

1 **Title**

2 Single nuclei transcriptome of the Lesser Duckweed *Lemna minuta* reveals cell trajectories for
3 an entire plant

4

5 **Short title**

6 Cell trajectories for an entire simplified plant

7

8 **Authors**

9 Bradley W. Abramson¹, Mark Novotny², Nolan T. Hartwick¹, Kelly Colt¹, Brian D. Aevermann²,
10 Richard H. Scheuermann^{2,3,4}, Todd P. Michael¹

11

12 **Affiliations**

13 ¹The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies,
14 La Jolla, CA 92037, USA.

15 ²Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA.

16 ³Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.

17 ⁴Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.

18

19 **Sentence summary**

20 Genome and single nuclei transcriptome of the Lesser Duckweed *Lemna minuta* enables
21 tracing of all developmental, transitional and terminal cells of an entire plant.

22

23 **Author Contributions**

24 TPM and BWA conceived the study, BWA and MN carried out the lab work, KC performed
25 sequencing, BWA, BDA, NH and TPM performed the analysis, RHS and TPM oversaw the
26 project, and TPM and BWA wrote the manuscript.

27

28 **Funding**

29 This work was funded by The Tang Fund and the Pioneer Fund Trustees with their support
30 through the Pioneer Fund Postdoctoral Scholar Award.

31

32 **Corresponding Author**

33 Todd P. Michael, tmichael@salk.edu, toddpmichael@gmail.com

34

35 **Abstract**

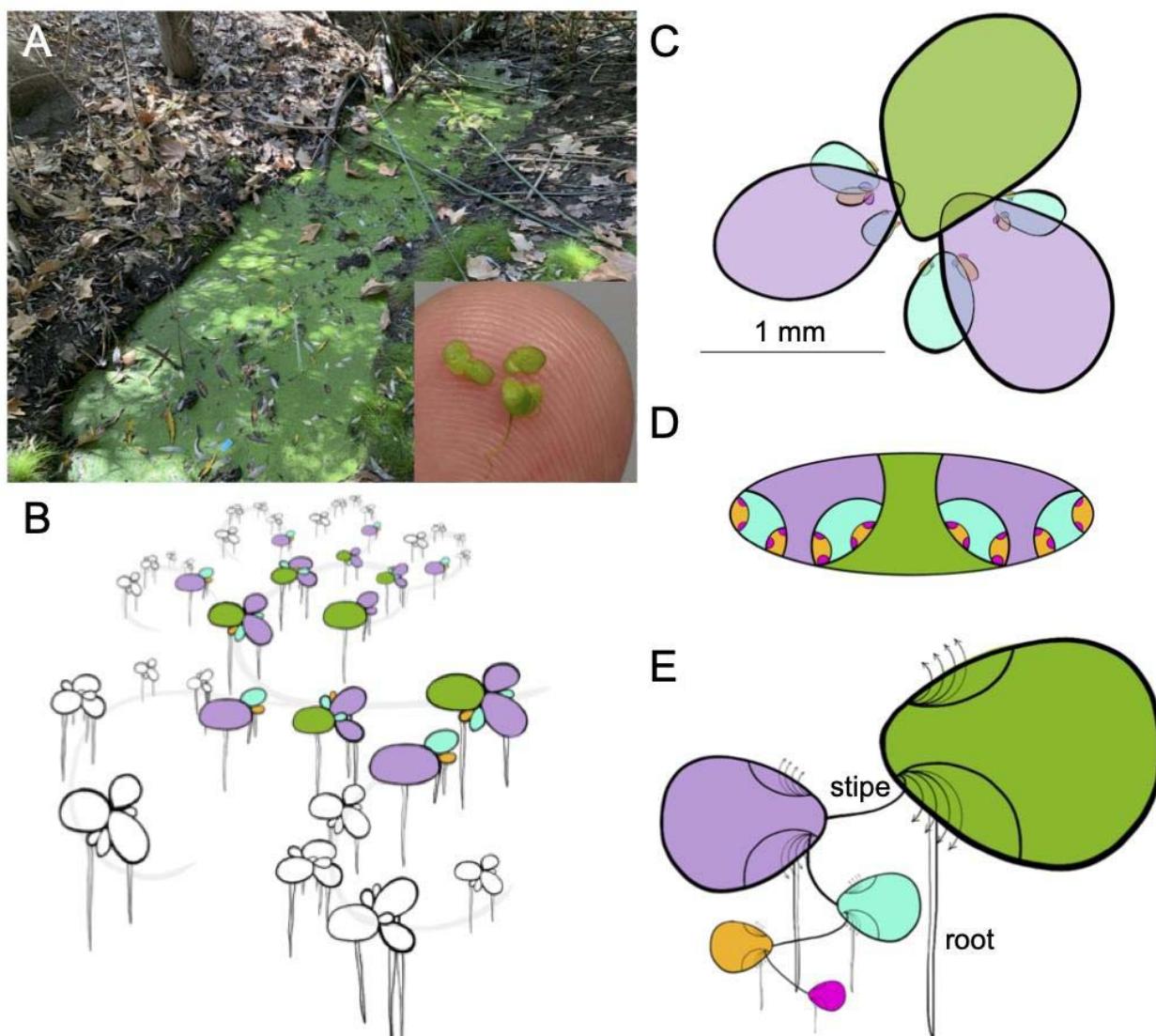
36 The ability to trace every cell in some model organisms has led to the fundamental
37 understanding of development and cellular function. However, in plants the complexity of cell
38 number, organ size and developmental times makes this a challenge even in the diminutive
39 model plant *Arabidopsis thaliana*. Here we develop the Lesser Duckweed *Lemna minuta* as a
40 model with a reduced body plan, small genome size and clonal growth pattern that enables
41 simultaneous tracing of cells from the entire plant over the complete developmental cycle. We
42 generated a chromosome-resolved genome for the 360 megabase genome and defined the
43 growth trajectory of the entire plant with single nuclei RNA sequencing. The *L. minuta* gene
44 complement represents a primarily non-redundant set with only the ancient *tau* whole genome

45 duplication shared with all monocots, and paralog expansion as a result of tandem duplications
46 related to phytoremediation. Thirteen distinct cell types representing meristem, the leaf-stem
47 fusion called a frond, and root-like tissues were defined using gene orthology with single cell
48 expression from model plants, gene ontology categories, and cell trajectory analysis. Dividing
49 meristem cells give rise to two main branches of root-transition and mesophyll cells, which then
50 give rise to terminally differentiated parenchyma, epidermal and root cells. Mesophyll tissues
51 express high levels of elemental transport genes consistent with this tissue playing a role in *L.*
52 *minuta* wastewater detoxification. The *L. minuta* genome and cell map provide a paradigm to
53 decipher developmental genes and pathways for an entire plant.

54

55 **Introduction**

56 Single cell sequencing ushered in a new era of biology where it is possible to characterize cell
57 types and function with unprecedented detail. In plants, this has resulted in detailed single cell
58 RNA-seq (scRNA-seq) and scATAC-seq (Assay for Transposase-Accessible Chromatin)
59 datasets primarily on different organ types from well-studied model organisms (Denyer et al.,
60 2019; Ryu et al., 2019; Dorrity et al., 2020; Gujas et al., 2020; Liu et al., 2020a; Marand et al.,
61 2020; Song et al., 2020; Liu et al., 2020b; Lopez-Anido et al., 2021; Xu et al., 2021). All plant
62 studies to date start with protoplast isolation, which has the potential to miss some recalcitrant
63 cell types and often requires correction to control for transcriptional changes elicited by lengthy
64 enzyme treatment and centrifugation steps (Ryu et al., 2019). In addition, there are different
65 single cell approaches that generally either result in assaying many cells with lower gene
66 coverage (10X Genomics) or fewer cells with deeper gene coverage (SMARTseq2) (Yamawaki
67 et al., 2021). For example, SMARTseq2 sequencing coupled with Fluorescence Activated Cell
68 Sorting (FACS) of nuclei, or single nuclei RNA sequencing (snRNA-seq), provides deep
69 transcriptome coverage of individual nuclei (Krishnaswami et al., 2016) while avoiding loss of
70 cells or introducing issues associated with the protoplast isolation timing. The use of snRNA-seq
71 in plants is nascent but can extend as a broader application for studying abiotic/biotic treatments
72 and whole plant analysis.


73

74 Most single cell studies to date have been on specific plant organ tissue, such as the root,
75 meristem or inflorescence, that encompass limited cell trajectories. Duckweed, aquatic plants in
76 the family Lemnaceae, provide a unique opportunity to follow cells through all developmental
77 time scales from one population due to its minimal morphology and clonal pattern of growth
78 (Fig. 1). These basal monocots are some of the smallest and fastest growing plants on Earth,
79 ranging in size from under a millimeter to centimeter, with some species doubling in under a day
80 (Michael et al., 2020). There are five genera in the Lemnaceae with three having a flat leaf-like
81 structure called a frond and root-like structures that may act as rudders or anchors (*Spirodela*,
82 *Lemna* and *Landoltia*); the other two lack roots and are spherical or flat (*Wolffia* and *Wolfiella*).
83 Before the model plant *Arabidopsis thaliana* rose to prominence, Duckweed were an important
84 system for reductionist biology leading to fundamental understanding of chronobiology,
85 flowering time, and phytohormone action (Hillman, 1976; Hillman and Culley, 1978).

86

87 Duckweed grow primarily through an asexual budding process where a mother frond gives rise
88 to a daughter frond, forming a dense clonal population representing all stages of development in

89 their lifecycle (Fig. 1, B-E). Despite being morphologically simple it has been hypothesized that
90 the clonal population represents most complex tissues found in plants (Landolt, 1986). The
91 mother front is an axillary shoot that gives rise to two pouches, or bracts, where the daughter
92 frond is attached through a stipe, or internode, at the meristem and branches off in an
93 alternating pattern similar to the growth of aerial tissue in more complex plants (Fig. 1E). Every
94 daughter frond has 2 developing generations nested within pouches, which start to grow when
95 the daughter is at the 18-cell stage and these new fronds start to differentiate at the 30-cell
96 stage (Fig. 1D) (Rimon and Galun, 1968). Since the average lifespan of a duckweed plant is 30
97 days, and each frond is capable of generating 15-20 daughter fronds, the growth is exponential
98 but also represents 256 (2^8) fully formed but not expanded daughter fronds per mother frond
99 (Fig. 1B). Therefore, a Duckweed population represents a three-dimensional look at a whole
100 plant: developmental, cellular, and structural.

101
102 **Figure 1. *Lemna minuta* growth highlighting its anatomical analogs to other plants.** A) *L.*
103 *minuta* (Im5633) growing as a dark green mat of fronds in a sewage slough at Cotton Creek
104 Park, Encinitas, CA USA. The inset highlights the small size (~1 mm) of several fronds on a

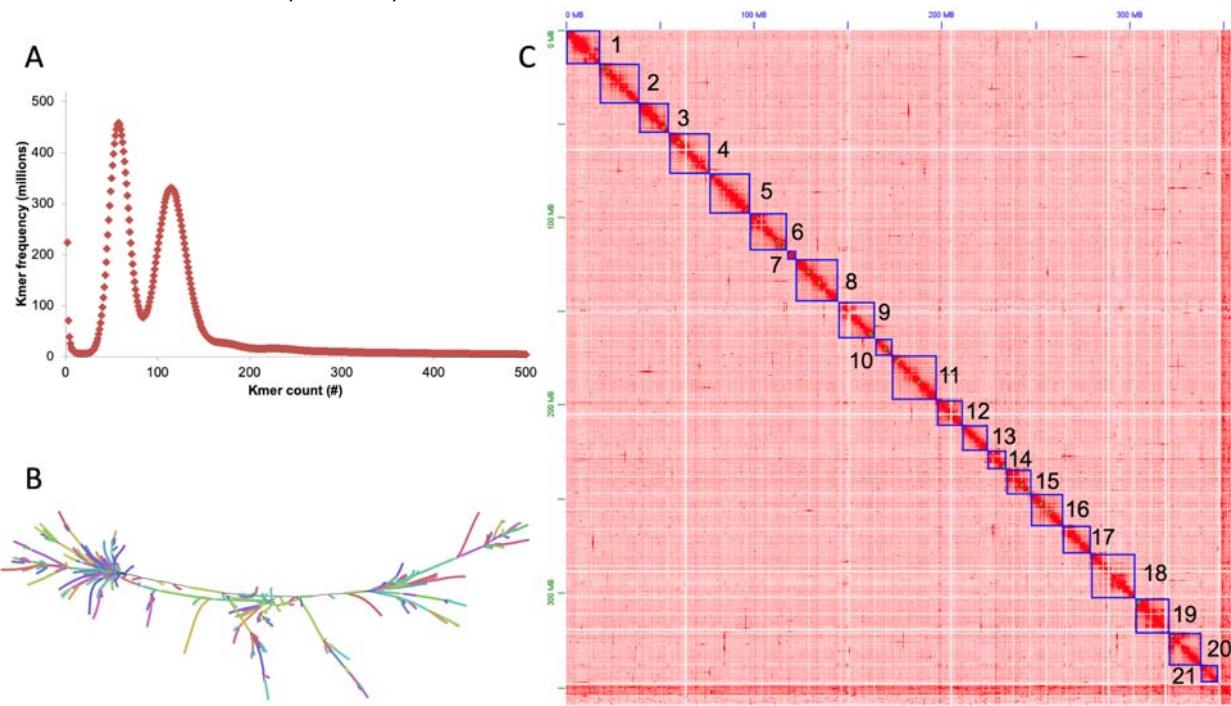
105 finger tip. B) Cartoon of the *L. minuta* generational contribution that leads to the dense frond
106 mat: mother (M; green), daughter (D; purple), grand-daughter (GD; blue), great grand-daughter
107 (GGD; orange) and great, great grand-daughter fronds (GGGD; pink). The grey line represents
108 how they are connected through exponential growth. C) A single M frond view with the attached
109 D fronds that have GD, GGD and GGGD fronds nested in the two meristematic pockets. D) A
110 “nested doll” view of one M frond and the maturing generations of D, GD, GGD and GGGD in
111 the pocket. E) One interpretation of the *Lemna* frond is that the M frond is an axillary stem that
112 has two poaches or bracts where the D frond is attached by a stipe or internode. The D, GD,
113 GGD and GGGD progression then is similar to a branching structure of a generic plant, and the
114 root-like structure at each subsequent axillary node is equivalent to an adventitious root. The
115 arrows indicate that multiple internodes will emerge from the axillary stem over time (Landolt,
116 1986).

117
118 Duckweed also provide a compelling platform for genomic studies due to their core non-
119 redundant gene set and relatively small genomes. The dawn of the genomics era yielded high
120 quality genomes and transcriptomes for non-model systems, which resulted in Duckweed
121 emerging once again as an attractive system to tackle problems of cell biology and
122 development. *Spirodela polyrhiza*, The Greater Duckweed, was the first to be sequenced,
123 revealing that in this 150 megabase (Mb) basal monocot genome there is a reduced
124 complement of non-redundant protein coding genes (~19,000) representing a core plant
125 proteome (Wang et al., 2014; Michael et al., 2017). Subsequently, genomes for *Lemna minor*
126 (Van Hoeck et al., 2015), *Spirodela intermedia* (Hoang et al., 2020) and *Wolffia australiana*
127 (Michael et al., 2020) have been published, revealing small genomes at 472, 160 and 375 Mb
128 respectively. These sequenced genomes further support that Duckweed have a core plant gene
129 set with few family expansions making them ideal for dissecting pathways and functional
130 analysis.

131
132 Many species of Lemnaceae have dispersed widely beyond their natural ranges and are
133 considered invasive species in their new habitats due to their rapid vegetative propagation
134 (Moodley et al., 2016). A prime example of an alien invasive species is *Lemna minuta*, which is
135 native throughout the temperate zones of the Americas, but has dispersed widely throughout
136 Eurasia (Landolt, 1986). Analysis by Ceschin et al., maps the introduction of *L. minuta* in Europe
137 to the 1950s -1960s with a dispersal rate of 40-50 km/per year (Ceschin et al., 2018). This
138 dispersal process involved crossing of seas to reach places such as Ireland (Lucey, 2003) and
139 Malta (Mifsud, 2010), which is consistent with a role for bird mediated dispersal, and hence the
140 common name Duckweed (Silva et al., 2018). However, despite *L. minuta* doubling in roughly
141 24 hours, its growth rate does not explain its ability to outcompete native duckweed (*L. minor*) or
142 other aquatic plants (Van Echelpoel et al., 2016; Paolacci et al., 2018).

143
144 The small organism size (~1mm), fast growth rate (~24 hrs), small genome size (~360 Mb), and
145 ability to exploit diverse environments led us to select *L. minuta* as a model system to
146 understand cell trajectories and function across an entire plant. *L. minuta* is emerging as a
147 phytoremediation species due to its superior ability to remove various excess elements and
148 toxins from wastewater (Ceschin et al., 2020; Fernández et al., 2020). This led us to

149 hypothesize that the invasiveness of *L. minuta* may result from a specialized set of genes or
150 cellular function, as it is apparently not solely due to its rapid growth rate. Therefore, we
151 collected *L. minuta* from local wastewater (Fig. 1A) in order to ensure we captured the natural
152 diversity of a successful clone. Duckweed clones sequenced to date have all been from the
153 Landolt Collection, which have been maintained under aseptic lab conditions for 20-50 years
154 (~1000s of generations). We brought a single sterile clone into culture (Im5633) and generated
155 a chromosome-resolved reference genome. Additionally, snRNA-seq was performed on a
156 population of clonally propagating plants to understand gene expression profiles across the
157 whole plant's cellular developmental landscape. The genome and snRNA-seq of Im5633
158 suggest mechanisms of invasiveness.


159

160

161 **Results**

162 *Lemna minuta* chromosome-resolved genome

163 *Lemna minuta* was collected from a wastewater run off in Cotton Creek Park, Encinitas, CA
164 USA (33°2'58"N 117°17'29"W), sterilized and one clone was selected as a representative of the
165 population for bulking (assigned the name Im5633 in the RDSC collection) (Fig. 1A). We
166 estimated the genome size as 310 megabases (Mb) by k-mer (K = 31) frequency analysis using
167 Illumina short reads sequencing (Fig. 2A), which was smaller than the reported average
168 genome size estimated by flow cytometry of 365 Mb (Table 1) (Bog et al., 2020). The genome is
169 highly heterozygous at 2.1% with 57% of the genome in high copy number elements (young
170 transposable elements, centromeres, telomeres, rDNA arrays), while 28% is predicted to be
171 repeat sequence (Fig. 2A; Table 1). The high level of heterozygosity suggests Im5633 may
172 reproduce through outcrossing in the environment. We sequenced the genome using long-read
173 Oxford Nanopore Technologies (ONT), and assembled reads into contigs using both our
174 minimap/miniasm pipeline (Michael and VanBuren, 2020), as well as FlyE, the later of which
175 produced a more contiguous assembly with a total length of 393 Mb, longest contig of 1.2 Mb
176 and an N50 of 205 kb (Table 1).

177
178 **Figure 2. The highly heterozygous *Lemna minuta* (Im5633) genome resolved into 21**
179 **chromosomes.** A) K-mer (k=31) frequency plot for Im5633 reveals two peaks consistent with a
180 high level of heterozygosity (2%). B) Assembly graph of a 40 Mb region visualized with Bandage
181 shows both the heterozygous branches as well as repeat tangles, "hairballs." C) High
182 throughput chromatin conformation capture (HiC) contact map resolving the polished Im5633
183 assembly into 21 chromosomes (darker red more contacts, lighter red to white less contacts).
184
185 Since the genome assembly was larger than the predicted genome size we reasoned that some
186 of the genome was retained in two haplotypes. The genome assembly graph confirmed that
187 excess haplotypes were retained appearing as branches in the graph, as well as suggesting a

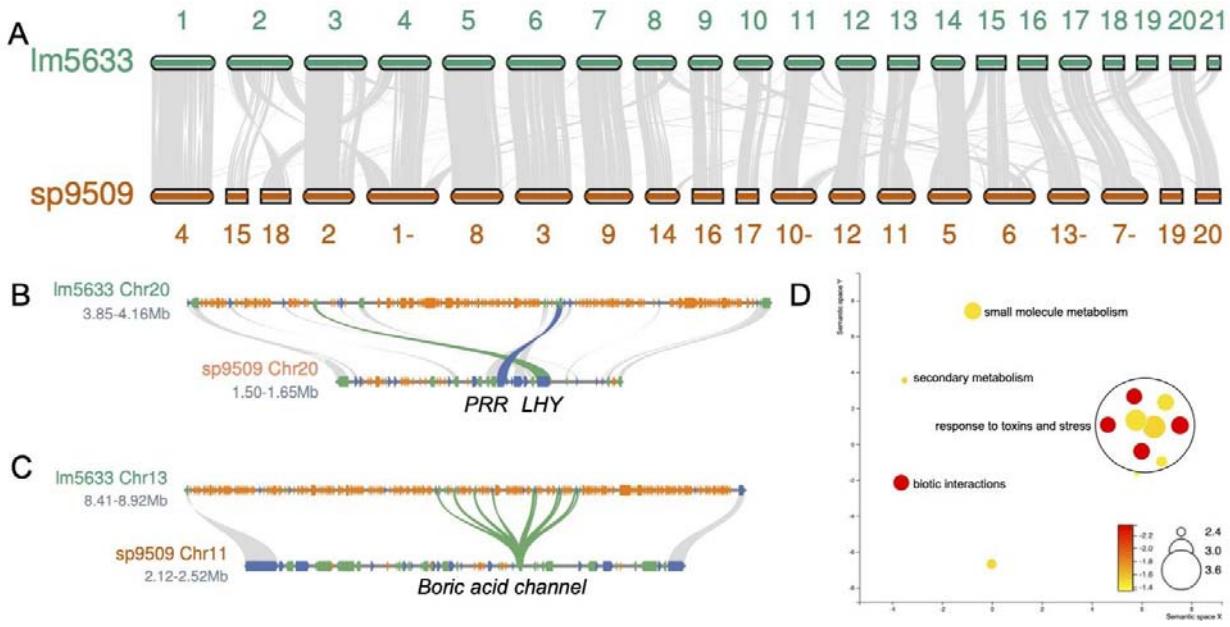
188 complex repeat structure (transposable elements; TEs) resulting in repeat tangles, or “hairballs”
189 in the graph (Fig. 2B). We assessed the completeness of the assembly with benchmarking
190 universal single-copy orthologs (BUSCO) finding 72.5% complete (Table 1); the lower percent
191 complete is consistent with other high quality chromosome resolved Duckweed genomes
192 (Hoang et al., 2018; Harkess et al., 2020; Michael et al., 2020). In addition, we found 11.8%
193 duplicated BUSCO genes consistent with the presence of additional haplotypes in the assembly
194 (Table 1; Supplemental Table S1). We purged the excess overlapping haplotypes and
195 scaffolded the contigs with Illumina-based high throughput chromatin conformation capture
196 (HiC) that resolved the genome into 21 chromosomes consistent with published cytology (Fig.
197 2C) (Landolt, 1986). The final Im5633 HiC assembly was collinear with the high-quality
198 assembly of *S. polystachya* clone 9509 (sp9509) chromosome structure (Fig. 3A).
199
200

Table 1. *Lemna minuta* (Im5633) genome statistics.

	Im5633
Estimated genome size flow cytometry (bp)*	365,000,000
Estimated genome size K-mer = 31 (bp)	310,069,889
Heterozygosity prediction K-mer31 (%)	2.1
High copy repeat sequence K-mer31 (%)	57
Chromosome-resolved genome size (bp)	360,454,868
Assembled genome size (bp)	392,702,877
Contig (#)	9,473
Longest contig (bp)	1,268,926
Contig N50 length (bp)	205,076
Scaffold (#)	2,407
Longest scaffold (bp)	24,571,886
Scaffold N50 length (bp)	19,492,010
Chromosomes after HiC (#)	21
BUSCO ^{&} complete (%)	72.5
Repeat predictions (%)	58.2
Telomere length average (bp)	10,085
Telomere length, longest (bp)	25,271
Predicted genes (#)	22,873

201 *Averaged over all *L. minuta* clones tested by (Bog et al., 2020)

202 [&]BUSCO library: liliopsida_odb10

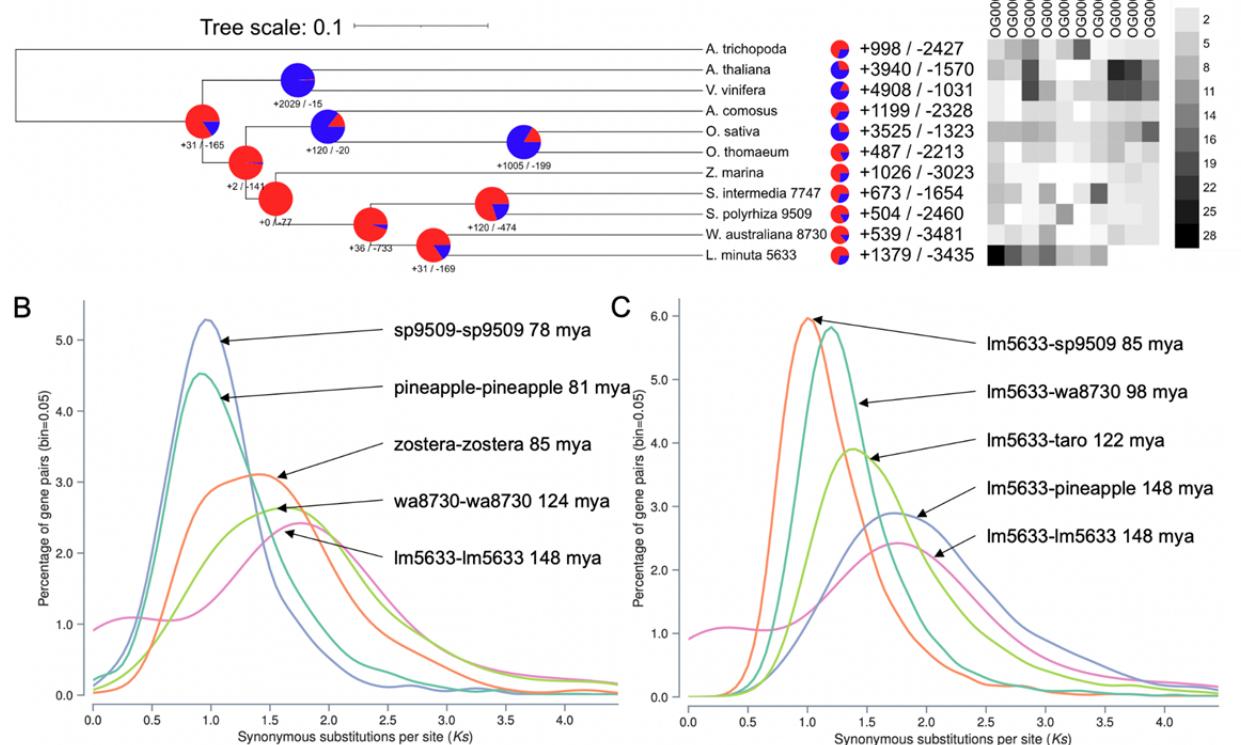

203

204 *Lm5633 gene prediction and annotation*

205 Long read assemblies cover more repeat sequences and usually allow the identification of
206 putative centromere sequences, definition of telomere lengths, and annotation of full-length TEs
207 (Michael and VanBuren, 2020). Consistent with the high copy number repeat k-mer frequency
208 estimate, we identified that 58.2% of the genome was repeat sequence, which is double that of
209 sp9509 and similar to *W. australiana* clone 8730 (wa8730) (Table 1; Supplemental Table S2).
210 The Lm5633 genome has a gypsy/copia ratio of ~2, similar to that found in sp9509, but distinct
211 to wa8730 where the ratio is closer to 1 (Supplemental Table S2) (Michael et al., 2017; Michael
212 et al., 2020). The larger genome size of Lm5633 compared to sp9509 was primarily due to the
213 increase in retained TE fragments, which is seen in the number of repeats found intervening in
214 the evolutionarily conserved linkage of core circadian clock genes (Fig. 3B) (Michael et al.,
215 2020). Similar to *S. polystachya*, we did not detect high-copy number centromere repeats (Michael
216 et al., 2017), but we did identify telomere (AAACCCT) arrays that are longer (average=10 kb;
217 longest 25 kb) than sp9509 (average=3 kb; longest=6 kb), yet shorter than what we have found
218 in wa8730 (average=18 kb; longest=70 kb) (Supplemental Table S3) (Michael et al., 2020).

219

220 The sequenced duckweed genomes have the fewest protein coding genes found in
221 angiosperms to date with wa8730 and sp9509 having just 14,324 and 18,507 genes
222 respectively (Michael et al., 2017; Michael et al., 2020). After masking the repeat sequence, we
223 predicted 22,873 protein coding genes in the Lm5633 genome (Table 1), which is similar to the
224 22,382 and 22,245 protein coding genes predicted in the Lm5500 and si7747 assemblies,
225 respectively (Van Hoeck et al., 2015; Hoang and Schubert, 2017). The higher gene counts for
226 both Lm5633 and si7747 compared to wa8730 and sp9509 are a result of those genomes having
227 orthogroups with greater than 10 genes, which is similar to *Arabidopsis* and rice where gene
228 families are much larger (Fig. 4A). Of the 99 Lm5633 orthogroups that had greater than 10
229 genes, 50% had between 0 and 2 genes in sp9509. The expanded Lm5633 families could result
230 from whole-genome duplication (WGD), tandem duplication (TD), proximal duplication (PD),
231 transposed duplication (TRD), or dispersed duplication (DSD) (Qiao et al., 2019). The expanded
232 Lm5633 genes were predominantly a result of TD and PD events, as compared to sp9509,
233 leading to expansion of genes involved in pathogen defense, response to stress, and nutrient
234 acquisition (Fig. 3D; Supplemental Table S4). For instance, there is an 11 gene TD of a boric
235 acid channel (Fig. 3C), which may reflect the ability of Lm5633 to extract large amounts of boron
236 from its environment, improving survivability, and invasiveness (Fernández et al., 2020).

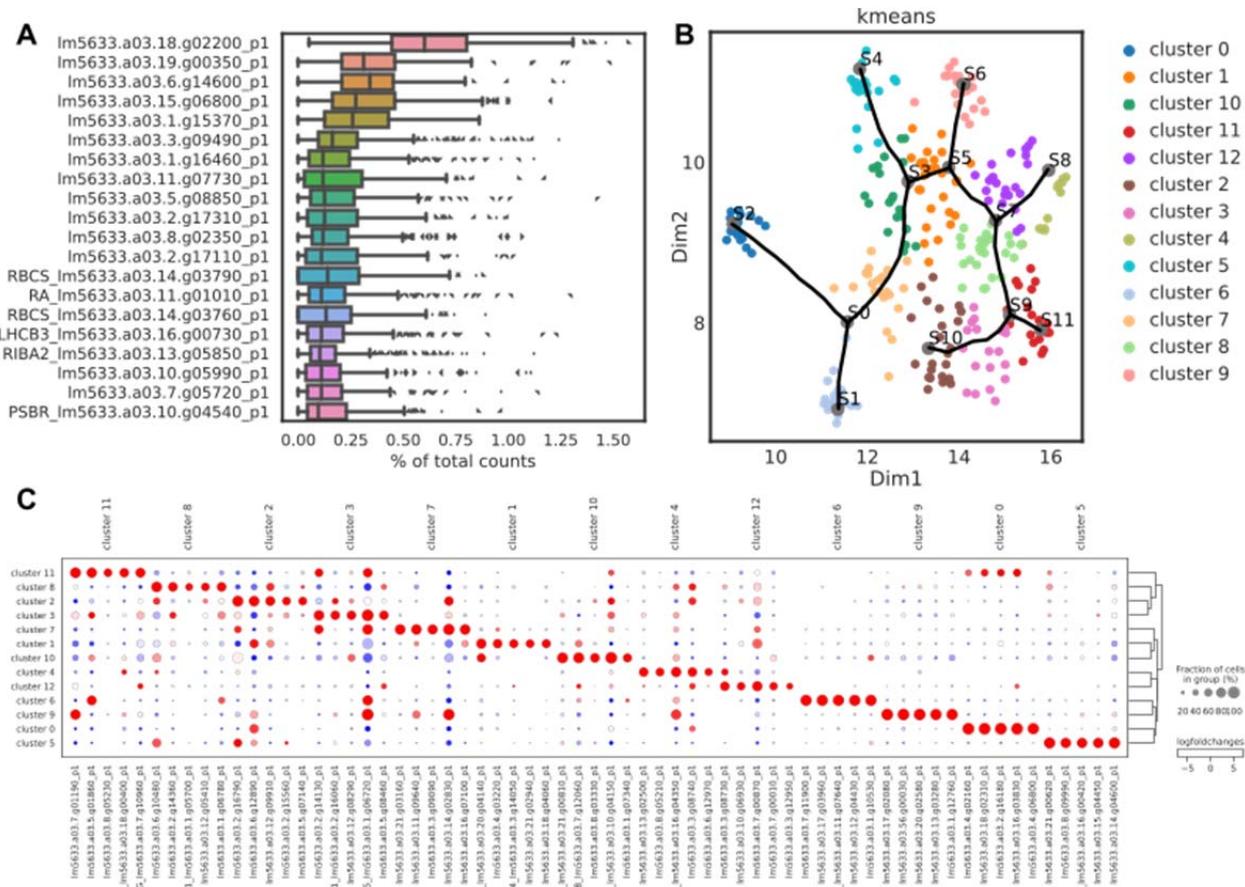

237
238 **Figure 3. Gene family expansion in Im5633 is driven by tandem duplication (TD).** A)
239 Lm5633 chromosomes aligned to sp9509 chromosomes with syntetic blocks (grey lines)
240 anchoring positions between the two genomes. Chromosomes are the correct ratio between
241 one another but are not to scale between the two species. A minus sign after the number means
242 the chromosome has been flipped for visualization purposes. B) The single MYB transcription
243 factor *LATE ELONGATED HYPOCOTYL* (*LHY*; blue line) and *PSEUDO-RESPONSE*
244 *REGULATOR 7* (*PRR7*; green line) are in tight linkage and TE fragments (orange) resulting in
245 the region expansion in Im5633. Grey lines connect other syntetic genes (blue, forward; green
246 reverse). C) Boric acid channel TD (green line) also showing the expansion of the Im5633
247 genome due to TE fragments (orange). D) Sympatic principle component analysis (PCA) of
248 significant GO terms associated with TDs in Im5633. Size of the circle is the log frequency and
249 the color (red high, and yellow low) is the log FDR.

250
251 A comparison of orthologous proteins between Im5633 and wa8730 revealed a number of
252 expanding orthogroups relating to the ability of Im5633 to thrive in diverse environments. We
253 found 14 significantly expanded orthogroups in Im5633 compared to the most recent common
254 ancestor wa8730 (Fig. 4A). There are five orthogroups annotated with gene ontology (GO)
255 terms: OG0000813, vacuolar membrane; OG0000014, signaling; OG0001260, defense
256 response to fungus; OG0000015, detection of bacterium; OG0003377, delta14-sterol reductase
257 activity. There are 3 significantly contracted orthogroups compared to wa8730 with one having
258 an annotation for GO:0005787, signal peptidase complex. An additional expanded orthogroup,
259 OG0000243, encodes a family of proteins relating to multidrug and toxic compound extrusion
260 (MATE) proteins that have more than doubled from 2 copies in wa8730 to 5 copies in Im5633.
261 The MATE transporters are often associated with increased plant resilience to toxic compounds
262 and adaptability to metals including iron homeostasis (Upadhyay et al., 2019). These evolving
263 orthogroups are consistent with the ability of Im5633 to thrive under adverse conditions of
264 abiotic and biotic stress.

265
266 Lm5633 chromosome evolution

267 The Im5633 genome was resolved into 21 chromosomes (Fig. 2C and 3A), which is consistent
 268 with cytological studies ($2n=42$) (Landolt, 1986); this is one more chromosome than sp9509 and
 269 three more than si7747 (Michael et al., 2017; Hoang et al., 2020). Since *S. polystachya* is thought
 270 to be the basal duckweed, we looked specifically at the synteny between the Im5633 and
 271 sp9509 chromosomes and found 18 chromosomes share high sequence collinearity with at
 272 least 5 that are completely collinear (Fig. 3A). There are several Im5633 chromosomes (2, 19,
 273 and 21) that are the result of fragments from several sp9509 chromosomes, whereas no sp9509
 274 chromosomes resulted from Im5633 fusions, consistent with the basal nature of the *S. polystachya*
 275 genome.

A


276
 277 **Figure 4. Whole genome evolution shows consistent gene family contractions in Im5633**
 278 **ancestry.** A) Gene family contractions (red) and expansions (blue) along the phylogenetic tree
 279 leading to minimized duckweed genomes are shown at each node and total protein family
 280 contractions and expansions for each species (right). Lm5633 shows the greatest similarity and
 281 gene family conservation with wa8730. A heatmap of orthogroups significantly expanded or
 282 contracted in Lm5633. B) Self versus self and C) Lm5633 versus other synonymous substitution
 283 (Ks) plots to elucidate the WGD history of Lm5633. Dating is based on the mean Ks peak for
 284 each comparison using all paralogs/orthologs. Plant species used: *A. trichopoda* (Amborella), *A.*
 285 *thaliana*, *V. vinifera* (grape), *A. comosus* (pineapple), *O. sativa* (rice), *O. thomaeum* (oropetum),
 286 *Z. marina* (zostera), *C. esculenta* (taro), *S. intermedia* (si7747), *S. polystachya* (sp9509), *W.*
 287 *australiana* (wa8730), and *L. minuta* (lm5633).
 288
 289 *Spirodela polystachya* has experienced at least two lineage specific WGDs (B"/a") in the non-grass
 290 monocots (Wang et al., 2014; Ming et al., 2015). Consistent with this WGD history, sp9509 has

291 a 3:1 syntenic depth compared to the *Amborella trichopoda*, which is the progenitor basal
292 angiosperm without a WGD (Amborella Genome Project, 2013). In contrast, Im5633 has a 2:1
293 syntenic depth compared to *A. trichopoda*, suggesting Im5633 may have a higher level of
294 fractionation (WGD followed by diploidization and gene loss) compared to sp9509. Consistent
295 with Im5633 having a higher level of fractionation, only 4.1% of its paralogs remain in syntenic
296 blocks compared to 49% in sp9509. Moreover, Im5633 and sp9509 have a 1:1 syntenic depth,
297 sharing 88% and 86% gene pairs respectively, indicating that despite the higher level of
298 fractionation in Im5633 the gene content from their shared WGD history is preserved (Fig. 3).
299

300 An alternative hypothesis explaining the lower level of paralogs in syntenic blocks in Im5633 is
301 that it did not experience the *S. polystachya* B"/a" WGDs, and instead only experienced the *tau* (□)
302 WGD that is shared across most of the monocot lineage (Jiao et al., 2014). Therefore, we
303 looked at the synonymous substitution (Ks) rates of Im5633 paralogs to estimate their age, and
304 found that both wa8730 and Im5633 lack a Ks peak corresponding to B"/a" WGD with only a
305 peak corresponding to the *tau* (□) WGD (Fig. 4B). Consistent with this, the divergence of
306 Im5633 and pineapple coincides with the *tau* (□) WGD (Fig. 4C). These results suggest that the
307 *Wolffia* and *Lemna* genera may not have the lineage specific WGDs that are found in *Spirodela*.
308 Additional genomes from *Lemna*, *Wolffia* and *Wolffiella* will be required to fully understand the
309 WGD history of duckweed. However, the Ks plots are consistent with the genome innovation of
310 Im5633 resulting from recent TDs in genes associated with abiotic and biotic stress, which
311 provide clues as to its invasive abilities.
312

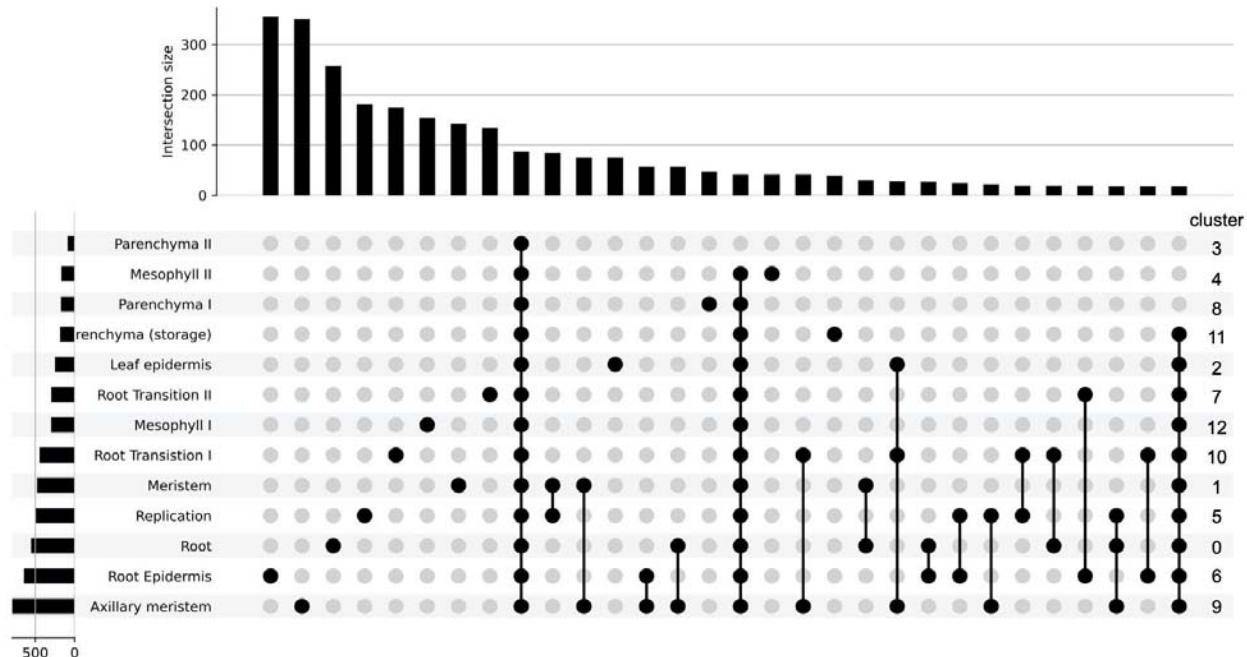
313 *Defining cell types in Im5633 with snRNA-seq*

314 The unique life cycle and growth pattern of *L. minuta* plants from mother to daughter and grand-
315 daughter fronds covers all cell developmental stages and types providing an opportunity to
316 follow the developmental trajectory of all cells (Fig. 1). We wanted to identify as many cell types
317 as possible across the diverse developmental states with high gene coverage per cell.
318 Therefore, we carried out single nuclei RNA sequencing (snRNA-seq), which enabled capturing
319 an exact moment in development through the immediate freezing of tissue and avoiding long
320 protoplasting steps that can result in unsampled cell types and sample preparation artifacts
321 (Denyer et al., 2019). We isolated individual nuclei from a population of whole Im5633 plants
322 grown under standard laboratory conditions by FACS and then prepared libraries with
323 SMARTseq2 to achieve high gene coverage per nuclei. After quality filtering, 49% of the
324 annotated Im5633 genes were expressed across 269 nuclei.
325

326

327 **Figure 5. Single nuclei RNA sequencing (snRNA-seq) of clonally propagating whole**
 328 **Im5633 plants. A)** The most abundant transcripts reveal that highly expressed genes are
 329 generally related to photosynthesis. **B)** UMAP embedding of 13 k-means clusters in the snRNA-
 330 seq dataset. Trajectory analysis (black line) reveals a complex network where multiple branches
 331 result in terminally fated cell types. **C)** Log fold change in marker genes for the 13 specific
 332 clusters shows robust separation of cell types for functional analysis. Expression level (red,
 333 high; blue, low; larger circle, more cells; smaller circles, fewer cells).

334


335 One problem encountered with non-model plants is the lack of annotation. For instance, only six
 336 of the twenty most highly expressed genes for all cells in this dataset had annotations, five
 337 related to photosynthesis as expected for green tissues (Fig. 5A). Therefore, we leveraged a
 338 combination of cell trajectory analysis, gene ontology (GO) annotation, and orthology prediction
 339 to define single cell marker genes from model plants for describing cell types in Im5633.
 340 Expression based dimensionality reduction resulted in 13 distinct cell clusters with a total of
 341 1,733 significantly differentially expressed genes between clusters (Fig. 5B). To initially define
 342 the 13 clusters we identified Im5633 orthologs relative to published single cell studies in
 343 *Arabidopsis*, *O. sativa* (rice) and *Zea mays* (corn) (Denyer et al., 2019; Satterlee et al., 2020; Xu
 344 et al., 2021) (Supplemental Table S5). Of the 1,733 marker genes found for the 13 clusters, we
 345 found 140 marker genes that did not appear in any orthogroup and on average each marker
 346 gene was in an orthogroup with 2.3 copies per species (Supplemental Table S6). An average of

347 134 marker genes per cluster were determined with a total of 446 marker genes annotated
348 based on model organism orthology, averaging to 18 annotated marker genes per cluster (Fig.
349 5C; Supplemental Table S7).

350
351 GO analysis of the marker genes provided additional functional support for the distinction of
352 each cluster as well as potential functional overlap of cell types (Fig. 6A). Each cluster/cell type
353 had unique GO terms while several had overlapping terms such as meristem-replication,
354 meristem-axillary meristem, root epidermis-axillary meristem, root-axillary meristem, root
355 transition I-axillary meristem, and meristem-root. These results suggest that the meristem-like
356 tissue and different root cell types are intimately associated. Together with orthology from model
357 plants (described below), the cell trajectory showed that meristem gives rise to root transition,
358 meristem-like, and mesophyll cells; mesophyll then gives rise to parenchyma followed by
359 epidermis, while root transitions gives rise to root epidermis cells followed by root cells (Fig. 7).
360

361 *Meristematic-cell cluster*

362 Following pseudo-time analysis, the gene expression profiles resulted in a large continuous
363 cluster with multiple branches to terminally differentiated cell types (Fig. 5B and 7A). In the
364 UMAP (Uniform Manifold Approximation and Projection) embedding we found several clusters
365 relating to growth and division. Specifically, we defined the meristem (cluster 1) by an
366 *TRANSLOCASE OF CHLOROPLAST 34 (TOC34)*, *ACTIN RELATED PROTEIN (ARP4)* and
367 the *ARGONAUT-like (AGO)* marker shown to be expressed in the shoot apical meristem in
368 maize (Xu et al., 2021). A *TOC34* promoter GUS fusion in *A. thaliana* has been reported in the
369 meristem of green tissues and root cells, and *ARP4* has been shown to function in flower
370 development across species (Gutensohn et al., 2000; Pandey and Chaudhary, 2016).
371 Furthermore, we surveyed the most representative GO terms for the meristem cluster and found
372 that the top eight most representative terms relate to response to oxidative stress or removal of
373 superoxide radicals, which could be associated with DNA damage protection (Supplemental
374 Table S8). However, the representative set of GO terms relate to tissue development including
375 GO:1905330, "regulation of morphogenesis of an epithelium;" GO:0090175, "regulation of
376 establishment of planar polarity;" GO:2000023, "regulation of lateral root development;"
377 GO:0048831, "regulation of shoot system development;" GO:0022603, "regulation of anatomical
378 structure morphogenesis." Finally, 12% of all GO descriptions related to development compared
379 to terminally differentiated cell types such as "leaf epidermis" that contained only 3.6% of terms
380 relating to development.

381
382 **Figure 6. Cell type definitions supported by gene ontology (GO) categories.** Upset plot
383 showing the number of GO terms that are specific and overlapping across the thirteen different
384 predicted cell types. The bars on top represent the number of intersecting GO terms per cell
385 type, and the bars on the left represent the number of GO terms found in each cell type. The cell
386 clusters as defined in Figure 5B are on the right hand side to highlight their correspondence with
387 the predicted cell types.

388
389 The placement of the meristem cluster in the UMAP embedding was supported by two adjacent
390 clusters that we described as the “axillary meristem” and “replication” (or potentially
391 endoreplication). The axillary meristem identification is supported by the presence of *LAX*
392 *PANICLE1*(*LAX1*), which is mediated at the transcript level in the axillary meristem (Oikawa and
393 Kyozuka, 2009). There are also several genes involved in ribosome biosynthesis and genes
394 coding for the ribosomal complex (*PRPL10*, *RLP24*, *RPA1A*, *RPL12-C*, *RPS16*), which would
395 suggest these cells are actively translating mRNA into proteins. The DNA
396 replication/endoreduplication cell cluster contains *ETHYLENE INSENSITIVE* (*EIN2*) that leads
397 to cell expansion through ethylene signaling and an *A-TYPE CYCLIN* (*CYCA3-1*), which is
398 critical for G1-to-S phase transition having a central role in the meristematic tissue (Takahashi
399 et al., 2010; Feng et al., 2015). It is possible that these three specific clusters are all located in
400 the meristematic-like tissue given their close proximity in the UMAP embedding and similarity in
401 nuclei expression profiles. Both of these clusters share common GO terms, GO:0051093,
402 “negative regulation of developmental process;” GO:0022603, “regulation of anatomical
403 structure morphogenesis,” which suggest they are cells with defined processes similar to
404 meristematic cells but different enough to warrant exclusive clustering.

405
406 The meristem cells give rise to all other cell types in clonally propagated plants, yet many of the
407 transcription factors and networks leading to fated cell types are unknown. Transcription factor
408 *WRKY32* has increased expression in the transition from meristem to green frond-like cell types,

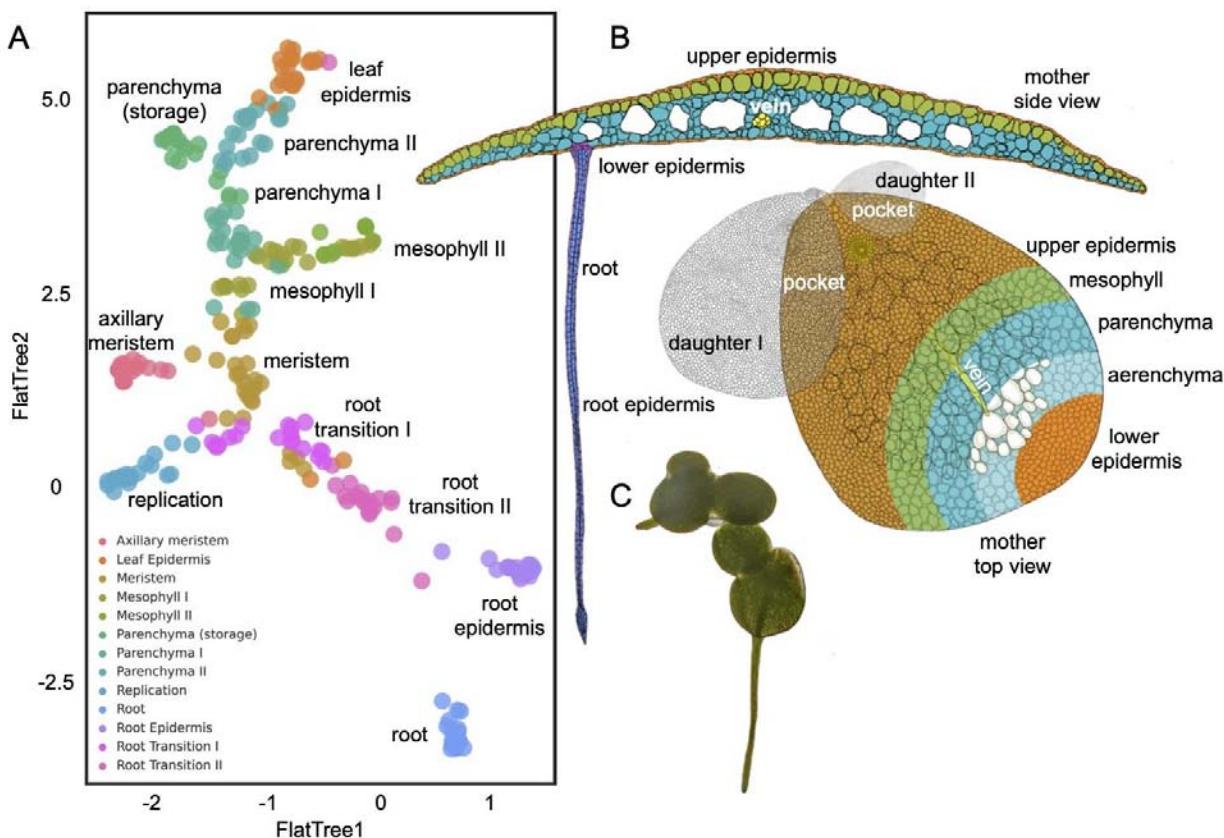
409 where it has been previously shown to be involved in ethylene signaling in tomato, where RNAi
410 repression leads to yellowing of fruits (Zhao et al., 2021). It has been shown previously that
411 related *L. minor* clones show reduced growth from exogenous ethylene treatment (Utami et al.,
412 2018). Conversely, WRKY transcription factors associated with root cell transition are *WRKY6*
413 and *WRKY65*. *WRKY6* is associated with pathogen defense, phosphate translocation, and
414 arsenate resistance and *WRKY65* induces Jasmonate and salicylic acid responses relating to
415 pathogen response (Huang et al., 2016; Wang et al., 2020). The expression of several WRKY
416 transcription factors in the meristematic transition leading to terminal cell types suggests
417 hormone signaling is a major contributing factor in Im5633 cellular development.

418

419 *Root-like tissues*

420 The predicted meristem-like cells are centrally located between two branches leading to
421 terminal cell types in the trajectory analysis (Fig. 5B and 7A). Although it has not been
422 confirmed that duckweed roots are essential or act similarly to well developed root systems in
423 model plants, we still define root cells by expression of two copies of the tandemly duplicated
424 *PLANT LIPOXYGENASE 9 (LOX9)* genes, which has been shown in soybean to be expressed
425 in root nodules (Hayashi et al., 2008). Additional root makers are involved in metabolite
426 transport by *HIGH-AFFINITY POTASSIUM TRANSPORTER 8 (HAK8)* and *MANGANESE*
427 *ATPASE TRANSPORTER (ECA2)* (Mills et al., 2008). We find an additional marker gene
428 *UBIQUITIN E2 CONJUGATING ENZYME (UBC13)* that has been shown to be involved in root
429 development (Wen et al., 2014). We also find an additional paralog of *LOX9* in the root
430 transition I cluster suggesting the paralogs are cell specific but concordant in their function
431 progressing toward formation of root-like cells.

432


433 Visual morphologies have historically been used to define long-lived, stable cell types. Single
434 cell/nuclei sequencing aims to capture all cell types including transitory cells. In some cases,
435 snRNA-seq may capture transitional cell types that do not have well characterized visual
436 properties or marker gene expressions but show progression to terminal cell types based on
437 functional characterization of the snRNA-seq expression profile. Although difficult to define a
438 specific cell type, here, the root transition II cluster contains a marker gene for *ASYMMETRIC*
439 *LEAVES1 (AS1)*, which is essential for adaxial-abaxial leaf polarity and associated with an initial
440 committed step towards root-like tissue development (Xu et al., 2003; Machida et al., 2015).
441 Likewise, *SLEEPY1 (SLY1)* is responsible for gibberellin signaling, cell growth and elongation,
442 suggesting this cluster contains cells transitioning to the final root-like cells (McGinnis et al.,
443 2003; Xu et al., 2003). *ELONGATED HYPOCOTYL 5 (HY5)* is also found in this cluster and is
444 known to play a role in induction of light induced genes and root gravitropism (Srivastava et al.,
445 2015). It is interesting to note that Im5633 roots were exposed to light in this experiment since
446 the plants are grown in clear flasks, which results in the roots appearing visually green and
447 expressing light harvesting genes (Fig. 7C).

448

449 *Epidermal tissues*

450 The exterior cells forming the epidermis provide a barrier from the rhizosphere and
451 phyllosphere, and are often associated with increased production of hydrophobic waxes and
452 cutins. Lipid biosynthesis is essential for wax and cutin production that provide extracellular

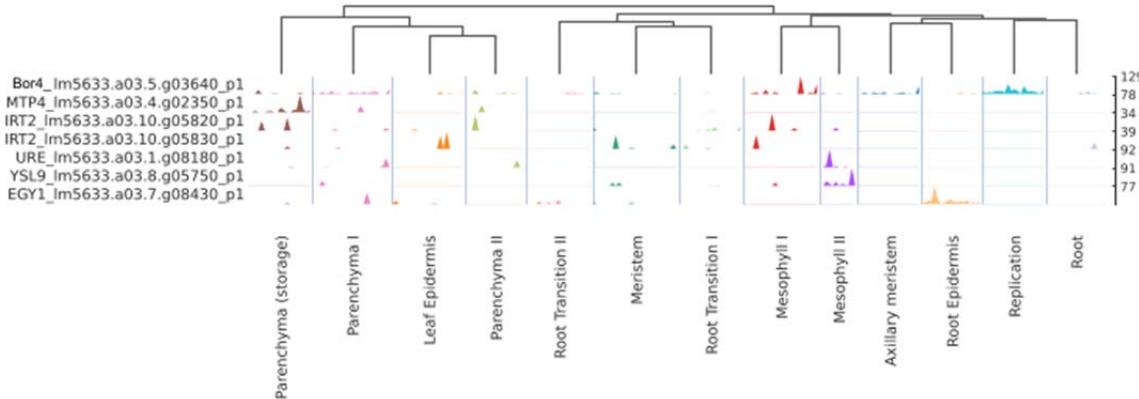
453 protection in epidermal cells. Fatty acid biosynthesis, known to occur in epidermal cells, is
454 mediated through the key marker genes *3-KETOACYL-COENZYME (KCS3)* and *LONG CHAIN*
455 *ACYL-CoA SYNTHETASE (LACS2)* (Kim et al., 2013) (Supplemental Table S6). Additionally,
456 root epidermal cells were defined based on expression of *CRINKLY 4 (CR4)*, which is known to
457 have a role in maize epidermal cell formation (Becraft et al., 1996). Interestingly, frond
458 epidermal cells are located in close proximity to root epidermal cells in UMAP embedding
459 consistent with these cell types sharing similar expression despite having different cell
460 trajectories (Fig. 5B and 7). The frond epidermal cells were defined by the marker gene
461 *ECERIFERUM-like*, which has been shown to be important for cuticle wax development
462 (Haslam et al., 2017). Additional markers include an auxin efflux carrier in starch metabolising
463 cells *PIN-FORMED (PIN7)* aiding root termination (Kim et al., 2013; Rosquete and Kleine-Vehn,
464 2018). This is consistent with this cluster's position in the UMAP embedding (Fig. 5B) in close
465 proximity to the root epidermis but highly diverged in the complement of expressed
466 photosynthetic genes and complete divergence in the trajectory analysis (Fig. 7A). Likewise, this
467 cell type contains genes *ATP-DEPENDENT ZINC METALLOPROTEASE (FTSH2)*, two
468 orthologues of *DEFECTIVE KERNEL 1 (DEK1)* and *CYTOCHROME C OXIDASE 15 (COX15)*.
469 These genes are involved in carbon storage where *FTSH2* has been shown to be involved in
470 thylakoid biosynthesis and *COX15* shows increased expression in response to decreased
471 cellular respiration (Vishwakarma et al., 2015; Haslam et al., 2017). Similarly, *DEK1* is
472 expressed in aleurone-like cells in maize that are involved in starch metabolism (Tian et al.,
473 2007). It has been shown that *DEK1* also has adverse effects on leaf morphology and it is likely
474 that this cluster contains frond epidermal cells.

475

476 **Figure 7. Trajectory analysis defines cell types of the entire *L. minuta* plant . A) UMAP tree**
477 **embedding of snRNA-seq clusters describing the cell types. B) Cartoon of *L. minuta* based on**
478 **(Banaszek and Musiał, 2011) coloring specific cell types per the UMAP. C) Live image of**
479 **Im5633 showing the green roots.**

480

481 *Frond tissues*


482 Mesophyll, located in leaf or frond tissue, are the primary cells involved in photosynthetic light
483 and CO₂ capture for the generation of sugars to sustain the plant. Mesophyll-like cells were
484 determined based on significant expression of multiple marker genes associated with light
485 perception, thylakoid biogenesis, and cytokinin degradation related to stress by *YELLOW*
486 *STRIPE-LIKE* (*YSL9*) and *THYLAKOID LUMEN PPlase* (*TLP40*). *YSL9* in rice is associated
487 with leaf vasculature but in this case is potentially more similar to mesophyll like cells in this
488 basal aquatic monocot (Wen et al., 2020). *TLP40* has been shown to be expressed in mesophyll
489 and at 2-fold greater expression in bundle sheath cells (Vojta et al., 2019). Interestingly, the
490 representative GO terms suggest these cells are carbon limited and the photorespiratory cycle
491 is engaged where the top GO terms are mitochondrial transport of glycolate (GO:0006626,
492 "protein targeting to mitochondrion;" GO:0072655, "establishment of protein localization to
493 mitochondrion;" GO:1901975 , "glycerate transmembrane transport;" GO:0097339, "glycolate
494 transmembrane transport").

495

496 Parenchyma cells in any given tissue can become specialized for a variety of purposes, yet in
497 Im5633 it appears the specialization of parenchyma is geared toward photosynthetic
498 metabolism and storage of photosynthate. Parenchyma I and II clusters are defined
499 *EXORDIUM-like* (*EXO*), *SUCROSE SYNTHETASE 1* (*SUS1*), *STARCH EXCESS 4* (*SEX4*),
500 *XAP5 CIRCADIAN TIMEKEEPER* (*XCT*) which promotes ethylene response in aerial tissue
501 (Ellison et al., 2011). *SUS1* is a prominent player in the accumulation of terminally synthesized
502 photosynthate in source tissues and *SEX4* mutants in leaf tissues promote starch metabolism
503 (Kötting et al., 2009; Ma et al., 2014; Shi et al., 2019). Mutants of *EXO* have decreased
504 epidermis, palisade and spongy parenchyma in *A. thaliana* and suggests *EXO* may be inhibiting
505 differentiation to a terminal cell type (Schröder et al., 2011; Florian Schröder, Janina Lissi,
506 Peggy Lange & Carsten Müssig). Marker genes in these clusters point to photosynthetic
507 metabolism. A terminal cluster is observed branching off the parenchyma-like cells (Fig. 7A)
508 denoted here as "parenchyma (storage)" since cells are expressing two copies of *ALPHA*
509 *AMYLASE 2* (*AMY2*) and *IMBIBITION INDUCIBLE* (*IMB1*). The combination of these marker
510 genes in a cell type may mean these cells are actively metabolizing starch in the vacuoles.

511

512

513
514

515 **Figure 8. Metal transport and accumulation associated genes in *L. minuta* are expressed**
516 **in mesophyll cells.** SnRNA-seq expression profiling of metal tolerance related genes reveal a
517 cell type specific expression pattern with greater gene expression localized to the mesophyll cell
518 types in Im5633. Lm5633.a03.5.g03640 (top) encodes *BORON TRANSPORTER 4 (BOR4)*
519 localized to mesophyll and replicating cells described further in the text.

520
521

Specific cell expression associated with invasiveness

522 *Lemna minuta* can occupy a variety of ecosystems due to their adaptability in absorption and
523 tolerance of excess micro- and macro-nutrients. The uptake and adaptability of *L. minuta* has
524 led to its use as a wastewater detoxifying/phytoremediation species (Fernández et al., 2020).
525 Wastewaters are often contaminated with a variety of toxic compounds yet the exact
526 mechanisms of plants ability to adapt to these compounds, including high levels of essential
527 elements and heavy metals, remains unclear (Frick, 1985; Davis et al., 2002; Del-Campo Marín
528 and Oron, 2007; Gür et al., 2016; Liu et al., 2018; Türker et al., 2019). We find increased
529 expression of *BORON TRANSPORTER 4 (BOR4)* in the mesophyll and replicating cells (Fig. 8).
530 We also found a large TD (11 copies; eighth largest) of a boric acid transporter (MIP aquaporin)
531 (Fig. 3C; Supplemental Table S4). We find similar increased expression of *IRON-REGULATED*
532 *TRANSPORTER 2 (IRT2)* and *METAL-NICOTIANAMINE TRANSPORTER 9 (YSL9)* in the
533 mesophyll cells. *IRT2* also shows a TD expansion (4 copies with 2 copies expressed here),
534 although modest compared to *BOR4*. Overaccumulation of boron and toxic heavy metals can
535 have an adverse effect on plant growth yet *L. minuta* grows and accumulates heavy metals
536 readily (Gür et al., 2016). This is compelling evidence that *L. minuta*'s invasiveness and
537 adaptability in wastewater may be, at least in part, due to the increased *BOR4* expression, as
538 *BOR4* is essential for boron export from cells. Further snRNA-seq under micro- and macro-
539 nutrient stress conditions would greatly improve our understanding of cell specific responses
540 and adaptation to abiotic stressors.

541
542

543 **Discussion**

544 Here we endeavoured to define the trajectory of cells in a morphologically reduced, fast growing
545 non-model plant useful for phytoremediation but also invasive in specific environments. We
546 generated a chromosome-resolved genome for the Lesser Duckweed *L. minuta* clone Im5633
547 and found that it did not share a lineage specific WGD with *S. polystachya* yet had an increased
548 number of Tandem Duplications (TDs) for genes involved in pathogen defence, response to
549 stress and nutrient acquisition. Additionally, we performed snRNA-seq on a clonal population of
550 whole *L. minor* plants that represent all developmental stages, which enabled us to discern
551 differentiated cell types and their development from the meristematic cells. Finally, the data
552 provided evidence that the mesophyll is a site of elemental and heavy metal transporter
553 expression.

554

555 Duckweed are particularly suited for single cell studies due to their size, direct contact with the
556 media, small non-redundant genome, and rapid clonal growth (Fig. 1). Most single cell studies
557 to date have been conducted using protoplasting on root or reproductive structures, which have
558 the advantage of having all cells in the developmental continuum (Denyer et al., 2019; Ryu et
559 al., 2019; Liu et al., 2020a). Similarly, Duckweed provide a continuum of all cell types and
560 developmental stages due to their rapid clonal growth and nested generations. Moreover,
561 Duckweed are in direct contact with their media allowing for detailed and controlled
562 manipulation of the environment, which in the past was leveraged to understand auxin
563 biology (Slovin and Cohen, 1988). The snRNA-seq method described here also couples well
564 with experiments where abiotic/biotic treatments of the samples are desired because they can
565 be immediately frozen and transcriptomic perturbations measured additionally frozen nuclei
566 presumably capture actively transcribing mRNA. One potential downside of snRNA-seq is the
567 loss of RNA in the cytoplasm; more experiments comparing the different techniques will be
568 required to evaluate this limitation.

569

570 Additionally, the Duckweed genome provides a compelling platform for gene annotation and
571 functional analysis. It was shown that *S. polystachya* has a reduced set of non-redundant protein
572 coding genes even though it has had two lineage specific WGD events (Wang et al., 2014). One
573 challenge in model species and crops is the number of paralogs (family size) that complicate
574 gene functional analysis due to redundancy of action. Here, the Im5633 genome also has a
575 streamlined set of genes that shows a similar reduction in paralogs compared to other plants
576 (Fig. 4A). However, Im5633 does have a much higher level of fractionation compared to sp9509
577 where Im5633 has 4.1% retention of syntenic paralogs compared to 49% retained in sp9509,
578 which means that either Im5633 is evolving at a greater rate or it has a different WGD history.
579 We find evidence that both Im5633 and wa8730 lack the *S. polystachya* lineage specific WGD
580 and only have the shared monocot *tau* WGD (Fig. 4, B and C). Currently there are conflicting
581 reports whether *S. polystachya* has the *tau* WGD (Wang et al., 2014; Ming et al., 2015; Hasing et
582 al., 2020). One explanation is that the lineage-specific WGD has obscured the *tau* WGD in *S.*
583 *polystachya*, and that Im5633 is more fractionated due to the very ancient (~150 mya) WGD. More
584 Duckweed genomes will help resolve the WGD history.

585

586 All single cell studies are currently in model systems, yet as we have shown here one can go
587 from a wild plant to a chromosome-resolved genome and leverage snRNA-seq dataset to
588 generate functional information. While model plants and specifically *A. thaliana* have high
589 quality annotations and marker genes for cells, there are significant challenges in defining
590 marker genes or assigning cellular functions for even well studied plants and crops. Here we
591 leveraged a three tiered approach to assign cell type. Our realization was that cell trajectory
592 analysis provides rich information about cell type, especially when it is coupled with a
593 developmental series shown here using an entire Duckweed plant similarly in roots and floral
594 tissues (Denyer et al., 2019; Satterlee et al., 2020; Xu et al., 2021). GO and orthology
595 comparisons are more fraught with issues due to sparse datasets (i.e. few or no GO terms
596 associated with gene predictions) where orthology may not exist or be cryptic with model
597 species or crops. However, when these three criteria are leveraged, annotation can be
598 improved as well as provide support for known and new cell types, like transition cell types.
599

600 The trajectory of cell types from meristem to terminally differentiated cells provides clues as to
601 their function. Cellular studies have suggested that the meristem is unique in Duckweed since it
602 gives rise to daughter fronds (Landolt, 1986). We found the meristem is divided into three
603 potential cell clusters (meristem, replication, and axillary meristem), which provides a clue as to
604 how duckweed is dividing rapidly leading to continuous daughter frond production. The
605 overlapping trajectory and GO terms of meristem-like and root-like cells (Fig. 6 and 7), suggests
606 the root may play additional roles that are unknown at this time, and may clarify its usefulness.
607 Furthermore, root and frond epidermal cells have distinct trajectories (Fig. 7) yet arrive in a
608 similar expression space consistent with their overall cellular function (Fig. 5B). Finally, the
609 emergence of the photosynthetic mesophyll-like cells from the meristem then giving rise to the
610 metabolically active and terminally differentiated parenchyma cells. We did not identify stomatal
611 cells or vascular tissue (vein) cells and this could be a result of our methodology or the fact that
612 *L. minuta* only has one vein and about 30 stomata (~60 cells per plant) (Landolt, 1986). Since
613 each mother frond has 256 (each daughter frond has 2 or more generations) developing, yet
614 unexpanded daughter/grand-daughter fronds the majority of the cells we detect will be actively
615 dividing; deeper sequencing will be required to accurately identify small populations of terminally
616 differentiated cells.
617

618 In model plants, nutrient uptake and transport primarily occurs in the roots and vasculature (Yan
619 et al., 2020). However, the Duckweed frond is in direct contact with its environment, which may
620 explain why we detect high expression of nutrient uptake genes in the cells we define as the
621 photosynthetically active mesophyll (Fig. 8). Both *ITR2* and *BOR4*, which are also both
622 expanded in Im5633 through TDs, are highly expressed in mesophyll. However, it has been
623 shown that *ITR2* is expressed in the roots (Vert et al., 2001), and *BOR4* is expressed in the
624 xylem in *A. thaliana* (Takano et al., 2002). The solitary vein of Im5633 is in close proximity to the
625 mesophyll, which makes it formally possible that we have mis-identified some of these cells and
626 they actually are vasculature or at an expression level these cells are too similar to separate
627 with the current sequencing coverage. Either way, this simplified system provides an opportunity
628 to further define the acquisition, transport and storage of toxic compounds at a single cell level.

629 Future studies will enable clarification of cell types as well as provide the opportunity to dissect
630 the specific cellular mechanisms associated with phytoremediation and invasiveness.

631

632 **Conclusions**

633 Duckweed provides an unprecedented opportunity to study the cell fates across an entire
634 morphologically reduced plant. Coupled to snRNA-seq, this system provides a new opportunity
635 to study the cell-specific responses to environmental changes. This dataset represents a first
636 look and will surely be refined with additional datasets in additional plants. Different plants,
637 conditions and treatments will refine our understanding of cell type and ultimately identify new
638 cell types and niches.

639

640 **Materials and Methods**

641 *Plant collection and growth*

642 *Lemna minuta* was collected on October 10, 2019 from Cotton Creek Park, Encinitas, CA, USA
643 (33°2'58"N 117°17'29"W), which is a waste water slough close to the ocean (Fig. 1A). A
644 population of clones were collected, surface sterilized and one clone was retained to multiply
645 the population. The representative clone was deposited in the Rutgers Duckweed Stock
646 Collective (RDSC; www.ruduckweed.org) and was assigned the clone number Im5633. Plants
647 were propagated on Schenk and Hildebrandt (SH) media as described at RDSC.

648

649 *Genome sequencing*

650 High Molecular weight (HMW) DNA was extracted with modifications (Lutz et al., 2011). The
651 resulting DNA was quality controlled for size and contamination. Unsheared HMW DNA was
652 used to make ONT ligation-based libraries. Libraries were prepared starting with 1.5 ug of DNA
653 and following all other steps in ONT's SQK-LSK109 protocol. Final libraries were loaded on a
654 ONT flow cell (v9.4.1) and run on the GridION. Bases were called in real-time on the GridION
655 using the flip-flop version of Guppy (v3.1). The resulting fastq files were concatenated and used
656 for downstream genome assembly steps. Illumina 2x150 paired end reads were also generated
657 for genome size estimates and polishing genome sequences. Libraries were prepared from
658 HMW DNA using NEBNext Ultra II (NEB, Beverly, MA) and sequenced on the Illumina
659 NovaSeq. Resulting raw sequence was only trimmed for adaptors, resulting in >60x coverage.

660

661 *Genome size estimation*

662 K-mer (k=31) frequency was estimated with Illumina paired end reads (2x150 bp) using Jellyfish
663 (v2.3.0) (Marçais and Kingsford, 2011) and analyzed using in house scripts and GenomeScope
664 and GenomeScope2 (Vurture et al., 2017; Ranallo-Benavidez et al., 2020). Genome size,
665 heterozygosity and repeat content were first estimated with GenomeScope
666 (<http://qb.cshl.edu/genomescope>) (Table 1). The K-mer frequency plot is consistent with a highly
667 heterozygous diploid genome or a tetraploid genome; based on previous flow cytometry, *L.*
668 *minuta* is diploid with an average genome size of 365 Mb (Table 1) (Bog et al., 2020).

669

670 *Genome assembly*

671 Resulting fastq files passing QC were assembled using our previously described pipeline
672 (Michael et al., 2018) with the modification that the initial assembly was generated using FlyE

673 (Kolmogorov et al., 2019). The resulting assembly graph (gfa) was visually inspected with
674 Bandage (v0.8.1) (Wick et al., 2015), which revealed a branching pattern consistent with a
675 heterozygous genome with structural differences between haplotypes. Consensus was
676 generated with three (3) iterative cycles of mapping the ONT reads back to the assembly with
677 minimap2 followed by Racon (v1.3.1) (Vaser et al., 2017), and the final assembly was
678 polished iteratively three times (3) using 2x150 bp paired-end Illumina reads mapped using
679 minimap2 (v2.17-r941) (>98% mapping) followed by pilon (v1.22) (Walker et al., 2014). The
680 resulting assembly was assessed for traditional genome statistics including assessing genome
681 completeness with Benchmarking Universal Single-Copy Orthologs (BUSCO) (v3) liliopsida
682 odb10 database (Table 1) (Simão et al., 2015).

683

684 *High throughput Chromatin Conformation Capture (HiC) genome scaffolding*

685 Crosslinking was performed on ground tissue and nuclei were isolated following (Colt). HiC data
686 was generated using the Arima-HiC Kit User Guide for Plant Tissues (Link et al., 2018),
687 according to the manufacturer's protocols (Catalog #A510008 Document Part #A160135 V00).
688 Libraries were generated following the Arima-HiC Kit Library Preparation Guide for Swift
689 Biosciences Accel-NGS 2S Plus DNA Library Kit (Catalog #A510008 Document Part #A160140
690 V00) and sequenced on Illumina NovaSeq. We used standard methods defined in the Aiden lab
691 genome assembly cookbook (<https://github.com/aidenlab/3d-dna/>). The primary steps include
692 alignment of HiC reads to the polished Im5633 assembly and creation of a contact map using
693 the Juicer pipeline (<https://github.com/aidenlab/juicer>) followed by automated scaffolding using
694 3d-dna. The scaffolds were then inspected and manually corrected with Juicebox Assembly
695 Tools (JBAT) before being finalized by the 3d-dna post review pipeline. The resultant scaffolds
696 for Im5633 were output and renamed from longest to shortest.

697

698 *High-copy repeat analysis*

699 Long read ONT assemblies provide another measure of completeness through the identification
700 of high copy repeats such as centromeres and telomeres sequences (VanBuren et al., 2015).
701 We employed a searching strategy to identify the centromeres that leverages the idea that the
702 highest copy number tandem repeat (TR) will be the centromere in most genomes (Melters et
703 al., 2013). We searched the genomes using tandem repeat finder (TRF; v4.09) using modified
704 settings (1 1 2 80 5 200 2000 -d -h) (Benson, 1999). TR were reformatted, summed and plotted
705 to find the highest copy number TR per our previous methods (VanBuren et al., 2015). While
706 Im5633 had robust telomere arrays (Table 1), we could not detect a high-copy number
707 centromere repeat similar to what we have found in *S. polystachya* (Michael et al., 2017), which
708 could mean Im5633 has holocentric centromeres.

709

710 *Gene prediction and annotation*

711 The chromosome resolved Im5633 genome was annotated using a pipeline consisting of four
712 major steps: repeat masking, transcript assembly, gene model prediction, and functional
713 annotation. Repeats were identified using EDTA (v1.9.8) (Ou et al., 2019) and these repeats
714 were used for softmasking. ONT cDNA reads were aligned to the genomes using minimap2 and
715 assembled into transcript models using Stringtie (v1.3.6) . Softmasked genomes and Stringtie
716 models were then processed by Funannotate (v1.6)

717 (<https://github.com/nextgenusfs/funannotate>) to produce gene models. Predicted proteins were
718 then functionally annotated using EggNOG-mapper (v2) (Huerta-Cepas et al., 2017). The
719 resulting gene models were renamed reflecting the chromosome and the linear position on the
720 chromosome.

721

722 *Orthogroup analysis and synteny*

723 Gene families and overrepresented groups were determined with Orthofinder (v2.4.0) and
724 CAFE5 (<https://github.com/hahnlab/CAFE5>). Genomes were accessed from Phytozome13
725 (<https://phytozome-next.jgi.doe.gov/>) or from specific publications such as the *Colocasia*
726 *esculenta* (Taro) (Yin et al., 2021), *Spirodela intermedia* (Hoang et al., 2020), *Spirodela*
727 *polyrhiza* clone 9509 (Hoang et al., 2018) and *Wolffia australiana* clone 8730 (Michael et al.,
728 2020). Orthofinder results were parsed and used for CAFE5 by modifying the species tree with
729 “make_ultrametric.py” and filtering orthocounts.tsv with “clade_and_size_filter.py”. Gene trees
730 were visualized with iTOL (Letunic and Bork, 2019). The SynMap tool on CoGe (Grover et al.,
731 2017) and McScan python version (<https://github.com/tanghaibao/jcvi/wiki/MCscan>) were
732 utilized to generate whole genome synthetic maps, identify syntenic orthologs, estimate
733 synonymous substitutions (Ks) across genomes, and generate figures.

734

735 *Single nuclei RNAseq (snRNA-seq)*

736 We generated a snRNA-seq dataset from a population of whole lm5633 plants grown in 250 ml
737 erlenmeyer flasks under 12 hours of light and 12 hours of dark (intermediate days) with constant
738 22°C temperature (LDHH). SnRNA-seq was performed using the SMARTseq2 protocol on
739 nuclei isolated from frozen plant material as previously described (Bakken et al., 2018) with
740 some modifications. Nuclei were extracted with a custom buffer consisting of Tris-HCL (9.5)
741 15mM, EDTA 10mM, KCl 130mM, NaCl 20mM, PVP-10 8%, Spermine 0.07g, Spermidine
742 0.05g, Triton X-100 0.10%, BME 7.50%. Individual nuclei were sorted on the FACSaria Fusion
743 system into SMARTseq2 lysis buffers allocated in 96 wells. The resulting libraries were
744 sequenced on the Illumina NovaSeq platform. The following QC was performed on the resulting
745 reads: genes were filtered if they were expressed in fewer than 5 cells, cells were required to
746 have at least 100 genes expressed and at least 20,000 reads mapped to the transcriptome; this
747 QC resulted in 269 cells with 8,457 genes expressed. An expression matrix was generated for
748 each cell by each gene. We leveraged Single-cell Trajectories Reconstruction, Exploration And
749 Mapping (STREAM) to cluster and map the cell trajectories of the 269 sequenced nuclei (Chen
750 et al., 2019). Clustering was performed with K-means (k=13) in two components and 26 nearest
751 neighbors using the top 100 principal components based on maximized silhouette scores. A
752 weighted centroid principle graph was generated with
753 epg_alpha=0.01,epg_mu=0.05,epg_lambda=0.05,jobs=10 and refined with
754 st.extend_elastic_principal_graph using epg_ext_par=0.8. To detect significant marker genes
755 st.detect_markers with cutoff_zscore=1.0 and cutoff_pvalue=0.01 was used. Transition markers
756 were determined with st.detect_transition_markers using cutoff_spearman=0.4 and
757 cutoff_logfc=0.25. SCANPY was used for data visualization purposes (Wolf et al., 2018).
758
759 The 269 nuclei formed 13 clusters that we defined using gene ontology (GO), KEGG, and
760 PFAM annotation into cell types based on orthologous marker genes. Orthology was

761 determined with Orthofinder (Emms and Kelly, 2019) as above. Marker genes from model
762 species based on existing literature were used to search the orthogroups for Im5633
763 orthologues (Supplemental Table S6). The marker genes in model organisms were compared
764 with the orthofinder gene table and a corresponding Im5633 ortholog was assigned. Generally,
765 annotations with a geneID from eggNOG mapper were more reliable than observing marker
766 genes in larger gene families (>3 copies per genomes). GO terms and quantities for cluster
767 marker genes were parsed and form marker genes lists using in-house scripts. GO lists were
768 visualized using REVIGO and CirGO (Supek et al., 2011; Kuznetsova et al., 2019).

769

770 **Accession numbers**

771 The final genome assembly is available on CoGe (<https://genomevolution.org/>) under the
772 ID:61245 or Biosample: SAMN19243672. Genomic and snRNA-seq reads can be found in SRA
773 under Biosample: SAMN19243672.

774

775 **Competing interest statement**

776 The authors declare no competing financial interests.

777

778 **Large datasets**

779 Supplemental Table S1. BUSCO scores for Im5633.

780 Supplemental Table S2. Predicted repeat types in the Im5633, sp9509 and wa8730 genomes.

781 Supplemental Table S3. A comparison of telomere sequence lengths in Duckweeds.

782 Supplemental Table S4. Tandem duplications (TDs) in Im5633.

783 Supplemental Table S5. Previously published marker genes used for defining snRNA-seq cell
784 types.

785 Supplemental Table S6. Orthogroups across all species.

786 Supplemental Table S7. *Lemna minuta* (Im5633) snRNA-seq marker genes per cell type.

787 Supplemental Table S8. Gene ontology (GO) terms for the meristem cluster.

788

789 **Acknowledgements**

790 We thank Rutgers Duckweed Stock Cooperative <http://www.ruduckweed.org/> for hosting the live
791 duckweed strain under Im5633.

792

793 **Table**

794 Table 1. *Lemna minuta* (Im5633) genome statistics.

795 **Figure legends**

796 **Figure 1. *Lemna minuta* growth highlighting its anatomical analogs to other plants.** A) *L.*
797 *minuta* (Im5633) growing as a dark green mat of fronds in a sewage slough at Cotton Creek
798 Park, Encinitas, CA USA. The inset highlights the small size (~1 mm) of several fronds on a
799 finger tip. B) Cartoon of the *L. minuta* generational contribution that leads to the dense frond
800 mat: mother (M; green), daughter (D; purple), grand-daughter (GD; blue), great grand-daughter
801 (GGD; orange) and great, great grand-daughter fronds (GGGD; pink). The grey line represents
802 how they are connected through exponential growth. C) A single M frond view with the attached
803 D fronds that have GD, GGD and GGGD fronds nested in the two meristematic pockets. D) A
804 “nested doll” view of one M frond and the maturing generations of D, GD, GGD and GGGD in

805 the pocket. E) One interpretation of the *Lemna* frond is that the M frond is an axillary stem that
806 has two poaches or bracts where the D frond is attached by a stipe or internode. The D, GD,
807 GGD and GGGD progression then is similar to a branching structure of a generic plant, and the
808 root-like structure at each subsequent axillary node is equivalent to an adventitious root. The
809 arrows indicate that multiple internodes will emerge from the axillary stem over time (Landolt,
810 1986).

811
812 **Figure 2. The highly heterozygous *Lemna minuta* (Im5633) genome resolved into 21**
813 **chromosomes.** A) K-mer ($k=31$) frequency plot for Im5633 reveals two peaks consistent with a
814 high level of heterozygosity (2%). B) Assembly graph of a 40 Mb region visualized with Bandage
815 shows both the heterozygous branches as well as repeat tangles, “hairballs.” C) High
816 throughput chromatin conformation capture (HiC) contact map resolving the polished Im5633
817 assembly into 21 chromosomes (darker red more contacts, lighter red to white less contacts).

818
819 **Figure 3. Gene family expansion in Im5633 is driven by tandem duplication (TD).** A)
820 Lm5633 chromosomes aligned to sp9509 chromosomes with syntenic blocks (grey lines)
821 anchoring positions between the two genomes. Chromosomes are the correct ratio between
822 one another but are not to scale between the two species. A minus sign after the number means
823 the chromosome has been flipped for visualization purposes. B) The single MYB transcription
824 factor *LATE ELONGATED HYPOCOTYL* (*LHY*; blue line) and *PSEUDO-RESPONSE*
825 *REGULATOR 7* (*PRR7*; green line) are in tight linkage and TE fragments (orange) resulting in
826 the region expansion in Im5633. Grey lines connect other syntenic genes (blue, forward; green
827 reverse). C) Boric acid channel TD (green line) also showing the expansion of the Im5633
828 genome due to TE fragments (orange). D) Sympatic principle component analysis (PCA) of
829 significant GO terms associated with TDs in Im5633. Size of the circle is the log frequency and
830 the color (red high, and yellow low) is the log FDR.

831
832 **Figure 4. Whole genome evolution shows consistent gene family contractions in Im5633**
833 **ancestry.** A) Gene family contractions (red) and expansions (blue) along the phylogenetic tree
834 leading to minimized duckweed genomes are shown at each node and total protein family
835 contractions and expansions for each species (right). Lm5633 shows the greatest similarity and
836 gene family conservation with wa8730. A heatmap of orthogroups significantly expanded or
837 contracted in Im5633. B) Self versus self and C) Im5633 versus other synonymous substitution
838 (K_s) plots to elucidate the WGD history of Im5633. Dating is based on the mean K_s peak for
839 each comparison using all paralogs/orthologs. Plant species used: *A. trichopoda* (Amborella), *A.*
840 *thaliana*, *V. vinifera* (grape), *A. comosus* (pineapple), *O. sativa* (rice), *O. thomaeum* (oropetium),
841 *Z. marina* (zostera), *C. esculenta* (taro), *S. intermedia* (si7747), *S. polystachya* (sp9509), *W.*
842 *australiana* (wa8730), and *L. minuta* (Im5633).

843
844 **Figure 5. Single nuclei RNA sequencing (snRNA-seq) of clonally propagating whole**
845 **Im5633 plants.** A) The most abundant transcripts reveal that highly expressed genes are
846 generally related to photosynthesis. B) UMAP embedding of 13 k-means clusters in the snRNA-
847 seq dataset. Trajectory analysis (black line) reveals a complex network where multiple branches
848 result in terminally fated cell types. C) Log fold change in marker genes for the 13 specific
849 clusters shows robust separation of cell types for functional analysis. Expression level (red,
850 high; blue, low; larger circle, more cells; smaller circles, fewer cells).

851

852 **Figure 6. Cell type definitions supported by gene ontology (GO) categories.** Upset plot
853 showing the number of GO terms that are specific and overlapping across the thirteen different
854 predicted cell types. The bars on top represent the number of intersecting GO terms per cell
855 type, and the bars on the left represent the number of GO terms found in each cell type. The cell
856 clusters as defined in Figure 5B are on the right hand side to highlight their correspondence with
857 the predicted cell types.

858

859 **Figure 7. Trajectory analysis defines cell types of the entire *L. minuta* plant .** A) UMAP tree
860 embedding of snRNA-seq clusters describing the cell types. B) Cartoon of *L. minuta* based on
861 (Banaszek and Musiał, 2011) coloring specific cell types per the UMAP. C) Live image of
862 Im5633 showing the green roots.

863

864 **Figure 8. Metal transport and accumulation associated genes in *L. minuta* are expressed**
865 **in mesophyll cells.** SnRNA-seq expression profiling of metal tolerance related genes reveal a
866 cell type specific expression pattern with greater gene expression localized to the mesophyll cell
867 types in Im5633. Lm5633.a03.5.g03640 (top) encodes *BORON TRANSPORTER 4 (BOR4)*
868 localized to mesophyll and replicating cells described further in the text.

869

870

Parsed Citations

Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342: 1241089

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bakken TE, Hodge RD, Miller JA, Yao Z, Nguyen TN, Aevermann B, Barkan E, Bertagnolli D, Casper T, Dee N, et al (2018) Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS One 13: e0209648

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Banaszek A, Musial K (2011) The new kenophyte in Poland - *Lemna minuta* Humb., Bonpl. and Kunth. Acta Societatis Botanicorum Poloniae 78: 69–72

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273: 1406–1409

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27: 573–580

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bog M, Sree KS, Fuchs J, Hoang PTN, Schubert I, Kuever J, Rabenstein A, Paolacci S, Jansen MAK, Appenroth K (2020) A taxonomic revision of *Lemna* sect. *Uninerves* (Lemnaceae). Taxon 69: 56–66

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ceschin S, Abati S, Ellwood NTW, Zuccarello V (2018) Riding invasion waves: Spatial and temporal patterns of the invasive *Lemna minuta* from its arrival to its spread across Europe. Aquat Bot 150: 1–8

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ceschin S, Crescenzi M, Iannelli MA (2020) Phytoremediation potential of the duckweeds *Lemna minuta* and *Lemna minor* to remove nutrients from treated waters. Environ Sci Pollut Res Int 27: 15806–15814

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen H, Albergante L, Hsu JY, Lareau CA, Lo Bosco G, Guan J, Zhou S, Gorban AN, Bauer DE, Aryee MJ, et al (2019) Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. Nat Commun 10: 1903

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Colt K Typha (Cattail) Crosslinking and Nuclei Isolation v2 (protocols.io.bsp6ndre). protocols.io. doi: 10.17504/protocols.io.bsp6ndre

Davis SM, Drake KD, Maier KJ (2002) Toxicity of boron to the duckweed, *Spirodella polyrrhiza*. Chemosphere 48: 615–620

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Del-Campo Marín CM, Oron G (2007) Boron removal by the duckweed *Lemna gibba*: a potential method for the remediation of boron-polluted waters. Water Res 41: 4579–4584

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP (2019) Spatiotemporal Developmental Trajectories in the *Arabidopsis* Root Revealed Using High-Throughput Single-Cell RNA Sequencing. Dev Cell 48: 840–852.e5

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dorrity MW, Alexandre C, Hamm M, Vigil A-L, Fields S, Queitsch C, Cuperus J (2020) The regulatory landscape of *Arabidopsis thaliana* roots at single-cell resolution. 2020.07.17.204792

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ellison CT, Vandenbussche F, Van Der Straeten D, Harmer SL (2011) XAP5 CIRCADIAN TIMEKEEPER regulates ethylene responses in aerial tissues of *Arabidopsis*. Plant Physiol 155: 988–999

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20: 238

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Feng G, Liu G, Xiao J (2015) The *Arabidopsis* EIN2 restricts organ growth by retarding cell expansion. Plant Signal Behav 10: e1017169

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fernández MI, Paisio CE, González PS, Perotti R, Meringer V, Villasuso AL, Agostini E (2020) Deepening the knowledge on the removal of Cr(VI) by *L. minuta* Kunth: removal efficiency and mechanisms, lipid signaling pathways, antioxidant response, and toxic effects. Environ Sci Pollut Res Int 27: 14567–14580

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Florian Schröder, Janina Lisso, Peggy Lange & Carsten Müsseg The extracellular EXO protein mediates cell expansion in *Arabidopsis* leaves. BMC Plant Biology. doi: 10.1186/1471-2229-9-20

Frick H (1985) Boron tolerance and accumulation in the duckweed, *Lemna minor*. J Plant Nutr 8: 1123–1129

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Grover JW, Bomhoff M, Davey S, Gregory BD, Mosher RA, Lyons E (2017) CoGe LoadExp+: A web-based suite that integrates next-generation sequencing data analysis workflows and visualization. Plant Direct. doi: 10.1002/pld3.8

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gujas B, Kastanaki E, Sturchler A, Cruz TMD, Ruiz-Sola MA, Dreos R, Eicke S, Truernit E, Rodriguez-Villalon A (2020) A Reservoir of Pluripotent Phloem Cells Safeguards the Linear Developmental Trajectory of Protophloem Sieve Elements. Curr Biol 30: 755–766.e4

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gür N, Türker OC, Böcük H (2016) Toxicity assessment of boron (B) by *Lemna minor* L. and *Lemna gibba* L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution. Chemosphere 157: 1–9

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gutensohn M, Schulz B, Nicolay P, Flügge UI (2000) Functional analysis of the two *Arabidopsis* homologues of Toc34, a component of the chloroplast protein import apparatus. Plant J 23: 771–783

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Harkess A, McLoughlin F, Bilkey N, Elliott K, Emenecker R, Mattoon E, Miller K, Czymmek K, Vierstra R, Meyers BC, et al (2020) A new *Spirodela polyrhiza* genome and proteome reveal a conserved chromosomal structure with high abundances of proteins favoring energy production. 2020.01.23.909457

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hasing T, Tang H, Brym M, Khazi F, Huang T, Chambers AH (2020) A phased *Vanilla planifolia* genome enables genetic improvement of flavour and production. Nature Food 1: 811–819

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Haslam TM, Gerelle WK, Graham SW, Kunst L (2017) The Unique Role of the ECERIFERUM2-LIKE Clade of the BAHD Acyltransferase Superfamily in Cuticular Wax Metabolism. Plants. doi: 10.3390/plants6020023

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hayashi S, Gresshoff PM, Kinkema M (2008) Molecular analysis of lipoxygenases associated with nodule development in soybean. Mol Plant Microbe Interact 21: 843–853

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hillman WS (1976) Calibrating duckweeds: light, clocks, metabolism, flowering. Science 193: 453–458

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hillman WS, Culley DD (1978) The Uses of Duckweed: The rapid growth, nutritional value, and high biomass productivity of these floating plants suggest their use in water treatment, as feed crops, and in energy-efficient farming. Am Sci 66: 442–451

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hoang PNT, Michael TP, Gilbert S, Chu P, Motley ST, Appenroth KJ, Schubert I, Lam E (2018) Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. Plant J 96: 670–684

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hoang PTN, Fiebig A, Novák P, Macas J, Cao HX, Stepanenko A, Chen G, Borisjuk N, Scholz U, Schubert I (2020) Chromosome-scale genome assembly for the duckweed *Spirodela intermedia*, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Sci Rep 10: 19230

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hoang PTN, Schubert I (2017) Reconstruction of chromosome rearrangements between the two most ancestral duckweed species *Spirodela polyrhiza* and *S. intermedia*. Chromosoma 126: 729–739

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Huang Y, Feng C-Z, Ye Q, Wu W-H, Chen Y-F (2016) *Arabidopsis* WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development. PLoS Genet 12: e1005833

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P (2017) Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Mol Biol Evol 34: 2115–2122

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jiao Y, Li J, Tang H, Paterson AH (2014) Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 26: 2792–2802

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, Suh MC (2013) *Arabidopsis* 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberin, sphingolipids, and phospholipids. Plant Physiol 162: 567–580

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kolmogorov M, Yuan J, Lin Y, Pevzner PA (2019) Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37: 540–546

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kötting O, Santelia D, Edner C, Eicke S, Marthaler T, Gentry MS, Comparot-Moss S, Chen J, Smith AM, Steup M, et al (2009) STARCH-EXCESS4 is a laforin-like Phosphoglucan phosphatase required for starch degradation in *Arabidopsis thaliana*. *Plant Cell* 21: 334–346

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker SB, Pham S, Erwin JA, Miller JA, et al (2016) Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. *Nat Protoc* 11: 499–524

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kuznetsova I, Lugmayr A, Siira SJ, Rackham O, Filipovska A (2019) CirGO: an alternative circular way of visualising gene ontology terms. *BMC Bioinformatics* 20: 84

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Landolt E (1986) Biosystematic investigations in the family of duckweeds (Lemnaceae)(Vol. 2.) The family of Lemnaceae-a monographic study. vol. 1. Veroff Geobot Inst ETH 71: 1–563

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res* 47: W256–W259

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Link VM, Duttke SH, Chun HB, Holtman IR, Westin E, Hoeksema MA, Abe Y, Skola D, Romanoski CE, Tao J, et al (2018) Analysis of Genetically Diverse Macrophages Reveals Local and Domain-wide Mechanisms that Control Transcription Factor Binding and Function. *Cell* 173: 1796–1809.e17

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu C, Gu W, Dai Z, Li J, Jiang H, Zhang Q (2018) Boron accumulation by *Lemna minor* L. under salt stress. *Sci Rep* 8: 8954

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu Q, Liang Z, Feng D, Jiang S, Wang Y, Du Z, Li R, Hu G, Zhang P, Ma Y, et al (2020a) Transcriptional landscape of rice roots at the single-cell resolution. *Mol Plant*. doi: 10.1016/j.molp.2020.12.014

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu Z, Zhou Y, Guo J, Li J, Tian Z, Zhu Z, Wang J, Wu R, Zhang B, Hu Y, et al (2020b) Global Dynamic Molecular Profiling of Stomatal Lineage Cell Development by Single-Cell RNA Sequencing. *Mol Plant* 13: 1178–1193

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lopez-Anido CB, Vatén A, Smoot NK, Sharma N, Guo V, Gong Y, Anleu Gil MX, Weimer AK, Bergmann DC (2021) Single-cell resolution of lineage trajectories in the *Arabidopsis* stomatal lineage and developing leaf. *Dev Cell* 56: 1043–1055.e4

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lucey J (2003) LEMNA MINUTA KUNTH (LEAST DUCKWEED) IN E. CORK (VC H5). IRISH BOTANICAL

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lutz KA, Wang W, Zdepski A, Michael TP (2011) Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing. *BMC Biotechnol* 11: 54

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y (2015) The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in *Arabidopsis*. *Wiley Interdiscip Rev Dev Biol* 4: 655–671

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ma J, Jiang Q-T, Wei L, Yang Q, Zhang X-W, Peng Y-Y, Chen G-Y, Wei Y-M, Liu C, Zheng Y-L (2014) Conserved structure and varied expression reveal key roles of phosphoglucan phosphatase gene starch excess 4 in barley. *Planta* 240: 1179–1190

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Marand AP, Chen Z, Gallavotti A, Schmitz RJ (2020) A cis-regulatory atlas in maize at single-cell resolution. 2020.09.27.315499

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. *Bioinformatics* 27: 764–770

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun T-P, Steber CM (2003) The *Arabidopsis* SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. *Plant Cell* 15: 1120–1130

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, et al (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. *Genome Biol* 14: R10

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Michael TP, Bryant D, Gutierrez R, Borisjuk N, Chu P, Zhang H, Xia J, Zhou J, Peng H, El Baidouri M, et al (2017) Comprehensive definition of genome features in *Spirodela polyrhiza* by high-depth physical mapping and short-read DNA sequencing strategies. *Plant J* 89: 617–635

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Michael TP, Ernst E, Hartwick N, Chu P, Bryant D, Gilbert S, Ortlieb S, Baggs EL, Sree KS, Appenroth KJ, et al (2020) Genome and time-of-day transcriptome of *Wolffia australiana* link morphological minimization with gene loss and less growth control. *Genome Res.* doi: 10.1101/gr.266429.120

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Michael TP, Jupe F, Bernm F, Motley ST, Sandoval JP, Lanz C, Loudet O, Weigel D, Ecker JR (2018) High contiguity *Arabidopsis thaliana* genome assembly with a single nanopore flow cell. *Nat Commun* 9: 541

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Michael TP, VanBuren R (2020) Building near-complete plant genomes. *Curr Opin Plant Biol* 54: 26–33

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mifsud S (2010) First occurrences of *Lemna minuta* Kunth (fam. Lemnaceae) in the Maltese islands.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mills RF, Doherty ML, López-Marqués RL, Weimar T, Dupree P, Palmgren MG, Pittman JK, Williams LE (2008) ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in *Arabidopsis*. *Plant Physiol* 146: 116–128

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang M-L, Chen J, Biggers E, et al (2015) The pineapple genome and the evolution of CAM photosynthesis. *Nat Genet* 47: 1435–1442

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moodley D, Proches S, Wilson JRU (2016) A global assessment of a large monocot family highlights the need for group-specific analyses of invasiveness. *AoB Plants* 8: lw009

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Oikawa T, Kyozuka J (2009) Two-Step Regulation of LAX PANICLE1 Protein Accumulation in Axillary Meristem Formation in Rice. *Plant Cell* 21: 1095–1108

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, Lugo CSB, Elliott TA, Ware D, Peterson T, et al (2019) Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. *Genome Biol* 20: 275

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pandey DK, Chaudhary B (2016) Domestication-driven *Gossypium* profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression. *BMC Plant Biol* 16: 112

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Paolacci S, Jansen MAK, Harrison S (2018) Competition Between *Lemna minuta*, *Lemna minor*, and *Azolla filiculoides*. Growing Fast or Being Steadfast? *Front Chem* 6: 207

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Qiao X, Li Q, Yin H, Qi K, Li L, Wang R, Zhang S, Paterson AH (2019) Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. *Genome Biol* 20: 38

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ranallo-Benavidez TR, Jaron KS, Schatz MC (2020) GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. *Nat Commun* 11: 1432

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rimon D, Galun E (1968) Morphogenesis of *Spirodela oligorrhiza*: Ontogenesis of Fronds. *Bot Gaz* 129: 138–144

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rosquete MR, Kleine-Vehn J (2018) PIN7 auxin carrier is a terminator of radial root expansion in *Arabidopsis thaliana*. *bioRxiv* 253807

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ryu KH, Huang L, Kang HM, Schiefelbein J (2019) Single-Cell RNA Sequencing Resolves Molecular Relationships Among Individual Plant Cells. *Plant Physiol* 179: 1444–1456

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Satterlee JW, Strable J, Scanlon MJ (2020) Plant stem-cell organization and differentiation at single-cell resolution. *Proc Natl Acad Sci U S A* 117: 33689–33699

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schröder F, Lisso J, Müssig C (2011) EXORDIUM-LIKE1 promotes growth during low carbon availability in *Arabidopsis*. *Plant Physiol* 156: 1620–1630

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shi Y, Xu H, Shen Q, Lin J, Wang Y, Hua X, Yao W, Yu Q, Ming R, Zhang J (2019) Comparative Analysis of SUS Gene Family between *Saccharum officinarum* and *Saccharum spontaneum*. *Trop Plant Biol* 12: 174–185

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Silva GG, Green AJ, Weber V, Hoffmann P, Lovas-Kiss A, Stenert C, Maltchik L (2018) Whole angiosperms *Wolffia columbiana* disperse by gut passage through wildfowl in South America. *Biol Lett* 14: 20180703

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31: 3210–3212

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Slovín JP, Cohen JD (1988) Levels of Indole-3-Acetic Acid in *Lemna gibba* G-3 and in a Large *Lemna* Mutant Regenerated from Tissue Culture. *Plant Physiol* 86: 522–526

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ (2020) Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in *Arabidopsis* female gametophytes. *Genome Biol* 21: 178

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Srivastava AK, Senapati D, Srivastava A, Chakraborty M, Gangappa SN, Chattopadhyay S (2015) Short Hypocotyl in White Light1 Interacts with Elongated Hypocotyl5 (HY5) and Constitutive Photomorphogenic1 (COP1) and Promotes COP1-Mediated Degradation of HY5 during *Arabidopsis* Seedling Development. *Plant Physiol* 169: 2922–2934

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. *PLoS One* 6: e21800

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Takahashi I, Kojima S, Sakaguchi N, Umeda-Hara C, Umeda M (2010) Two *Arabidopsis* cyclin A3s possess G1 cyclin-like features. *Plant Cell Rep* 29: 307–315

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) *Arabidopsis* boron transporter for xylem loading. *Nature* 420: 337–340

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tian Q, Olsen L, Sun B, Lid SE, Brown RC, Lemmon BE, Fosnes K, Gruis DF, Opsahl-Sorteberg H-G, Otegui MS, et al (2007) Subcellular localization and functional domain studies of DEFECTIVE KERNEL1 in maize and *Arabidopsis* suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. *Plant Cell* 19: 3127–3145

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Türker OC, Yakar A, Türe C, Saz Ç (2019) Boron (B) removal and bioelectricity captured from irrigation water using engineered duckweed-microbial fuel cell: effect of plant species and vegetation structure. *Environ Sci Pollut Res Int* 26: 31522–31536

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Upadhyay N, Kar D, Deepak Mahajan B, Nanda S, Rahiman R, Panchakshari N, Bhagavatula L, Datta S (2019) The multitasking abilities of MATE transporters in plants. *J Exp Bot* 70: 4643–4656

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Utami D, Kawahata A, Sugawara M, Jog RN, Miwa K, Morikawa M (2018) Effect of Exogenous General Plant Growth Regulators on the Growth of the Duckweed *Lemna minor*. *Front Chem* 6: 251

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

VanBuren R, Bryant D, Edger PP, Tang H, Burgess D, Challabathula D, Spittle K, Hall R, Gu J, Lyons E, et al (2015) Single-molecule sequencing of the desiccation-tolerant grass *Oropetium thomaeum*. *Nature* 527: 508–511

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Van Echelpoel W, Boets P, Goethals PLM (2016) Functional Response (FR) and Relative Growth Rate (RGR) Do Not Show the Known Invasiveness of *Lemna minor* (Kunth). *PLoS One* 11: e0166132

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Van Hoeck A, Horemans N, Monsieurs P, Cao HX, Vandenbroucke H, Blust R (2015) The first draft genome of the aquatic model plant *Lemna minor* opens the route for future stress physiology research and biotechnological applications. *Biotechnol Biofuels* 8: 188

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vaser R, Sović I, Nagarajan N, Šikić M (2017) Fast and accurate de novo genome assembly from long uncorrected reads. *Genome Res* 27: 737–746

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vert G, Briat JF, Curie C (2001) *Arabidopsis* IRT2 gene encodes a root-periphery iron transporter. *Plant J* 26: 181–189

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vishwakarma A, Tetali SD, Selinski J, Scheibe R, Padmasree K (2015) Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in *Arabidopsis thaliana*. *Ann Bot* 116: 555–569

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vojta L, Tomašić Paić A, Horvat L, Rac A, Lepeduš H, Fulgosi H (2019) Complex luminal immunophilin AtCYP38 influences thylakoid remodelling in *Arabidopsis thaliana*. *J Plant Physiol* 243: 153048

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC (2017) GenomeScope: fast reference-free genome profiling from short reads. *Bioinformatics* 33: 2202–2204

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Walker BJ, Abeel T, Shea T, Priest M, Abouelhail A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLoS One* 9: e112963

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, et al (2014) The *Spirodela polyrhiza* genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. *Nat Commun* 5: 3311

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang X, Li J, Guo J, Qiao Q, Guo X, Ma Y (2020) The WRKY transcription factor PIWRKY65 enhances the resistance of *Paeonia lactiflora* (herbaceous peony) to *Alternaria tenuissima*. *Hortic Res* 7: 57

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wen R, Wang S, Xiang D, Venglat P, Shi X, Zang Y, Datla R, Xiao W, Wang H (2014) UBC13, an E2 enzyme for Lys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability. *Plant J* 80: 424–436

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wen X, Ding Y, Tan Z, Wang J, Zhang D, Wang Y (2020) Identification and characterization of cadmium stress-related LncRNAs from *Betula platyphylla*. *Plant Sci* 299: 110601

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wick RR, Schultz MB, Zobel J, Holt KE (2015) Bandage: interactive visualization of de novo genome assemblies. *Bioinformatics* 31: 3350–3352

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wolf FA, Angerer P, Theis FJ (2018) SCANPY: large-scale single-cell gene expression data analysis. *Genome Biol* 19: 15

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu L, Xu Y, Dong A, Sun Y, Pi L, Xu Y, Huang H (2003) Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. *Development* 130: 4097–4107

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu X, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu Z, Wang L, Fox N, et al (2021) Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. *Dev Cell*. doi: 10.1016/j.devcel.2020.12.015

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yamawaki TM, Lu DR, Ellwanger DC, Bhatt D, Manzanillo P, Arias V, Zhou H, Yoon OK, Homann O, Wang S, et al (2021) Systematic comparison of high-throughput single-cell RNA-seq methods for immune cell profiling. *BMC Genomics* 22: 66

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. *Front Plant Sci* 11: 359

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yin J, Jiang L, Wang L, Han X, Guo W, Li C, Zhou Y, Denton M, Zhang P (2021) A high-quality genome of taro (*Colocasia esculenta* (L.) Schott), one of the world's oldest crops. *Mol Ecol Resour* 21: 68–77

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao W, Li Y, Fan S, Wen T, Wang M, Zhang L, Zhao L (2021) The tomato WRKY32 transcription factor affects ripe fruit color by regulating YFT1, a core component of ethylene signal transduction. *J Exp Bot*. doi: 10.1093/jxb/erab113

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)