

1 **Abstract**

2 **Background:** We undertook longitudinal β -amyloid positron emission tomography (A β -PET)
3 imaging as a translational tool for monitoring of chronic treatment with the peroxisome
4 proliferator-activated receptor gamma (PPAR γ) agonist pioglitazone in A β model mice. We
5 thus tested the hypothesis this treatment would rescue from increases of the A β -PET signal
6 while promoting spatial learning and preservation of synaptic density.

7

8 **Methods:** PS2APP mice (N=23; baseline age: 8 months) and *App*^{NL-G-F} mice (N=37; baseline
9 age: 5 months) were investigated longitudinally for five months using A β -PET. Groups of
10 mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial
11 memory performance and confirmed terminal PET findings by immunohistochemical and
12 biochemistry analyses.

13

14 **Results:** Surprisingly, A β -PET and immunohistochemistry revealed a shift towards higher
15 fibrillary composition of A β -plaques during upon chronic pioglitazone treatment. Nonetheless,
16 synaptic density and spatial learning were improved in transgenic mice with pioglitazone
17 treatment, in association with the increased plaque fibrillarity.

18

19 **Conclusion:** These translational data suggest that a shift towards higher plaque fibrillarity
20 protects cognitive function and brain integrity. Increases in the A β -PET signal upon
21 immunomodulatory treatments targeting A β aggregation can thus be protective.

22

1 **1. Introduction**

2 Alzheimer's disease (AD) has become the most common cause of dementia, and is imposing
3 a significant burden on health care systems of societies with aging populations (1). During
4 the past few decades, research on AD pathogenesis led to the formulation of a model that
5 accumulation of amyloid beta (A β)-plaques and neurofibrillary tangles, the histologically
6 characterizing hallmarks of AD (2), triggers a cascade of neurodegenerative events, leading
7 to disease progression (3). Additionally, novel emerging evidence indicates that
8 neuroinflammation plays an important role in pathogenesis and progression of AD and many
9 other neurodegenerative diseases (4; 5). In AD, activated microglial cells are able to bind
10 and phagocytize soluble A β , and to some degree also the fibrillary A β aggregates, as part of
11 the increased inflammatory response (4). However, others report that A β -recognition
12 receptors on microglia downregulate during the progression of AD, such that microglial cells
13 eventually undergo senescence, characterized by reduced phagocytosis of A β -aggregates
14 (7). With time, the decreased microglial activity is permissive to expansion of fibrillar
15 amyloidosis (8; 9) and a high proportion of dystrophic microglia were observed in human AD
16 brain *post mortem* (11). These observations have led some to speculate that the microglial
17 response is overwhelmed by the massive A β -deposition occurring in advanced AD, such that
18 their chronic activation has a detrimental impact on disease progression (12; 7).

19 It might follow that treatment with anti-inflammatory drugs should alleviate AD progression.
20 Pioglitazone is an anti-inflammatory insulin sensitizer widely used to treat hyperglycemia in
21 type 2 diabetes via activation of peroxisome proliferator-activated receptor gamma (PPAR- γ).
22 Treatment with pioglitazone enables microglial cells to undergo a phenotypic conversion from
23 a pro-inflammatory towards an anti-inflammatory and neuroprotective phenotype (14; 15).
24 Furthermore, activation of PPAR- γ in the brains of AD mice initiate a coupled metabolic cycle
25 with the Liver X Receptor to increase brain apolipoprotein E levels, which promotes the
26 ability of microglial cells to phagocytose and degrade both soluble and fibrillary A β (14; 15).
27 However, another study showed that only low-dose PPAR- γ agonist treatment, but not the
28 conventional doses, promotes an A β -clearing effect by increasing (LDL Receptor Related

1 Protein 1 (LRP1) in human brain microvascular endothelial cells (HBMECs) (16). Despite this
2 compelling preclinical evidence, a meta-analysis encompassing nine clinical studies did not
3 compelling support a beneficial effect of PPAR- γ agonist treatment on cognition and memory
4 in patients with mild-to-moderate AD (18). Furthermore, a phase III trial of pioglitazone in
5 patients with mild AD was discontinued due to lacking efficacy (19). It remains a conundrum
6 why the translation of PPAR γ stimulation into human AD failed, which calls for further
7 investigation to uncover the basis of the seemingly false lead. Conceivably, the efficacy of
8 pioglitazone may be confined to a specific stage of AD, or in cases distinguished by a
9 particular biomarker.

10 Given this background, we hypothesized that A β -load and composition would determine the
11 individual efficacy of PPAR γ stimulation effect in the progression of AD mouse models.
12 Therefore, we undertook serial small animal positron emission tomography (μ PET) with the
13 A β -tracer [^{18}F]florbetaben (20–22) in two AD mouse models with distinct A β -plaque
14 composition. The transgenic PS2APP-line develops dense fibrillary A β -plaques with late
15 debut whereas the knock-In mouse model *App*^{NL-G-F} develops more diffuse oligomeric A β -
16 plaques with early debut. Both strains of mice were treated with pioglitazone or vehicle for
17 five months during the phase of main A β accumulation. We conducted behavioral
18 assessments of spatial learning and confirmed longitudinal PET findings by
19 immunohistochemical analysis and biochemical analysis, thus aiming to test the hypothesis
20 that response to pioglitazone would depend on the type of A β -plaques formed in transgenic
21 mice.

22

23

24

25

26

27

28

1

2

3 **2. Methods and Materials**

4 **Study design**

5 Groups of PS2APP and *App*^{NL-G-F} mice were randomized to either treatment (PS2APP-PIO
6 N=13; *App*^{NL-G-F}-PIO N=14) or vehicle (PS2APP-VEH N=10; *App*^{NL-G-F}-VEH N=23) groups at
7 the age of 8 (PS2APP) and 5 (*App*^{NL-G-F}) months. In PS2APP mice, the baseline
8 [¹⁸F]florbetaben-PET scan (A β -PET) was performed at the age of eight months, followed by
9 initiation of pioglitazone treatment or vehicle for a period of five months and a follow-up A β -
10 PET scan at 13 months. In *App*^{NL-G-F} mice, the baseline A β -PET scan was performed at the
11 age of five month, followed by initiation of pioglitazone treatment or vehicle, for a period of
12 five months. Follow-up A β -PET scans were acquired at 7.5 months and ten months of age,
13 which was the study termination in *App*^{NL-G-F} mice. For all mice, behavioral testing after the
14 terminal PET scan was followed by immunohistochemical and biochemical analyses of
15 randomized hemispheres. The TSPO-PET arm of the study and detailed analyses of
16 neuroinflammation imaging are reported in a separate manuscript focusing on the predictive
17 value of TSPO-PET for outcome of PPAR γ -related immunomodulation (23). The sample size
18 estimation of the in vivo PET study was based on previous experience and calculated by
19 G*power (V3.1.9.2, Kiel, Germany), assuming a type I error $\alpha=0.05$ and a power of 0.8 for
20 group comparisons, a 10% drop-out rate per time-point (including TSPO-PET), and a
21 treatment effect of 5% change in the PET signal (23). Shared datapoints between the study
22 arms are indicated.

23

24 **Animals**

25 PS2APP transgenic (24), *App*^{NL-G-F} APP knock-in (25) and wild-type C57Bl/6 mice were used
26 in this investigation (for details see Supplement). All experiments were performed in
27 compliance with the National Guidelines for Animal Protection, Germany, with approval of the
28 local animal care committee of the Government of Oberbayern (Regierung Oberbayern) and

1 overseen by a veterinarian. The experiments complied with the ARRIVE guidelines and were
2 carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and
3 associated guidelines, EU Directive 2010/63/EU for animal experiments. Animals were
4 housed in a temperature and humidity-controlled environment with a 12-h light–dark cycle,
5 with free access to food (Ssniff) and water.

6

7 **A β -PET Acquisition and Reconstruction**

8 [^{18}F]florbetaben radiosynthesis was performed as previously described (22). This procedure
9 yielded a radiochemical purity exceeding 98% and a specific activity of 80 ± 20 GBq/ μmol at
10 the end of synthesis. Mice were anesthetized with isoflurane (1.5%, delivered via a mask at
11 3.5 L/min in oxygen) and received a bolus injection [^{18}F]florbetaben 12 ± 2 MBq in 150 μL of
12 saline to a tail vein. Following placement in the tomograph (Siemens Inveon DPET), a single
13 frame emission recording for the interval 30-60 min p.i., which was preceded by a 15-min
14 transmission scan obtained using a rotating [^{57}Co] point source. The image reconstruction
15 procedure consisted of three-dimensional ordered subset expectation maximization (OSEM)
16 with four iterations and twelve subsets followed by a maximum *a posteriori* (MAP) algorithm
17 with 32 iterations. Scatter and attenuation correction were performed and a decay correction
18 for [^{18}F] was applied. With a zoom factor of 1.0 and a 128x128x159 matrix, a final voxel
19 dimension of 0.78x0.78x0.80 mm was obtained.

20

21 **Small-Animal PET Data Analyses**

22 Volumes of interest (VOIs) were defined on the MRI mouse atlas (26). A forebrain target VOI
23 (15 mm^3) was used for group comparisons and an additional hippocampal target VOI (8 mm^3)
24 served for correlation analysis with spatial learning. We calculated [^{18}F]florbetaben
25 standard-uptake-value ratios (SUVRs) using the established white matter (PS2APP; 67 mm^3 ;
26 pons, midbrain, hindbrain and parts of the subcortical white matter) and periaqueductal grey
27 (App^{NL-G-F} ; 20 mm^3) reference regions (27–29).

28

1 **Water Maze**

2 Two different water maze tasks were applied due to changing facilities between the
3 investigations of PS2APP and *App*^{NL-G-F} cohorts. We used a principal component analysis of
4 the common read outs of each water maze task to generate a robust index for correlation
5 analyses in individual mice (30). The principal component of the water maze test was
6 extracted from three spatial learning read-outs (PS2APP: escape latency, distance, platform
7 choice; *App*^{NL-G-F}: escape latency, frequency to platform, time spent in platform quadrant).
8 Thus, one quantitative index of water maze performance per mouse was generated for
9 correlation with PET imaging readouts. The experimenter was blind to the phenotype of the
10 animals.

11 *Water Maze in PS2APP mice*: PS2APP and age-matched wild-type mice were subjected to a
12 modified Morris water maze task as described previously (31–34) yielding escape latency,
13 distance to the correct platform and correct choice of the platform as read-outs.

14 *Water Maze in App*^{NL-G-F} *mice*: *App*^{NL-G-F} mice (treated and vehicle) and 14 age- and sex-
15 matched wild-type mice (vehicle) underwent a classical Morris water maze test, which was
16 performed according to a standard protocol with small adjustments (35) as previously
17 described (29). Details are provided in the Supplement.

18

19 **Immunohistochemistry**

20 Immunohistochemistry in brain regions corresponding to PET analyses was performed for
21 fibrillary as well as oligomeric A β , microglia and synaptic density as previously published
22 (36–38). We obtained immunofluorescence labelling of oligomeric A β using NAB228
23 (Thermo Fisher Scientific, USA) with a dilution of 1:500. For histological staining against
24 fibrillar A β , we used methoxy-X04 (TOCRIS, Bristol, United Kingdom) at a dilution of 0.01
25 mg/ml in the same slice as for NAB228 staining. We obtained immunofluorescence labelling
26 of microglia using an Iba-1 antibody (Wako, Richmond, USA) with a dilution of 1:200 co-
27 stained with CD68 (BioRad, California, USA) with a dilution of 1:100. The synaptic density
28 was measured using an anti-vesicular glutamate transporter 1 (VGLUT1) primary antibody

1 (1:500, MerckMillipore). Quantification was calculated as area-%. Details are provided in the
2 Supplement.

3

4 **Biochemical characterization of brain tissue**

5 DEA (0,2% Diethylamine in 50 mM NaCl, pH 10) and RIPA lysates (20 mM Tris-HCl (pH 7.5),
6 150 mM NaCl, 1 mM Na2EDTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium
7 pyrophosphate) were prepared from brain hemispheres. The later was centrifuged at 14,000
8 g (60 min at 4°C) and the remaining pellet was homogenized in 70% formic acid (FA
9 fraction). The FA fraction was neutralized with 20 x 1 M Tris-HCl buffer at pH 9.5 and used
10 further diluted for A β analysis. A β contained in FA fractions was quantified by a sandwich
11 immunoassay using the Meso Scale A β Triplex plates and Discovery SECTOR Imager 2400
12 as described previously (39). Samples were measured in triplicates.

13

14 **Statistics**

15 The principal component of the water maze test was extracted using SPSS 26 statistics (IBM
16 Deutschland GmbH, Ehningen, Germany). Prior to the PCA, the linear relationship of the
17 data was tested by a correlation matrix and items with a correlation coefficient <0.3 were
18 discarded. The Kaiser-Meyer-Olkin (KMO) measure and Bartlett's test of sphericity were
19 used to test for sampling adequacy and suitability for data reduction. Components with an
20 Eigenvalue >1.0 were extracted and a varimax rotation was selected. Water maze results
21 were also used as an endpoint in the dedicated manuscript on serial TSPO-PET in both
22 cohorts (23). For immunohistochemistry quantifications GraphPad Prism (Graphpad Prism 7
23 Software, USA) was used. All analyses were performed by an operator blinded to the
24 experimental conditions. Data were normally distributed according to Shapiro-Wilk or
25 D'Agostino-Pearson test. One-way analysis of variance (ANOVA) including Bonferroni post
26 hoc correction was used for group comparisons > 2 subgroups. For assessment of inter-
27 group differences at single time points, Student's t-test (unpaired, two-sided) was applied. All
28 results are presented as mean \pm SEM. P values <0.05 are defined as statistically significant.

1

2

3

4

5 **3. Results**

6 **Long-term pioglitazone treatment provokes a significant increase of the A β -PET signal
7 in PS2APP mice**

8 First, we analyzed serial changes of fibrillar amyloidosis under chronic pioglitazone treatment
9 by [^{18}F]florbetaben A β -PET in PS2APP mice and wild-type controls. Vehicle treated PS2APP
10 mice showed an elevated A β -PET SUVR when compared to vehicle treated wild-type at eight
11 (+20.4%, $p<0.0001$) and 13 months of age (+37.9%, $p<0.0001$). As expected, the A β -PET
12 SUVR of wild-type mice did not change between eight and 13 months of age (0.831 ± 0.003
13 vs. 0.827 ± 0.008 : $p=0.645$). Surprisingly, pioglitazone treatment provoked a stronger
14 longitudinal increase in the A β -PET signal of PS2APP mice (+21.4%) when compared to
15 vehicle treated PS2APP mice (+14.1%, $p=0.002$). At the follow-up time point, the A β -PET
16 SUVR was significantly elevated when compared to untreated PS2APP mice (Fig. 1;
17 1.140 ± 0.014 vs. 1.187 ± 0.011 ; $p=0.0017$). Pioglitazone treatment in wild-type mice provoked
18 no changes of A β -PET SUVR compared to vehicle-treated wild-type mice at the follow-up
19 time-point (0.827 ± 0.008 vs. 0.823 ± 0.005 : $p=0.496$). Taken together, we found a significant
20 increase in the A β -PET signal, which implied an increase in fibrillary A β -levels under
21 pioglitazone treatment in PS2APP mice.

22

23 **A β -PET detects a strong increase of the fibrillar A β -load in *App*^{NL-G-F} mice during
24 chronic PPAR γ stimulation**

25 Next, we sought to validate our unexpected findings in PS2APP mice a mouse model with
26 differing A β plaque composition, namely the *App*^{NL-G-F} mouse, which has limited fibrillarity due
27 to endogenous expression of APP with three FAD mutations (25). Strikingly, the effect of
28 pioglitazone treatment on the A β -PET signal was even stronger in *App*^{NL-G-F} mice than in

1 PS2APP mice. There was a pronounced increase of the A β -PET signal during chronic
2 pioglitazone treatment (+17.2%) compared to vehicle (+5.3%, p<0.0001). *App*^{NL-G-F} mice with
3 pioglitazone treatment had a higher A β -PET SUVR at 7.5 (+4.6%, p=0.0071) and ten
4 (+7.7%, p<0.0001) months of age when compared to vehicle-treated *App*^{NL-G-F} mice (Fig. 2).
5 The baseline level of A β -PET SUVR was non-significantly lower in treated compared to
6 untreated *App*^{NL-G-F} mice (0.878±0.010 vs. 0.906±0.006, p=0.1350). In both mouse models,
7 the A β -signal increase after pioglitazone-treatment compared to baseline scans was
8 pronounced in the frontotemporal cortex and hippocampal area (Figs. 1A & 2A). In summary,
9 the pioglitazone treatment augmented the A β -PET signal increase in both mouse models;
10 this unexpected result was more pronounced in the *App*^{NL-G-F} model, which expresses less
11 fibrillary A β plaques.

12

13 **Pioglitazone triggers a shift towards increased A β -plaque fibrillarity in two distinct
14 mouse models of amyloidosis**

15 Given the unexpected *in vivo* findings, we set about to evaluate the molecular correlates of
16 the potentiation of A β -PET signal during pioglitazone treatment in AD model mice. The
17 (immuno)histochemical analysis showed that the observed increase of the A β -PET signal
18 was predominantly explicable by a change in plaque composition rather than by a change in
19 plaque density (Fig. 3). In both mouse models, the proportion of fibrillary A β stained with
20 methoxy-X04 increased significantly under pioglitazone treatment compared to vehicle
21 treated animals (PS2APP: 29.6±3.5% vs. 15.2±0.7%, p=0.0056, Fig. 3C; *App*^{NL-G-F}: 9.1±1.6%
22 vs. 4.4±0.4%, p=0.0001, Fig. 3D). Pioglitazone treatment had no significant effect on the
23 proportion of oligomeric A β stained with NAB228 in PS2APP mice (PS2APP: 65.4±6.1% vs.
24 67.0±6.9%, p=0.865, Fig. 3C). In *App*^{NL-G-F} mice, however, the proportion of oligomeric A β
25 decreased significantly in treated animals (*App*^{NL-G-F}: 26.7±1.7% vs. 34.5±1.7%, p=0.0138,
26 Fig. 3E). The effect size of pioglitazone treatment on plaque morphology was larger in *App*^{NL-}
27 ^{G-F} mice than in PS2APP mice, which was reflected by a significantly increased overlay of
28 methoxy-X04 and NAB228 positive plaques proportions in relation to untreated mice

1 (PS2APP: $40.4\pm3.6\%$ vs. $25.1\pm2.1\%$, $p=0.0075$, Fig. 3C; App^{NL-G-F} : $35.0\pm3.4\%$ vs.
2 $12.9\pm1.3\%$, $p=0.0005$, Fig. 3E). We attribute this effect to the generally diffuse nature of the
3 plaque composition of App^{NL-G-F} mice, which predominantly contain high oligomeric and low
4 fibrillary fractions of A β (40) (compare Fig. 3A and Fig. 3B).
5 The number of methoxy positive A β -plaques were similar between vehicle and pioglitazone
6 treated groups for PS2APP (1016 ± 107 vs. 1118 ± 121 , $p=0.547$, Fig. 3D) and App^{NL-G-F} mice
7 (242 ± 56 vs. 266 ± 33 , $p=0.722$, Fig. 3F). Notably there was no significant effect of chronic
8 pioglitazone treatment on the different insoluble A β species (A β 40, A β 42) as well as on the
9 level of the soluble A β 42-isoform observed in either mouse model (Suppl. Fig. 1A). Taken
10 together, our results indicate that the potentiated increase of the A β -PET signal upon
11 pioglitazone treatment reflected a change in plaque composition from oligomeric to fibrillary
12 A β -fractions.

13

14 **Microglial activation is reduced upon PPAR γ stimulation in both AD mouse models**

15 To confirm changes in the activation state of microglial cells, we performed Iba1 as well as
16 CD68 immunohistochemical staining of activated microglia in both mouse models. We
17 observed that pioglitazone treatment significantly decreased microglial activation in both
18 mouse models (Fig. 4). In PS2APP mice, PPAR γ stimulation provoked a one-third reduction
19 of area coverage of Iba1-positive microglial cells (area: $9.1\pm0.6\%$) compared to untreated
20 mice ($14.0\pm0.5\%$, $p=0.0003$), and also a significant reduction of CD68-positive microglial
21 cells area ($7.6\pm0.4\%$ vs. $9.9\pm0.3\%$, $p=0.0018$). In pioglitazone treated App^{NL-G-F} mice, the
22 area reduction was less pronounced, but still significant for Iba1-positive microglial cells
23 ($9.4\pm0.2\%$ vs. $10.6\pm0.2\%$, $p=0.0015$) and CD68-positive microglial cells ($2.7\pm0.1\%$ vs.
24 $3.0\pm0.1\%$, $p=0.0141$) compared to untreated mice. Thus, we observed a consistent net
25 reduction of activated microglial coverage in both models; the lesser effect in App^{NL-G-F} mice
26 might indicate partial compensation by triggering of microglial activation due to increased
27 fibrillary A β levels (40).

28

1 **Cognitive function is improved by chronic pioglitazone treatment in association with
2 an increasing A β -PET rate of change**

3 Finally, we aimed to elucidate whether the observed longitudinal changes in the composition
4 of A β -plaques affected synaptic density and hippocampus related cognitive performance.

5 In PS2APP mice, treatment with pioglitazone resulted in a significant reduction of the water
6 maze performance index compared to untreated mice during the probe trial (Fig. 5A;
7 p=0.0155), whereas in wild-type animals there was no difference between treated and
8 untreated animals (p>0.999). The water maze performance index of pioglitazone treated
9 PS2APP mice correlated strongly with the rate of increase in A β -PET signal (Fig. 5C;
10 R=0.686; p=0.0097). In *App*^{NL-G-F} mice, pioglitazone treatment did not result in a significant
11 change of spatial learning performance (Fig. 5B; p>0.999). Accordingly, the water maze
12 performance index and the rate of change in the A β -PET signal of pioglitazone treated *App*^{NL-}
13 ^{G-F} mice did not correlate significantly (Fig. 5D; R=0.341; p=0.254). There was no significant
14 association between the water maze performance index and the A β -PET rate of change in
15 vehicle treated PS2APP or *App*^{NL-G-F} mice.

16 To explore the basis of water maze results in PS2APP mice at the molecular level, we
17 performed staining of synaptic density in the hippocampus. A β -oligomers are the primary
18 neurotoxic forms of A β , while A β -fibrils have less neurotoxicity (44–46). Thus, we
19 hypothesized that pre-synaptic density in the hippocampal CA1-Area would be rescued upon
20 pioglitazone-treatment. In wild-type mice we did not observe altered changed VGLUT1
21 density under pioglitazone treatment (Fig. 5E, F; 0.519 \pm 0.007 1/ μ m vs. 0.502 \pm 0.008 1/ μ m,
22 p=0.810). In PS2APP mice, however, we found that pioglitazone treatment significantly
23 rescued spine density in the CA1-region of the hippocampus compared to untreated animals
24 (Fig. 5E, F; 0.497 \pm 0.006 1/ μ m vs. 0.459 \pm 0.007 1/ μ m, p=0.0012), supporting the
25 hippocampal-dependent water maze results.

26

27

28

1

2

3

4 **4. Discussion**

5 To our knowledge, this is the first large-scale longitudinal PET study of cerebral A β -
6 deposition in two distinct AD mouse models treated with the PPAR γ agonist pioglitazone. We
7 combined *in vivo* PET monitoring with behavioral testing and detailed immunohistochemical
8 analysis. Our main finding was an unexpected potentiation in both mouse models of the
9 increasing A β -PET signal during five months of pioglitazone treatment. This increase
10 occurred despite an improvement of spatial learning and prevention of synaptic loss in the
11 treated mice. Immunohistochemistry revealed a shift towards plaque composition of higher
12 fibrillarity as the molecular correlate of the A β -PET signal, which was directly associated with
13 improved cognitive performance in PS2APP mice.

14 A β -PET enables longitudinal *in vivo* detection of A β -plaques, which plays an important role in
15 AD diagnosis, monitoring disease progression, and as an endpoint for therapeutic treatment
16 effects (47). In our preceding observational and interventional studies, we validated in AD
17 model mice the clinically established A β -PET tracer [^{18}F]florbetaben relative to histologically
18 defined indices A β deposition (3; 21). So far, an enhanced or increasing [^{18}F]florbetaben-PET
19 signal has been interpreted as an indicator of disease progression or treatment failure (48).
20 Unexpectedly, we found that pioglitazone potentiated the increasing A β -PET signal in two
21 mouse models compared to vehicle controls; in both cases, this increase was due to a shift
22 of the plaque composition towards higher fibrillarity, and away from the more neurotoxic
23 oligomeric form. However, ELISA measurements of plaque associated fibrillary A β
24 extracted with formic acid did not indicate a change in the A β species composition in brain.
25 This suggests that A β -PET imaging and immunohistochemical analysis detect treatment
26 effects on A β -plaque composition that do not arise from a shift in the levels of A β species,
27 and which may thus evade detection in studies of CSF or plasma content (49).

28 Furthermore, our study provides evidence that rescued spatial learning deficits and
13

1 prevented hippocampal synaptic loss can occur despite an increasing A β -PET signal upon
2 immunomodulation. The combined results might sound contradictory, but according to the
3 amyloid cascade hypothesis, A β -oligomers rather than A β -fibrils are the neurotoxic A β -forms
4 (44; 50). Indeed, high concentrations of A β -oligomers isolated from brain of AD patients
5 correlated significantly with the degree of cognitive impairment prior to death (51–53).
6 Furthermore, A β -oligomers have been shown to disrupt long-term potentiation at synapses
7 and provoke long-term depression (54–56). Thus, improved spatial learning and rescued
8 synaptic density could reflect a therapeutically induced shift of A β to hypercondensed
9 plaques, in keeping with observations of greater neuritic damage in association with more
10 diffuse plaques (59; 60). Furthermore, strongly in line with our present data, a recent study
11 argued that microglia promoted formation of dense-core plaques may play a protective role in
12 AD (61).

13 The shift in plaque composition was more pronounced in *App*^{NL-G-F} mice than in the PS2APP
14 model. Due to the expression of the Arctic mutation (25), the A β -deposits of the *App*^{NL-G-F} line
15 consist predominantly of A β -oligomers (29; 40). However, we observed no improvement in
16 cognition in the APP knock-in mouse line after pioglitazone treatment. We attribute the
17 lacking improvement of spatial learning to the minor deterioration of this model in water maze
18 assessment at ten months of age (64; 29). Our present observation stand in contrast with
19 previous studies showing that PPAR- γ agonists reduced A β -plaque formation by increasing
20 A β -clearance (15; 65; 14). However, those studies only performed endpoint analyses, in part
21 after short-term treatment of nine days (14); the current work is the first to perform
22 longitudinal *in vivo* monitoring of A β -deposition over a five-month chronic PPAR- γ treatment
23 period. We note that the divergent results could also reflect the different markers used for
24 immunohistochemistry compared to our present differentiated analysis of fibrillar and
25 oligomeric A β components. As such, the decreased NAB228-positive plaque fraction in our
26 treated *App*^{NL-G-F} mice fits to the earlier reported decrease of the 6E10-positive area in
27 APPPS1 mice (14). We note that the biochemical source of the A β -PET signal is still a matter
28 of controversy, since some studies found no impact of non-fibrillar plaque components (66)

1 whereas others postulated a significant contribution of non-fibrillar A β to the A β -PET signal
2 (67–69). Recently, we were able to show that non-fibrillar components of A β plaques indeed
3 contribute to the net A β -PET signal (70). Therefore, increases in the [^{18}F]florbetaben-PET
4 signal must be precisely differentiated and interpreted with caution. Development of new PET
5 tracers that selectively target oligomeric A β may realize a more precise discrimination of
6 neurotoxic A β plaque manifestation (71; 72) and its impact on disease severity.
7 In line with previous pioglitazone studies (14; 15), we observed a decrease in microglial
8 activity (23), thus confirming the immunomodulatory effect of the drug. Since earlier studies
9 have shown that fibrillary A β -deposits activate microglial cells (40) which then migrate
10 towards the fibrillar deposits (6), resulting in an increased number of activated microglial cells
11 surrounding A β -plaques (8), the inactivation and migration effects could cancel each other
12 out. Based on our findings in both AD models, we conclude that, by increasing plaque
13 fibrillarity, the immunomodulatory effect of pioglitazone outweighs the potential triggering of
14 activated microglia. Modulating microglial phenotype to restore their salutogenic effects may
15 prove crucial in new therapeutic trials (74). In several preclinical and clinical trials,
16 pioglitazone proved to be a promising immunomodulatory approach for treatment of AD,
17 especially in patients with comorbid diabetes (75; 76). However, a large phase III trial of
18 pioglitazone in patients with mild AD was discontinued due to lacking efficacy (19). Our data
19 calls for monitoring of the effects of PPAR γ agonists by A β -PET, which may help to stratify
20 treatment responders based on their individual rates of A β plaque accumulation. Based on
21 our results, we submit that personalized PPAR γ agonist treatment might be effective when
22 the patient has capacity to successfully shift toxic oligomeric A β towards fibrillar parts of the
23 plaque.

24

25 **5. Limitations**

26 We note as a limitation that PPAR γ receptor agonists represent a rather unspecific class of
27 drugs since PPAR γ is involved in various pathways in addition to peroxisome activation,
28 notably including glucose metabolism and insulin sensitization [48]. Future studies should

1 address if the observed effects on A β plaque composition are also present for more selective
2 immunomodulation strategies such as NLRP3 regulators [49]. Two different water maze
3 examinations were performed in the present study due a switch of the laboratory. Hence,
4 although we calculated a similar water maze performance index by a PCA of the main read-
5 outs of each examination, the obtained results and the sensitivity to detect spatial learning
6 deficits are not comparable between both A β mouse models.

7

8 **6. Conclusion**

9 In conclusion, chronic pioglitazone treatment provoked a longitudinal A β -PET signal increase
10 in transgenic and knock-in mice due to a shift towards hypercondensed fibrillar A β plaques.
11 The increasing rate of A β -PET signal increase with time was accompanied by ameliorated
12 cognitive performance and attenuated synaptic loss after pioglitazone treatment. It follows
13 that increasing A β -PET signal need not always indicate a treatment failure, since it is the
14 composition of A β plaques that determines their neurotoxicity. In summary, our preclinical
15 data indicate that a shift towards increasing fibrillar amyloidosis can be beneficial for the
16 preservation of cognitive function and synaptic integrity.

17

18 **7. Declarations**

19 **Ethical Approval and Consent to participate**

20 Not applicable

21

22 **Consent for publication**

23 Not applicable

24

25 **Availability of data and materials**

26 All source data are available from the corresponding author upon reasonable request.

27

28 **Competing interests**

1 T.B., M.D., G.B., F.P., B.Z., and C.S. reported no biomedical financial interests or potential
2 conflicts of interest. N.F. is funded by the BrightFocus foundation. K.W., F.E., C.S., Y.S., and
3 K.O. reported no biomedical financial interests or potential conflicts of interest. G.K. is an
4 employee of ISAR bioscience. X.X., C.F., S.L., F-J.G., L.B., B.U., and P.B. reported no
5 biomedical financial interests or potential conflicts of interest. K.B. is an employee of Roche.
6 H.A. reported no biomedical financial interests or potential conflicts of interest. A.R. has
7 received research support and speaker honoraria from Siemens. P.C., M.W. M.M.D. and J.H.
8 reported no biomedical financial interests or potential conflicts of interest. M.B. received
9 speaker honoraria from GE healthcare, Roche and LMI and is an advisor of LMI.

10

11 **Funding**

12 The study was supported by the *FöFoLe* Program of the Faculty of Medicine of the Ludwig
13 Maximilian University, Munich (grant to M.B.). This work was funded by the Deutsche
14 Forschungsgemeinschaft (DFG, German Research Foundation) to A.R. and M.B. – project
15 numbers BR4580/1-1/ RO5194/1-1. The work was supported by the Deutsche
16 Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's
17 Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC
18 2145 SyNergy – ID 390857198). M.B. was supported by the Alzheimer Forschung Initiative
19 e.V (grant number 19063p).

20

21 **Author's contributions**

22 K.B., H.A., A.R., P.C., M.W., M.M.D., J.H. and M.B. conceived the study and analyzed the
23 results. T.B., M.D. and M.B. wrote the manuscript with further input from all co-authors. M.D.,
24 G.B., C.Sch., K.W., F.E., C.Sa., and C.F. performed the small animal PET experiments and
25 small animal PET data analyses. T.B., F.P., Y.S., K.O., G.K., X.X., M.M.D. and J.H.
26 performed immunohistochemistry experiments, analyses, and interpretation. F.J.G. and S.L.
27 performed PET tracer synthesis and analyses. N.F. analyzed and interpreted serial PET data
28 and contributed to their analysis. G.B., B.Z., K.W., and H.A. performed spatial learning tests

1 and interpretation. B.U., K.B., and M.W. supplied the study with animal models and
2 interpreted the dedicated results. All authors contributed with intellectual content.
3

4 **Acknowledgements**

5 We thank Karin Bormann-Giglmaier and Rosel Oos for excellent technical assistance.
6 Florbetaben precursor was provided by Piramal Imaging. We thank Takashi Saito and
7 Takaomi C. Saido for providing the *App*^{NL-G-F} mice.
8

9 **References**

- 11 1. Ziegler-Graham K, Brookmeyer R, Johnson E, Arrighi HM (2008): Worldwide variation in the
12 doubling time of Alzheimer's disease incidence rates. *Alzheimer's & Dementia* 4: 316–323.
- 13 2. H. Braak, E. Braak (1991): Neuropathological stageing of Alzheimer-related changes. *Acta
14 Neuropathol* 82: 239–259.
- 15 3. M Brendel, A Jaworska, J Herms, J Trambauer, C Rötzer, F-J Gildehaus, *et al.* (2015): Amyloid-
16 PET predicts inhibition of de novo plaque formation upon chronic γ -secretase modulator treatment.
17 *Mol Psychiatry* 20: 1179–1187.
- 18 4. Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, *et al.* (2015):
19 Neuroinflammation in Alzheimer's disease. *The Lancet Neurology* 14: 388–405.
- 20 5. Zimmer E, Leuzy A, Benedet A, Breitner J, Gauthier S, Rosa-Neto P (2014): Tracking
21 neuroinflammation in Alzheimer's disease. The role of positron emission tomography imaging. *J
22 Neuroinflammation* 11: 120.
- 23 6. Petra Füger, Jasmin K Hefendehl, Karthik Veeraraghavalu, Ann-Christin Wendeln, Christine
24 Schlosser, Ulrike Obermüller, *et al.* (2017): Microglia turnover with aging and in an Alzheimer's
25 model via long-term in vivo single-cell imaging. *Nat Neurosci* 20: 1371–1376.
- 26 7. Hickman SE, Allison EK, El Khoury J (2008): Microglial Dysfunction and Defective -Amyloid
27 Clearance Pathways in Aging Alzheimer's Disease Mice. *Journal of Neuroscience* 28: 8354–8360.
- 28 8. Blume T, Focke C, Peters F, Deussing M, Albert NL, Lindner S, *et al.* (2018): Microglial response to
29 increasing amyloid load saturates with aging. A longitudinal dual tracer in vivo μ PET-study. *Journal
30 of neuroinflammation* 15: 307.
- 31 9. Heppner FL, Ransohoff RM, Becher B (2015): Immune attack. The role of inflammation in
32 Alzheimer disease. *Nature reviews. Neuroscience* 16.
- 33 10. Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, *et al.* (2013): Functional
34 impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like
35 pathology. *PLoS ONE* 8: e60921.
- 36 11. Wolfgang J Streit, Qing-Shan Xue, Jasmin Tischer, Ingo Bechmann (2014): Microglial pathology.
37 *acta neuropathol commun* 2: 1–17.
- 38 12. C. Y. Daniel Lee, Gary E. Landreth (2010): The role of microglia in amyloid clearance from the AD
39 brain. *J Neural Transm* 117: 949–960.
- 40 13. Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW, *et al.* (1993): Clinical
41 trial of indomethacin in Alzheimer's disease. *Neurology* 43: 1609–1611.
- 42 14. Mandrekar-Colucci S, Karlo JC, Landreth GE (2012): Mechanisms Underlying the Rapid
43 Peroxisome Proliferator-Activated Receptor -Mediated Amyloid Clearance and Reversal of
44 Cognitive Deficits in a Murine Model of Alzheimer's Disease. *Journal of Neuroscience* 32: 10117–
45 10128.
- 46 15. Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT (2012): PPAR /RXR -Induced
47 and CD36-Mediated Microglial Amyloid- Phagocytosis Results in Cognitive Improvement in
48 Amyloid Precursor Protein/Presenilin 1 Mice. *Journal of Neuroscience* 32: 17321–17331.
- 49 16. Moon JH, Kim HJ, Yang AH, Kim HM, Lee B-W, Kang ES, *et al.* (2012): The effect of rosiglitazone
50 on LRP1 expression and amyloid β uptake in human brain microvascular endothelial cells. A

1 possible role of a low-dose thiazolidinedione for dementia treatment. *The international journal of*
2 *neuropsychopharmacology* 15: 135–142.

3 17. Hannah Seok, Minyoung Lee, Eugene Shin, Mi Ra Yun, Yong-ho Lee, Jae Hoon Moon, *et al.*: Low-
4 dose pioglitazone can ameliorate learning and memory impairment in a mouse model of dementia
5 by increasing LRP1 expression in the hippocampus. *Sci Rep* 9: 1–10.

6 18. Cheng H, Shang Y, Jiang L, Shi T-I, Wang L (2016): The peroxisome proliferators activated
7 receptor-gamma agonists as therapeutics for the treatment of Alzheimer's disease and mild-to-
8 moderate Alzheimer's disease. A meta-analysis. *The International journal of neuroscience* 126:
9 299–307.

10 19. Geldmacher DS, Fritsch T, McClendon MJ, Landreth G (2011): A randomized pilot clinical trial of
11 the safety of pioglitazone in treatment of patients with Alzheimer disease. *Archives of neurology* 68:
12 45–50.

13 20. Manook A, Yousefi BH, Willuweit A, Platzer S, Reder S, Voss A, *et al.* (2012): Small-Animal PET
14 Imaging of Amyloid-Beta Plaques with [11C]PiB and Its Multi-Modal Validation in an APP/PS1
15 Mouse Model of Alzheimer's Disease. *PLoS ONE* 7: e31310.

16 21. Brendel M, Jaworska A, Grießinger E, Rötzer C, Burgold S, Gildehaus FJ, *et al.* (2015): Cross-
17 sectional comparison of small animal [18F]-florbetaben amyloid-PET between transgenic AD
18 mouse models. *PLoS ONE* 10.

19 22. Rominger A, Brendel M, Burgold S, Keppler K, Baumann K, Xiong G, *et al.* (2013): Longitudinal
20 Assessment of Cerebral Amyloid Deposition in Mice Overexpressing Swedish Mutant -Amyloid
21 Precursor Protein Using 18F-Florbetaben PET. *Journal of Nuclear Medicine* 54: 1127–1134.

22 23. Biechele G, Blume T, Deussing M, Zott B, Shi Y, Xiang X *et al.* (2021): Pre-therapeutic Microglia
24 Activation and Sex Determine Therapy Effects of Chronic Immunomodulation. *bioRxiv*.

25 24. Ozmen L, Albientz A, Czech C, Jacobsen H (2008): Expression of Transgenic APP mRNA Is the
26 Key Determinant for Beta-Amyloid Deposition in PS2APP Transgenic Mice. *Neurodegener Dis* 6:
27 29–36.

28 25. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, *et al.* (2014): Single App knock-in
29 mouse models of Alzheimer's disease. *Nature neuroscience* 17.

30 26. Dorr A, Sled JG, Kabani N (2007): Three-dimensional cerebral vasculature of the CBA mouse
31 brain. A magnetic resonance imaging and micro computed tomography study. *NeuroImage* 35.

32 27. Brendel M, Probst F, Jaworska A, Overhoff F, Korzhova V, Albert NL, *et al.* (2016): Glial Activation
33 and Glucose Metabolism in a Transgenic Amyloid Mouse Model. A Triple-Tracer PET Study.
34 *Journal of Nuclear Medicine* 57: 954–960.

35 28. Overhoff F, Brendel M, Jaworska A, Korzhova V, Delker A, Probst F, *et al.* (2016): Automated
36 Spatial Brain Normalization and Hindbrain White Matter Reference Tissue Give Improved [18F]-
37 Florbetaben PET Quantitation in Alzheimer's Model Mice. *Front. Neurosci.* 10: 14022.

38 29. Sacher C, Blume T, Beyer L, Peters F, Eckenweber F, Sgobio C, *et al.* (2019): Longitudinal PET
39 Monitoring of Amyloidosis and Microglial Activation in a Second-Generation Amyloid- β Mouse
40 Model. *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* 60: 1787–
41 1793.

42 30. Biechele G, Wind K, Blume T, Sacher C, Beyer L, Eckenweber F, *et al.* (2020): Microglial Activation
43 in the Right Amygdala-Entorhinal-Hippocampal Complex is Associated with Preserved Spatial
44 Learning in AppNL-G-F mice. *NeuroImage*: 117707.

45 31. Marc Aurel Busche, Maja Kekuš, Helmuth Adelsberger, Takahiro Noda, Hans Förstl, Israel Nelken,
46 *et al.* (2015): Rescue of long-range circuit dysfunction in Alzheimer's disease models. *Nat Neurosci*
47 18: 1623–1630.

48 32. Focke C, Blume T, Zott B, Shi Y, Deussing M, Peters F, *et al.* (2019): Early and Longitudinal
49 Microglial Activation but Not Amyloid Accumulation Predicts Cognitive Outcome in PS2APP Mice.
50 *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* 60.

51 33. Keskin AD, Kekuš M, Adelsberger H, Neumann U, Shimshek DR, Song B, *et al.* (2017): BACE
52 inhibition-dependent repair of Alzheimer's pathophysiology. *Proceedings of the National Academy
53 of Sciences of the United States of America* 114: 8631–8636.

54 34. Sauvage M, Brabet P, Holsboer F, Bockaert J, Steckler T (2000): Mild deficits in mice lacking
55 pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) performing on memory
56 tasks. *Molecular Brain Research* 84: 79–89.

57 35. Bromley-Brits K, Deng Y, Song W (2011): Morris water maze test for learning and memory deficits
58 in Alzheimer's disease model mice. *Journal of visualized experiments : JoVE*.

59 36. Brendel M, Focke C, Blume T, Peters F, Deussing M, Probst F, *et al.* (2017): Time Courses of
60 Cortical Glucose Metabolism and Microglial Activity Across the Life Span of Wild-Type Mice. A PET
Study. *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* 58.

1 37.Brendel M, Kleinberger G, Probst F, Jaworska A, Overhoff F, Blume T, *et al.* (2017): Increase of
2 TREM2 during Aging of an Alzheimer's Disease Mouse Model Is Paralleled by Microglial Activation
3 and Amyloidosis. *Front. Aging Neurosci.* 9: 795.

4 38.Dorostkar MM, Dreosti E, Odermatt B, Lagnado L (2010): Computational processing of optical
5 measurements of neuronal and synaptic activity in networks. *Journal of Neuroscience Methods*
6 188: 141–150.

7 39.Page RM, Baumann K, Tomioka M, Pérez-Revuelta BI, Fukumori A, Jacobsen H, *et al.* (2008):
8 Generation of Abeta38 and Abeta42 is independently and differentially affected by familial
9 Alzheimer disease-associated presenilin mutations and gamma-secretase modulation. *The Journal*
10 *of biological chemistry* 283: 677–683.

11 40.Sebastian ML, Müller SA, Colombo AV, Tanrioever G, König J, Roth S, *et al.* (2020): Fibrillar A β
12 triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. *eLife* 9.

13 41.Puzzo D, Privitera L, Leznik E, Fà M, Staniszewski A, Palmeri A, *et al.* (2008): Picomolar amyloid-
14 beta positively modulates synaptic plasticity and memory in hippocampus. *The Journal of*
15 *neuroscience : the official journal of the Society for Neuroscience* 28: 14537–14545.

16 42.Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, *et al.* (1998): Diffusible,
17 nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins.
18 *Proceedings of the National Academy of Sciences of the United States of America* 95: 6448–6453.

19 43.Ganesh M, Shankar, Brenda L. Bloodgood, Matthew Townsend, Dominic M. Walsh, Dennis J.
20 Selkoe, Bernardo L. Sabatini (2007): Natural Oligomers of the Alzheimer Amyloid- β Protein Induce
21 Reversible Synapse Loss by Modulating an NMDA-Type Glutamate Receptor-Dependent Signaling
22 Pathway. *J. Neurosci.* 27: 2866–2875.

23 44.Christian Haass, Dennis J. Selkoe (2007): Soluble protein oligomers in neurodegeneration.
24 Lessons from the Alzheimer's amyloid β -peptide. *Nat Rev Mol Cell Biol* 8: 101–112.

25 45.Hardy J, Selkoe DJ (2002): The amyloid hypothesis of Alzheimer's disease. Progress and problems
26 on the road to therapeutics. *Science (New York, N.Y.)* 297: 353–356.

27 46.Zott B, Simon MM, Hong W, Unger F, Chen-Engerer H-J, Frosch MP, *et al.* (2019): A vicious cycle
28 of β amyloid-dependent neuronal hyperactivation. *Science (New York, N.Y.)* 365: 559–565.

29 47.Valotassiou V, Malamitsi J, Papatriantafyllou J, Dardiotis E, Tsougos I, Psimadas D, *et al.* (2018):
30 SPECT and PET imaging in Alzheimer's disease. *Annals of nuclear medicine* 32.

31 48.Laforce R, Soucy J-P, Sellami L, Dallaire-Théroux C, Brunet F, Bergeron D, *et al.* (2018): Molecular
32 imaging in dementia. Past, present, and future. *Alzheimer's & Dementia* 14: 1522–1552.

33 49.Hansson O, Seibyl J, Stomrud E, Zetterberg H, Trojanowski JQ, Bittner T, *et al.* (2018): CSF
34 biomarkers of Alzheimer's disease concord with amyloid- β PET and predict clinical progression. A
35 study of fully automated immunoassays in BioFINDER and ADNI cohorts. *Alzheimer's & dementia : the journal of the Alzheimer's Association* 14: 1470–1481.

36 50.Selkoe DJ, Hardy J (2016): The amyloid hypothesis of Alzheimer's disease at 25 years. *EMBO*
37 *molecular medicine* 8.

38 51.Wang J, Dickson DW, Trojanowski JQ, Lee VM (1999): The levels of soluble versus insoluble brain
39 Abeta distinguish Alzheimer's disease from normal and pathologic aging. *Experimental neurology*
40 158: 328–337.

41 52.Lue L-F, Kuo Y-M, Roher AE, Brachova L, Shen Y, Sue L, *et al.* (1999): Soluble Amyloid β Peptide
42 Concentration as a Predictor of Synaptic Change in Alzheimer's Disease. *The American Journal of*
43 *Pathology* 155: 853–862.

44 53.McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, *et al.* (1999): Soluble pool
45 of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. *Annals*
46 *of neurology* 46.

47 54.Hu NW, Im Smith, Walsh DM, Rowan MJ (2008): Soluble amyloid-beta peptides potently disrupt
48 hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction *in vivo*. *Brain : a*
49 *journal of neurology* 131.

50 55.Cullen WK, Suh YH, Anwyl R, Rowan MJ (1997): Block of LTP in rat hippocampus *in vivo* by beta-
51 amyloid precursor protein fragments. *Neuroreport* 8.

52 56.Klyubin I, Ondrejcak T, Hayes J, Cullen WK, Mably AJ, Walsh DM, *et al.* (2014): Neurotransmitter
53 receptor and time dependence of the synaptic plasticity disrupting actions of Alzheimer's disease
54 A β *in vivo*. *Philosophical Transactions of the Royal Society B: Biological Sciences* 369.

55 57.Tong L, Thornton PL, Balazs R, Cotman CW (2001): Beta -amyloid-(1-42) impairs activity-
56 dependent cAMP-response element-binding protein signaling in neurons at concentrations in which
57 cell survival is not compromised. *The Journal of biological chemistry* 276.

58 58.Pascale N, Lacor, Maria C. Buniel, Paul W. Furlow, Antonio Sanz Clemente, Pauline T. Velasco,
59 Margaret Wood, *et al.* (2007): A β Oligomer-Induced Aberrations in Synapse Composition, Shape,

60

1 and Density Provide a Molecular Basis for Loss of Connectivity in Alzheimer's Disease. *J.
2 Neurosci.* 27: 796–807.

3 59. Jason D Ulrich, Mary Beth Finn, Yaming Wang, Alice Shen, Thomas E Mahan, Hong Jiang, *et al.*
4 (2014): Altered microglial response to A β plaques in APPPS1-21 mice heterozygous for TREM2.
5 *Mol Neurodegeneration* 9: 1–9.

6 60. Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, *et al.* (2016): TREM2-mediated early
7 microglial response limits diffusion and toxicity of amyloid plaques. *The Journal of experimental
8 medicine* 213: 667–675.

9 61. Youtong Huang, Kaisa E. Happonen, Patrick G. Burrola, Carolyn O'Connor, Nasun Hah, Ling
10 Huang, *et al.* (2021): Microglia use TAM receptors to detect and engulf amyloid β plaques. *Nat
11 Immunol* 22: 586–594.

12 62. Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, Strooper B de, *et al.* (2017): APP mouse
13 models for Alzheimer's disease preclinical studies. *The EMBO journal* 36: 2473–2487.

14 63. Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S (1995): Dominant and
15 differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques.
16 *Neuron* 14.

17 64. Masuda A, Kobayashi Y, Kogo N, Saito T, Saido TC, Itohara S (2016): Cognitive deficits in single
18 App knock-in mouse models. *Neurobiology of learning and memory* 135.

19 65. Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De SB (2004): Peroxisome-
20 proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta
21 peptide. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 24.

22 66. Catafau AM, Bullich S, Seibyl JP, Barthel H, Ghetti B, Leverenz J, *et al.* (2016): Cerebellar
23 Amyloid- β Plaques. How Frequent Are They, and Do They Influence 18F-Florbetaben SUV Ratios?
24 *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* 57: 1740–1745.

25 67. Ikonomovic MD, Buckley CJ, Heurling K, Sherwin P, Jones PA, Zanette M, *et al.* (2016): Post-
26 mortem histopathology underlying β -amyloid PET imaging following flutemetamol F 18 injection.
27 *Acta neuropathologica communications* 4: 130.

28 68. Milos D, Ikonomovic, Christopher J. Buckley, Eric E. Abrahamson, Julia K. Kofler, Chester A.
29 Mathis, William E. Klunk, *et al.* (2020): Post-mortem analyses of PiB and flutemetamol in diffuse
30 and cored amyloid- β plaques in Alzheimer's disease. *Acta Neuropathol* 140: 463–476.

31 69. Milos D, Ikonomovic, Enrico R. Fantoni, Gill Farrar, Stephen Salloway (2018): Infrequent false
32 positive [¹⁸F]flutemetamol PET signal is resolved by combined histological assessment of neuritic
33 and diffuse plaques. *Alz Res Therapy* 10: 1–4.

34 70. Gloria Biechele, Laura Sebastian Monasor, Karin Wind, Tanja Blume, Samira Parhizkar, Thomas
35 Arzberger, Christian Sacher, Leonie Beyer, Florian Eckenweber, Franz-Josef Gildehaus, Barbara
36 von Ungern-Sternberg, Michael Willem, Peter Bartenstein, Paul Cumming, Axel Rominger, Jochen
37 Herms, Stefan F. Lichtenthaler, Christian Haass, Sabina Tahirovic, Matthias Brendel (2021): Glitter
38 in the darkness? Non-fibrillar β -amyloid plaque components significantly impact the β -amyloid PET
39 signal. *Journal of Nuclear Medicine* 2021.

40 71. Sehlin D, Fang XT, Cato L, Antoni G, Lannfelt L, Syvänen S (2016): Antibody-based PET imaging
41 of amyloid beta in mouse models of Alzheimer's disease. *Nat Commun* 7: 306.

42 72. Fang XT, Hultqvist G, Meier, SR, Antoni G, Sehlin D, Syvänen S (2019): High detection sensitivity
43 with antibody-based PET radioligand for amyloid beta in brain. *NeuroImage* 184.

44 73. Li-Kai Huang, Shu-Ping Chao, Chaur-Jong Hu (2020): Clinical trials of new drugs for Alzheimer
45 disease. *J Biomed Sci* 27: 1–13.

46 74. Lewcock JW, Schlepckow K, Di Paolo G, Tahirovic S, Monroe KM, Haass C (2020): Emerging
47 Microglia Biology Defines Novel Therapeutic Approaches for Alzheimer's Disease. *Neuron* 108:
48 801–821.

49 75. Liu J, Wang LN, Jia JP (2015): Peroxisome proliferator-activated receptor-gamma agonists for
50 Alzheimer's disease and amnestic mild cognitive impairment. A systematic review and meta-
51 analysis. *Drugs & aging* 32.

52 76. Cao B, Rosenblat JD, Brietzke E, Park C, Lee Y, Musial N, *et al.* (2018): Comparative efficacy and
53 acceptability of antidiabetic agents for Alzheimer's disease and mild cognitive impairment. A
54 systematic review and network meta-analysis. *Diabetes, obesity & metabolism* 20.

55 77. Zou C, Shi Y, Ohli J, Schüller U, Dorostkar MM, Herms J (2016): Neuroinflammation impairs
56 adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer's disease. *Acta
57 Neuropathol* 131: 235–246.

58
59

1

2

3

4

5

6 **Legends tables and figures**

7 **Fig.1**

8 **Figure 1: PPAR γ stimulation in PS2APP mice provokes an increase in the A β -PET
9 signal.** A) Regional analysis of group-averaged standardized uptake value ratio (SUVR)
10 images of the A β -PET radiotracer [^{18}F]florbetaben in untreated and in pioglitazone-treated
11 PS2APP mice aged eight and 13 months. Coronal and axial slices are projected upon a
12 standard MRI template. B) Plots show cortical SUVR values of [^{18}F]florbetaben in PS2APP
13 and wild-type (WT) mice between eight and 13 months of age under vehicle (Veh) or
14 pioglitazone (Pio) treatment. The A β -PET signal increased in PS2APP mice during aging, but
15 the increase was more pronounced in pioglitazone treated mice ($F_{(1,12)} = 12.9$; $p = 0.0017$). In
16 wild-type animals, no difference was observed between untreated and treated animals during
17 aging ($F_{(1,13)} = 0.490$; $p = 0.496$). Data are presented as mean \pm SEM. P values of Bonferroni
18 *post hoc* test result from two-way ANOVA. N=10-13 PS2APP; N=7-8 WT.

19 **Fig.2**

20 **Figure 2: Distinct A β -PET signal increase upon PPAR γ stimulation in *App^{NL-G-F}* mice
21 with limited plaque fibrillarity and without overexpression of APP.** A) Regional analysis
22 of group-averaged standardized uptake value ratios (SUVR) of the A β -PET radiotracer
23 [^{18}F]florbetaben in untreated and in pioglitazone treated *App^{NL-G-F}* animals at the age of 5, 7.5
24 and 10 months. Coronal and axial slices are projected upon a standard MRI template. B)
25 Plots show cortical SUVR of [^{18}F]florbetaben in *App^{NL-G-F}* mice between the age of five and
26 ten months under vehicle or pioglitazone treatment. A β -PET signal increased in untreated
27 mice during age but the increase was more pronounced in pioglitazone treated *App^{NL-G-F}* mice

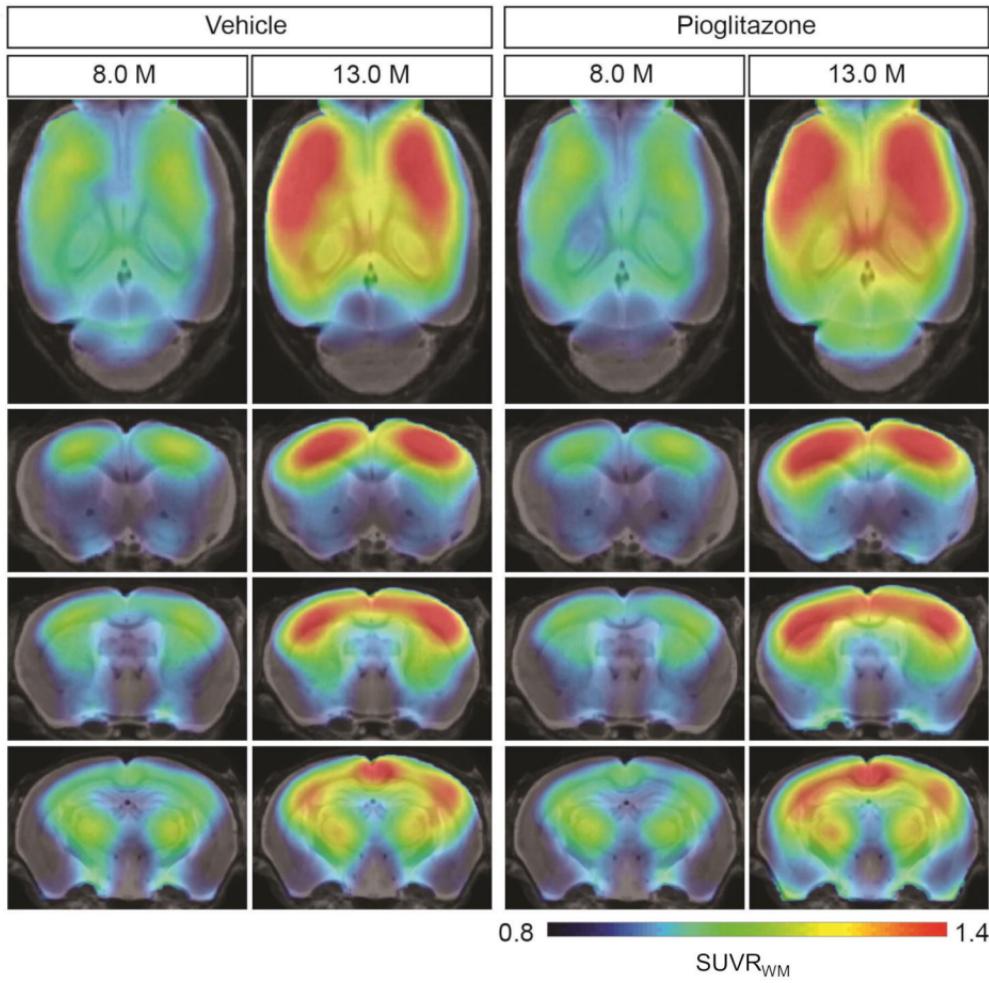
1 ($F_{(2,70)} = 20.12$; $p < 0.0001$). Data are presented as mean \pm SEM. P values of Bonferroni *post*
2 *hoc* test result from two-way ANOVA. N=14-23.

3 **Fig. 3**

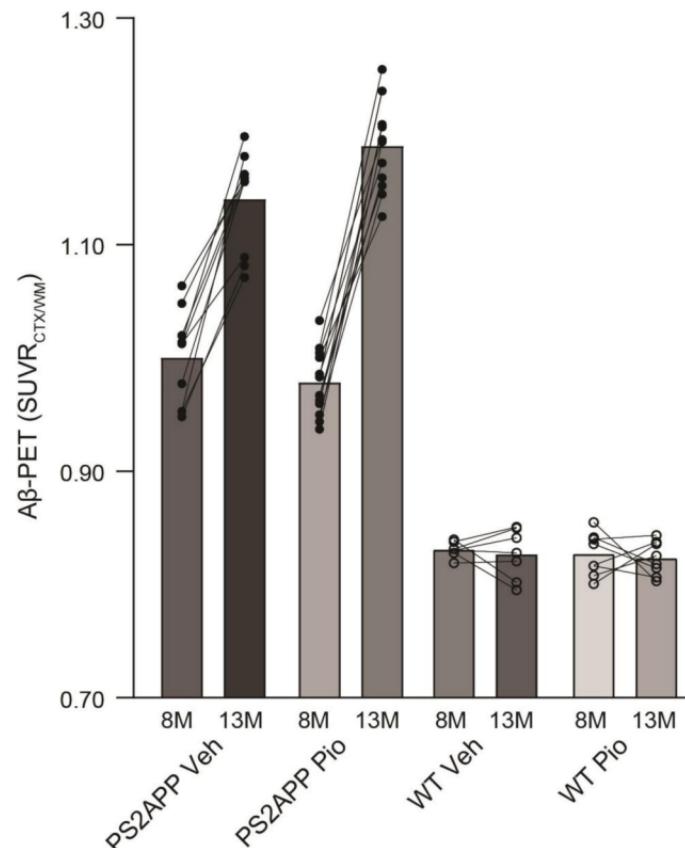
4 **Figure 3: Pioglitazone treatment triggers a change in plaque composition in two**
5 **different mouse models of amyloidosis.** Staining of fibrillary A β (methoxy-X04, cyan) and
6 oligomeric A β (NAB228, magenta) in vehicle and pioglitazone treated PS2APP mice A) and
7 App^{NL-G-F} mice B). C) The plaque area covered by methoxy-X04 staining was significantly
8 higher ($t_{(9)} = 3.612$; $p = 0.0056$), whereas the plaque area covered by NAB228 staining
9 remained equal ($t_{(10)} = 0.175$; $p = 0.865$) in pioglitazone treated PS2APP mice. The overlay of
10 NAB228 and methoxy staining increased under pioglitazone treatment ($t_{(9)} = 3.432$; $p =$
11 0.0075). D) The number of methoxy positive A β -plaques did not change under pioglitazone
12 treatment in PS2APP-mice. E) In App^{NL-G-F} mice, methoxy coverage ($t_{(11)} = 5.802$; $p =$
13 0.0001), NAB228 coverage ($t_{(11)} = 5.80$; $p = 0.0001$), as well as the overlay of both stainings
14 ($t_{(11)} = 2.93$; $p = 0.0138$), increased under pioglitazone treatment. F) In App^{NL-G-F} mice, the
15 number of methoxy positive A β -plaques did not change under pioglitazone. Data are
16 presented as mean \pm SEM; n = 5-13 mice. Two-sample student's *t*-test results: * $p < 0.05$; **
17 $p < 0.01$; *** $p < 0.001$.

18

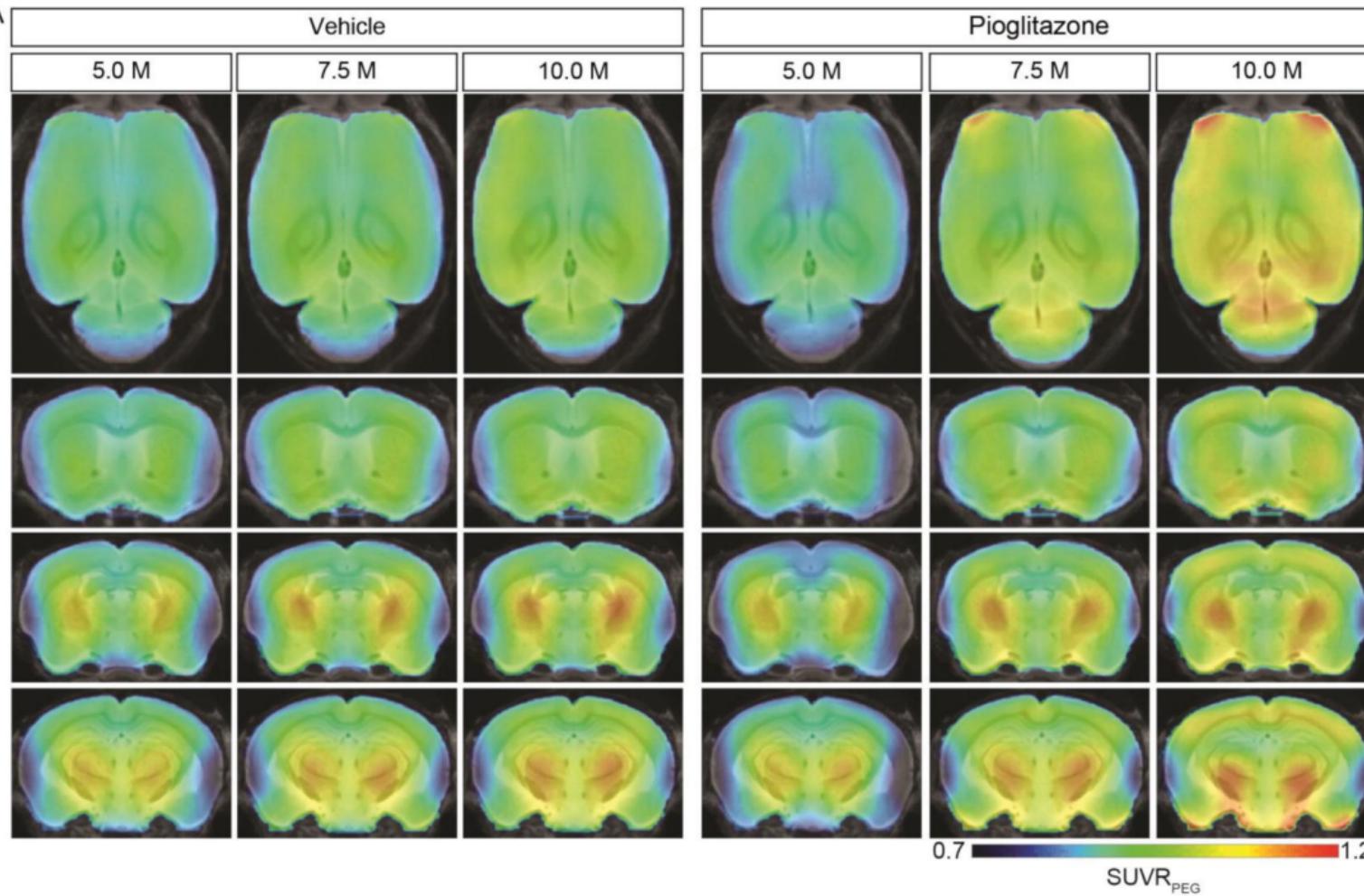
19 **Fig. 4**

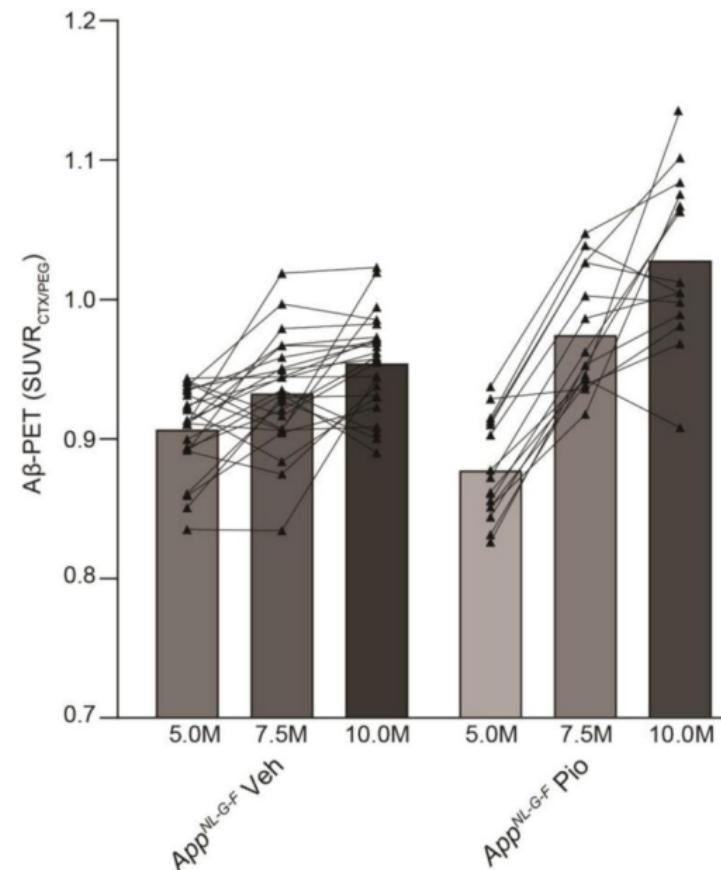

20 **Figure 4: Pioglitazone treatment reduces microglial activation in both AD mouse**
21 **models.** Iba1- (magenta) as well as CD68-(cyan) positive microglial cells in PS2APP A) and
22 App^{NL-G-F} mice B). C) The area of Iba1 positive microglial cells ($t_{(8)} = 5.95$; $p = 0.0003$) as well
23 as CD68 positive microglial cells ($t_{(8)} = 4.58$; $p = 0.0018$) decreased in treated PS2APP mice.
24 The same effect was observed in App^{NL-G-F} mice were the area covered by Iba1 positive ($t_{(11)} = 4.21$; $p = 0.0015$) as well as CD68 positive microglial cells ($t_{(11)} = 2.91$; $p = 0.014$) were
25 significantly reduced in treated compared to untreated mice. Data are presented as mean \pm
26 SEM; n = 5-7 mice. Two-sample student's *t*-test results: * $p < 0.05$; ** $p < 0.01$; *** $p <$
27 0.001.

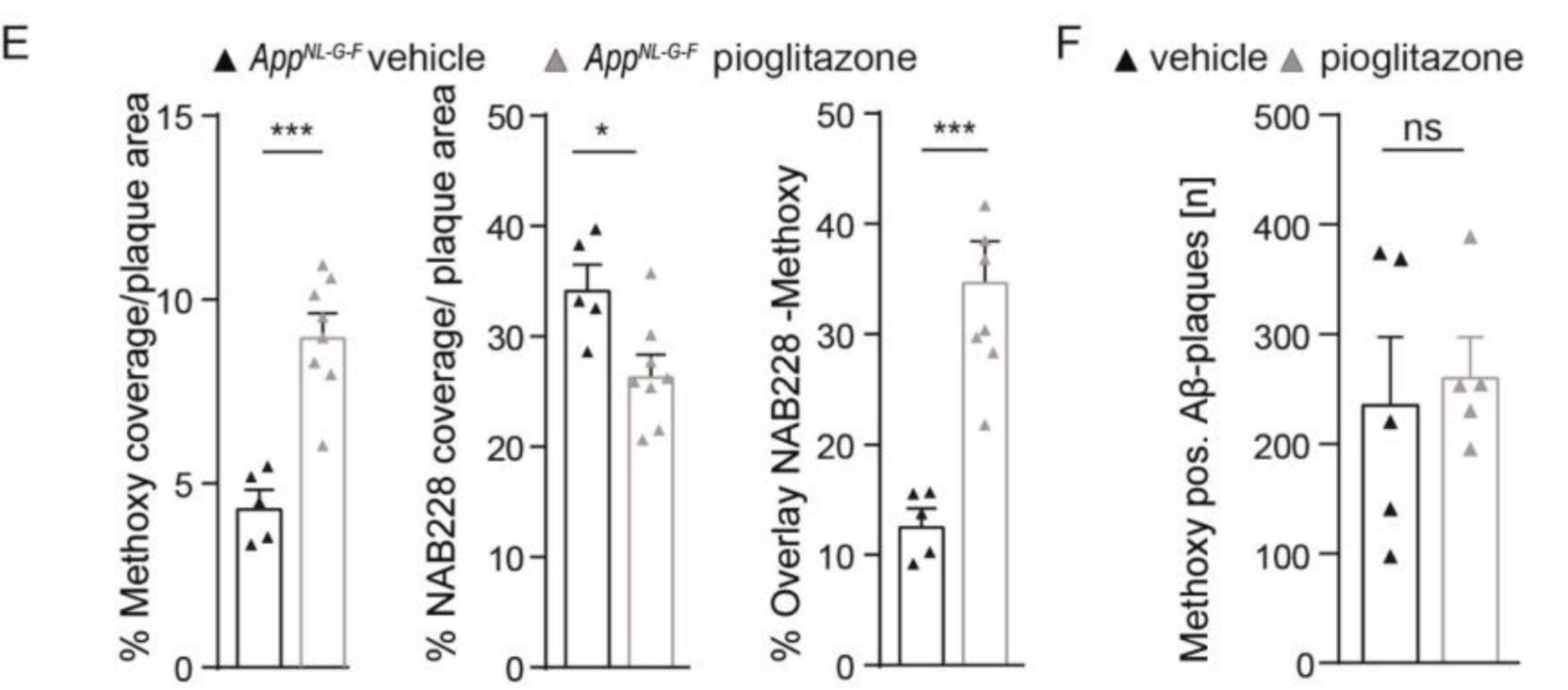
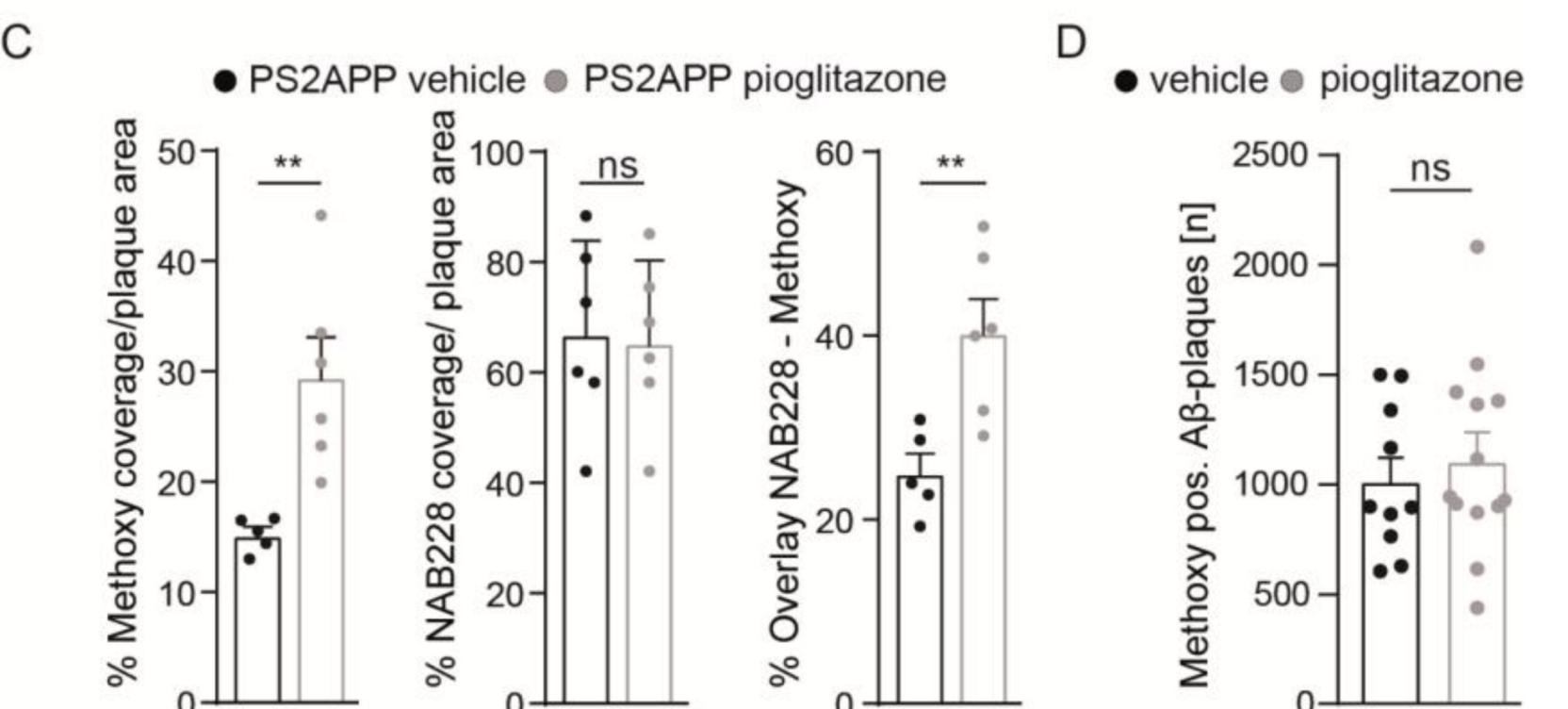
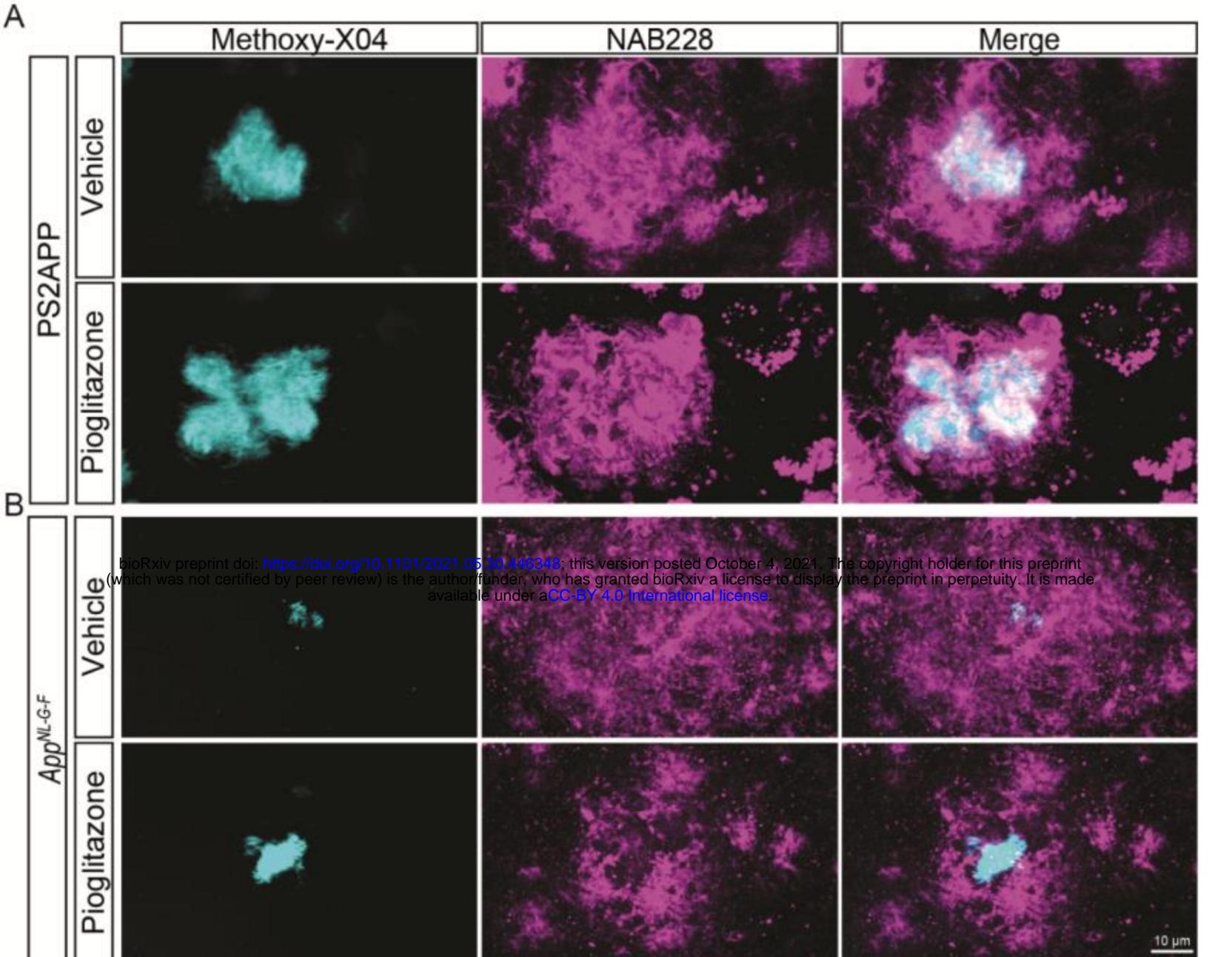
1


2 **Fig. 5**

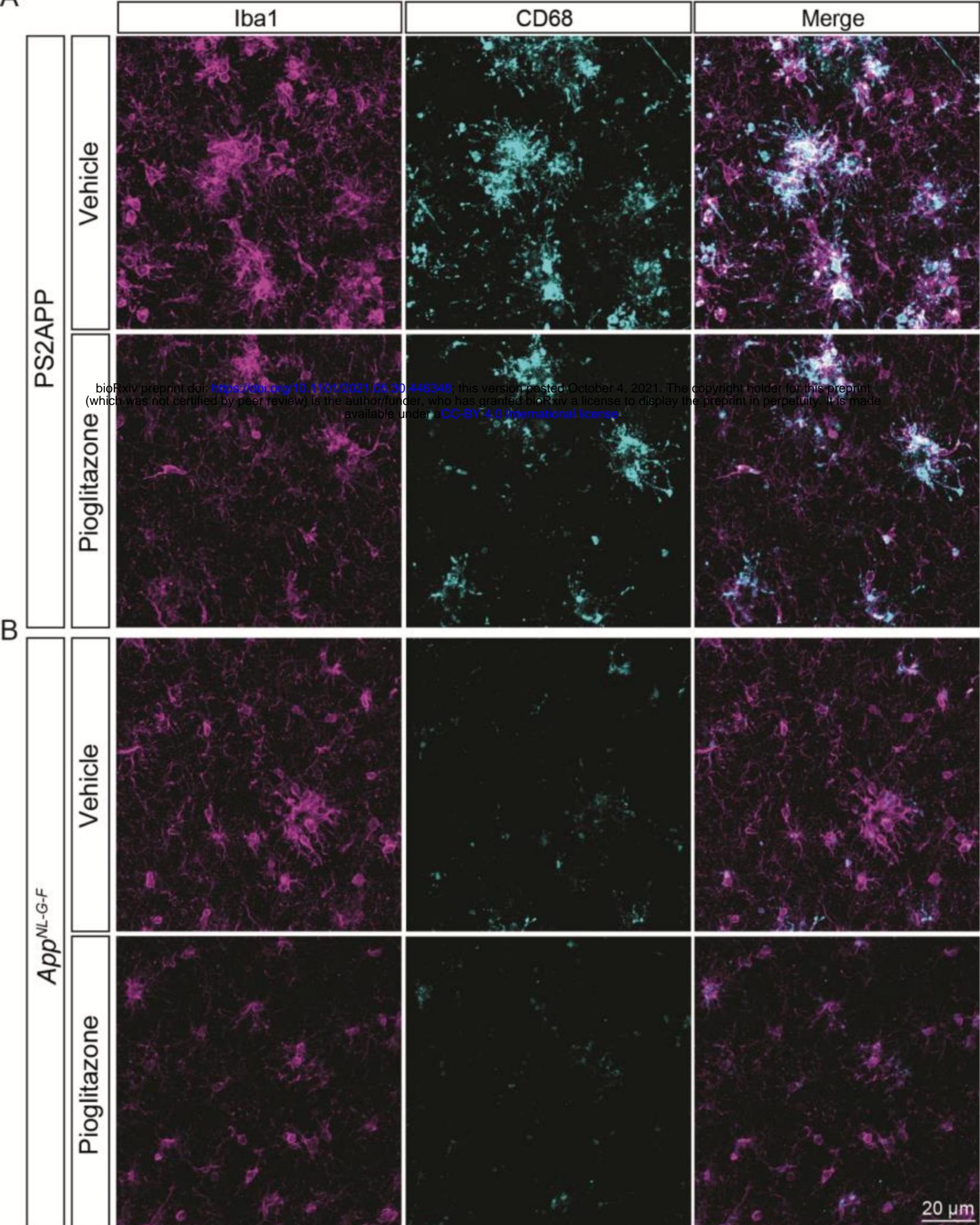
3 **Figure 5. Improved spatial learning correlates with an increased A β -PET rate of**
4 **change in PS2APP mice.** A) One-way ANOVA revealed a significant difference of the water
5 maze performance index between pioglitazone treated and untreated PS2APP and wild-type
6 groups ($F_{(3,34)} = 10.37$; $p < 0.0001$; $N=7-13$). Group-wise comparisons revealed that
7 pioglitazone treated PS2APP mice achieved a higher performance index in the water maze
8 test compared to untreated PS2APP mice ($p = 0.016$), whereas wild-type animals showed no
9 significant difference between treatment groups ($p > 0.999$). B) One-way ANOVA revealed a
10 significant difference of the water maze performance index between pioglitazone treated and
11 untreated App^{NL-G-F} and WT groups ($F_{(3,34)} = 5.825$; $p = 0.0016$). However, pioglitazone
12 treated App^{NL-G-F} mice showed no difference in the water maze performance index when
13 compared to untreated App^{NL-G-F} mice ($p > 0.999$) and wild-type animals again showed no
14 significant difference between treatment groups ($p > 0.999$). Scatter plots show correlations
15 between the A β -PET rate of change ($[^{18}\text{F}]\text{florbetaben}$; ΔSUVR) during the treatment period
16 and individual cognitive testing scores in C) PS2APP mice and in D) App^{NL-G-F} mice (R
17 indicates Pearson's coefficient of correlation) E) The decrease in synaptic density in the
18 hippocampal CA1-region as assessed by VGLUT1 staining was ameliorated in treated
19 PS2APP mice when compared to untreated mice ($p = 0.0012$), whereas no such treatment
20 effect was seen in wild-type animals ($p = 0.810$; group effect: $F_{(3,34)} = 12.03$; $p < 0.0001$;
21 $N=7-13$). F) VGLUT1 staining in the hippocampal CA1-region of representative untreated and
22 treated PS2APP mice (left column) as well as of representative untreated and treated wild-
23 type (WT) mice (right column). Statistics of group wise comparisons derive from one-way
24 ANOVA with Bonferroni *hoc* correction: * $p < 0.05$; *** $p < 0.005$. Data are presented as
25 mean \pm SEM.


A

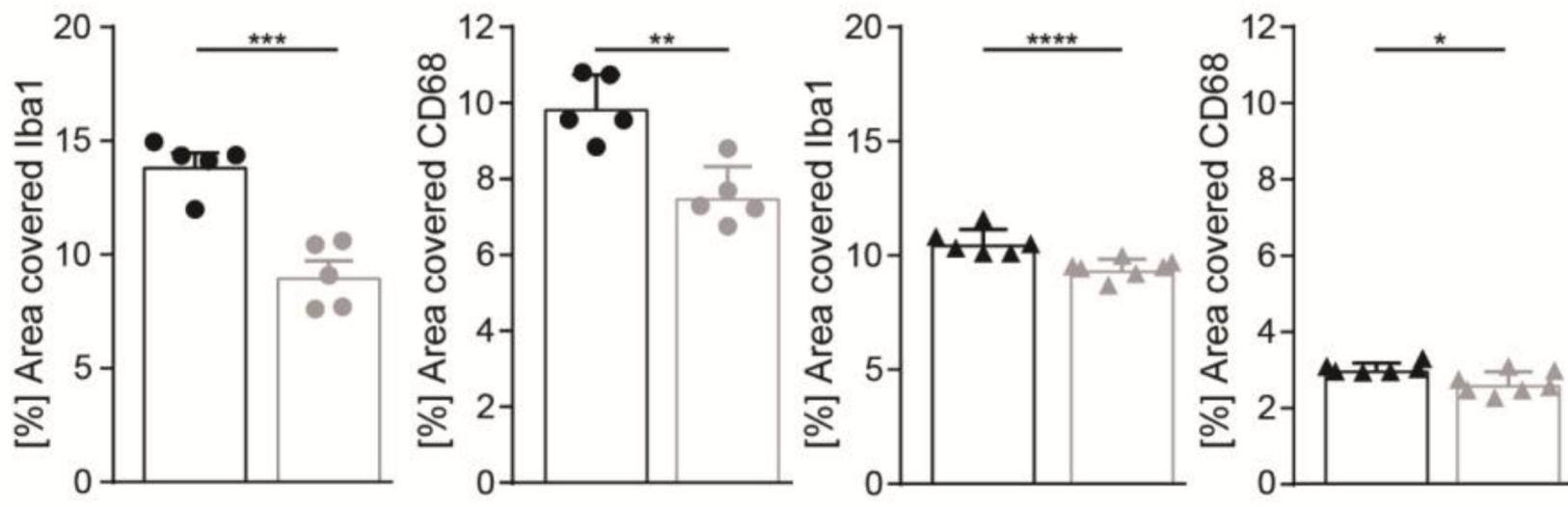

B

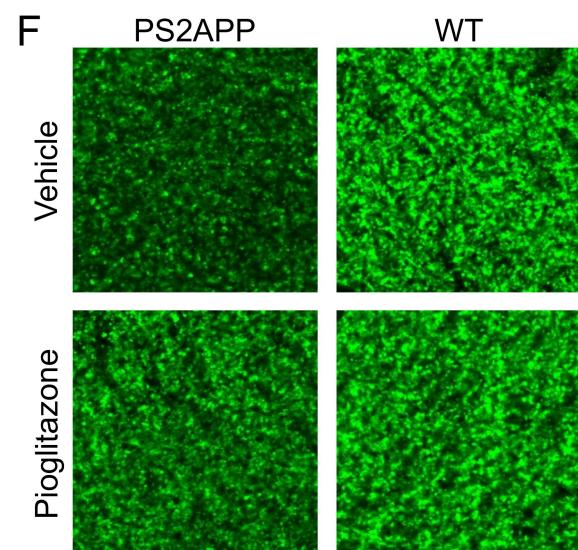
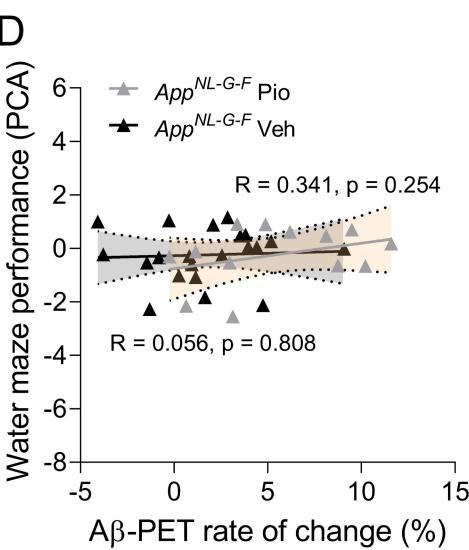
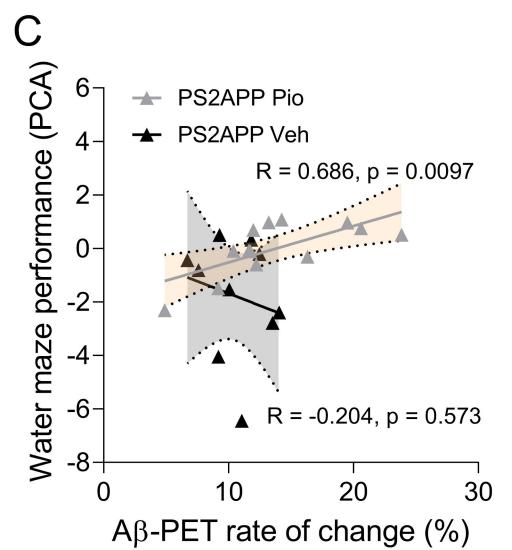
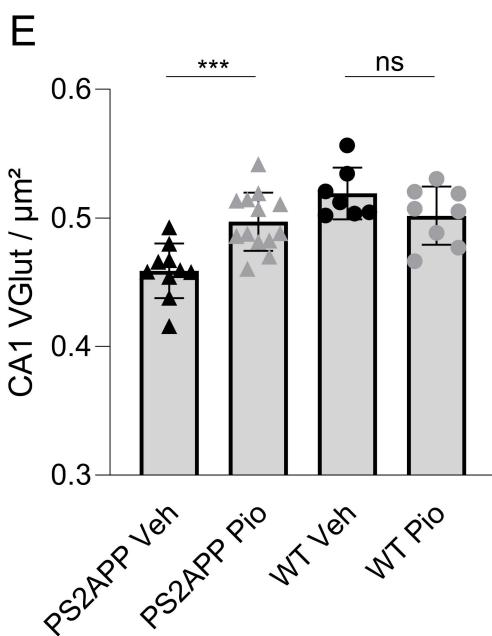
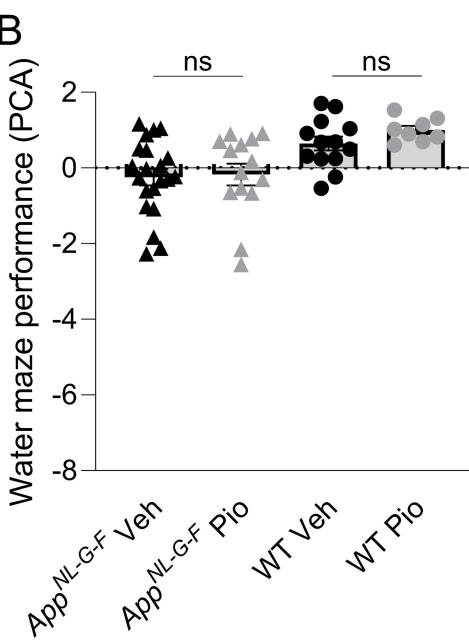
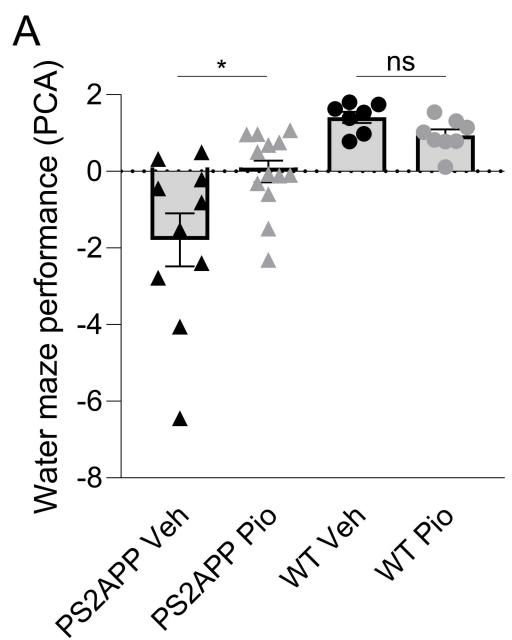




A



B









A

C

● PS2APP vehicle ● PS2APP pioglitazone ▲ App^{NL-G-F} vehicle ▲ App^{NL-G-F} pioglitazone

