of eight models from three categories (baselines, neural models, and models using BERT 

with two strategies) on the validation set are shown in Table 3. For baseline models, all items achieve 

F1 score over 48% and particularly, models for compliance with animal welfare regulations show good 

performance, with F1 around 90%. For the selection of text representation methods, from our 

experiments, bag-of-words is not robust and prone to over-fitting. Doc2vec gives the best results across 

all items, because the training sample texts for doc2vec are closer to the preclinical domain, while the 

pre-trained word2vec vectors are induced from the more general biomedical corpus. For model 

selection, logistic regression achieves the best performance for random allocation to treatment or 
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control, blinded assessment of outcome and conflict of interests; while for compliance with animal 

welfare regulations and animal exclusions, SVM performs better. 

Neural models are more robust to hyperparameter tuning than baseline models in our experience. For 

random allocation, blinded assessment of outcome and conflict of interests, neural models improve the 

performance by 14% to 30% over baseline models, and the difference of results among three neural 

models are not obvious. For compliance with animal welfare regulations, neural models do not show 

advantages over baselines, with performance reduction ranging from 4% to 14%. For animal exclusions, 

weight balancing strategy and under-sampling do not reduce the effect of data imbalance issue, and the 

training process is prone to over-fitting.   

Models using BERT with the two strategies described do not outperform neural models, except item 

CAWR, which has 3%~4% improvement. This is reasonable because in the document chunk pooling 

strategy, we do not take any advantages of BERT structure by freezing all the encoder layers, and 

multiple pooling strategies help little to address this limitation; in the sentence extraction strategy, 

although we can fine-tune DistilBERT, we still lose some information by using shorter texts extracted 

from full publications. We have not been able to evaluate the performance of sentence extraction 

modules, which requires further sentence-level annotations.  

With the best model and its optimal setting for each risk of bias item, we evaluate and compare the 

performance with the regular expression approach on the test set. Note that we select RNN with 

attention as the optimal model for blinded assessment of outcome rather than BERT with document 

chunk pooling strategy, considering the negligible improvement (0.1%) and complexity of pre-

processing by the latter approach. From Table 4, our NLP models improve performance by between 

13% and 36% for four RoB items tested, and these improvements are significant with p < 0.05 according 

to McNemar9s test [45]. 

Supplementary Table 1 demonstrates the prediction and sentence extraction function of our models on 

an example paper which reports RA, BAO and AE, but does not report CI and CAWR. Unlike the 

previous rule-based approaches which output yes/no label only, our models can be used to extract the 

most relevant sentences from full text, which can enhance the judgment from the prediction 

probabilities, or provide signals whether users need to re-check the full texts. In Supplementary Table 

1, sentences extracted for RA, BAO and AE indicate the clear relation with the items and positive 

evidence for the prediction probabilities, while sentences extracted for CI and CAWR do not show any 

relation with the items, which proves the predictions in a different direction. 
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Table 3: Performance of best model in three categories (baseline, neural model, and BERT models with 

two strategies) for risk of bias items on the validation set. 

RoB item Model F1 Recall Precision 

Random 

allocation 

SVM 51.9 72.2 40.5 

LogReg 55.3 73.7 44.3 

RF 67.2 79.9 58.1 

CNN 86.4 93.2 81.8 

RNN+Attn 87.2 92.4 83.7 

HAN 86.2 91.3 83.1 

BERT-DCP 85.4 92.7 80.1 

BERT-SE 80.6 82.0 82.0 

Blinded 

assessment 

of outcome 

SVM 59.3 67.8 52.7 

LogReg 60.0 69.1 53.0 

RF 57.8 68.3 50.2 

CNN 82.4 88.5 77.8 

RNN+Attn 83.0 91.1 77.2 

HAN 81.3 86.4 77.5 

BERT-DCP 83.1 91.8 77.0 

BERT-SE 79.9 84.7 79.8 

Conflict of 

interests 

SVM 67.1 79.7 57.9 

LogReg 68.8 76.1 62.8 

RF 65.1 68.5 61.9 

CNN 84.5 86.8 84.1 

RNN+Attn 82.9 85.4 82.0 

HAN 83.2 84.7 82.8 

BERT-DCP 79.5 84.6 76.8 

BERT-SE 64.0 64.3 70.9 

Compliance 

of animal 

welfare 

regulations 

SVM 90.1 96.3 84.6 

LogReg 87.6 85.4 89.9 

RF 88.8 89.7 88.0 

CNN 86.9 83.3 92.4 

RNN+Attn 76.3 77.6 78.3 

HAN 79.3 77.9 84.5 

BERT-DCP 93.8 92.1 95.8 

BERT-SE 94.0 94.6 93.8 

Animal 

exclusions 

SVM 39.0 64.3 28.0 

LogReg 41.4 62.5 31.0 

RF 48.8 44.6 53.8 

CNN 60.2 73.6 54.2 

RNN+Attn 58.0 68.3 54.3 

HAN 53.4 58.4 54.0 

BERT-DCP 56.2 77.0 46.8 

BERT-SE 36.7 56.6 29.2 
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Table 4: Performance of the best NLP model and regular expression approach for each risk of bias item 

on the test set. A regular expression approach has not been developed for animal exclusions. 

RoB item Model/Approach F1 Recall Precision 

Random allocation 
RNN+Attn 82.0 86.8 79.5 

Regular expression 68.8 96.4 53.6 

Blinded assessment of outcome 
RNN+Attn 81.6 87.8 78.2 

Regular expression 68.3 59.8 79.6 

Conflict of interests 
CNN 82.7 80.6 86.2 

Regular expression 48.7 33.8 87.1 

Compliance with animal welfare regulation 
BERT-SE 91.5 91.4 92.0 

Regular expression 55.2 40.9 85.2 

Animal exclusions 
CNN 46.6 56.5 45.0 

Regular expression -- -- -- 

 

DISCUSSION 

We have shown that different models are optimal for the detection of reporting of different risks of bias. 

CNN is the best choice for conflict of interests and RNN with attention works well for random allocation 

to groups and blinded assessment of outcome. For compliance with animal welfare regulations, models 

using BERT with sentence extraction strategy achieve the best performance. For animal exclusions, 

CNN achieves the best performance on the validation set, but no approach provides reliable 

performance on the test set. Compared with the previous regular expression approach, the F1 scores for 

four risk of bias items are between 13% and 36% higher, indicating a substantial improvement. The 

sentence extraction function can provide potentially relevant sentences as clues for users making 

judgment. 

We analyse all positive samples and use RNN with attention module to output attention scores for 

tokens in each individual paper, thus we can extract the most important words in the decision of 

classification task. The five most important words are {"randomly", "induced", "supported", 

"randomized", "increase"} for random allocation, {"blind", "by", "observer", "experimenter", 

"investigator"} for blinded assessment of outcome, {"interest", "of", "no", "authors", "statement"} for 

conflict of interests, {"animal", "care", "procedures", "figure", "committee"} for animal welfare 

regulations, and {"excluded", "were", "from", "included", "died"} for animal exclusions (Figure 2). This 

may help future rule-based approaches development. 

Among the incorrect records, our models are more likely to conclude that papers report random 

allocation, blinded assessment of outcome and animal exclusions (false positive greater than false 

negative), and less likely to predict that papers report conflict of interests and animal welfare regulation 

(false negative greater than false positive, Figure 3). To analyse sources of error we randomly selected 

10 incorrect records for each item from the test set. Our models did not recognise phrases like 8unaware9 
for blinded assessment but considered that 8animals are randomly selected for testing9 indicated random 
allocation to the experimental group. It may be that most records in our training set describe random 

allocation based on the presence of the word 8random9 and blinded assessment based on the word 
8blind9, and that our training corpus did not have sufficient examples of alternative valid descriptions 
for these to be learned. We also found two records where a conflict of interests was given before the 

8Introduction9 section or after the 8Reference9 section, where we had removed the relevant text in the 
text processing stage.  

The code for predicting probabilities of risk of bias reporting in preclinical full texts is available at 

https://github.com/qianyingw/rob-pome. The levels of performance achieved make these tools suitable 

for research improvement activity where several hundred publications are to be evaluated. For instance, 
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for random allocation in a corpus of 1000 manuscripts, this approach would estimate prevalence within 

3% of the true value and for 100 publications, within 10% of the true value (see calculations at 

https://github.com/camaradesuk/confidence_intervals_simulation). Given that the changes sought in 

research improvement activities are at least of this magnitude, we consider the performance of these 

tools in determining the reporting of risk of bias items to be such that they are suitable for deployment 

in a research improvement context. Similarly, they are suitable for the evaluation of risk of bias in large 

corpuses such as collections in the preclinical systematic reviews. However, they are not yet at the level 

where they are appropriate for the evaluation of individual publications.   

Our work has several limitations. First, our training dataset includes publications drawn from three 

datasets focusing on specific disease models (focal ischaemic stroke, chemotherapy-induced peripheral 

neuropathy, psychotic disorders), as well as two datasets from unselected preclinical studies published 

in PLOS One and Nature. This may influence the generalizability of our findings. Second, PDF to text 

conversion loses document structure and we cannot identify the main sections of publications. This 

introduces some noise (for instance text from figures and tables) to our training corpus. Tools like 

GROBID (https://github.com/kermitt2/grobid) can convert PDFs to structured XML but it highly 

depends on the quality of PDF, and in our experience it does not work well for some preclinical 

publications. However, enhanced approaches to PDF conversion, and increased availability of 

publications in XML format, means that this approach may become feasible in the future.  

In future work we will seek to improve performance further, using datasets involving more journals and 

a wider range of preclinical experiments (both disease modelling and mechanistic studies), and will 

exploit diseases and texts from structured PubMed XMLs, which may yield better performance. We 

will continue improving the attribution of animal exclusions to achieve more reliable performance and 

we will develop approaches for other risk of bias items including sample size calculation and allocation 

concealment. We will also develop a user-friendly function embedded in the preclinical systematic 

review facility SyRF (http://syrf.org.uk/) and a standalone API, enabling usage to others. 

CONCLUSION 

We explore multiple text classification models, from baselines to recent NLP techniques and 

demonstrate the advantages of neural models and BERT models for risk of bias assessment in preclinical 

literature. BERT models work well for animal welfare regulations, while CNN/RNN achieves better 

performance for random allocation, blinded assessment of outcome, conflict of interests and animal 

exclusions. We encourage the use of NLP techniques to assist risk of bias assessment and reduce 

workflow for the preclinical systematic review. If computational limitations require the implementation 

of a single tool, we recommend neural models like CNNs. The performance of these tools is such that 

they could be deployed in automated approaches to monitor risks of bias reporting as part of institutional 

research improvement activities. 
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FIGURES 

Figure 1: Overall methods of text representations and classification models being tested. 
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Figure 2: Most important words in the decision of classification for each risk of bias item, based on the 

average attention scores from RNN output over all positive samples. 
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Figure 3: Percentages of false positive, false negative, true positive and true negative of each optimal 

model for the corresponding risk of bias item on the test set. 
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