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1 Abstract

Background: We undertook longitudinal B-amyloid positron emission tomography (AR-PET)
imaging as a translational tool for monitoring of chronic treatment with the peroxisome
proliferator-activated receptor gamma (PPARY) agonist pioglitazone in AR model mice. We

thus tested the hypothesis this treatment would rescue from increases of the AB-PET signal

o g b~ W N

while promoting spatial learning and preservation of synaptic density.

8 Methods: PS2APP mice (N=23; baseline age: 8 months) and App"~“* mice (N=37; baseline
9 age: 5 months) were investigated longitudinally for five months using AB-PET. Groups of
10  mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial
11  memory performance and confirmed terminal PET findings by immunohistochemical and
12  biochemistry analyses.
13
14  Results: Surprisingly, AB-PET and immunohistochemistry revealed a shift towards higher
15 fibrillary composition of AB-plagues during upon chronic pioglitazone treatment. Nonetheless,
16 synaptic density and spatial learning were improved in transgenic mice with pioglitazone
17 treatment, in association with the increased plaque fibrillarity.
18
19 Conclusion: These translational data suggest that a shift towards higher plaque fibrillarity
20 protects cognitive function and brain integrity. Increases in the AB-PET signal upon
21 immunomodulatory treatments targeting AR aggregation can thus be protective.
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1 1. Introduction

Alzheimer's disease (AD) has become the most common cause of dementia, and is imposing
a significant burden on health care systems of societies with aging populations (1). During
the past few decades, research on AD pathogenesis led to the formulation of a model that

accumulation of amyloid beta (AR)-plaques and neurofibrillary tangles, the histologically

o o b~ wWN

characterizing hallmarks of AD (2), triggers a cascade of neurodegenerative events, leading

\‘

to disease progression (3). Additionally, novel emerging evidence indicates that
8 neuroinflammation plays an important role in pathogenesis and progression of AD and many
9 other neurodegenerative diseases (4; 5). In AD, activated microglial cells are able to bind
10 and phagocytize soluble AB, and to some degree also the fibrillary AR aggregates, as part of
11 the increased inflammatory response (4). However, others report that AB-recognition
12  receptors on microglia downregulate during the progression of AD, such that microglial cells
13 eventually undergo senescence, characterized by reduced phagocytosis of ABR-aggregates
14 (7). With time, the decreased microglial activity is permissive to expansion of fibrillar
15 amyloidosis (8; 9) and a high proportion of dystrophic microglia were observed in human AD
16  brain post mortem (11). These observations have led some to speculate that the microglial
17 response is overwhelmed by the massive AB-deposition occurring in advanced AD, such that
18 their chronic activation has a detrimental impact on disease progression (12; 7).
19 It might follow that treatment with anti-inflammatory drugs should alleviate AD progression.
20 Pioglitazone is an anti-inflammatory insulin sensitizer widely used to treat hyperglycemia in
21  type 2 diabetes via activation of peroxisome proliferator-activated receptor gamma (PPAR-y).
22  Treatment with pioglitazone enables microglial cells to undergo a phenotypic conversion from
23  a pro-inflammatory towards an anti-inflammatory and neuroprotective phenotype (14; 15).
24 Furthermore, activation of PPAR-y in the brains of AD mice initiate a coupled metabolic cycle
25 with the Liver X Receptor to increase brain apolipoprotein E levels, which promotes the
26  ability of microglial cells to phagocyte and degrade both soluble and fibrillary AR (14; 15).
27  However, another study showed that only low-dose PPAR-y agonist treatment, but not the
28 conventional doses, promotes an AB-clearing effect by increasing (LDL Receptor Related
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1 Protein 1 (LRP1) in human brain microvascular endothelial cells (HBMECSs) (16). Despite this
compelling preclinical evidence, a meta-analysis encompassing nine clinical studies did not
compelling support a beneficial effect of PPAR-y agonist treatment on cognition and memory
in in patients with mild-to-moderate AD (18). Furthermore, a phase lll trial of pioglitazone in

patients with mild AD was discontinued due to lacking efficacy (19). It remains a conundrum

o o b~ W N

why the translation of PPARy stimulation into human AD failed, which calls for further

\‘

investigation to uncover the basis of the seemingly false lead. Conceivably, the efficacy of
8 pioglitazone may be confined to a specific stage of AD, or in cases distinguished by a
9  particular biomarker.

10 Given this background, we hypothesized that AB-load and composition would determine the
11 individual efficacy of PPARYy stimulation effect in the progression of AD mouse models.
12  Therefore, we undertook serial small animal positron emission tomography (UPET) with the
13  AB-tracer [*®F]florbetaben (20-22) in two AD mouse models with distinct AB-plaque
14  composition. The transgenic PS2APP-line develops dense fibrillary AB-plaques with late
15 debit whereas the knock-In mouse model App"-F develops more diffuse oligomeric Ap-
16 plaques with early debut. Both strains of mice were treated with pioglitazone or vehicle for
17 five months during the phase of main AR accumulation. We conducted behavioral
18 assessments of spatial learning and confirmed longitudinal PET findings by
19 immunohistochemical analysis and biochemical analysis, thus aiming to test the hypothesis
20 that response to pioglitazone would depend on the type of AB-plaques formed in transgenic
21  mice.
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1

2

3 2. Methods and Materials

4 Study design

5  Groups of PS2APP and App"“®F mice were randomized to either treatment (PS2APP-PIO
6 N=13; App""°"-PIO N=14) or vehicle (PS2APP-VEH N=10; App"-°F-VEH N=23) groups at
7 the age of 8 (PS2APP) and 5 (App"~°") months. In PS2APP mice, the baseline

8 [*®FIflorbetaben-PET scan (AB-PET) was performed at the age of eight months, followed by
9 initiation of pioglitazone treatment or vehicle for a period of five months and a follow-up AB-
10  PET scan at 13 months. In App"-°F mice, the baseline AR-PET scan was performed at the
11 age of five month, followed by initiation of pioglitazone treatment or vehicle, for a period of
12 five months. Follow-up AB-PET scans were acquired at 7.5 months and ten months of age,

13 which was the study termination in App"-"®*

mice. For all mice, behavioral testing after the
14  terminal PET scan was followed by immunohistochemical and biochemical analyses of
15 randomized hemispheres. The TSPO-PET arm of the study and detailed analyses of
16 neuroinflammation imaging are reported in a separate manuscript focusing on the predictive
17  value of TSPO-PET for outcome of PPARy-related immunomodulation (23). The sample size
18 estimation of the in vivo PET study was based on previous experience and calculated by
19 G*power (V3.1.9.2, Kiel, Germany), assuming a type | error a=0.05 and a power of 0.8 for
20 group comparisons, a 10% drop-out rate per time-point (including TSPO-PET), and a
21 treatment effect of 5% change in the PET signal (23). Shared datapoints between the study
22  arms are indicated.

23

24  Animals

25  PS2APP transgenic (24), App"~®" APP knock-in (25) and wild-type C57BI/6 mice were used
26 in this investigation (for details see Supplement). All experiments were performed in
27  compliance with the National Guidelines for Animal Protection, Germany, with approval of the

28 local animal care committee of the Government of Oberbayern (Regierung Oberbayern) and
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1 overseen by a veterinarian. The experiments complied with the ARRIVE guidelines and were

2 carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and
3 associated guidelines, EU Directive 2010/63/EU for animal experiments. Animals were
4 housed in a temperature and humidity-controlled environment with a 12-h light-dark cycle,
5 with free access to food (Ssniff) and water.

6

7  AB-PET Acquisition and Reconstruction

8 [*®FIflorbetaben radiosynthesis was performed as previously described (22). This procedure

9 vyielded a radiochemical purity exceeding 98% and a specific activity of 80+20 GBg/pmol at
10 the end of synthesis. Mice were anesthetized with isoflurane (1.5%, delivered via a mask at
11 3.5 L/min in oxygen) and received a bolus injection [‘®F]florbetaben 12+2 MBq in 150 L of
12  saline to a tail vein. Following placement in the tomograph (Siemens Inveon DPET), a single
13 frame emission recording for the interval 30-60 min p.i., which was preceded by a 15-min
14  transmission scan obtained using a rotating [>’Co] point source. The image reconstruction
15 procedure consisted of three-dimensional ordered subset expectation maximization (OSEM)
16  with four iterations and twelve subsets followed by a maximum a posteriori (MAP) algorithm
17  with 32 iterations. Scatter and attenuation correction were performed and a decay correction
18 for ['®F] was applied. With a zoom factor of 1.0 and a 128x128x159 matrix, a final voxel
19  dimension of 0.78x0.78x0.80 mm was obtained.
20
21  Small-Animal PET Data Analyses
22  Volumes of interest (VOIs) were defined on the MRI mouse atlas (26). A forebrain target VOI
23 (15 mm® was used for group comparisons and an additional hippocampal target VOI (8
24  mm3) served for correlation analysis with spatial learning. We calculated [**F]florbetaben
25  standard-uptake-value ratios (SUVRs) using the established white matter (PS2APP; 67 mm?;
26  pons, midbrain, hindbrain and parts of the subcortical white matter) and periaqueductal grey
27  (App"-CF; 20 mm?) reference regions (27-29).

28
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1 Water Maze
Two different water maze tasks were applied due to changing facilities between the

NL-G-F

investigations of PS2APP and App cohorts. We used a principal component analysis of
the common read outs of each water maze task to generate a robust index for correlation

analyses in individual mice (30). The principal component of the water maze test was

o o b~ wWN

extracted from three spatial learning read-outs (PS2APP: escape latency, distance, platform

choice; AppM-©*: escape latency, frequency to platform, time spent in platform quadrant).

\‘

8 Thus, one quantitative index of water maze performance per mouse was generated for
9 correlation with PET imaging readouts. The experimenter was blind to the phenotype of the
10 animals.
11  Water Maze in PS2APP mice: PS2APP and age-matched wild-type mice were subjected to a
12  modified Morris water maze task as described previously (31-34) yielding escape latency,
13 distance to the correct platform and correct choice of the platform as read-outs.

NL-G-F

14  Water Maze in App"-®T mice: App mice (treated and vehicle) and 14 age- and sex-
15 matched wild-type mice (vehicle) underwent a classical Morris water maze test, which was
16 performed according to a standard protocol with small adjustments (35) as previously
17  described (29). Details are provided in the Supplement.

18

19 Immunohistochemistry

20  Immunohistochemistry in brain regions corresponding to PET analyses was performed for
21 fibrillary as well as oligomeric AR, microglia and synaptic density as previously published
22 (36-38). We obtained immunofluorescence labelling of oligomeric AB using NAB228
23 (Thermo Fisher Scientific, USA) with a dilution of 1:500. For histological staining against
24 fibrillar AB, we used methoxy-X04 (TOCRIS, Bristol, United Kingdom) at a dilution of 0.01
25 mg/mlin the same slice as for NAB228 staining. We obtained immunofluorescence labelling
26  of microglia using an Iba-1 antibody (Wako, Richmond, USA) with a dilution of 1:200 co-
27 stained with CD68 (BioRad, California, USA) with a dilution of 1:100. The synaptic density

28 was measured using an anti-vesicular glutamate transporter 1 (VGLUT1) primary antibody

7
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1 (1:500, MerckMillipore). Quantification was calculated as area-%. Details are provided in the

2  Supplement.

3

4  Biochemical characterization of brain tissue

5 DEA (0,2% Diethylamine in 50 mM NaCl, pH 10) and RIPA lysates (20 mM Tris-HCI (pH 7.5),
6 150 mM NaCl, 1 mM Na2EDTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium
7  pyrophosphate) were prepared from brain hemispheres. The later was centrifuged at 14,000

8 g (60 min at 4°C) and the remaining pellet was homogenized in 70% formic acid (FA

9 fraction). The FA fraction was neutralized with 20 x 1 M Tris-HCI buffer at pH 9.5 and used
10 further diluted for AR analysis. AR contained in FA fractions was quantified by a sandwich
11 immunoassay using the Meso Scale AB Triplex plates and Discovery SECTOR Imager 2400
12  as described previously (39). Samples were measured in triplicates.

13

14  Statistics

15 The principal component of the water maze test was extracted using SPSS 26 statistics (IBM
16 Deutschland GmbH, Ehningen, Germany). Prior to the PCA, the linear relationship of the
17 data was tested by a correlation matrix and items with a correlation coefficient <0.3 were
18 discarded. The Kaiser-Meyer-Olkin (KMO) measure and Bartlett's test of sphericity were
19 used to test for sampling adequacy and suitability for data reduction. Components with an
20 Eigenvalue >1.0 were extracted and a varimax rotation was selected. Water maze results
21 were also used as an endpoint in the dedicated manuscript on serial TSPO-PET in both
22  cohorts (23). For immunohistochemistry quantifications GraphPad Prism (Graphpad Prism 7
23  Software, USA) was used. All analyses were performed by an operator blinded to the
24 experimental conditions. Data were normally distributed according to Shapiro-Wilk or
25 D’Agostino-Pearson test. One-way analysis of variance (ANOVA) including Bonferroni post
26  hoc correction was used for group comparisons > 2 subgroups. For assessment of inter-
27 group differences at single time points, Student’s t-test (unpaired, two-sided) was applied. All
28  results are presented as mean + SEM. P values <0.05 are defined as statistically significant.

8
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1

2

3

4

5 3. Results

6 Long-term pioglitazone treatment provokes a significant increase of the AB-PET signal
7 in PS2APP mice

8  First, we analyzed serial changes of fibrillar amyloidosis under chronic pioglitazone treatment
9 by [*®F]florbetaben AB-PET in PS2APP mice and wild-type controls. Vehicle treated PS2APP
10  mice showed an elevated AB-PET SUVR when compared to vehicle treated wild-type at eight
11  (+20.4%, p<0.0001) and 13 months of age (+37.9%, p<0.0001). As expected, the AB-PET
12 SUVR of wild-type mice did not change between eight and 13 months of age (0.831+0.003
13 vs. 0.827+0.008: p=0.645). Surprisingly, pioglitazone treatment provoked a stronger
14  longitudinal increase in the AB-PET signal of PS2APP mice (+21.4%) when compared to
15 vehicle treated PS2APP mice (+14.1%, p=0.002). At the follow-up time point, the AR-PET
16 SUVR was significantly elevated when compared to untreated PS2APP mice (Fig. 1;
17  1.140+0.014 vs.1.187+0.011; p=0.0017). Pioglitazone treatment in wild-type mice provoked
18 no changes of AB-PET SUVR compared to vehicle-treated wild-type mice at the follow-up
19 time-point (0.827+0.008 vs. 0.823+0.005: p=0.496). Taken together, we found a significant
20 increase in the AB-PET signal, which implied an increase in fibrillary Ap-levels under
21  pioglitazone treatment in PS2APP mice.

22

NL-G-F

23 AB-PET detects a strong increase of the fibrillar AB-load in App mice during

24  chronic PPARYy stimulation

25 Next, we sought to validate our unexpected findings in PS2APP mice a mouse model with

NL-G-F

26  differing AB plague composition, namely the App mouse, which has limited fibrillarity due

27 to endogenous expression of APP with three FAD mutations (25). Strikingly, the effect of

NL-G-F

28 pioglitazone treatment on the AB-PET signal was even stronger in App mice than in

9
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1 PS2APP mice. There was a pronounced increase of the ABR-PET signal during chronic
pioglitazone treatment (+17.2%) compared to vehicle (+5.3%, p<0.0001). App™-°®* mice with
pioglitazone treatment had a higher AB-PET SUVR at 7.5 (+4.6%, p=0.0071) and ten

NL-G-F

(+7.7%, p<0.0001) months of age when compared to vehicle-treated App mice (Fig. 2).

The baseline level of AB-PET SUVR was non-significantly lower in treated compared to

o o b~ wWN

untreated App"-°F mice (0.878+0.010 vs. 0.906+0.006, p=0.1350). In both mouse models,

\‘

the Ap-signal increase after pioglitazone-treatment compared to baseline scans was
8 pronounced in the frontotemporal cortex and hippocampal area (Figs. 1A & 2A). In summary,
9 the pioglitazone treatment augmented the AB-PET signal increase in both mouse models;

10  this unexpected result was more pronounced in the AppN-°*

model, which expresses less
11 fibrillary AB plaques.

12

13 Pioglitazone triggers a shift towards increased AB-plaque fibrillarity in two distinct
14  mouse models of amyloidosis

15 Given the unexpected in vivo findings, we set about to evaluate the molecular correlates of
16 the potentiation of AB-PET signal during pioglitazone treatment in AD model mice. The
17  (immuno)histochemical analysis showed that the observed increase of the AB-PET signal
18 was predominantly explicable by a change in plaque composition rather than by a change in
19 plaque density (Fig. 3). In both mouse models, the proportion of fibrillary AR stained with
20 methoxy-X04 increased significantly under pioglitazone treatment compared to vehicle
21 treated animals (PS2APP: 29.6+3.5% vs. 15.2+0.7%, p=0.0056, Fig. 3C; App"-°": 9.1+1.6%
22 vs. 4.4+0.4%, p=0.0001, Fig. 3D). Pioglitazone treatment had no significant effect on the
23  proportion of oligomeric AB stained with NAB228 in PS2APP mice (PS2APP: 65.4+6.1% vs.
24  67.0+6.9%, p=0.865, Fig. 3C). In App"~F mice, however, the proportion of oligomeric AR
25 decreased significantly in treated animals (AppM-®": 26.7+1.7% vs. 34.5+1.7%, p=0.0138,
26  Fig. 3E). The effect size of pioglitazone treatment on plaque morphology was larger in App""
27  ©F mice than in PS2APP mice, which was reflected by a significantly increased overlay of

28 methoxy-X04 and NAB228 positive plagues proportions in relation to untreated mice

10
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1 (PS2APP: 40.4+3.6% vs. 25.1+2.1%, p=0.0075, Fig. 3C; App"“®F: 35.0+3.4% vs.
12.9+1.3%, p=0.0005, Fig. 3E). We attribute this effect to the generally diffuse nature of the

plague composition of App"-©F

mice, which predominantly contain high oligomeric and low
fibrillary fractions of AB (40) (compare Fig. 3A and Fig. 3B).

The number of methoxy positive AB-plagues were similar between vehicle and pioglitazone

o o b~ wWN

treated groups for PS2APP (1016+107 vs. 1118+121, p=0.547, Fig. 3D) and App"~®* mice

\‘

(242456 vs. 266+33, p=0.722, Fig. 3F). Notably there was no significant effect of chronic
8 pioglitazone treatment on the different insoluble AR species (AR40, AB42) as well as on the
9 level of the soluble AR42-isoform observed in either mouse model (Suppl. Fig. 1A). Taken

10 together, our results indicate that the potentiated increase of the AB-PET signal upon

11 pioglitazone treatment reflected a change in plague composition from oligomeric to fibrillary

12 Ap-fractions.

13

14  Microglial activation is reduced upon PPARYy stimulation in both AD mouse models

15 To confirm changes in the activation state of microglial cells, we performed lbal as well as

16 CD68 immunohistochemical staining of activated microglia in both mouse models. We

17 observed that pioglitazone treatment significantly decreased microglial activation in both

18 mouse models (Fig. 4). In PS2APP mice, PPARy stimulation provoked a one-third reduction

19 of area coverage of Ibal-positive microglial cells (area: 9.1+0.6%) compared to untreated

20  mice (14.0£0.5%, p=0.0003), and also a significant reduction of CD68-positive microglial

21 cells area (7.6+0.4% vs. 9.9+0.3%, p=0.0018). In pioglitazone treated App"-°* mice, the

22 area reduction was less pronounced, but still significant for Ibal-positive microglial cells

23 (9.410.2% vs. 10.6+0.2%, p=0.0015) and CD68-positive microglial cells (2.7+0.1% vs.

24 3.0+0.1%, p=0.0141) compared to untreated mice. Thus, we observed a consistent net

25  reduction of activated microglial coverage in both models; the lesser effect in App-¢F mice

26 might indicate partial compensation by triggering of microglial activation due to increased

27  fibrillary AR levels (40).

28
11
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1 Cognitive function is improved by chronic pioglitazone treatment in association with
an increasing AB-PET rate of change

Finally, we aimed to elucidate whether the observed longitudinal changes in the composition
of AB-plaques affected synaptic density and hippocampus related cognitive performance.

In PS2APP mice, treatment with pioglitazone resulted in a significant reduction of the water

o o b~ wWN

maze performance index compared to untreated mice during the probe trial (Fig. 5A;

\‘

p=0.0155), whereas in wild-type animals there was no difference between treated and
8 untreated animals (p>0.999). The water maze performance index of pioglitazone treated
9 PS2APP mice correlated strongly with the rate of increase in AB-PET signal (Fig. 5C;
10 R=0.686; p=0.0097). In App"~®F mice, pioglitazone treatment did not result in a significant
11 change of spatial learning performance (Fig. 5B; p>0.999). Accordingly, the water maze
12  performance index and the rate of change in the AB-PET signal of pioglitazone treated App""
13 °F mice did not correlate significantly (Fig. 5D; R=0.341; p=0.254). There was no significant
14  association between the water maze performance index and the AB-PET rate of change in
15  vehicle treated PS2APP or App"-© mice.
16 To explore the basis of water maze results in PS2APP mice at the molecular level, we
17  performed staining of synaptic density in the hippocampus. AB-oligomers are the primary
18 neurotoxic forms of AR, while AB-fibrils have less neurotoxicity (44—-46). Thus, we
19 hypothesized that pre-synaptic density in the hippocampal CA1-Area would be rescued upon
20 pioglitazone-treatment. In wild-type mice we did not observe altered changed VGLUT1
21 density under pioglitazone treatment (Fig. 5E, F; 0.519+0.007 1/um vs. 0.502+0.008 1/um,
22 p=0.810). In PS2APP mice, however, we found that pioglitazone treatment significantly
23  rescued spine density in the CAl-region of the hippocampus compared to untreated animals
24  (Fig. 5E, F; 0.497+0.006 1/um vs. 0.459+0.007 1/um, p=0.0012), supporting the
25  hippocampal-dependent water maze results.

26
27

28
12
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1

2

3

4 4. Discussion

5 To our knowledge, this is the first large-scale longitudinal PET study of cerebral ApR-
6  deposition in two distinct AD mouse models treated with the PPARYy agonist pioglitazone. We
7  combined in vivo PET monitoring with behavioral testing and detailed immunohistochemical
8 analysis. Our main finding was an unexpected potentiation in both mouse models of the
9 increasing AB-PET signal during five months of pioglitazone treatment. This increase

10 occurred despite an improvement of spatial learning and prevention of synaptic loss in the
11 treated mice. Immunohistochemistry revealed a shift towards plaque composition of higher
12 fibrillarity as the molecular correlate of the AB-PET signal, which was directly associated with
13  improved cognitive performance in PS2APP mice.

14  AB-PET enables longitudinal in vivo detection of AB-plaques, which plays an important role in
15 AD diagnosis, monitoring disease progression, and as an endpoint for therapeutic treatment
16 effects (47). In our preceding observational and interventional studies, we validated in AD
17  model mice the clinically established AB-PET tracer [**F]florbetaben relative to histologically
18 defined indices AR deposition (3; 21). So far, an enhanced or increasing [‘®F]florbetaben-PET
19 signal has been interpreted as an indicator of disease progression or treatment failure (48).
20  Unexpectedly, we found that pioglitazone potentiated the increasing AB-PET signal in two
21 mouse models compared to vehicle controls; in both cases, this increase was due to a shift
22  of the plaque composition towards higher fibrillarity, and away from the more neurotoxic
23 oliogomeric form. However, ELISA measurements of plaque associated fibrillary Af
24  extracted with formic acid did not indicate a change in the AB species composition in brain.
25 This suggests that AB-PET imaging and immunohistochemical analysis detect treatment
26  effects on AB-plague composition that do not arise from a shift in the levels of AB species,
27  and which may thus evade detection in studies of CSF or plasma content (49).

28 Furthermore, our study provides evidence that rescued spatial learning deficits and
13
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1 prevented hippocampal synaptic loss can occur despite an increasing ABR-PET signal upon
immunomodulation. The combined results might sound contradictory, but according to the
amyloid cascade hypothesis, Ap-oligomers rather than AB-fibrils are the neurotoxic Ap-forms
(44; 50). Indeed, high concentrations of AB-oligomers isolated from brain of AD patients

correlated significantly with the degree of cognitive impairment prior to death (51-53).

o o b~ wWN

Furthermore, AB-oligomers have been shown to disrupt long-term potentiation at synapses

\‘

and provoke long-term depression (54-56). Thus, improved spatial learning and rescued
8 synaptic density could reflect a therapeutically induced shift of AR to hypercondensed
9 plaques, in keeping with observations of greater neuritic damage in association with more
10 diffuse plaques (59; 60). Furthermore, strongly in line with our present data, a recent study
11 argued that microglia promoted formation of dense-core plaques may play a protective role in
12 AD (61).
13  The shift in plaque composition was more pronounced in App"-°* mice than in the PS2APP
14  model. Due to the expression of the Arctic mutation (25), the AB-deposits of the App"~¢*line
15 consist predominantly of AB-oligomers (29; 40). However, we observed no improvement in
16 cognition in the APP knock-in mouse line after pioglitazone treatment. We attribute the
17  lacking improvement of spatial learning to the minor deterioration of this model in water maze
18 assessment at ten months of age (64; 29). Our present observation stand in contrast with
19 previous studies showing that PPAR-y agonists reduced AB-plaque formation by increasing
20  Ap-clearance (15; 65; 14). However, those studies only performed endpoint analyses, in part
21 after short-term treatment of nine days (14); the current work is the first to perform
22  longitudinal in vivo monitoring of AB-deposition over a five-month chronic PPAR-y treatment
23 period. We note that the divergent results could also reflect the different markers used for
24 immunohistochemistry compared to our present differentiated analysis of fibrillar and
25 oligomeric AR components. As such, the decreased NAB228-positive plaque fraction in our
26 treated App"“®" mice fits to the earlier reported decrease of the 6E10-positive area in
27  APPPS1 mice (14). We note that the biochemical source of the AB-PET signal is still a matter
28  of controversy, since some studies found no impact of non-fibrillar plague components (66)

14
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1 whereas others postulated a significant contribution of non-fibrillar AR to the AB-PET signal
(67-69). Recently, we were able to show that non-fibrillar components of AB plagues indeed
contribute to the net AB-PET signal (70). Therefore, increases in the [*®F]florbetaben-PET
signal must be precisely differentiated and interpreted with caution. Development of new PET

tracers that selectively target oligomeric AR may realize a more precise discrimination of

o o b~ W N

neurotoxic AR plague manifestation (71; 72) and its impact on disease severity.

\‘

In line with previous pioglitazone studies (14; 15), we observed a decrease in microglial
8 activity (23), thus confirming the immunomodulatory effect of the drug. Since earlier studies
9 have shown that fibrillary AB-deposits activate microglial cells (40) which then migrate

10 towards the fibrillar deposits (6), resulting in an increased number of activated microglial cells

11  surrounding AB-plaques (8), the inactivation and migration effects could cancel each other

12  out. Based on our findings in both AD models, we conclude that, by increasing plague

13 fibrillarity, the immunomodulatory effect of pioglitazone overweighs the potential triggering of

14  activated microglia. Modulating microglial phenotype to restore their salutogenic effects may

15 prove crucial in new therapeutic trials (74). In several preclinical and clinical trials,

16 pioglitazone proved to be a promising immunomodulatory approach for treatment of AD,

17  especially in patients with comorbid diabetes (75; 76). However, a large phase Il trial of

18 pioglitazone in patients with mild AD was discontinued due to lacking efficacy (19). Our data

19 calls for monitoring of the effects of PPARy agonists by AB-PET, which may help to stratify

20 treatment responders based on their individual rates of AR plaque accumulation. Based on

21  our results, we submit that personalized PPARy agonist treatment might be effective when

22  the patient has capacity to successfully shift toxic oligomeric AR towards fibrillar parts of the

23  plaque.
24
25 5. Limitations

26 We note as a limitation that PPARY receptor agonists represent a rather unspecific class of
27 drugs since PPARY is involved in various pathways in addition to peroxisome activation,
28 notably including glucose metabolism and insulin sensitization [48]. Future studies should

15
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1 address if the observed effects on AR plaque composition are also present for more selective

2 immunomodulation strategies such as NLRP3 regulators [49]. Two different water maze
3 examinations were performed in the present study due a switch of the laboratory. Hence,
4 although we calculated a similar water maze performance index by a PCA of the main read-
5 outs of each examination, the obtained results and the sensitivity to detect spatial learning
6 deficits are not comparable between both AR mouse models.

E

8 6. Conclusion

9 In conclusion, chronic pioglitazone treatment provoked a longitudinal AB-PET signal increase
10 in transgenic and knock-in mice due to a shift towards hypercondensed fibrillar AR plagues.
11  The increasing rate of AB-PET signal increase with time was accompanied by ameliorated
12  cognitive performance and attenuated synaptic loss after pioglitazone treatment. It follows
13 that increasing AB-PET signal need not always indicate a treatment failure, since it is the
14  composition of AR plaques that determines their neurotoxiticy. In summary, our preclinical
15 data indicate that a shift towards increasing fibrillar amyloidosis can be beneficial for the
16  preservation of cognitive function and synaptic integrity.

17
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6 Legends tables and figures

7 Fig.l

8 Figure 1: PPARYy stimulation in PS2APP mice provokes an increase in the AB-PET
9 signal. A) Regional analysis of group-averaged standardized uptake value ratio (SUVR)
10 images of the AB-PET radiotracer [*®F]florbetaben in untreated and in pioglitazone-treated
11 PS2APP mice aged eight and 13 months. Coronal and axial slices are projected upon a
12  standard MRI template. B) Plots show cortical SUVR values of [**F]florbetaben in PS2APP
13 and wild-type (WT) mice between eight and 13 months of age under vehicle (Veh) or
14  pioglitazone (Pio) treatment. The AB-PET signal increased in PS2APP mice during aging, but
15 the increase was more pronounced in pioglitazone treated mice (Fy 12 = 12.9; p = 0.0017). In
16  wild-type animals, no difference was observed between untreated and treated animals during
17  aging (F113 = 0.490; p = 0.496). Data are presented as mean * SEM. P values of Bonferroni

18 post hoc test result from two-way ANOVA. N=10-13 PS2APP; N=7-8 WT.

19 Fig.2

NL-G-F

20 Figure 2: Distinct AB-PET signal increase upon PPARy stimulation in App mice

21 with limited plaque fibrillarity and without overexpression of APP. A) Regional analysis
22  of group-averaged standardized uptake value ratios (SUVR) of the AB-PET radiotracer

23 [*®|F]florbetaben in untreated and in pioglitazone treated AppM-©¢*

animals at the age of 5, 7.5
24  and 10 months. Coronal and axial slices are projected upon a standard MRI template. B)
25  Plots show cortical SUVR of [*®F]florbetaben in App"~®F mice between the age of five and
26  ten months under vehicle or pioglitazone treatment. AB-PET signal increased in untreated

NL-G-F

27  mice during age but the increase was more pronounced in pioglitazone treated App mice

22
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1 (Fe70) = 20.12; p < 0.0001). Data are presented as mean + SEM. P values of Bonferroni post

2  hoc test result from two-way ANOVA. N=14-23.

Fig. 3
Figure 3: Pioglitazone treatment triggers a change in plague composition in two
different mouse models of amyloidosis. Staining of fibrillary A (methoxy-X04, cyan) and

oligomeric AB (NAB228, magenta) in vehicle and pioglitazone treated PS2APP mice A) and

NL-G-F

N~ o o b~ W

App mice B). C) The plaque area covered by methoxy-X04 staining was significantly

higher (to) = 3.612; p = 0.0056), whereas the plaque area covered by NAB228 staining

© o

remained equal (tuq = 0.175; p = 0.865) in pioglitazone treated PS2APP mice. The overlay of
10 NAB228 and methoxy staining increased under pioglitazone treatment (tg) = 3.432; p =
11 0.0075). D) The number of methoxy positive AB-plaques did not change under pioglitazone
12  treatment in PS2APP-mice. E) In App"“®" mice, methoxy coverage (tu; = 5.802; p =
13  0.0001), NAB228 coverage (t11) = 5.80; p = 0.0001), as well as the overlay of both stainings

NL-G-F

14 (tay) = 2.93; p = 0.0138), increased under pioglitazone treatment. F) In App mice, the
15 number of methoxy positive AB-plaques did not change under pioglitazone. Data are
16 presented as mean + SEM; n = 5-13 mice. Two-sample student’s t-test results: * p < 0.05; **
17 p<0.01; ***p<0.001.

18

19 Fig.4

20 Figure 4: Pioglitazone treatment reduces microglial activation in both AD mouse
21 models. Ibal- (magenta) as well as CD68-(cyan) positive microglial cells in PS2APP A) and
22 App"“®Fmice B). C) The area of Ibal positive microglial cells (tg = 5.95; p = 0.0003) as well
23  as CD68 positive microglial cells (tg = 4.58; p = 0.0018) decreased in treated PS2APP mice.

24 The same effect was observed in App™-®*

mice were the area covered by Ibal positive ()
25 =4.21; p =0.0015) as well as CD68 positive microglial cells (t11) = 2.91; p = 0.014) were
26  significantly reduced in treated compared to untreated mice. Data are presented as mean *

27 SEM; n = 5-7 mice. Two-sample student’s t-test results: * p < 0.05; ** p < 0.01; *** p <

28 0.001.
23
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1

2 Fig.5

3 Figure 5. Improved spatial learning correlates with an increased AB-PET rate of
4 change in PS2APP mice. A) One-way ANOVA revealed a significant difference of the water
5 maze performance index between pioglitazone treated and untreated PS2APP and wild-type
6 groups (F@as = 10.37; p < 0.0001; N=7-13). Group-wise comparisons revealed that
7  pioglitazone treated PS2APP mice achieved a higher performance index in the water maze

8 test compared to untreated PS2APP mice (p = 0.016), whereas wild-type animals showed no
9 significant difference between treatment groups (p > 0.999). B) One-way ANOVA revealed a
10 significant difference of the water maze performance index between pioglitazone treated and
11  untreated App"“®F and WT groups (Fiss = 5.825; p = 0.0016). However, pioglitazone
12 treated App"-°" mice showed no difference in the water maze performance index when

NL-G-F

13 compared to untreated App mice (p > 0.999) and wild-type animals again showed no
14  significant difference between treatment groups (p > 0.999). Scatter plots show correlations
15 between the AB-PET rate of change ([*®F]florbetaben; ASUVR) during the treatment period

16  and individual cognitive testing scores in C) PS2APP mice and in D) App"-®"

mice (R
17 indicates Pearson’s coefficient of correlation) E) The decrease in synaptic density in the
18 hippocampal CAl-region as assessed by VGLUT1 staining was ameliorated in treated
19 PS2APP mice when compared to untreated mice (p = 0.0012), whereas no such treatment
20 effect was seen in wild-type animals (p = 0.810; group effect: Fzzq = 12.03; p < 0.0001;
21  N=7-13). F) VGLUT1 staining in the hippocampal CAl-region of representative untreated and
22 treated PS2APP mice (left column) as well as of representative untreated and treated wild-
23 type (WT) mice (right column). Statistics of group wise comparisons derive from one-way

24  ANOVA with Bonferroni hoc correction: * p < 0.05; *** p < 0.005. Data are presented as

25 mean + SEM.

24
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