

1 **The draft chromosome-level genome assembly of tetraploid ground cherry**

2 **(*Prunus fruticosa* Pall.) from long reads**

3

4 Thomas W. Wöhner¹, Ofere F. Emeriewen¹, Alexander H.J. Wittenberg², Harrie

5 Schneiders², Ilse Vrijenhoek², Júlia Halász³, Károly Hrotkó⁴, Katharina J. Hoff^{5,8}, Lars

6 Gabriel^{5,8}, Jens Keilwagen⁶, Thomas Berner⁶, Mirko Schuster¹, Andreas Peil¹, Jens

7 Wünsche⁷, Stephan Kropot⁹, Henryk Flachowsky¹

8

9 ¹Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute

10 for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, D-01326, Dresden, Germany

11 ²Keygene N.V., P.O. Box 216, 6700 AE Wageningen, Netherlands

12 ³Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent

13 István University, Ménesi Str. 44, Budapest 1118, Hungary

14 ⁴Department of Floriculture and Dendrology, Institute of Landscape Architecture,

15 Urban Planning and Ornamental Horticulture, Hungarian University of Agriculture and

16 Life Science, Villányi Str. 35-43, Budapest 1118, Hungary

17 ⁵Institute of Mathematics and Computer Science, University of Greifswald, Walther-

18 Rathenau-Str. 47, 17489 Greifswald, Germany

19 ⁶Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute

20 for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, D-06484 Quedlinburg,

21 Germany

22 ⁷University of Hohenheim, Institute of Special Crops and Crop Physiology, 70593

23 Stuttgart, Germany

24 ⁸Center for Functional Genomics of Microbes, University of Greifswald, Felix-

25 Hausdorff-Str. 8, 17489 Greifswald, Germany

26 ⁹Jagdweg 1-3, 01159 Dresden, Germany

27 *corresponding author: thomas.woehner@julius-kuehn.de

28 **Keywords:**

29 genome assembly, long read, *P. fruticosa*, ground cherry, tetraploid

30

31 **Abstract**

32 **Background**

33 Cherries are stone fruits and belong to the economically important plant family of

34 Rosaceae with worldwide cultivation of different species. The ground cherry, *Prunus*

35 *fruticosa* Pall. is one ancestor of cultivated sour cherry, an important tetraploid cherry

36 species. Here, we present a long read chromosome-level draft genome assembly and

37 related plastid sequences using the Oxford Nanopore Technology PromethION

38 platform and R10.3 pore type.

39

40 **Finding**

41 The final assemblies obtained from 117.3 Gb cleaned reads representing 97x

42 coverage of expected 1.2 Gb tetraploid (2n=4x=32) and 0.3 Gb haploid (1n=8)

43 genome sequence of *P. fruticosa* were calculated. The N50 contig length ranged
44 between 0.3 and 0.5 Mb with the longest contig being ~6 Mb. BUSCO estimated a
45 completeness between 98.7 % for the 4n and 96.1 % for the 1n datasets.
46 Using a homology and reference based scaffolding method, we generated a final
47 consensus genome sequence of 366 Mb comprising eight chromosomes. The N50
48 scaffold was ~44 Mb with the longest chromosome being 66.5 Mb.
49 The repeat content was estimated to ~190 Mb (52 %) and 58,880 protein-coding
50 genes were annotated. The chloroplast and mitochondrial genomes were 158,217 bp
51 and 383,281 bp long, which is in accordance with previously published plastid
52 sequences.

53

54 Conclusion

55 This is the first report of the genome of ground cherry (*P. fruticosa*) sequenced by long
56 read technology only. The datasets obtained from this study provide a foundation for
57 future breeding, molecular and evolutionary analysis in *Prunus* studies.

58

59 Data Description

60 Context

61 Cherries are stone fruits belonging to the important family of Rosaceae fruit crops,
62 which are produced for fresh fruit consumption or industrial processing [1]. The
63 worldwide production of cherries was 4 million metric tons on an area of 6.7 million
64 ha [2] in 2019. Nevertheless, cherry production worldwide is threaten by changing

65 climatic conditions, which promote pests, e.g., *Drosophila suzukii* and *Rhagoletis*
66 *cerasi*, diseases, e.g., *Monilinia laxa* and *Blumeriella jaapii*, as well as unfavourable
67 abiotic conditions, e.g., hail or late frost [1, 3]. Breeding of new cultivars that are
68 resistant to biotic stress factors and adapted to local climate conditions could
69 contribute to sustainable cultivation in the long-term and secure future production.
70 Donors for breeding and introgression of new characters and traits can be found in
71 wild/related species of the genus *Prunus* [4–6]. The ground cherry (*Prunus fruticosa*
72 Pall.) is a wild *Prunus* species with a small shrub-like habitus that is native from middle
73 Europe to Western Siberia and Western China [7, 8]. The natural habitats vary from
74 open landscapes with steppe characteristics, the edges of open forests [9–11] or
75 hillsides with stony soils [12]. *Prunus fruticosa* is a self-incompatible [13] tetraploid
76 (2n=4x=32) species with an estimated genome size of 1.31 pg determined by flow
77 cytometry analysis [14]. It is the progenitor of sour cherry (*P. cerasus* L.), which
78 developed by natural hybridization from unreduced pollen of sweet cherry (*P. avium*
79 L.) with *P. fruticosa* [15, 16]. *Prunus fruticosa* is a valuable genetic resource for
80 breeding of varieties adapted to drought and low temperatures [17, 18] because of its
81 growth at cold and semi-arid sites and its edible fruits [7]. Due to its dwarf habitus,
82 the species has been used as a donor for cherry rootstock breeding in several
83 programmes [19–21]. Like other Rosaceae fruit species, cherries are perennial crops
84 and breeding of new cultivars is labour intensive and time consuming [22]. Genome
85 sequencing advances breeding processes enormously by providing insights into
86 evolution and comparative studies with related species, determining the positions of
87 putative genes, which may control different traits, and allowing for the possibility for
88 marker-assisted selection. Hence several genomes of other *Prunus* species [23–30]

89 as well as other members of the *Rosaceae* family [31–33] have been sequenced in
90 recent years. The sizes of *Prunus* genomes so far sequenced range between 250–300
91 Mbp with high synteny of the eight basic chromosomes [3]. However, sequencing and
92 assembling plant genomes is still a challenging task. Although the commercialization
93 of third-generation sequencing technology has enabled rapid generation of giga-
94 bases of data, most genome sequences are still fragmented or incomplete due to
95 size, composition and structure (repeat content) of genomes with many reference
96 genomes presented as drafts. The availability of long read sequencing technologies
97 can solve these problems and offers many more advantages [34].

98 In this study, we present a draft assembly of the *P. fruticosa* Pall. genome generated
99 with long read Oxford Nanopore Technology (ONT). Using the final assembly for
100 reference based scaffolding, eight chromosome scale pseudomolecules were
101 constructed and subsequently used for gene annotation. This data provides additional
102 information, which may be useful for breeding and genetic diversity studies in cherry
103 and the genus *Prunus* in general.

104

105 **Material and Methods**

106 *Plant Material, DNA extraction and ONT sequencing*

107 *Prunus fruticosa* Pall. young leaf material (tetraploid, short type, size ca. 30–50 cm)
108 was collected in its natural habitat [8] from a single tree (*in situ*) in Budapest,
109 Hármashtárhegy (Fig. 1, coordinates 47°33'15.322"N, 18°59'49.623"E). Snap frozen
110 plant material was sent to the sequencing service provider KeyGene N.V.
111 (Wageningen, The Netherlands) for high molecular weight DNA extraction, purification

112 and nanopore sequencing analysis. High molecular weight DNA was extracted by
113 KeyGene N.V. using nuclei isolated from frozen leaves ground under liquid nitrogen,
114 as described elsewhere [35, 36]. Genomic DNA was quality controlled with a Qubit
115 device (Thermo Fisher Scientific, Waltham, MA, USA) and length was determined
116 using the Femto Pulse instrument (Agilent, California). Short DNA fragments were
117 removed using the Circulomics SRE XL kit (Circulomics, Baltimore, MD, USA)
118 following the manufactures instruction. Finally 2 µg AMPure purified genomic DNA per
119 flow cell (AMPure PB, Pacific Biosciences, California) was used as input for library
120 construction using the 1D Genomic DNA ligation SQK_LSK110 library prep kit (Oxford
121 Nanopore Technologies, Oxford, UK). Subsequently, the library was loaded on three
122 PromethION FLO PRO003 (R10.3 pore, early access pore) flow cells and run on
123 PromethION P24 platform according to the manufacturer's recommendations.
124 Basecalling was performed in real-time on the compute module (PromethION version:
125 20.06.9/Guppy4.0.11). Only passed reads with a Q-value threshold of seven were
126 used for further data analysis.

127

128 *De novo assembly and scaffolding*

129 Raw data assembly was performed using a combination of the aligner Minimap2
130 (2.16-r922) and the assembler Miniasm (0.2-r137-dirty) using a 20x, 30x and 50x
131 coverage/length cut-offs at default settings. Three runs of Racon (v1.4.10)
132 subsequently improved base accuracy of the interim contig assembly using a 10 Kb
133 length cut-off and one run of Medaka (1.01) using all raw reads for consensus calling.
134 The sequences of the obtained contig assembly were collapsed with two runs of

135 Purge Dups (V1.0.1) using default settings. The BUSCO (Benchmark Universal Single-
136 Copy Orthologs - Galaxy Version 4.1.4) software was used for quantitative and quality
137 assessment of the genome assemblies based on near-universal single-copy
138 orthologs. The genome sequence of *P. avium* 'Tieton' ([37], GenBank assembly
139 accession: GCA_014155035.1) was used as a matrix for reference guided scaffolding
140 of the final assembly (purged2) using RAGOO (v1.11) with the standard settings [38].
141 Final sequence statistics were calculated with CLC Mainworkbench (v20.0.4). The
142 generated *P. fruticosa* genome (Pf_1.0) was hard masked with NCBI WindowMasker
143 [39] implementation on the CoGe platform [40]. Synteny comparisons between *P.*
144 *avium* 'Tieton' and *P. persica* 'Lovell' ([24], GenBank assembly accession:
145 GCA_000346465.2) with Pf_1.0 were performed with SynMap2 [41] using the
146 standard program settings.

147

148 *Annotation*

149 A species-specific repeat library for Pf_1.0 was first generated with RepeatModeler
150 1.0.11 [42]. The obtained dataset was then used for repetitive sequence identification
151 and masking in Pf_1.0 with RepeatMasker 4.0.7 [43]. As no RNA-seq data for *P.*
152 *fruticosa* was available, publicly available RNA-seq data [44] from the close relative *P.*
153 *cerasus* 'Schattenmorelle' (SRR2290965) was downloaded from NCBI and mapped
154 to Pf_1.0 using HISAT2 2.1.0 [45].

155 The structural gene annotation of genomic features is result of a combination of ab
156 initio and homology-based gene annotation. Ab initio gene prediction was performed
157 with both BRAKER1 [46, 47] and BRAKER2 [48]. The BRAKER pipeline in general

158 leverages extrinsic data, such as spliced alignments from short read RNA-Seq or
159 large-scale protein to genome alignments for executing self-training GeneMark-ET/EP
160 [49] [50, 51] with help of SAMtools [52], and BamTools [53], or GeneMark-EP+ [54],
161 with DIAMOND [55], GeneMark-ES [56], and Spaln2 [57, 58] for generating an
162 evidence-supported training gene set for the gene finder AUGUSTUS. AUGUSTUS
163 then predicts genes with evidence where available [59] and in *ab initio* mode in local
164 absence of evidence [60]. OrthoDB v.10 *Plantae* partition [61] and related species
165 proteins [*P. armeniaca* (GCA_903112645.1), *P. persica* (GCF_000346465.2), *P. mume*
166 (GCF_000346735.1), *P. dulcis* (GCF_902201215.1) and *P. avium* (GCF_002207925.1)]
167 obtained from GenBank were used as reference protein dataset for BRAKER2. Gene
168 predictions from BRAKER1 and BRAKER2 were combined into one transcript set by
169 filtering the union of transcripts from both predictions in context with their support by
170 the evidence generated with PrEvCo v. 0.1.0 (<https://github.com/LarsGab/PrEvCo>).
171 The obtained *ab initio* annotation was augmented with additional GFF attributes using
172 the GeMoMa module AnnotationEvidence.
173 Homology-based gene annotation was performed with GeMoMa version 1.7.2beta
174 [62] using the mapped RNA-seq data from ‘Schattenmorelle’ and the genome and
175 gene annotation from the following reference organisms that are available at NCBI: *A.*
176 *thaliana* (TAIR10.1, RefSeq GCF_000001735.4), *M. domestica* (GDDH1,
177 GCF_002114115.1), *F. vesca* (FraVesHawai_1.0, GCF_000184155.1), *P. avium*
178 (PAV_r1.0, GCF_002207925.1), *P. persica* (Prunus_persica_NCBIv2,
179 GCF_000346465.2), *P. mume* (P.mume_V1.0, GCF_000346735.1), *P. dulcis*

180 (ALMONDv2, GCF_902201215.1) and *P. armeniaca* (pruArmRojPasHapCUR,
181 GCA_903112645.1).

182 The augmented *ab initio* gene annotation from BRAKER and the eight homology-
183 based gene predictions from GeMoMa were combined using the GeMoMa module
184 GAF yielding a final gene annotation. BUSCO with set embryophyta_odb10 (Galaxy
185 Version 4.1.4) was used for the assessment of protein completeness. For handling
186 alternative transcripts correctly and not as duplicates, a custom script was ran on the
187 BUSCO full table, assigning gene ID instead of transcript ID. The functional annotation
188 was performed with the obtained protein files using InterproScan at Galaxy Europe
189 using default parameters [63–65] and [66].

190 Noncoding RNA prediction was performed with tRNAscan (Galaxy version 0.4),
191 Aragorn (Galaxy version 0.6), barrnap (Galaxy version 1.2.1) and INFERNAL (cmsearch
192 with rFAM 11.0, Galaxy Version 1.1.2.0).

193 The chloroplast and mitochondria sequences were annotated with GeSeq [67] using
194 the references for chloroplast from *P. fruticosa* (GenBank accession MT916286)
195 published by [68] and mitochondria from *P. avium* (GenBank accession MK816392)
196 published by [69]. GeSeq pipeline analysis was performed using the annotation
197 packages ARAGORN, blatN, blatX, Chloe and HMMER.

198

199 **Data validation and quality control**

200 We report the use of Oxford Nanopore technology to assemble a high-quality
201 reference genome of *P. fruticosa* – the first report in a tetraploid *Prunus* species.

202 Previously described genomes in *Prunus* applied Illumina, PacBio or shotgun
203 sequencing techniques [25, 26, 29]. However, Wang et al. [28] reported a combination
204 of Oxford Nanopore and Illumina technologies for sweet cherry. Table S1 summarizes
205 the assembly statistics of our study. We generated 4.5 million raw reads (124.7 Gb),
206 which is considerably lower compared to the read output of *P. avium* cultivars [25,
207 28]. After cleaning, approximately 4.0 million reads comprised 117.3 Gb in total (mean
208 $q = 9.96$), which were generated by the R10.3 PromethION flow cells representing
209 ~97x coverage of the estimated tetraploid genome size of 1.2 Gb. Compared to Wang
210 et al. [28], the R10.3 flow cells produced longer reads with higher quality (Table S1).
211 A mean of 1,347,740 (SD = 135.304) reads with a N50 length of 41,236 (SD = 275) bp
212 and 39.1 (SD = 4.2) Gb per flow cell were obtained (Table S1). Based on the results of
213 the raw data assemblies (Table S2), it was decided to continue with the obtained 30x
214 coverage Miniasm assembly with a length cut-off at 62.3 kb. After three runs of Racon
215 and one run of Medaka consensus calling, the final assembly covered approximately
216 four times the estimated haploid genome size of ~0.3 Gb, indicating we were able to
217 separate the parental haplotypes (4n) to a large extent. Consensus calling resulted in
218 a total assembly size of 1161.5 Mb, represented by 4.426 contigs with an N50 contig
219 size of 325 Kb and the longest contig almost 5,9 Mb (Table 1). Two runs of Purge
220 Dups were performed to collapse the haplotype-separated assembly in order to
221 reduce the duplicated content to a haplotype consensus sequence (1n). The
222 purged_2x assembly data set has a size of 376,7 Mb and consists 1.275 contigs with
223 an N50 contig size of 533.426 bp. This assembly was used as input for reference-
224 guided scaffolding using RaGoo and the genome sequence of *P. avium* 'Tieton' [28].
225 The obtained sequence file consists of nine scaffolds representing eight

226 chromosomes and one sequence with concatenated unmapped data (unassigned).

227 The final *Prunus fruticosa* 1.0 genome sequence (Fig. 2) consists of 366,5 Mb with a

228 N50 size of scaffolds about 43,818.497 bp and G+C of 37.74 %, A+T of 62.22 % and

229 only 0.03 % gaps (N). The longest scaffold is 66,497,422 bp (Table 2). Compared to

230 the genome sequences available so far in *Prunus* [24, 25, 28], the genome of *P.*

231 *fruticosa* is the most complete obtained from long read sequencing only.

232 BUSCO analysis resulted in 98.6 % - 98.7 % completeness for the representing 4n

233 Racon and Medaka generated data sets. The comparison of BUSCO results (Fig. 3)

234 on assembly completeness between the Racon only and the Racon and Medaka data

235 sets (Table 1) indicates that consensus generation by Medaka increases the number

236 of duplicated genes (from 89.7 % to 92.4 %) and improves the consensus accuracy.

237 The obtained assembly sequences (1n) after haplotig removal showed a decrease of

238 duplicated BUSCOS (from 92.4 % to 12.5 %) and an increase of single BUSCOS (from

239 6.3 % to 83.6 %). *P. fruticosa* 1.0 results outlined in Figure 3 show a 96.4 %

240 completeness. Compared to the genome sequence of *P. persica* (99.3 %) and *P.*

241 *avium* (98.3 %) which represent the highest genome completeness of published

242 datasets, the obtained long read only assemblies (98.7 %) and consensus genome

243 sequence (96.4 %) from this study shows a comparably high genome completeness.

244 Our approach detected 189,7 Mb of repetitive sequences (51.75 % of the genome)

245 and 42,1 Mb (11.5 %) unknown elements. Repetitive sequences observed in other

246 *Prunus* species [25–27, 29, 33] ranged from 37.1% in *P. persica* [50] to 59.4 % in *P.*

247 *avium* [28]. However, similar to *P. avium* [25], the repeated sequences observed in our

248 study comprised mainly of the class (I) LTR Gypsy retrotransposons and Copia. LTR

249 was the most abundant element in our findings with 20.88 % followed by Copia with
250 7.59 % (Table 3).

251 We employed similar strategy as reported elsewhere namely homology-based, *de*
252 *novo* and transcriptome supported approaches [28, 37] to call repeats, predict
253 protein-coding genes and perform functional annotation. Using RNA-Seq data from
254 *P. cerasus* 'Schattenmorelle' [44] and the augmented gene predictions from BRAKER
255 with eight homology-based gene predictions from GeMoMa we predicted 58.880
256 protein-coding transcripts representing 84.524 orthologs within Pf_1.0 with a mean
257 length of 3.580 bp and a mean protein length of 355 aa (Table 4). The number of
258 protein-coding transcripts was considerably larger in this study than 38.275 predicted
259 for *P. avium* 'Tieton' [28] and 43.349 transcripts predicted in *P. avium* 'Satonishiki'
260 [25]. A total of 86.7 % (75,113) proteins was functionally annotated by InterproScan
261 resulting in 852.470 annotated protein domains and sites from 15 protein databases
262 (Table 4). A total of 2.301 (Aragorn) and 2.559 (tRNA scan) tRNA and 576 rRNA
263 sequences were detected. Infernal search reveals 36.757 consensus RNA secondary
264 structure profiles. BUSCO analysis for transcriptome completeness
265 (embryophyta_odb10 dataset) reveals 1,552 (96.2 %) complete (81.8 % single and
266 complete, 14.4 % duplicated and complete) and 62 (3.8 %) fragmented (1.7 %) or
267 missing (2.1 %) BUSCOs (Fig. 4).

268 The obtained chloroplast genome sequence (Fig. 5a) was 158,130 bp long (GC 36.6
269 %) with a typical quadripartite structure consisting a large (86,242 bp) and a small
270 (19,143) single-copy region and two inverted repeats (IRA 26,372 bp, IRB 26,373 bp).
271 The GC contents of each region were 34.1 % (LSC), 30.1 % (SSC) and 42.5 % for IRA

272 and IRB each. The size, the structure and the GC content values are similar to those
273 reported previously for the chloroplast genome of *P. fruticosa* (Yang et al. 2020).
274 Forty-five tRNA (ARAGORN), eight rRNA (each with HMMER and blatN) and 116
275 protein-coding genes (HMMER) were annotated.

276 We present for the first time a mitochondrial genome for *P. fruticosa* (Fig. 5b) with a
277 length of 383,281 bp and a GC content of 45.7 %. The results of the mitochondria
278 genome is similar to the mitochondria genome of *P. avium* 'Summit' [69] where a total
279 of 68 protein coding genes, including 27 tRNA (ARAGORN) and two rRNA (blatN) were
280 annotated.

281 We compared sequence synteny between *P. fruticosa* and *P. persica* and *P. fruticosa*
282 and *P. avium* (Fig. 6). The synteny analysis involved at least two transcripts of
283 annotated genes in each representative genome (Fig. 6a). As indicated in Table S3, a
284 higher percentage of transcripts (77.5 % to 87.3 %) were mapped between the
285 homologues chromosomes from *P. persica* and Pf_1.0 compared to the transcripts
286 from *P. avium* (72.1% to 56.3 %). In general, the assembled genome of *P. fruticosa*
287 shows a good synteny with the genomes of *P. persica* [24] and *P. avium* [28]. Figure
288 6b shows the synteny analysis using masked sequences (i.e. without repetitive
289 sequences). The results obtained confirm strong synteny between the compared
290 genomes and strongly suggest the high quality of the obtained genome sequence.

291 **Re-use potential**

292 For the first time, we report a draft genome scale-assembly of tetraploid *Prunus*
293 species. This was achieved using Nanopore sequencing technology, confirming that
294 this technology alone can sufficiently produce a high-quality genome without

295 additional sequencing using Illumina [70]. This genome will be valuable in exploiting
296 genetic information for breeding programs; will enhance our understanding of
297 genetics of this species relative to breeding as well as molecular and evolutionary
298 analysis in the genus *Prunus*.

299

300 **Data Availability**

301 Data supporting the findings of this study are deposited into the Open Agrar repository
302 [71] and on personal request to the corresponding author. The ground cherry genome
303 has been submitted to NCBI and is available after review.

304 **Competing interests**

305 The R10.3 flow cells were provided by Keygene for the project. Keygene wanted to
306 gain experience with this new flow cells on a biologically difficult object. Keygene had
307 no influence on the interpretation of the results and the writing of the manuscript.

308 **Authors' contribution**

309 TW, OE wrote the manuscript. AW, HS and IV performed DNA isolation, sequencing
310 and genome assembly. JH and KH provided the plant material. KH, JK, LG and TB
311 performed annotation of the dataset. SK performed the scaffolding and TW the did
312 the interproscan and synteny analysis. HF, JW, MS and AP conceived the study and
313 made substantial contributions to its design, acquisition, analysis and interpretation
314 of data. All authors contributed equally to the finalization of the manuscript.

315

316 **Figures**

317 Figure 1 Morphology of *P. fruticosa* Pall.. (a) flowering habitus, (b) inflorescence, (c)
318 mature shrub in the natural habitat in Hungary and (d) leafs and fruits.

319 Figure 2 The genome of *P. fruticosa*. Circos plot of the 8 pseudomolecules. (a)
320 Chromosome length (Mb); (b) gene density in blocks of 1 MB; (c) repeat density in
321 blocks of 1 Mb.

322 Figure 3 Analysis of completeness of different *P. fruticosa* datasets compared to *P.*
323 *avium* cv. Tieton and *P. persica* cv. Lovell by mapping of a set of universal single-copy
324 orthologs using BUSCO. The bar charts indicate complete single copy (orange),
325 complete duplicated (gray), fragmented (yellow) and missing (blue) genes. For
326 evaluation the embryophyta_odb10 BUSCO dataset (n=1614) was used. *P. fruticosa*
327 1.0 show a 96.4 % completeness (S: 94.1 %, D: 2.3 %, F: 1.3 %, M: 2.3 %, n: 1614)
328 which almost reaches the completeness of *P. avium* cv. 'Tieton' (C: 98.3 %, S: 95.6
329 %, D: 2.7 %, F: 0.5 %, M: 1.5 %, n: 1614) and *P. persica* 'Lovell' (C: 99.3 %, S: 97.5
330 %, D: 1.8%, F: 0.1 %, M: 0.6 %, n: 1614).

331 Figure 4 Analysis of completeness of different protein sets obtained with different
332 structural annotation strategies. The bar charts indicate complete single copy
333 (orange), complete duplicated (gray), fragmented (yellow) and missing (blue) genes.
334 For evaluation the embryophyta_odb10 BUSCO dataset (n=1614) was used.

335 Figure 5 The chloroplast (a) and mitochondrial (b) genome sequence of *P. fruticosa*
336 1.0 obtained from the contigs utg0000881 and utg0013961 in the medaka assembly
337 sequence. Annotation was performed using GeSeq (Tillich et al. 2017).

338 Figure 6 Synteny between *P. fruticosa*, *P. persica* 'Lovell' and *P. avium* 'Tieton'. (a)
339 Circos plots showing transcripts of *P. persica* (Pp, left) and *P. avium* (Pa, right) anno-
340 tated in *P. fruticosa* (Pf). Each string represents at least two transcripts in a 50k bp
341 cluster. (b) Syntenic dot plot of the nucleotide sequences between *P. fruticosa*, *P.*
342 *persica* and *P. avium*. Before plotting, the sequences were hard masked by the NCBI
343 window maker implication on the CoGe webpage. Several inversions (arrows) and
344 out-paralogs (circles) were identified between the sequences.

345 **Tables**

346 Table 1 Statistics of different datasets and assemblies from *P. fruticosa*

347 Table 2 Pseudomolecule statistics for Pf_1.0

348 Table 3 Characterization of repetitive sequences of *P. fruticosa* 1.0

349 Table 4 Functional annotation results generated by interproscan using BRAKER &
350 GeMoMa combination of ab-initio and homology-based structural gene annotation
351 and statistics

352 **Supplemental**

353 Table S1 Statistics of three different datasets for *P. fruticosa* generated with R10.3
354 PromethION cells (passed reads)

355 Table S2 Assembly statistics of tetraploid *P. fruticosa*

356 Table S3a Matrix of shared number of transcripts annotated from *P. avium* (Pa) and
357 *P. persica* (Pp) to *P. fruticosa* (Pf) Pf_1.0 within each chromosomes

358 Table S3b Matrix of shared number of transcript in percent annotated from *P. avium*

359 (Pa) and *P. persica* (Pp) to *P. fruticosa* (Pf) Pf_1.0 within each chromosomes

360

361 **References**

362 1. Quero-Garcia J, Iezzoni A, Lopez-Ortega G, Peace C, Fouche M, Dirlewanger E,

363 Schuster M. Advances and challenges in cherry breeding 2019: Burleigh Dodds

364 Science Publishing.

365 2. FAO. Crops. 2021. <http://www.fao.org/faostat/en/#data/QC/>. Accessed 17 Feb

366 2021.

367 3. Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, et al.

368 Prunus genetics and applications after de novo genome sequencing:

369 achievements and prospects. Horticulture research. 2019;6:1–25.

370 4. Schuster M, Grafe C, Hoberg E, Schütze W. Interspecific hybridization in sweet

371 and sour cherry breeding. Acta horticulturae. 2013.

372 5. Wen J, Berggren ST, Lee C-H, Ickert-Bond S, Yi T-S, Yoo K-O, et al.

373 Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and

374 nuclear ribosomal ITS sequences. J Syst Evol. 2008;46:322–32.

375 6. Stegmeir T, Schuster M, Sebolt A, Rosyara U, Sundin GW, Iezzoni A. Cherry leaf

376 spot resistance in cherry (Prunus) is associated with a quantitative trait locus on

377 linkage group 4 inherited from *P. canescens*. *Molecular breeding*. 2014;34:927–

378 35.

379 7. Faust M, Surányi D. Origin and dissemination of cherry. *Horticultural Reviews*.

380 1997;19:263–317.

381 8. Hrotkó K, Feng Y, Halász J. Spontaneous hybrids of *Prunus fruticosa* Pall. in

382 Hungary. *Genetic Resources and Crop Evolution*. 2020;67:489–502.

383 9. Jäger EJ, Seidel D. Unterfamilie Prunoideae. *Hegi Illustrierte Flora von*

384 *Mitteleuropa*. 1995;4.

385 10. Meusel H, Jäger EJ, Weinert E. *Vergleichende chorologie der*

386 *zentraleuropäischen flora*. 1965.

387 11. Macková L, Vít P, Urfus T. Crop-to-wild hybridization in cherries—Empirical

388 evidence from *Prunus fruticosa*. *Evolutionary applications*. 2018;11:1748–59.

389 12. Mratinić E, Kojić M. Wild fruit species of Serbia. Agricultural Research Institute of

390 Serbia, Belgrade. 1998.

391 13. Pruski K. Tissue culture propagation of Mongolian cherry (*Prunus fruticosa* L.)

392 and Nanking cherry (*Prunus tomentosa* L.). In: *Protocols for micropropagation of*

393 *woody trees and fruits*: Springer; 2007. p. 391–407.

394 14. Macková L, Vít P, Ďurišová Ľ, Eliáš P, Urfus T. Hybridization success is largely

395 limited to homoploid *Prunus* hybrids: a multidisciplinary approach. *Plant*

396 *Systematics and Evolution*. 2017;303:481–95.

397 15. Olden EJ, Nybom N. On the origin of *Prunus cerasus* L. *Hereditas*. 1968;59:327–

398 45.

399 16. Brettin TS, Karle R, Crowe EL, af lezzoni. Chloroplast Inheritance and DNA

400 Variation in Sweet, Sour, and Ground Cherry. *The Journal of heredity*.

401 2000;91:75–9.

402 17. Mitschurin IW. Ausgewählte Schriften 1951. In: Verlag Kultur und Fortschritt,

403 editor. *Ausgewählte Schriften* 1951.

404 18. Bors RH. Dwarf sour cherry breeding at the University of Saskatchewan. *Acta*

405 *horticulturae*. 2005.

406 19. Cummins JN. Vegetatively propagated selections of *Prunus fruticosa* as

407 dwarfing stocks for cherry. *Fruit Var Hort Dig*. 1972.

408 20. Plock H. Bedeutung der *Prunus fruticosa* Pall. als Zwergunterlage für Süss- und

409 Sauerkirschen. *Mitt Rebe Wein Obstbau Fruchteverwert*. 1973.

410 21. Hein K. Zwischenbericht über eine Prüfung der Steppenkirsche (*P. fruticosa*) und

411 anderen Süßkirchenunterlagen und Unterlagenkombinationen. *Erwerbsobstbau*.

412 1979;21:219.

413 22. Peace C, Norelli J. Genomics approaches to crop improvement in the Rosaceae.

414 In: *Genetics and genomics of Rosaceae*: Springer; 2009. p. 19–53.

415 23. Ahmad R, Parfitt DE, Fass J, Ogundiwin E, Dhingra A, Gradziel TM, et al. Whole
416 genome sequencing of peach (*Prunus persica* L.) for SNP identification and
417 selection. *BMC genomics*. 2011;12:1–7.

418 24. Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, et al. The
419 Peach v2. 0 release: high-resolution linkage mapping and deep resequencing
420 improve chromosome-scale assembly and contiguity. *BMC genomics*.
421 2017;18:1–18.

422 25. Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T, Hirakawa H, Isobe
423 S. The genome sequence of sweet cherry (*Prunus avium*) for use in genomics-
424 assisted breeding. *DNA Research*. 2017;24:499–508.

425 26. Baek S, Choi K, Kim G-B, Yu H-J, Cho A, Jang H, et al. Draft genome sequence
426 of wild *Prunus yedoensis* reveals massive inter-specific hybridization between
427 sympatric flowering cherries. *Genome biology*. 2018;19:1–17.

428 27. Shirasawa K, Esumi T, Hirakawa H, Tanaka H, Itai A, Ghelfi A, et al. Phased
429 genome sequence of an interspecific hybrid flowering cherry, 'Somei-
430 Yoshino' (*Cerasus* × *yedoensis*). *DNA Research*. 2019;26:379–89.

431 28. Wang J, Liu W, Zhu D, Hong P, Zhang S, Xiao S, et al. Chromosome-scale
432 genome assembly of sweet cherry (*Prunus avium* L.) cv. Tieton obtained using
433 long-read and Hi-C sequencing. *Horticulture research*. 2020;7:1–11.

434 29. Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, et al. The genome of
435 *Prunus mume*. *Nature communications*. 2012;3:1–8.

436 30. Callahan AM, Zhebentyayeva TN, Humann JL, Saski CA, Galimba KD, Georgi LL,
437 et al. Defining the 'HoneySweet' insertion event utilizing NextGen sequencing and
438 a de novo genome assembly of plum (*Prunus domestica*). Horticulture
439 research;8:8.

440 31. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. The genome of the domesticated apple (*Malus × domestica* Borkh.). Nature
441 genetics. 2010;42:833–9.

443 32. Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, et al. High-
444 quality de novo assembly of the apple genome and methylome dynamics of
445 early fruit development. Nature genetics. 2017;49:1099–106.

446 33. Jiang F, Zhang J, Wang S, Yang L, Luo Y, Gao S, et al. The apricot (*Prunus
447 armeniaca* L.) genome elucidates Rosaceae evolution and beta-carotenoid
448 synthesis. Horticulture research. 2019;6:1–12.

449 34. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of
450 nanopore sequencing to the genomics community. Genome biology. 2016;17:1–
451 11.

452 35. Zhang M, Zhang Y, Scheuring CF, Wu C-C, Dong JJ, Zhang H-B. Preparation of
453 megabase-sized DNA from a variety of organisms using the nuclei method for
454 advanced genomics research. nature protocols. 2012;7:467–78.

455 36. Datema E, Hulzink RJM, Blommers L, Valle-Inclan JE, van Orsouw N, Wittenberg
456 AHj, Vos M de. The megabase-sized fungal genome of *Rhizoctonia solani*
457 assembled from nanopore reads only. *BioRxiv*. 2016:84772.

458 37. Liu C, Feng C, Peng W, Hao J, Wang J, Pan J, He Y. Chromosome-level draft
459 genome of a diploid plum (*Prunus salicina*). *GigaScience*. 2020;9:giaa130.

460 38. Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, et al.
461 RaGOO: fast and accurate reference-guided scaffolding of draft genomes.
462 *Genome biology*. 2019;20:1–17.

463 39. Morgulis A, Gertz EM, Schäffer AA, Agarwala R. WindowMasker: window-based
464 masker for sequenced genomes. *Bioinformatics*. 2006;22:134–41.

465 40. Lyons EH. CoGe, a new kind of comparative genomics platform: Insights into the
466 evolution of plant genomes: University of California, Berkeley; 2008.

467 41. Haug-Baltzell A, Stephens SA, Davey S, Scheidegger CE, Lyons E. SynMap2
468 and SynMap3D: web-based whole-genome synteny browsers. *Bioinformatics*.
469 2017;33:2197–8.

470 42. Smit AF, Hubley R, Green P. RepeatModeler Open-1.0. 2008–2015. Seattle,
471 USA: Institute for Systems Biology. Available from: <http://www.repeatmasker.org>,
472 Last Accessed May. 2015;1:2018.

473 43. Smit AF, Hubley R, Green P. RepeatMasker Open-4.0. 2013–2015 2015.

474 44. Jo Y, Chu H, Cho JK, Choi H, Lian S, Cho WK. De novo transcriptome assembly
475 of a sour cherry cultivar, Schattenmorelle. *Genomics data*. 2015;6:271–2.

476 45. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome
477 alignment and genotyping with HISAT2 and HISAT-genotype. *Nature
478 biotechnology*. 2019;37:907–15.

479 46. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1:
480 unsupervised RNA-Seq-based genome annotation with GeneMark-ET and
481 AUGUSTUS. *Bioinformatics*. 2016;32:767–9.

482 47. Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. Whole-genome annotation with
483 BRAKER. In: *Gene prediction*: Springer; 2019. p. 65–95.

484 48. Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: Automatic
485 eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported
486 by a protein database. *NAR Genomics and Bioinformatics*. 2021;3:lqaa108.

487 49. Lomsadze A, Burns PD, Borodovsky M. Integration of mapped RNA-Seq reads
488 into automatic training of eukaryotic gene finding algorithm. *Nucleic acids
489 research*. 2014;42:e119–e119.

490 50. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, et al. The high-quality
491 draft genome of peach (*Prunus persica*) identifies unique patterns of genetic
492 diversity, domestication and genome evolution. *Nature genetics*. 2013;45:487–
493 94.

494 51. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, et al. The high-quality
495 draft genome of peach (*Prunus persica*) identifies unique patterns of genetic
496 diversity, domestication and genome evolution. *Nature genetics*. 2013;45:487–
497 94.

498 52. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence
499 alignment/map format and SAMtools. *Bioinformatics*. 2009;25:2078–9.

500 53. Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT. BamTools: a
501 C++ API and toolkit for analyzing and managing BAM files. *Bioinformatics*.
502 2011;27:1691–2.

503 54. Brúna T, Lomsadze A, Borodovsky M. GeneMark-EP+: Eukaryotic Gene
504 Prediction With Self-Training in the Space of Genes and Proteins. *NAR
505 Genomics and Bioinformatics*. 2020;2:lgaa026.

506 55. Buchfink B, Xie C, Huson DH. Fast and Sensitive Protein Alignment Using
507 DIAMOND. *Nature methods*. 2015;12:59–60.

508 56. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene
509 identification in novel eukaryotic genomes by self-training algorithm. *Nucleic
510 acids research*. 2005;33:6494–506.

511 57. Iwata H, Gotoh O. Benchmarking spliced alignment programs including Spaln2,
512 an extended version of Spaln that incorporates additional species-specific
513 features. *Nucleic acids research*. 2012;40:e161–e161.

514 58. Gotoh O, Morita M, Nelson DR. Assessment and refinement of eukaryotic gene
515 structure prediction with gene-structure-aware multiple protein sequence
516 alignment. *Bmc Bioinformatics*. 2014;15:1–13.

517 59. Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically
518 mapped cDNA alignments to improve de novo gene finding. *Bioinformatics*.
519 2008;24:637–44.

520 60. Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in
521 eukaryotes with a generalized hidden Markov model that uses hints from
522 external sources. *Bmc Bioinformatics*. 2006;7:1–11.

523 61. Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA,
524 Zdobnov EM. OrthoDB v10: sampling the diversity of animal, plant, fungal,
525 protist, bacterial and viral genomes for evolutionary and functional annotations
526 of orthologs. *Nucleic acids research*. 2019;47:D807-D811.

527 62. Keilwagen J, Hartung F, Grau J. GeMoMa: Homology-based gene prediction
528 utilizing intron position conservation and RNA-seq data. In: *Gene Prediction*:
529 Springer; 2019. p. 161–177.

530 63. Cock PJA, Grüning BA, Paszkiewicz K, Pritchard L. Galaxy tools and workflows
531 for sequence analysis with applications in molecular plant pathology. *PeerJ*.
532 2013;1:e167.

533 64. Zdobnov EM, Apweiler R. InterProScan: protein domains identifier.
534 *Bioinformatics (Oxford, England)*. 2001;17:847–8.

535 65. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R.

536 InterProScan: protein domains identifier. Nucleic acids research. 2005;33:W116-

537 W120.

538 66. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al.

539 InterPro: the integrative protein signature database. Nucleic acids research.

540 2009;37:D211-D215.

541 67. Tillich M, Lehwerk P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner

542 S. GeSeq—versatile and accurate annotation of organelle genomes. Nucleic acids

543 research. 2017;45:W6-W11.

544 68. Yang Y-X, Tian M-H, Liu X-H, Li Y, Sun Z-S. Complete chloroplast genome of

545 *Prunus fruticosa* and its implications for the phylogenetic position within *Prunus*

546 *sensulato* (Rosaceae). Mitochondrial DNA Part B. 2020;5:3624–6.

547 69. Yan M, Zhang X, Zhao X, Yuan Z. The complete mitochondrial genome

548 sequence of sweet cherry (*Prunus avium* cv.‘summit’). Mitochondrial DNA Part

549 B. 2019;4:1996–7.

550 70. Huang Y-T, Liu P-Y, Shih P-W. High-Quality Genomes of Nanopore Sequencing

551 by Homologous Polishing. BioRxiv. 2020.

552 71. Wöhner TW, Emeriewen OF, Wittenberg AHj, Schneiders H, Vrijenhoek I, Halász

553 J, et al. Supporting materials for - The draft chromosome-level genome

554 assembly of tetraploid ground cherry (*Prunus fruticosa* Pall.) from long reads.

555 2021. https://www.openagrар.de/receive/openagrар_mods_00070329. Accessed

556 1 Jun 2021.

557

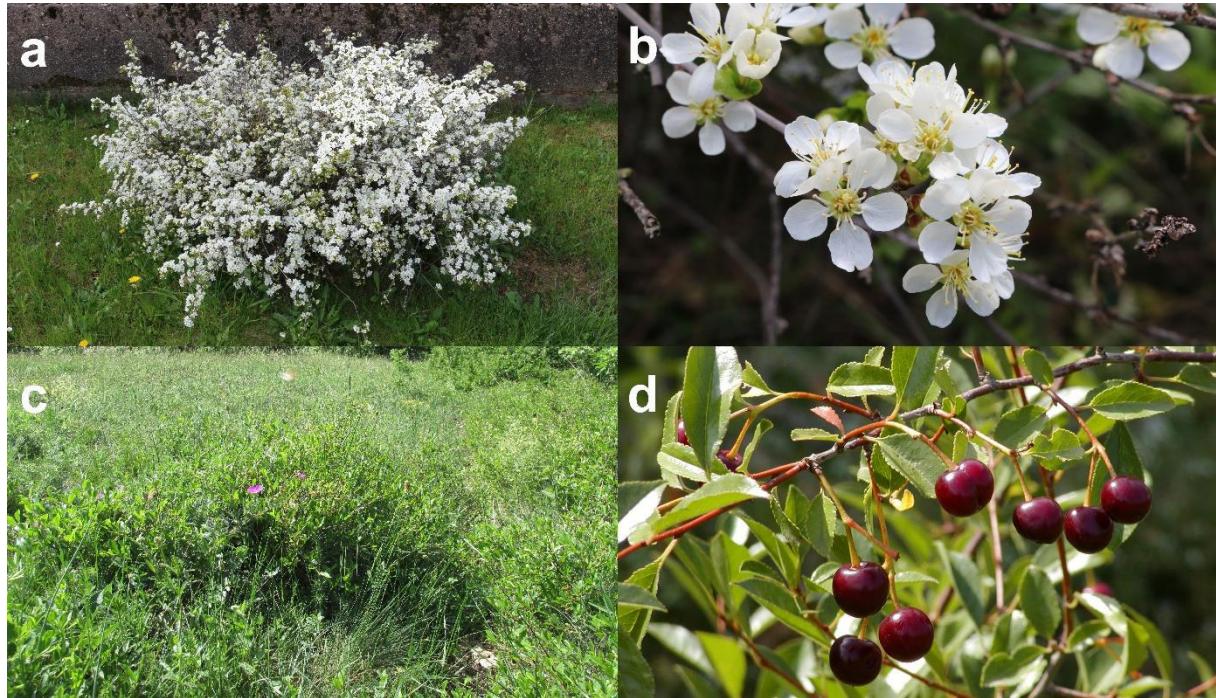


Figure 1 Morphology of *P. fruticosa* Pall.. (a) flowering habitus, (b) inflorescence, (c) mature shrub in the natural habitat in Hungary and (d) leafs and fruits.

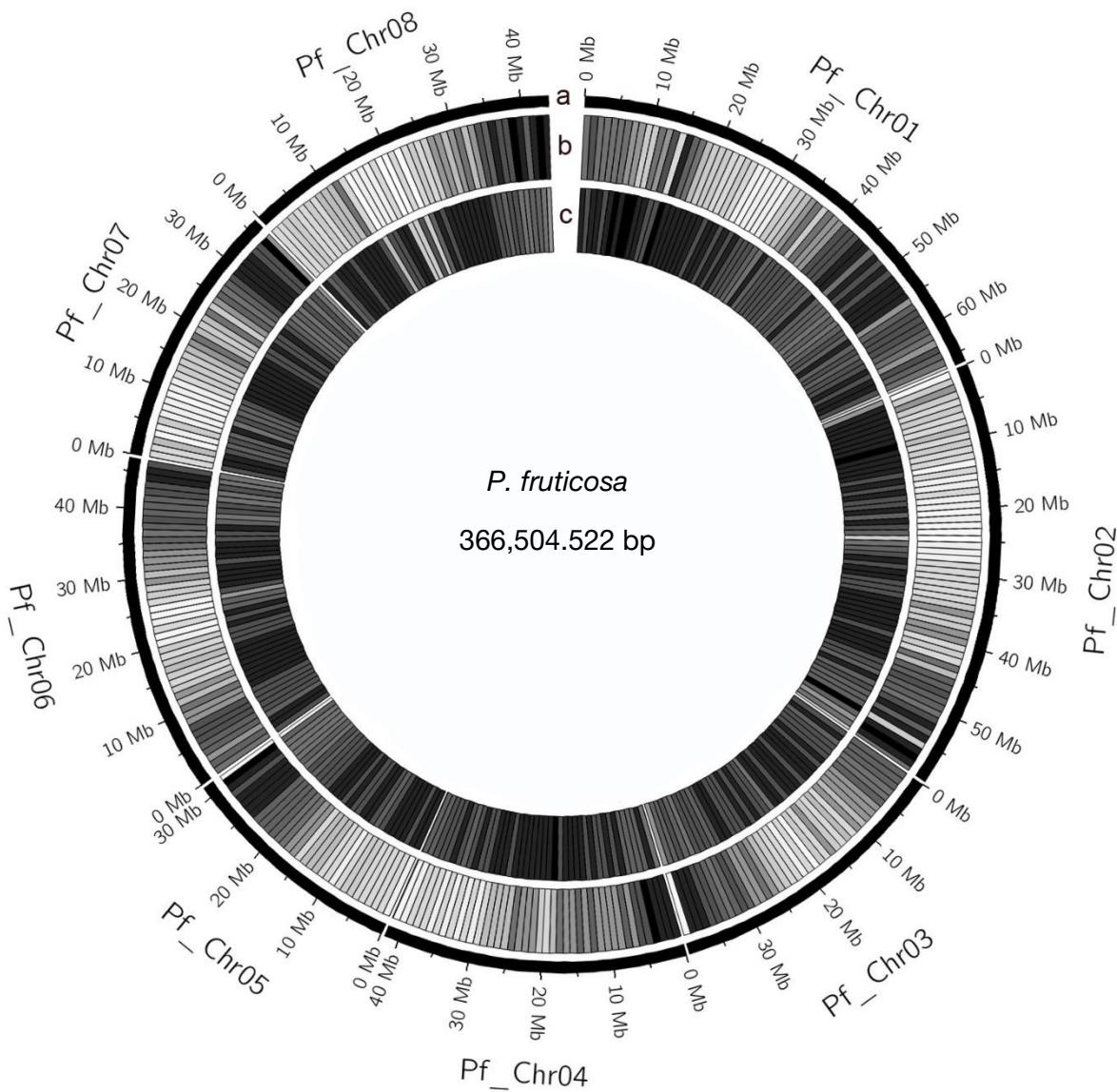


Figure 2 The genome of *P. fruticosa*. Circos plot of the 8 pseudomolecules. (a) Chromosome length (Mb); (b) gene density in blocks of 1 MB; (c) repeat density in blocks of 1 Mb.

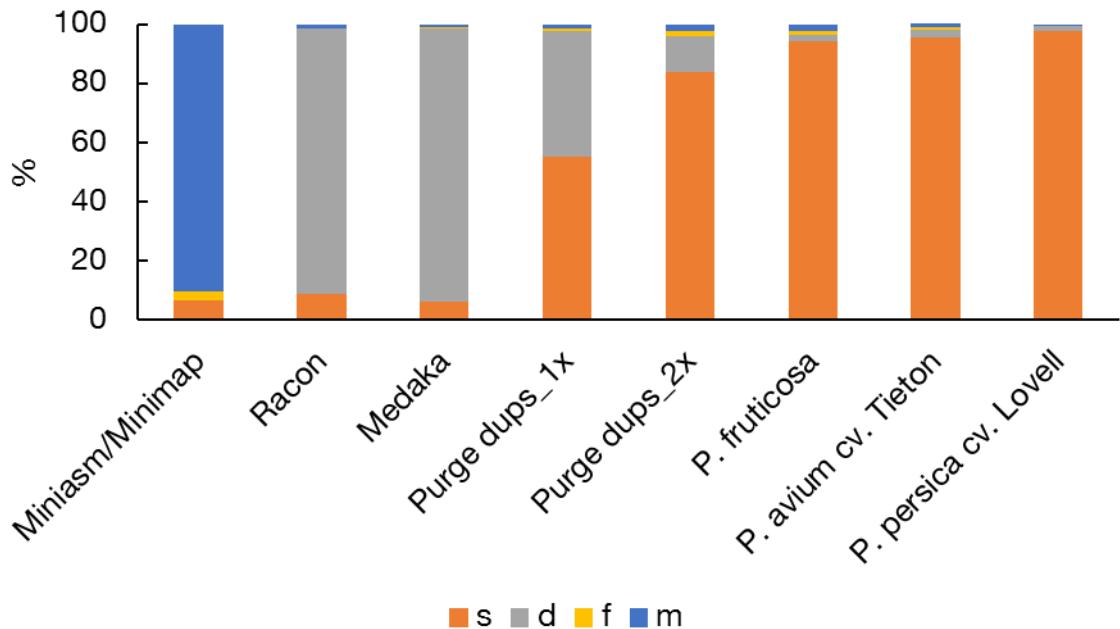


Figure 3 Analysis of completeness of different *P. fruticosa* datasets compared to *P. avium* cv. Tieton and *P. persica* cv. Lovell by mapping of a set of universal single-copy orthologs using BUSCO. The bar charts indicate complete single copy (orange), complete duplicated (gray), fragmented (yellow) and missing (blue) genes. For evaluation the embryophyta_odb10 BUSCO dataset (n=1614) was used. *P. fruticosa* 1.0 show a 96.4 % completeness (S: 94.1 %, D: 2.3 %, F: 1.3 %, M: 2.3 %, n: 1614) which almost reaches the completeness of *P. avium* cv. 'Tieton' (C: 98.3 %, S: 95.6 %, D: 2.7 %, F: 0.5 %, M: 1.5 %, n: 1614) and *P. persica* 'Lovell' (C: 99.3 %, S: 97.5 %, D: 1.8%, F: 0.1 %, M: 0.6 %, n: 1614).

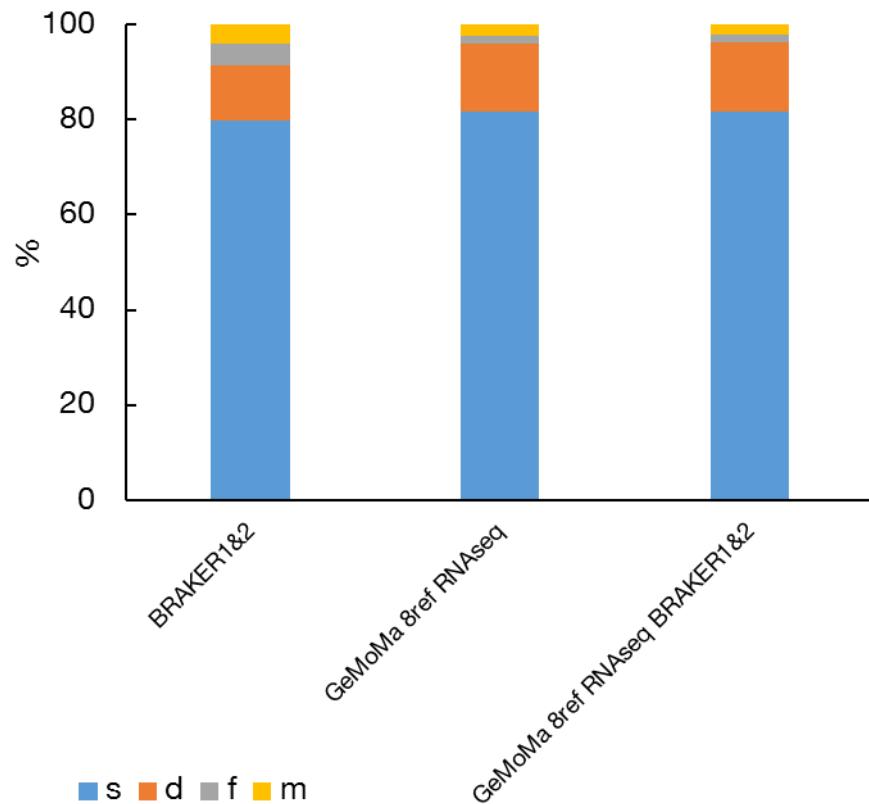


Figure 4 Analysis of completeness of different protein sets obtained with different structural annotation strategies. The bar charts indicate complete single copy (orange), complete duplicated (gray), fragmented (yellow) and missing (blue) genes. For evaluation the embryophyta_odb10 BUSCO dataset (n=1614) was used.

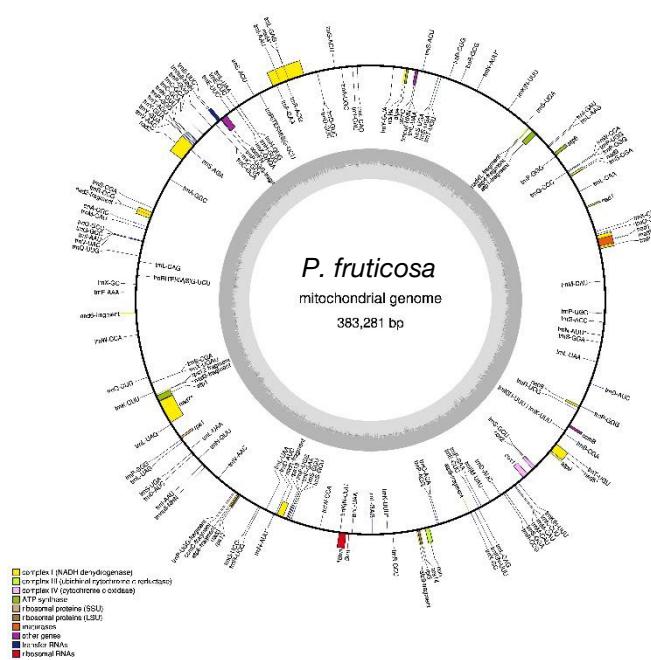
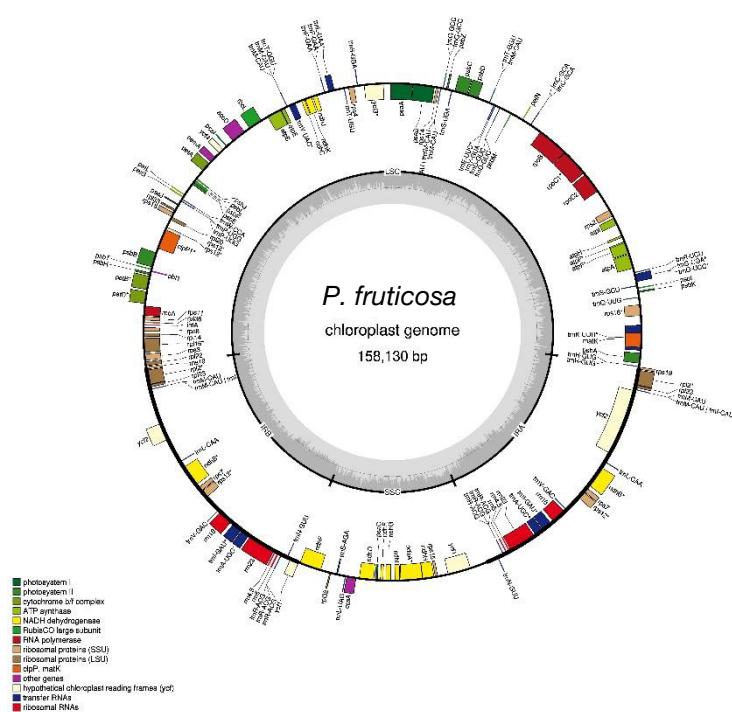



Figure 5 The chloroplast (a) and mitochondrial (b) genome sequence of *P. fruticosa* 1.0 obtained from the contigs utg0000881 and utg0013961 in the medaka assembly sequence. Annotation was performed using GeSeq (Tillich et al. 2017).

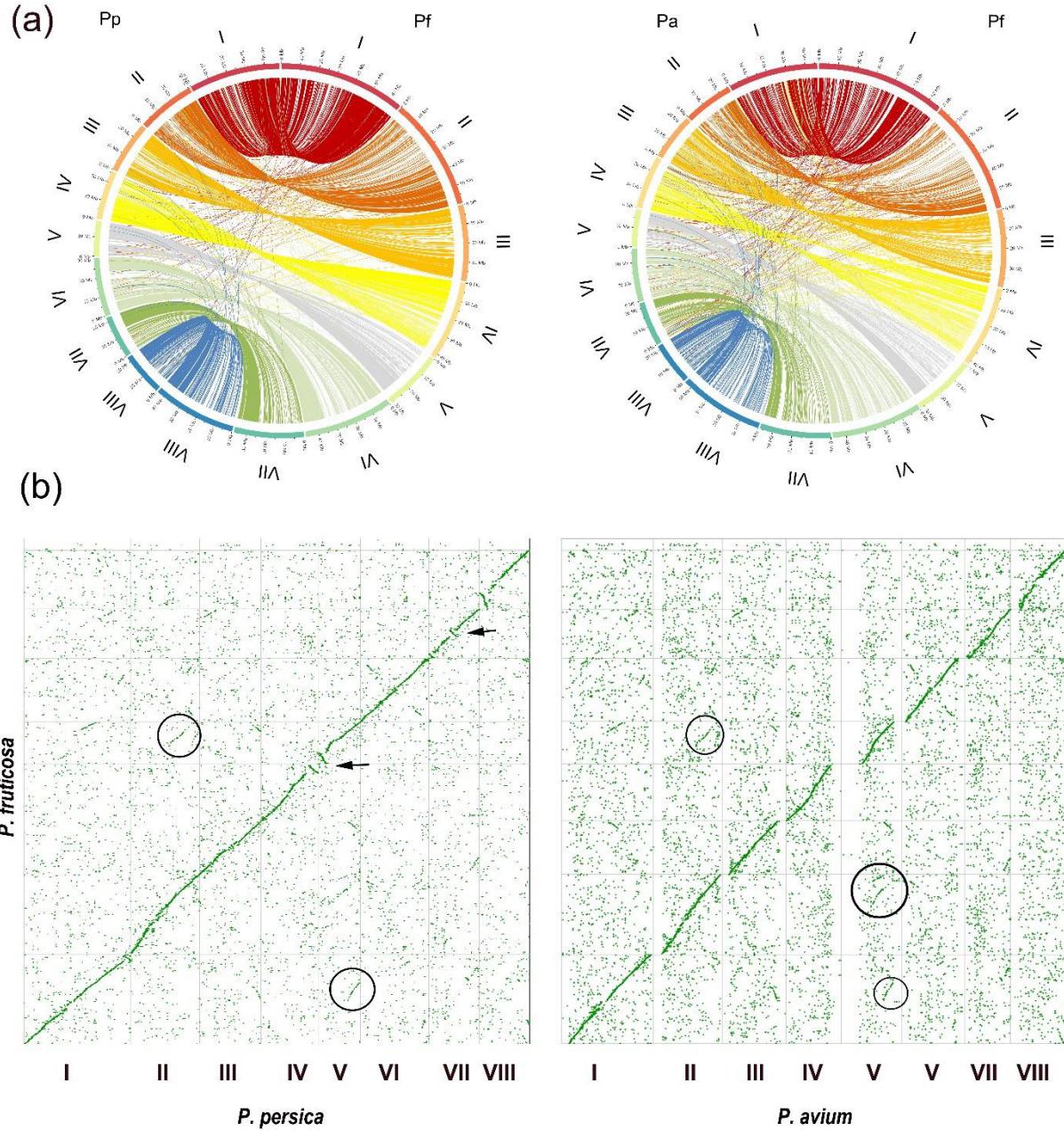


Figure 6 Synteny between *P. fruticosa*, *P. persica* 'Lovell' and *P. avium* 'Tieton'. (a) Circos plots showing transcripts of *P. persica* (Pp, left) and *P. avium* (Pa, right) annotated in *P. fruticosa* (Pf). Each string represents at least two transcripts in a 50k bp cluster. (b) Syntenic dot plot of the nucleotide sequences between *P. fruticosa*, *P. persica* and *P. avium*. Before plotting, the sequences were hard masked by the NCBI window maker implication on the CoGe webpage. Several inversions (arrows) and out-paralogs (circles) were identified between the sequences.

Table 1 Statistics of different datasets and assemblies from *P. fruticosa*

Data set / assembly	Ploidy	Number of contigs	Contig N50 (bp)	Longest contig (bp)	Total contig length (Mb)
All reads	4n	4,525.811	40.963	1,257.508	1247,375
Passed reads	4n	4,043.192	41.244	732.658	1172,679
Miniasm/Minimap	4n	4.399	324.889	5,840.253	1147,459
Racon	4n	4.381	326.739	5,954.545	1161,2
Medaka	4n	4.426	325.453	5,956.772	1161,5
Purge dups_1x	1n	1.516	501.505	5,956.772	480,6
Purge dups_2x	1n	1.275	533.462	5,956.772	376,7

Table 2 Pseudomolecule statistics for Pf_1.0

Pseudomolecule	Total size (bp)	%
Pf_1.0_chr1	66497422	18.1
Pf_1.0_chr2	59585028	16.3
Pf_1.0_chr3	39930086	10.9
Pf_1.0_chr4	42034286	11.5
Pf_1.0_chr5	31043513	8.5
Pf_1.0_chr6	46922205	12.8
Pf_1.0_chr7	36673485	10.0
Pf_1.0_chr8	43818497	12.0
	366504522	100

Table 3 Characterization of repetitive sequences of *P. fruticosa* 1.0

Class	Order	Family	No. of elements	Length (bp)	Percentage of the genome (%)
I (retrotransposons)					
LTR		-	2142	472290	0.13
		Cassandra	1852	910040	0.25
		Caulimovirus	793	627333	0.17
		Copia	41192	27822528	7.59
		Gypsy	68445	76652400	20.91
		Pao	344	96802	0.03
LINE		I-Jockey	413	140619	0.04
		L1	8844	4167515	1.14
		L2	434	64430	0.02
		Penelope	176	25448	0.01
		RTE-BovB	516	87801	0.02
SINE		-	457	62956	0.02
		B2	1517	122973	0.03
		tRNA	4593	509966	0.14
II (DNA transposons)					
Subclass I	TIR	TcMar-Fot1	276	210022	0.06
		TcMar-ISRm11	81	24496	0.01
		hAT-Ac	11533	3430880	0.94
		hAT-Tag1	5353	1263452	0.34
		hAT-Tip100	9680	2348735	0.64
		PIF-Harbinger	14230	4268364	1.16
Subclass II		Crypton	Crypton-H	237	195974
		Maverick	Maverick	576	155067
		Helitron	Helitron	5378	2220498
		unknown/Helitron	unknown/Helitron	228	155920
Other		-	13120	2310744	0.63
		Academ	42	20252	0.01
		CMC-EnSpm	16958	8879643	2.42
		Ginger	325	77794	0.02
		MULE-MuDR	17464	4459943	1.22
rRNA			326	231622	0.06
Satellite			870	220737	0.06
Simple repeat			106232	4353840	1.19
Low complexity			19611	984829	0.27
Unknown			168094	42110587	11.49
SUM			522228	189663955	51.75

Table 4 Functional annotation results generated by interproscan using BRAKER & GeMoMa combination of ab-initio and homology-based structural gene annotation and statistics

Interproscan annotations	No.	
Coils	14627	
Gene3D	82428	
Hamap	1336	
PANTHER	150554	
Pfam	95569	
Phobius	197895	
PIRSF	5075	
PRINTS	48332	
ProSitePatterns	19050	
ProSiteProfiles	52557	
SignalP_EUK	7914	
SMART	42825	
SUPERFAMILY	64033	
TIGRFAM	10603	
TMHMM	59672	
Sum	852470	
Transcripts	No.	%
total	58880	
orthologs	84524	100
annotated	73315	86.7
annotated GO	45196	53.5
annotated pathways	5247	6.2
domains	62431	73.9
Mean length (bp)	3580	
Mean length of predicted proteins	355	

Table S1 Statistics of three different datasets for *P. fruticosa* generated with R10.3 PromethION cells (passed reads)

Data set	Ploidy	Number of reads	Total gigabases (Gb)	N50 length (bp)	Mean length (bp)	Max length (bp)	Mean q
200917_PAF21731	4n	1,498.775	43.7	41.257	29.104	732.658	9.9
200922_PAF21408	4n	1,306.840	38.2	41.499	29.251	529.628	10
200922_PAF21416	4n	1,237.604	35.4	40.951	28.615	624.468	10
	Sum	4,043.219	117.3				
	Mean	1,347.740	39.1	41.236	28.990	628.918	9.96
	SD	135.304	4.2	275	333	101.588	0.06

Table S2 Assembly statistics of tetraploid *P. fruticosa*

x-coverage*	20x		30x		50x		
	Assembly	MM** + 3x racon	+ medaka	MM** + 3x racon	+ medaka	MM** + 3x racon	+ medaka
Final no. of seq.	3.413	3.460		4.381	4.426	<u>4.662</u>	<u>4.727</u>
Seq. length characters (bp)							
Cutoff	69.042		63.011		55.002		
Total	989.839.499	988.573.324	1.162.237.634	1.161.456.281	1.212.434.570	1.211.504.091	
Mean	290.020	285.715	265.290	262.417	260.067	256.294	
SD	244.496	242.372	263.004	262.317	277.742	276.312	
Min	4.077	149	2.605	73	4.077	99	
Max	3.012.684	3.006.345	5.954.545	5.956.772	6.443.975	6.446.220	
N25	661.833	654.351	598.365	598.625	596.874	596.453	
N50	368.933	367.276	326.739	325.453	314.773	313.883	
N75	204.724	204.105	186.200	185.890	182.574	181.440	
N90	144.538	144.375	135.082	134.607	133.209	132.581	

* fold coverage based on the estimation that the haploid genome size is ~300 Mbp

** MM – Miniasm & Minimap

1 Table S3a Matrix of shared number of transcripts annotated from *P. avium* (Pa) and *P. persica* (Pp) to *P. fruticosa* (Pf) Pf_1.0 within
 2 each chromosomes

Chromosomes	Pf_1	Pf_2	Pf_3	Pf_4	Pf_5	Pf_6	Pf_7	Pf_8
Pa_1	4254	361	306	232	179	283	277	316
Pa_2	212	2255	131	151	142	193	131	154
Pa_3	234	181	2030	184	118	152	131	118
Pa_4	262	340	221	2045	163	242	188	206
Pa_5	190	210	127	110	1765	127	111	124
Pa_6	243	245	144	155	88	2667	138	171
Pa_7	308	267	182	190	111	195	1883	192
Pa_8	199	148	88	144	83	155	124	1955
Sum	5902	4007	3229	3211	2649	4014	2983	3236
Pp_1	5893	202	162	171	120	175	150	178
Pp_2	126	3380	107	93	76	127	94	109
Pp_3	145	146	3069	104	95	100	95	107
Pp_4	115	139	89	2921	75	109	93	98
Pp_5	93	103	68	56	2396	53	59	62
Pp_6	143	164	92	108	62	3727	80	122
Pp_7	109	117	72	73	53	63	2549	96
Pp_8	124	111	73	74	57	83	72	2793
Sum	6748	4362	3732	3600	2934	4437	3192	3565

3

4

5

6 Table S3b Matrix of shared number of transcript in percent annotated from *P. avium* (Pa) and *P. persica* (Pp) to *P. fruticosa* (Pf) Pf_1.0

7 within each chromosomes

Chromosomes	Pf_1	Pf_2	Pf_3	Pf_4	Pf_5	Pf_6	Pf_7	Pf_8
Pa_1	72.08	9.01	9.48	7.23	6.76	7.05	9.29	9.77
Pa_2	3.59	56.28	4.06	4.70	5.36	4.81	4.39	4.76
Pa_3	3.96	4.52	62.87	5.73	4.45	3.79	4.39	3.65
Pa_4	4.44	8.49	6.84	63.69	6.15	6.03	6.30	6.37
Pa_5	3.22	5.24	3.93	3.43	66.63	3.16	3.72	3.83
Pa_6	4.12	6.11	4.46	4.83	3.32	66.44	4.63	5.28
Pa_7	5.22	6.66	5.64	5.92	4.19	4.86	63.12	5.93
Pa_8	3.37	3.69	2.73	4.48	3.13	3.86	4.16	60.41
Pp_1	87.33	4.63	4.34	4.75	4.09	3.94	4.70	4.99
Pp_2	1.87	77.49	2.87	2.58	2.59	2.86	2.94	3.06
Pp_3	2.15	3.35	82.23	2.89	3.24	2.25	2.98	3.00
Pp_4	1.70	3.19	2.38	81.14	2.56	2.46	2.91	2.75
Pp_5	1.38	2.36	1.82	1.56	81.66	1.19	1.85	1.74
Pp_6	2.12	3.76	2.47	3.00	2.11	84.00	2.51	3.42
Pp_7	1.62	2.68	1.93	2.03	1.81	1.42	79.86	2.69
Pp_8	1.84	2.54	1.96	2.06	1.94	1.87	2.26	78.35

8

9

10