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Abstract

Single-cell RNA-seq (scRNA-seq) data simulation is critical for evaluating computational
methods for analysing ScCRNA-seq data especially when ground truth is experimentally
unattainable. The reliability of evaluation depends on the ability of simulation methods to
capture properties of experimental data. However, while many scRNA-seq data
simulation methods have been proposed, a systematic evaluation of these methods is
lacking. We developed a comprehensive evaluation framework, SimBench, including a
novel kernel density estimation measure to benchmark 12 simulation methods through
35 scRNA-seq experimental datasets. We evaluated the simulation methods on a panel
of data properties, ability to maintain biological signals, scalability and applicability. Our
benchmark uncovered performance differences among the methods and highlighted the
varying difficulties in simulating data characteristics. Furthermore, we identified several
limitations including maintaining heterogeneity of distribution. These results, together
with the framework and datasets made publicly available as R packages, will guide

simulation methods selection and their future development.
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Introduction

Single-cell RNA-sequencing (scRNA-seq) is a powerful technique for profiling the
transcriptomes at the single cell resolution and has gained considerable popularity since
its emergence in the last decade’. To effectively utilise SCcRNA-seq data to address
biological questions?, the development of computational tools for analysing such data is
critical and has grown exponentially with the increasing availability of SCRNA-seq
datasets. Evaluation of their performance with credible ground truth has thus become a
key task for assessing the quality and robustness of the growing array of computational
resources. While there exist certain control strategies such as spike-ins with known
sequence and quantity, data that offer ground truth while reflecting the complex
structures of a variety of experimental designs are either difficult or impossible to
generate. Thus, in silico simulation methods for creating scRNA-seq datasets with
desired structure and ground truth (e.g. number of cell groups) are an effective and
practical strategy for evaluating computational tools designed for scRNA-seq data

analysis.

To date, numerous scRNA-seq data simulation methods have been developed. The
majority of these methods employ a two-step process of using statistical models to
estimate the characteristics of real experimental single-cell data and using the learnt
information as a template to generate simulation data. The distinctive difference
between them is the choice of underlying statistical framework. Early methods often

| 35

employ negative binomial®™ as it has been the typical choice for modelling gene

expression count of RNA-seq®. Its variant, zero-inflated negative binomial model takes
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account of excessive zeros in the count data and is chosen by other studies to better
model the sparsity in single-cell data’®. In more recent years, alternative models have
been proposed with the aim to increase modelling flexibility including Gamma-Normal
mixture model®, Beta-Poisson®®, Gamma-Multivariate Hypergeometric** and the mixture
of zero-inflated Poisson and log-normal Poisson distributions*2. Other studies argued
that parametric models with strong distributional assumption are often not appropriate to
scRNA-seq data given its variability and proposed the use of a semi-parametric
approach as the simulation framework®®. Similarly, a recent deep learning-based
approach™ leverages the power of neural networks to infer underlying data distribution

and avoid prior assumptions.

A common challenge of simulation methods is the ability to generate data that faithfully
reflect experimental data™. Given that simulation datasets are widely used for the
evaluation and comparison of computational methods*®, deviations of simulated data
from properties of experimental data can greatly affect the validity and generalizability of
evaluation results. With the increasing number of sScRNA-seq data simulation tools and
the reliance on them to guide other method development as well as choosing the most
appropriate data analytics strategy, a thorough assessment of all currently available
scRNA-seq simulation methods is crucial and timely, especially when such an

evaluation study is still lacking in the literature.

Here, we present a comprehensive evaluation framework, SimBench, for single-cell

simulation benchmarking. Considering that realistic simulation datasets are intended to
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reflect experimental datasets in all data moments including both cell-wise and gene-
wise properties, as well as their higher-order interactions, it is important to determine
how well simulation methods represent all these values. To this end, we systematically
compared the performance of 12 simulation methods across multiple sets of criteria,
including accuracy of estimates for 13 data properties, the ability to retain biological
signals and to achieve computation scalability, as well as their applicability. To ensure
robustness of results, we collected 35 datasets across a range of sequencing protocols
and cell types. Moreover, we implemented novel measure based on kernel density
estimation'’ in the evaluation framework to enable the large-scale quantification and
comparison of similarities between simulated and experimental data across univariate
and multivariate distributions, and thus, avoid visual-based criteria which are often used
in other studies. To assist development of new methods, we studied potential factors
affecting simulation results and identified common strength and weakness of current
simulation methods. Finally, we summarised the result into recommendation to the

users, and highlighted potential areas requiring future research.

Results

A comprehensive benchmark of scRNA-seq simulation methods on four key sets
of evaluation criteria using diverse datasets and a novel comparison measure
Our SimBench framework evaluates 12 recently published simulation methods
specifically designed for single-cell data (Fig. 1a, Table 1 and Supplementary Table 1).
To ensure robust and generalizability of study results and account for variability across

datasets (Supplementary Fig. 1), we curated 35 public scRNA-seq datasets (Fig. 1b and
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Supplementary Table 2) that include major experimental protocols, tissue types, and
organisms. To assess a simulation method's performance on a given dataset,
SimBench splits the data into input data and test data (referred to as the “real data”).
Simulation data is generated based on the data properties estimated from the input data
and compared with the real data in the evaluation process (Fig. 1c). Using four key sets
of evaluation criteria (Fig. 1c-d), we systematically compare the single-cell simulation
methods' performance for 432 simulation data representing 12 simulation methods

applied to 35 scRNA-seq datasets.

The first set of evaluation criteria, termed data property estimation, aims to assess how
realistic is a given simulated data. To address this, we first defined the properties for a
given dataset with 13 distinct criteria and then developed a novel comparison process to
guantify the similarity between the simulated and real data (Supplementary Fig. 2). The
13 criteria capture both the distributions of genes and cells as well as higher-order
interactions such as mean-variance relationship of genes. We anticipated that not all
simulation methods will place emphasis on the same set of data properties and it is thus
important to incorporate a wide range of criteria. We then examined a number of
statistics for measuring distributional similarity’®. Supplementary Fig. 3 shows that all
statistics show similar performance with mean correlation of 0.7 and we have chosen to
use the Kernel Density Based Global Two-Sample Comparison Test statistic*’ (KDE
statistic), in our current study as it is applicable to both univariate and multivariate

distributions.
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The other three sets of evaluation criteria seek to assess each simulation method's
ability to maintain biological signals and computational scalability and its applicability.
For biological signals, we measured the proportion of differentially expressed (DE)
genes obtained in the simulated data using DE detection methods designed for bulk and
single-cell RNA-seq data, as well as four other types of gene signals of differentially
variable (DV), differentially distributed (DD), differential proportion (DP) and bimodally
distributed (BD) genes (see Methods). A similar proportion to the real data would
indicate an accurate estimation of biological signals present in the data. Scalability
reflects the ability of simulation methods to efficiently generate large-scale datasets.
This is measured through computational run time and memory usage with respect to the
number of cells. Applicability examines the practical application of each method in terms
of whether it can estimate and simulate multiple cell groups and allow simulation of
differential expression patterns. Overall, our framework provides recommendations by

taking into account all aspects of evaluation (Fig. 1e).

Comparison of simulation methods revealed their relative performance on

different evaluation criteria

Through ranking the 12 methods on the above four sets of evaluation criteria, we found
that no method clearly outperformed other methods across all criteria (Fig. 2). We
therefore examined each set of criteria individually in detail below and the variability in

methods’ performance within and across the four sets of evaluation criteria.
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For data property estimation, we observed variability in methods’ performance across
the 13 criteria. ZINB-WAYV, SPARSIm and SymSim are the three methods that
performed better than the others across almost all 13 data properties (Fig. 2a). For the
remaining methods, a greater discrepancy was observed between the 13 criteria, in
which the rankings of methods based on each criterion do not show any particular
relationship or correlation structure. Overall, our results highlight the relative strengths

and weaknesses of each simulation method on capturing the data properties.

We observed that some methods (e.g. zingeR and scDesign) that were not ranked the
highest in data properties estimation performed well in retaining biological signals (Fig.
2b). scDesign is designed for the purpose of power calculation and sample size
estimation, while zingeR is designed to evaluate the DE detection approach in its
publication and thus both methods require an accurate simulation and estimation of
biological signals, particularly differential expression. It is not unexpected that they
ranked highly in this aspect despite not being the most accurate in estimating other data

properties.

For computational scalability, the majority of methods showed good performance with
runtime of under two hours and memory consumption of under eight gigabytes (GB)
(Supplementary Fig. 4) when tested on the downsampled Tabula Muris dataset® with
50 to 8000 cells (see Methods). However, some top performing methods such as
SPsimSeq and ZINB-WAVE revealed poor scalability (Fig. 2c). This highlights the

potential trade-off between computational efficiency and complexity of modelling
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framework. SPsimSeq, for example, involves the estimation of correlation structure
using Gaussian-copulas model and scored well in maintaining gene- and cell-wise
correlation. Its advantage came at the cost of poor scalability, taking nearly 6 hours to
simulate 5000 cells. Thus, despite the ability to generate realistic SCRNA-seq data, the
usefulness of such methods may be partially limited if a large-scale simulation dataset is
required. In contrast, methods such as SPARSIm, which was ranked second in
parameter estimation as well as being one of top tier methods in scalability, may better

suit needs if a large-scale simulation dataset is required by users.

Lastly, we found that different simulation methods satisfy different numbers of the
applicability criteria (Fig. 2d). This is due, in part, to the fact that not all simulation
methods are designed as general purpose simulation tools. For example,
powsimR was originally designed as a power analysis tool for differential
expression analysis but was included as a simulation tool by a number of
simulation studies®* in their performance comparison with other simulation
methods. Being a power analysis tool, its primary usage is to simulate two cell
groups from a homogenous cell population with a user-defined amount of
differential expression. In contrast, a number of other methods such as SPARSIm,
SymSim and Splat that are originally intended as general purpose simulation tools
are able to simulate multiple cell groups with user-defined differential expression
patterns. We have outlined the primary purpose and the limitations of each
method on this front in more detail in Table 1 to guide users in making informed

decisions on methods that best suited to their needs.
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Impact of data- and experimental-specific characteristics on model estimation

Aside from comparing the overall performance of methods to guide method selection, it
is also necessary to identify specific factors influencing the outcome of simulation
methods. Here, we examined the impact of data- and experimental-specific
characteristics including cell numbers and sequencing protocols on simulation model

estimation.

To explore the general relationship between cell number and accuracy of data property
estimation across simulation methods, we evaluated each method on thirteen
subsamples of Tabula Muris data with varying numbers of cells but fixed number of cell
types (see Methods). Through regression analysis, we found certain data properties
such as mean-variance relationships were more accurately estimated under datasets
with larger numbers of cells, as shown by the positive regression coefficients (Fig. 3a
and Supplementary Fig. 5). Nevertheless, most other data properties in the simulated
data were negatively correlated with the increasing number of cells (e.g. library size,
gene correlation). These observations suggest that overall, the increasing cell number
may be accompanied by the increasing complexity of data and thus maintaining data
properties may become more challenging. Future method development should consider

this factor as an aspect of evaluation when assessing model performance.

To examine the impact of sequencing protocols, we utilised datasets consisting of

multiple protocols applied to the same human PBMC and mouse cortex samples from

10
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the same study?®. Fig. 3b and Supplementary Fig. 7 reveals no substantial impact was
introduced by protocol difference on the overall simulation results, as indicated by the
flatness of the line representing the accuracy of each data property across each
protocol. Taken together, these results indicate that the choice of reference input being
shallow sequencing or deep sequencing has no substantial impact on the overall
simulation results. Given that SymSim and powsimR are the only two methods that
require specification of input data as either deep or shallow protocols, these results
suggest that a general simulation framework for the two major classes of protocols may

be sufficient.

Comparison across criteria revealed common areas of strength and weakness

While the key focus of our benchmark framework is assessing methods’ performance
across multiple criteria, we can further use these results to identify criteria where most
methods performed well or were lacking (Fig. 4a). Comparing across criteria, those that
display a large difference between the simulated and real data for most methods are
examples of common weakness. This ability to identify common weakness has
implications for future method development as it highlights ongoing challenges of

simulation methods.

First, we compared the accuracy of maintaining each data property, where a larger KDE

score indicates greater similarity between simulated and real data. Fig. 4b shows data

properties relating to the higher-order interactions including mean-variance relationship

11
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of genes revealed larger differences between the simulated and real data. In
comparison, a number of gene-wise and cell-wise properties such as fraction of zero
per cell had relatively higher KDE scores, suggesting they were more accurately
captured by almost all simulation methods. These observations thus highlight the
difficulty in incorporating high-order interactions by current simulation methods in

general, and the potential area for method development.

The ability to recapture biological signals was quantified using the metric Symmetric
Mean Absolute Percentage Error (SMAPE), where a score closer to 1 indicates greater
similarity between simulated and real data (see Methods). We found differentially
distributed (DD) and differential proportion (DP) genes exhibited a greater difference
between simulated and real data (Fig. 4b). We also noted that four out of the 12
methods consistently had very low SMAPE score of between 0 to 0.3, indicating the
biological signals in the simulated data were at a very different proportion to that in real
data. Upon closer examination, these methods simulated close to zero proportions of
biological signals irrespective of the “true” proportion in the real data (Supplementary
Fig. 6). Together, these observations point to the need for better strategies to simulate

biological signals.

Discussion

We presented a comprehensive benchmark study assessing the performance of 12
single-cell simulation methods using 35 datasets and a total of 25 criteria across four

aspects of interest. Our primary focus was on assessing accuracy of data property

12
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estimation and various factors affecting it, ability to maintain biological signals and
computational scalability, as well as applicability. Additionally, using these results we
also identified common areas of strength and weakness of current simulation tools.
Altogether, we highlighted recommendations for method selection and identified areas

of improvement for future method development.

We found that various underlying models were used for different simulation methods
(Table 1). Each of the five top performing methods in category 1, for instance, uses a
different underlying statistical approach (Table 1). As another example, the three
methods ZINB-WAVE, zingeR and powsimR differ substantially in detail despite the fact
that they are all inspired by representing the observed counts using the negative
binomial (NB) family. Specifically, zingeR uses NB distribution to fit the mean and
dispersion of the count data and model the excess zero using the interaction between
gene expression and sequencing depth using additive logistic regression model.
powsimR uses the standard zero inflated NB (ZINB) distribution to fit the mean and
dispersion of the count data, with the zero inflation modelled using binomial sampling. In
ZINB-WaVE, the ZINB distribution is used to fit the mean and dispersion of the count
data, as well as the probability that a zero is observed. Additionally, the estimation of
mean and zero probability incorporates an additional parameter adapted from the RUV
framework® to capture unknown cell-level covariates. Therefore, while both powsimR
and ZINB-WaVE use ZINB distribution to fit the count data, the actual model differs.
Interestingly, while deep learning methods have dominated various fields and

applications, cscGAN, a deep learning based model, for scRNA-seq data simulation

13
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only had moderate performance compared to the other models. This may be due to the
large number of cells required for training the deep neural network in cscGAN as was

demonstrated in their original study™*.

Based on the experiments conducted, we identified several areas of exploration for
future researchers. Maintaining a reasonable amount of biological signal is desirable
and was not well captured by a number of methods. We also observed the genes
generated by some methods (Table 1) were assigned uninformative names such as
“gene 1" and exhibit no relationship with genes from the real data. This limited us to
assessing the proportion of biological signals in the simulated data, instead of assessing
whether the same set of genes carrying biological signals (e.g. marker gene) are
maintained in the simulated data. Incorporating the additional functionality of preserving
biologically meaningful genes is likely to increase the usability of future simulation tools.
Furthermore, we noted that several simulation studies only assessed their methods
based on a number of gene-wise and cell-wise properties and did not examine higher-
order interactions. Those studies are thus limited in the ability to uncover limitations in
their methods. In comparison, our benchmark framework covered a comprehensive
range of criteria and identified relative weakness of maintaining certain higher-order

interactions compared to gene- and cell-wise properties.

As expected, we identified that none of the simulation methods assessed in this study

could maintain the heterogeneity in cell population that was due to patient variability.

This is potentially related to the paradigm used by current simulation techniques, as

14
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some methods implicitly require input to be a homogeneous population. For instance,
some simulation studies inferred modelling parameters and performed simulation on
each cell type separately when the reference input contains multiple cell types. However,
experimental datasets with data from multiple samples, for example multiple patients,
would be characterised by sample-to-sample variability within a cell type. This cellular
heterogeneity is an important characteristic of single-cell data and has key applications
such as identification of subpopulations. The loss of heterogeneity can thus be a limiting
factor, as in some cases the simulation data could be an oversimplified representation

of single-cell data. Future research such as phenotype-guided simulation? can help to

extend the use of simulation methods.

Finally, we found there exists various trade-offs between the four aspects of criteria and
having a well-rounded approach could be more important than a framework that
performs best on one aspect but limiting in the other aspects. For example, as single-
cell field advances and datasets with hundreds of thousands of cells become
increasingly common, users may be interested in simulating large-scale datasets to test
the scalability of their methods. As a result, methods that rank highly on scalability while
also performing well on other aspects (e.g., SPARSIm, scDesign and Splat) may be
more favourable than other methods under these scenarios. We also note that due to
the primary intended purpose of each method, not all methods allow users to customise
the number of cell groups and the amount of differential expression between groups.
Method that offers a well-rounded approach across multiple aspects of interests is

therefore a direction of future research.

15
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While we aim to provide a comprehensive assessment of available simulation
methods, our study is not without limitations. For example, a few methods were
excluded in this study due to their unique properties. SERGIO? is able to simulate
regulation of genes by transcriptional factors, and therefore requires gene
regulatory networks as one of the inputs. Both PROSSTT? and dyngen® are
designed to simulate scRNA-seq data with trajectory information and require user-
defined lineage trees. Lun® was originally designed to tackle confounding plate
effects in DE analysis and it requires plate information to be specified in the input.
These simulation methods may need special considerations and evaluation
criteria that could not be captured by the general framework in this study. Although
the choice of DE detection methods could affect the evaluation of the simulation
methods, our evaluation using both limma, a DE method originally designed for
bulk RNA-seq data, and DEsingle, a DE method specifically designed for scRNA-
seq data demonstrate a high agreement of the rankings of simulation methods

based on the two DE methods (Fig 2b).

In conclusion, we have illustrated the usefulness of our framework by summarising each
method’s performance across different aspects to assist with method selection for users
and identify areas of further improvement for method developers. We advise users to
select the method that offers the functionality best suited to their purpose and
developers to address the limitations of current methods. The evaluation framework has

been made publicly available as the R package SimBench

16
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(https://github.com/SydneyBioX/SimBench). SimBench allows any new simulation

methods to be readily assessed under our framework. It requires two inputs including
the simulated data generated by any simulation method and the real data that was used
as the reference input to generate the simulated data. SimBench then runs the
evaluation procedure as performed in this study. We also provide all datasets used in
this study as a Bioconductor data package SimBenchData
(https://bioconductor.org/packages/devel/data/experiment/html/SimBenchData.html).
Together these two packages enable future simulation methods to be assessed and
compared with the methods benchmarked in this study. Additionally, we provide a Shiny
application for interactively exploring the results presented in this study hosted at
http://shiny.maths.usyd.edu.au/. The application allows users to select datasets of their
interest such as within a certain range of cell numbers, and examine methods
performance based on the specified datasets. Furthermore, we will provide updates to
the website to include benchmark results from new simulation methods when they
become available so that our comparative study will stay up-to-date and will support

future method development.

Methods

Dataset collection

A total of 35 publicly available datasets was used for this benchmark study. For all

datasets, the cell type labels are either publicly available or obtained from the authors
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upon request®’. Details of each dataset including their accession code are included in
the Supplementary Table 2. The datasets contain a range of sequencing protocols
including both Unique Molecular Identifiers (UMIs) and read-based protocols, multiple

tissue types and conditions, and from human and mouse origin.

The raw (unnormalised) count matrix was obtained from each study and quality control
was performed by removing potentially low quality cells or empty droplets that
expressed less than one percent of UMIs. For methods that require normalised count,
we converted the raw count into log2 counts per million reads (CPM), with addition of

pseudocount of 1 to avoid calculating log of zero.

Note the Tabula Muris dataset was only used to benchmark speed and scalability of
methods. Properties estimation was evaluated on all other datasets. For evaluating
biological signals, 25 datasets containing multiple cell types or conditions as specified

by Supplementary Table 2 were used.

Selection and implementation of simulation methods

An extensive literature review was conducted and a total of 12 published single-cell
simulation methods with implementation available in R and Python was found. The
details of each method, including the version of the code used in this benchmark study
and its publication are outlined in Table 1 and Supplementary Table 1. Supplementary
Table 3 detailed the execution strategy of each method for data property estimation and

biological signals and is dependent on the input requirement and the documentation of
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each method. Where possible, default setting or suggested setting from documentation

is followed.

To ensure the simulated data is not simply a “memorisation” of the original data, we
randomly split each dataset into 50% training and 50% testing (referred to as the real
data in this study). The training data was used as input to estimate model parameters
and generate simulated data. The real data was used as the reference to evaluate the
quality of the simulated data, by comparing the similarity between the simulated data
and the real data. The same training and testing subset was used for all methods to

avoid the data splitting process being a confounding factor in evaluation.

All methods were executed using a research server with dual Intel(R) Xeon(R) Gold
6148 Processor (40 total cores, 768 GB total memory). For methods that support
parallel computation, we used 8 cores and stopped the methods if the simulation was
not completed within 3 hours. For methods that run on a single core, we stopped the

methods if not completed within 8 hours.

Evaluation of data property estimation

Data properties measured in this study

We adapted the implementation from countsimQC (v1.6.0)'8, which is an R package
developed to evaluate the similarities between two RNA-seq datasets, either bulk or
single-cell and evaluated a total of 13 data properties across univariate and bivariate
distribution. They are described in detail below:

e Library size: total counts per cell.
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e TMM: weighted trimmed mean of M-values normalisation factor 2.

e Effective library size: library size multiplied by TMM.

e Scaled variance: z-score standardisation of the variance of gene expression in
terms of log2 CPM.

e Mean expression: mean of gene expression in terms of log2 CPM.

e Variance expression: variance of gene expression in terms of log2 CPM.

e Fraction zero cell: fraction of zeros per cell.

e Fraction zero gene: fraction of zeros per gene.

e Cell correlation: Spearman correlation between cells.

e Gene correlation: Spearman correlation between genes.

e Mean vs variance: the relationship between mean and variance of gene
expression.

e Mean vs fraction zero: the relationship between mean expression and the
proportion of zero per gene

e Library size vs fraction zero: the relationship between library size and the

proportion of zero per gene

Note that properties relating to library size, including TMM and effective library size can
only be calculated using unnormalised count matrix and could not be obtained from
methods that generate normalised count. As a result, these scores were shown as a

blank space in all relevant figures.
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Evaluation measures

In this study, we used a non-parametric measure termed Kernel Density Based Global
Two-Sample Comparison Test!’ (KDE test) to compare the data properties between
simulated and real data. The discrepancy between two distributions is calculated based
on the difference between the probability density functions, either univariate or

multivariate, that are estimated via kernel smoothing.

The null hypothesis of the KDE test is that the two kernel density estimates are the
same. An integrated squared error (ISE) serves as the measure of discrepancy and is
subsequently used to calculate the final test statistic under the null hypothesis. The ISE
is calculated as:

T = [Ifi ®) — f2()]* dx
where f;and f,are the kernel density estimates of sample 1 and sample 2, respectively.
The implementation from the R package ks (v1.10.7) was used for the KDE test

performed in this study.

We used the test statistic from the KDE test as the measure to quantify the extent of
similarity between simulated and real distributions. We applied a transformation rule by
scaling the absolute value of the test statistic to [0,1] and then taking 1 minus the value

as shown in the equation below:

x _ lx| = lXminimum! 1
transformed — ( )
f |Xmaximum! = |Xminimum|

where X is the raw value before transformation. The transformation is applied on the

KDE scores obtained from all methods across all datasets, thus the Xminimum aNd Xmaximum
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are defined based on those values. The purpose of the transformation is to follow the

principle of “the higher the value, the better” and enable easier interpretation.

To assess the validity of the KDE statistic and compare it against other measures, for
example, the well-established KS test for univariate distribution, we utilised the
measures implemented in countsimQC package. It includes the implementation of the
following six measures: Average silhouette width, average local silhouette width, NN
rejection fraction, K-S statistics, scaled area between eCDFs and Runs statistics. For
ease of comparing between the six measures and with the KDE test, we applied
transformation rules where applicable such that the outputs from all measures are within
the range of 0 to 1, where value closer to 1 indicates greater similarity. Similarly, the

transformation is calculated from all methods across all datasets.

The measures and their transformation rules are:
1. Average silhouette width
For each feature, the Euclidean distances to all other features were calculated.
The feature was either gene or cell, depending on the data properties evaluated.

A silhouette width s(i) was then calculated using the following formula:

b(i) — a(i)
max(a(i), b(i))

where b(i) is the mean distance between feature i and all other features in the

s(i) =

simulation data, a(i) is the mean distance between feature i and all other features

in the original dataset.
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s(i) of all features is then averaged to obtain the average silhouette width. The
range of silhouette width is [-1, 1]. A positive value close to 1 means the data
point from the simulation data is similar to the original dataset. Value close to O
means the data point is close to the decision boundary between the original and
simulated. A negative value means the data point from the original dataset is
more similar to the simulation data. The same transformation as described above

in equation (1) was applied.

2. Average local silhouette width
Similar to the average local silhouette width. The difference is that instead of
calculating the distance with all the features, only the k nearest neighbours were
used in the calculation. Default setting of k of 5 was used. The same

transformation as described above in equation (1) was applied.

3. NN rejection fraction
First, for each feature the k nearest neighbours were found using Euclidean
distance. A chi-square test was then performed with the null hypothesis being the
composition of k nearest neighbours belonging to original and simulation data is
similar to the true composition of real and simulation data. The NN rejection
fraction was calculated as the fraction of features for which the test was rejected

at a significance level of 5%.
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The output is the range of [0,1], where a higher value indicates greater
dissimilarity between the features from real and simulation data. The value was

thus transformed by taking 1 minus the value.

4. Kolmogorov-Smirnov (K-S) statistic
The K-S measure is based on K-S statistic obtained from performing
Kolmogorov-Smirnov test, which measures the absolute max distance between
the empirical cumulative distribution functions of simulated and real dataset. The
K-S statistics is in range [0, Inf]. The K-S measure was obtained by log-

transformation followed by the transformation rule defined previously.

5. Scaled area between empirical cumulative distribution (eCDFs)
The difference between the eCDFs of the properties in simulated and real
dataset. The absolute value of the difference was then scaled such that the
difference between the largest and smallest value becomes 1. The area under
the curve was calculated using the Trapezoidal Rule. The final value is in the
range of [0,1], where a value closer to 1 indicates greater differences between
the data properties distributions of the real and simulation data. The value was
then reversed by taking 1 minus the value such that it follows the general pattern

of higher value being better.

6. Runs statistics
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The Runs statistics is the statistic from a one-sided Wald-Wolfowitz runs test.
The values from the simulated and real dataset were ordered and a runs test was
performed. The null hypothesis is that the sequence is a random sequence with
no clear pattern of values from simulated or real dataset next to each other in

position.

Methods comparison through multi-step score aggregation

In order to summarise results from multiple datasets and multiple criteria, we

implemented the following multi-step procedure to aggregate the KDE scores.

First, we aggregated the KDE scores within each dataset. For most methods, each cell
type in a dataset containing multiple cell types was simulated and evaluated separately
for the reason mentioned in the previous section. This resulted in multiple KDE scores
for a single dataset, one for each cell type. To aggregate the scores into a single score
for a dataset, we calculated the weighted sum by using the cell type proportion as
weight, defined as the following:

zn:(xi * W)

i=1

where n is the number of cell types in the simulated or original datasets, x;is the

evaluation score of the i cell type and w; is the cell type proportion of the i"" cell type.

Since each method was evaluated using multiple datasets, we then summarised the

performance of each method across all datasets by taking the median score. This
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resulted in a single score for each method on each criterion, which then enabled us to
readily rank each method by comparing the score. Cases where a method was not able
to produce result on particular dataset were not considered in the scoring process. The
reasons for failing to simulate a data include not completing the simulation in the given
time limit, error arising in the simulation methods during the simulation process, and
special cases in which the simulation method is limited to an input dataset containing
two or more cell types and cannot generate result on datasets containing a single cell
type. The breakdown of the number of datasets successfully simulated and the number

of failed cases are reported in detail in Supplementary Fig. 4.

Finally, the overall rank of each method was computed by firstly calculating its rank for

each criterion and then taking the mean rank across all criteria.

Evaluation of biological signals
The five categories of biological signals evaluated in this study were adapted from 2°
and their descriptions are detailed below.
1. DE (limma)
This is the typical differentially expressed genes. Limma * was performed to
obtain the log fold change associated with each gene. We selected genes with
log2 fold change > 1.

2. DE (DEsingle)
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This finds the differentially expressed genes using a DE detection method
DEsingle® that is specifically designed for scRNA-seq data.

3. bv
DV stands for differentially variable genes. Bartlett’s test for differential variability
was performed to obtain the P-value associated with each gene.

4. DD
DD stands for differentially distributed genes. Kolmogorov—Smirnov test was
performed to obtain the P-value associated with each gene.

5. DP
DP is defined as differential proportion genes. We considered genes with log2
expression greater than 1 as being expressed and otherwise as non-expressed.
A chi-square test was then performed to compare the proportion of expression of
each gene between two cell types.

1. BD
BD is defined as bimodally distributed genes. Bimodality index defined using the

below formula was calculated for each gene:

_ |my —m,|
syp(1—p)

where m; and m; are the mean expression of genes in the two cell types,

BI

respectively, s is the standard deviation and p is the proportion of cells in the first

cell type.
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For the first five categories, genes with P-value < 0.1 (Benjamini-Hochberg adjusted)
were selected. This higher threshold was used instead of the typical threshold of 0.05 to
result in a higher proportion of biological signals, as larger value would enable clearer
differentiation of methods’ performance. For the last category, we used bimodality
index*? > 0.03 as the cut-off to yield a reasonable proportion of BD genes

(Supplementary Fig. 6).

To quantify the performance of each method, we used SMAPE®;

n
SMAPE = l M
nLi(A + F)/2

where F is the proportion of biological signals in simulated data and A is the proportion
in the corresponding real data, n is the number of data points, one from each dataset

evaluated. The proportion was calculated as the number of biological signal genes

divided by the total number of genes in a given dataset.

Evaluation of scalability

To reduce potential confounding effect, we measured scalability using the Tabula Muris
dataset only. The dataset was subset to the two largest cell types and random samples
of the cells without replacement were taken to generate datasets containing 50, 100,
250, 500, 750, 1000, 1250, 1500, 2500, 3000, 4000, 6000 and 8000 cells with equal

proportion of the two cell types.

Running time of each method was measured using the Sys.time function built-in R and

the time.time function built-in Python. Tasks that did not finish within the given time limit
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are considered as no result generated. To record the maximal memory for R methods
we used the function Rprofmem in the built-in utils Package in R. For Python methods
we used the psutil package and measured the maximal Resident Set Size. All

measurements were repeated three times and the average was reported.

In the majority of methods, simulation was performed in a two-step process. In the first
step, a range of properties is estimated from a given dataset. This set of properties are
then used in the second step of generating the simulation data. For these methods, the
time and memory usage of the two steps was recorded separately and shown in
Supplementary Fig. 4. For other methods where the two processes were completed in
one single function, we measured the time and memory usage of this single step and

used a dashed line to indicate these methods in Supplementary Fig. 4.

In order to compare and rank the methods as shown in Fig. 2, we summed the time and
memory of the methods that use two-step procedure and displayed the total time and
memory usage, such that their results became comparable with methods that involve
one single step. Some methods did not complete the simulation within the given time,
and the time and memory usage were unable to be recorded as the result. These timed
out simulations would bias the result when ranking the methods based on the total time
and memory usage. To account for this case, we assigned these simulation jobs a total
time usage as the time limit and a memory usage as the memory of the previous

simulation task. For example, a method that failed to simulate 8000 cells within the time
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limit of 8 hours was assigned 8 hours as the total time usage, and a memory usage as

the memory recorded when simulating the previous job of 6000 cells.

Evaluation of impact of data characteristics

We selected a subset of datasets to examine the impact of the number of cells and
sequencing technologies. For both analyses, the calculation of KDE score followed the
same procedure as described in previous methods sections. Briefly, each dataset was
split into 50% training and 50% testing. Transformed KDE score was then calculated
from the raw score obtained from all methods across the selected datasets, resulting in

values ranging between 0 and 1.

Impact of number of cells

To assess the impact of the number of cells on the accuracy of data property estimation,
we used subsets of Tabula Muris dataset as described in the previous section and
sampled to create datasets of 100, 200, 500, 1000, 1500, 2000, 2500, 3000, 5000, 6000,
8000, 12000 and 16000 cells. Each dataset was split into 50% training and 50% testing

as previously described.

Linear regression was fitted using the Im function in the built-in stats package in R for
each of the 13 data properties. This resulted in a total of 13 regression models with the

formula defined as:

Yy = PBo+ Bixs
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The response variable y was the KDE score corresponding to the data property and the

exploratory variables x; was the number of cells measured in 1000.

Impact of the sequencing protocols

To assess the impact of the sequencing protocols while avoiding potential batch effect,
we utilised two sets of datasets from the same study?®® that sequenced the same tissue
type using multiple protocols. It contains human PBMC data generated using the
following six protocols, 10x Genomics, CEL-seq2, Drop-seq, inDrops, Seg-Well and
Smart-seg2 and mouse cortex cells using the following four protocols of sci-RNA-seq,

10x Genomics, DroNc-seq and Smart-seq2.

ANOVA was fitted using the built-in stats package in R to examine whether there was
significant change in mean KDE score across the above datasets of different
sequencing technologies for each simulation method. P-values were displayed on the

figures.

31


https://doi.org/10.1101/2021.06.01.446157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446157; this version posted October 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

1. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The

technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610-620 (2015).

2. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a

tutorial. Molecular Systems Biology vol. 15 (2019).

3. Vieth, B., Ziegenhain, C., Parekh, S., Enard, W. & Hellmann, I. powsimR: power analysis
for bulk and single cell RNA-seq experiments. Bioinformatics 33, 3486—3488 (2017).

4. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing
data. Genome Biol. 18, 174 (2017).

5. Korthauer, K. D. et al. A statistical approach for identifying differential distributions in single-
cell RNA-seq experiments. Genome Biol. 17, 222 (2016).

6. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome
Biol. 11, R106 (2010).

7. Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and flexible
method for signal extraction from single-cell RNA-seq data. Nat. Commun. 9, 284 (2018).

8. Van den Berge, K. et al. Observation weights unlock bulk RNA-seq tools for zero inflation
and single-cell applications. Genome Biol. 19, 24 (2018).

9. Li, W. V. &Li, J.J. A statistical simulator scDesign for rational sScRNA-seq experimental
design. Bioinformatics 35, i41-i50 (2019).

10. Zhang, X., Xu, C. & Yosef, N. Simulating multiple faceted variability in single cell RNA
sequencing. Nat. Commun. 10, 2611 (2019).

11. Baruzzo, G., Patuzzi, I. & Di Camillo, B. SPARSIm single cell: a count data simulator for
scRNA-seq data. Bioinformatics 36, 1468—-1475 (2020).

12. Su, K., Wu, Z. & Wu, H. Simulation, power evaluation and sample size recommendation for

single-cell RNA-seq. Bioinformatics 36, 4860-4868 (2020).

32


https://doi.org/10.1101/2021.06.01.446157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446157; this version posted October 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

13. Assefa, A. T., Vandesompele, J. & Thas, O. SPsimSeq: semi-parametric simulation of bulk
and single-cell RNA-sequencing data. Bioinformatics 36, 3276—3278 (2020).

14. Marouf, M. et al. Realistic in silico generation and augmentation of single-cell RNA-seq data
using generative adversarial networks. Nat. Commun. 11, 166 (2020).

15. Lahnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21,
31 (2020).

16. Vieth, B., Parekh, S., Ziegenhain, C., Enard, W. & Hellmann, I. A systematic evaluation of
single cell RNA-seq analysis pipelines. Nat. Commun. 10, 4667 (2019).

17. Duong, T., Goud, B. & Schauer, K. Closed-form density-based framework for automatic
detection of cellular morphology changes. Proc. Natl. Acad. Sci. U. S. A. 109, 8382—-8387
(2012).

18. Soneson, C. & Robinson, M. D. Towards unified quality verification of synthetic count data
with countsimQC. Bioinformatics 34, 691-692 (2018).

19. Tabula Muris Consortium et al. Single-cell transcriptomics of 20 mouse organs creates a
Tabula Muris. Nature 562, 367-372 (2018).

20. Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing
methods. Nat. Biotechnol. 38, 737-746 (2020).

21. Gagnon-Bartsch, J. A. & Speed, T. P. Using control genes to correct for unwanted variation
in microarray data. Biostatistics 13, 539-552 (2012).

22. Sun, D. et al. Phenotype-guided subpopulation identification from single-cell sequencing
data. bioRxiv (2020).

23. Dibaeinia, P. & Sinha, S. SERGIO: A Single-Cell Expression Simulator Guided by Gene
Regulatory Networks. Cell Syst 11, 252-271.e11 (2020).

24. Papadopoulos, N., Gonzalo, P. R. & S6ding, J. PROSSTT: probabilistic simulation of
single-cell RNA-seq data for complex differentiation processes. Bioinformatics 35, 3517—

3519 (2019).

33


https://doi.org/10.1101/2021.06.01.446157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446157; this version posted October 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

25. Cannoodt, R., Saelens, W., Deconinck, L. & Saeys, Y. Spearheading future omics analyses
using dyngen, a multi-modal simulator of single cells. Nat. Commun. 12, 3942 (2021).

26. Lun, A. T. L. & Marioni, J. C. Overcoming confounding plate effects in differential
expression analyses of single-cell RNA-seq data. Biostatistics 18, 451-464 (2017).

27. Chen, W. et al. UMI-count modeling and differential expression analysis for single-cell RNA
sequencing. Genome Biol. 19, (2018).

28. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

29. Lin, Y. et al. scClassify: sample size estimation and multiscale classification of cells using
single and multiple reference. Mol. Syst. Biol. 16, €9389 (2020).

30. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43, e47 (2015).

31. Miao, Z., Deng, K., Wang, X. & Zhang, X. DEsingle for detecting three types of differential
expression in single-cell RNA-seq data. Bioinformatics 34, 3223—-3224 (2018).

32. Wang, J., Wen, S., Symmans, W. F., Pusztai, L. & Coombes, K. R. The bimodality index: a
criterion for discovering and ranking bimodal signatures from cancer gene expression
profiling data. Cancer Inform. 7, 199-216 (2009).

33. Armstrong, J. S. Long-range forecasting. (Wiley, 1978).

34. Sun, T., Song, D., Li, W. V. & Li, J. J. scDesign2: a transparent simulator that generates
high-fidelity single-cell gene expression count data with gene correlations captured.

Genome Biol. 22, 163 (2021).

34


https://doi.org/10.1101/2021.06.01.446157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446157; this version posted October 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Back matter

Acknowledgements

The authors would like to thank all their colleagues, particularly at The University of Sydney,
School of Mathematics and Statistics, for their intellectual engagement and constructive

feedback.

Authors’ contributions

JYHY and PY conceived the study. YC performed the experiments and interpretation of the

results with input from JYHY and PY. All authors wrote, read and approved the final manuscript.

Funding

This study was made possible in part by the Australian Research Council Discovery Project
Grant (DP170100654) to JYHY and PY; Discovery Early Career Researcher Award
(DE170100759) and Australia National Health and Medical Research Council (NHMRC)
Investigator Grant (APP1173469) to PY; AIR@innoHK programme of the Innovation and
Technology Commission of Hong Kong, Australia NHMRC Career Developmental Fellowship
(APP1111338) to JYHY; Research Training Program Tuition Fee Offset and University of

Sydney Postgraduate Award Stipend Scholarship to YC.

Data availability

All datasets used in this study are publicly available. Details on each dataset including

accession numbers and source websites are listed in Supplementary Table 2. Curated version

35


https://doi.org/10.1101/2021.06.01.446157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446157; this version posted October 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of the datasets is available as a Bioconductor package under the name SimBenchData

(https://bioconductor.org/packages/devel/data/experiment/html/SimBenchData.html).

Code availability

The benchmark framework is available as an R package at

https://qgithub.com/SydneyBioX/SimBench.

A Shiny application for interactively exploring the results is available at

http://shiny.maths.usyd.edu.au/.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

36


https://doi.org/10.1101/2021.06.01.446157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446157; this version posted October 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figures

e

a b e
Collection of methods Collection of data Aspects of evaluation

Desp leaming based For user:
Ranking of methods

35 datasets across:

® cscGAN - sequencing protocol
: - organism
Slatsiical model based - tissue type Method 1 .
® POWSC @ Splat
® powsimR @ SpsimSeq Protocol Method 2 . °
® scDD ; 10x Genomics sci-RNA-seq A 7 k-
@ Symsim = - Accuracy of data properties estimation & aé“f\ &
® scesian g ZiNB-wAVE - e ol
H - Ability to maintain biclogical signais
@ SparseDC . [ DroNc-seq I sea-wei ty ogi g For developer-
® SPARSIm Drop-seq [l smaRTer - Speed and scalability Areas of further development
nDrops [l smart-seq2
MARS-Seq Il sTRTseq - Applicability

Data properti stimation Biological signals Speed and scalability
Criteri Similarity across Genes carrying biological ~ Genes carrying biological g' :
riterion - Univariate distribution of gene-wise and signals in real data signals in simulated data E
cell-wise properties r . !
By 3o ~
e W & et W o 2
[
| £
- Bivariate distribution of relationship | ] c /—
between two data properties é
ﬂ L I_ Increasing number of cells
Measure Kernel Density Based Two Sample Proportion difference between the Run time and memory usage
Comparison Test across 13 criteria five types of biological signal

Fig 1. Schematic of the benchmarking workflow.

a A total number of 35 datasets, covering a range of protocols, tissue types, organisms and
sample size was used in this benchmark study. b We evaluated 12 simulation methods
available in the literature to date. ¢ Multiple aspects of evaluation were examined in this study,
with the primary focuses illustrated in detail in panel d. e Finally, we summarised the result into

a set of recommendations for users and identified potential areas of improvement for developers.
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Fig 2. Ranking of methods across key aspects of evaluation criteria.

The colour and size of the circle denote ranking of methods, where a large blue circle
represents the best possible rank of 1. Missing space indicates where a measurement was not
able to be obtained, for example due to the output format being normalised count instead of raw
count (see Methods). The ranks within each criterion were summarised into an overall tier rank,
with tier 1 being the best tier. a Ranking of methods within data property estimation, ranked by
median score across multiple datasets. b Ranking of methods within biological signals, ranked
by median score across multiple datasets. ¢ Scalability was ranked by the total computational
speed and memory usage required for properties estimation and dataset generation across
datasets. d Applicability was examined in terms of three criteria, which are explained in more
detail in Table 1. The number of datasets used in the entire evaluation process and the success

rate of each method on running the datasets is reported in Supplementary Fig. 4.
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Fig 3. Impact of dataset characteristic on method performance

a Impact of the number of cells on selected properties (see Supplementary Fig. 6 for all
properties). Line shows the trends with increasing cell numbers. Dot indicates where a
measurement is taken. b Impact of protocols was examined using two collections of datasets

(see Supplementary Fig. 7 for individual methods). Boxplots show the individual score of each

property for each method.
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Fig 4. Comparison of criteriain data property estimation and in biological signhals
a Evaluation procedure for data property estimation and biological signals. b Evaluation results
and the comparison of criteria within the two aspects of evaluation. For data property estimation,
the KDE score measures the difference between the distribution of 13 data properties in
simulated and in real data. A score close to 1 indicates a greater similarity. For biological signals,
the SMAPE score measures the percentage difference between the proportion of biological
signals detected in simulated and in real data. A score of 1 indicates no difference in the
biological signals detected in real and simulated data and a score of 0 indicates maximal

difference.
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Tables

Table 1. scRNA-seq simulation methods evaluated in this study.

Estimate from Simulate Customise Assign gene Primary purpose
Year of multiple cell multiple cell | DE name to as general
publicat | Approach groups groups expression * | generated simulation?
Methods | ion data
scDD’ 2016 Dirichlet process | Restricted to two | Restrictedto | Yes No No, used for
mixture of groups two groups generating
normals differentially
distributed genes
defined in the
scDD study and
evaluating the
scDD framework
Splat” 2017 Gamma No, requires a Yes, can Yes No Yes
distribution for homogenous simulate any
modelling mean population (eg, number of
expression; one cell type) groups
Poisson
distribution for
modelling count
EowsimR 2017 Negative No, requires a Restricted to | Yes Yes No, power
binomial or zero- | homogenous two groups analysis
inflated negative | population (ie, tool for
binomial model one cell type) single-cell
and bulk
RNA-seq
SgarseD 2017 Optimization Restricted to two | Restrictedto | Yes No No, used for
c”® framework conditions with two generating the
multiple cell conditions simulation data for
groups within with multiple assessing the
each condition cell groups performance of the
within each SparseDC
condition clustering method
zingeR8 2018 Negative Yes, can Yes, can Yes No No, used for
binomial model estimate from simulate any generating
with additive any number of number of simulation data for
logistic groups groups assessing the
regression to performance of the
account for zingeR DE method
zeros
ZINB- 2018 Zero-inflated Yes, can Restricted to | No No No, dimension
WaVE’ negative estimate from the groups in reduction method
binomial model any number of the input for scRNA-seq
groups data
SymSim' | 2019 Kinetic model No, requires a Yes, can Yes No Yes
0 using Markov homogenous simulate any
chain Monte population (ie, number of
Carlo one cell type) groups
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scDesign | 2019 Gamma-normal Restricted to one | Restrictedto | Yes No No, power analysis
o mixture model and two groups one and two tool for scRNA-seq
groups
SPARSI 2020 Gamma Yes, can Yes, can Yes Yes Yes
m* distribution for estimate from simulate any
modelling any number of number of
expression; groups groups
Multivariate
hypergeometric
distribution for
modelling
technical
variability
SPsimSe | 2020 Estimation of Yes, can Restrictedto | Yes Yes Yes
q* probability estimate from the groups in
distribution uses | any number of the input
fast log-linear groups data
model-based
density
estimation
method;
Gaussian-
copulas for
modelling gene-
gene correlation
POWSC! | 2020 Mixture of zero Yes, can Restricted to | Yes No No, power analysis
2 inflated Poisson | estimate from the groups in tool for scRNA-seq
for modelling any number of the input
inactive groups data
transcription; Lo
g-normal
Poisson for
modelling the
active
transcription
cscGAN" | 2020 Generative Yes, can Restricted to | No Yes Yes
4 Adversarial estimate from the groups in

Network with
Wasserstein
distance

any number of
groups

the input
data

*Includes either proportion of differential expression or fold change.

** We benchmarked the version of scDesign published in 2019. We note that during the final preparation stage

of our work, a newer version scDesign2 was published®*.
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