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Abstract 
 

Lens-free digital in-line holography (LDIH) produces cellular diffraction patterns (holograms) 

with a large field of view that lens-based microscopes cannot offer. It is a promising diagnostic 

tool allowing comprehensive cellular analysis with high-throughput capability. Holograms are, 

however, far more complicated to discern by the human eye, and conventional computational 

algorithms to reconstruct images from hologram limit the throughput of hologram analysis. To 

efficiently and directly analyze holographic images from LDIH, we developed a novel deep 

learning architecture called a holographical deep learning network (HoloNet) for cellular 

phenotyping. The HoloNet uses holo-branches that extract large features from diffraction patterns 

and integrates them with small features from convolutional layers. Compared with other state-of-

the-art deep learning methods, HoloNet achieved better performance for the classification and 

regression of the raw holograms of the breast cancer cells stained with well-known breast cancer 

markers, ER/PR and HER2. Moreover, we developed the HoloNet dual embedding model to 

extract high-level diffraction features related to breast cancer cell types and their marker intensities 

of ER/PR and HER2 to identify previously unknown subclusters of breast cancer cells. This 
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hologram embedding allowed us to identify rare and subtle subclusters of the phenotypes 

overlapped by multiple breast cancer cell types. We demonstrate that our HoloNet efficiently 

enables LDIH to perform a more detailed analysis of heterogeneity of cell phenotypes for precise 

breast cancer diagnosis. 

 

Introduction 

Breast cancer exhibits significant inter-tumor and intra-tumor heterogeneity, presenting significant 

diagnostic and therapeutic. Therefore, breast cancer tissues are biopsied to determine the hormone 

and growth factor receptor status for effective treatment because the hormonal status significantly 

affects the progress and phenotypes of breast cancer [1-3]. Specifically, the levels of nuclear 

estrogen (ER) or progesterone receptors (PR) are measured to determine whether breast cancer 

cells will respond to anti-estrogens therapy using tamoxifen, fulvestrant or aromatase inhibitors. 

Also, human epidermal growth factor receptor 2 (HER2) is a tyrosine kinase receptor on the 

surface of breast cancer cells, and HER2-positive cancers are much more likely to benefit from 

anti-HER2 treatment with Herceptin [1, 3]. Based on this hormone status, breast cancer can be 

identified into four different types: ER/PR-HER2-, ER/PR-HER2+, ER/PR+HER2+, 

ER/PR+HER2-. Moreover, several breast cancer subtypes have been identified in recent years, 

based on molecular and gene expression, and related clinical treatments are being developed [2]. 

Precise diagnosis and analysis of these breast cancer types, or subtypes out of heterogeneous tissue 

samples can provide more efficient and better treatments on breast cancer patients. However, such 

diagnosis is severely hampered by the limited data throughput and high cost of the current 

diagnosis workflow based on light microscopes.  
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Lens-free digital in-line holography (LDIH) has been developed to address this challenge. LDIH 

is a powerful imaging technique that extracts the 3D positional information of an object into a 

single shot of 2D interference patterns, i.e., hologram images, and computationally reconstructs a 

three-dimensional (3D) image of the object. In addition, LDIH has a deep observation depth that 

can overcome the technical limitations and extract more detailed information than conventional 

microscopes. LDIH has been used in various fields, such as biological sample monitoring [4-6] 

and cell dynamic analysis [7-8], because holographic diffraction can be obtained to extract 3D cell 

morphological and biochemical information in a wide field of view [3]. But there are some issues 

with reconstructing 3D image from a hologram image. However, reconstructing 3D images 

requires substantial computational resources and time, and the artifact or information loss could 

happen. Alternatively, if we directly use raw holograms, it is much challenging to decern 

meaningful features by human vision and cognition, although the diffraction patterns contain rich 

information. 

Deep learning (DL) has recently revolutionized machine learning and is highly capable of 

analyzing complex, large, and high-dimensional datasets [9-11]. DL approaches can learn 

meaningful features within complex datasets to analyze uncharacterized image patterns and 

recognize hidden patterns [9-11]. Due to these advantages of feature learning, DL approaches can 

effectively deal with the diffraction images because the features of the diffraction patterns cannot 

be directly recognized or analyzed by human intuition. Moreover, DL needs a large amount of data 

for effective model training. Because LDIH can capture large-scale datasets with a large field of 

view, LDIH can help DL algorithms avoid overfitting issues and build more robust neural network 

models. Also, since DL approaches directly learn complex diffraction patterns, they can avoid the 

errors or artifacts during reconstruction processing and make the LDIH applications robust.  
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In recent years, DL approaches have been applied to LDIH, including reconstruction improvement 

[12, 13], phase retrieval [14], and classification and monitoring of various biological samples [3, 

15, 16]. Min et al. developed an artificial intelligence diffraction analysis (AIDA) platform to 

make automated, rapid, high-throughput, and accurate cancer cell analysis [3]. AIDA platform 

allowed for quantitative molecular profiling of holograms from individual cells and revealed 

cellular heterogeneity. This platform can also directly perform cell recognition and color 

classification from raw holograms by Convolutional Neural Network (CNN) models. Moreover, 

Kim et al. have developed a deep transfer learning (DTL) approach to directly classify raw 

holograms generated from cells and microbeads without a reconstruction process [17].  DTL model 

extracts feature information using the pretrained VGG19 model as a general-purpose feature 

extractor [17] to identify and count microbeads on cells.  

In this paper, we designed and implemented a novel deep learning approach analyze holograms 

from LDIH for breast cancer cell classification and analysis. Figure 1 shows the overview of our 

computational framework. Firstly, we used ER/PR and HER2 immuno-stained holograms as input 

data. Then we developed a novel holographic deep learning architecture, termed to HoloNet learn 

cellular diffraction features efficiently. We used this model to identify breast cancer cell types and 

predict ER/PR and HER2 intensity values. Here, we demonstrated that the proposed HoloNet could 

efficiently extract cellular hologram features to precisely classify different cell types and estimate 

intensity values. After cell classification and intensity regression, a holographical deep learning 

network with a dual embedding model is built to learn holographic feature vectors to generate 

feature distribution maps. These feature distribution maps are processed by manifold learning and 

unsupervised clustering methods to obtain previously unknown subclusters in breast cancer cell 

types.  
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Results 

Overview of Proposed Workflow 

As described in Figure 1, the holograms were acquired by an LDIH imaging system form the 

breast cancer cell line (MCF7, T47D, SKBR3, BT474, and MDA-MB-231) immune-stained with 

anti-ER/PR and anti-HER2 conjugated with chromogens. We designed a novel holographic deep 

learning model to classify four breast cancer cell types: ER/PR-HER2-, ER/PR-HER2+, 

ER/PR+HER2+, and ER/PR+HER2- and predict intensity values of ER/PR and HER2 immuno-

staining. Second, we advanced our holographical deep learning model to extract high-level 

features to generate feature distribution maps. Using these features, we identified previously 

unknown subclusters hidden in heterogeneous samples by combining manifold learning and 

unsupervised clustering. 

Hologram Classification by HoloNet 

We design a novel deep learning holographical network (HoloNet) to extract and analyze 

holographical features. Figure 2(a) shows the architecture of the proposed HoloNet model. A 

holo-block is built to combine local details of objects with global features using a large kernel size 

of the convolutional filter and a concatenated layer. The HoloNet architecture is combined with a 

softmax layer as the output layer to classify breast cancer cell types. The cell classification results 

of the proposed HoloNet model are shown in Figure 2(b). Here we compare the classification 

performance with two types of input images, holograms and reconstructed images. We also used 

CNN [18-20] and Resnet [21] models to compare with the HoloNet model. First, we found that 

holograms provide more efficient features than reconstructed images in breast cancer cell 

classification. Even though the reconstructed images are built from holograms, the detailed 
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information may be lost during the reconstruction processing, as we mentioned before. In addition, 

the HoloNet model with holograms has better performance than other DL models with holograms 

or reconstructed images. The HoloNet model provides better accuracy and F1-score than different 

approaches and achieved 95.5% classification performance (Figure 2(b)). Although our HoloNet 

model has better classification performance than Densenet [22], Densenet almost provides similar 

performance as the HoloNet model does. It is because the HoloNet model and Densenet both used 

a similar concept of combining multiple-scale image features. Also, the proposed HoloNet model 

has better accuracy than previous work [3] over 5% increase for classifying breast cancer cell types. 

Hologram Regression by HoloNet 

The marker intensities of ER/PR or HER2 are the important features of phenotyping breast cancer 

cells. Conventionally, Therefore, we quantify their intensities directly from raw hologram using 

HoloNet with the fully connected layer of the regression output. The HoloNet regression model 

can directly and precisely obtain intensity values of ER/PR and HER2 channels without the 

reconstruction process. Figure 2(c) shows that the HoloNet model can efficiently provide the 

ability of intensity prediction in both ER/PR and HER2 staining channels, which the �2 scores are 

0.9743 and 0.9795, respectively. Here we also use the network structures of CNN [18-20] and 

Resnet [21] to predict the intensity values and compare the outcomes with our HoloNet model. We 

found that the HoloNet model can predict the more accurate intensities of both staining channels 

than other DL models.  

Sub-clustering of Breast Cancer Cells with HoloNet Dual Embedding  

Since deep learning models can extract rich features from input images, we further develop 

hologram feature embedding methods to identify previously uncharacterized subtypes of breast 
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cancer cells. Figure 3(a) shows that the workflow of feature extraction and sub-clustering analysis. 

We developed HoloNet dual embedding learning model, called Dual HoloNet, to obtain the 

diffraction feature vectors. The hologram features extracted from HoloNet are used for the cell 

type classification and the intensity regression simultaneously. This structure will help the HoloNet 

learn the features for subclustering in each breast cancer cell type while paying more attention to 

the features related to the intensities. Therefore, the resulting subclusters can have differential 

intensity distributions in each cell type. Then the feature vector is obtained from the Dual HoloNet 

model and processed by Uniform Manifold Approximation and Projection (UMAP) method [23] 

to learn the feature manifold and reduce the dimension of features. Figure 3(b) and 3(c) show the 

feature distributions of breast cancer cells obtained by the HoloNet with holographic input images 

and reconstructed input images, respectively. The feature distribution map from the reconstructed 

input images shows that the clusters of different cell types can be distinctly separated because of 

the distance. But, due to the lack of intra-cluster heterogeneity, it is difficult to find potential sub-

clusters. The feature distribution map from holograms exhibited high levels of intra-cluster 

heterogeneity while the inter-cluster distances become smaller than the features from the 

reconstruction images. In contrast, the hologram distribution map from the Dual HoloNet model 

in Figure 3(d) showed the sizeable intra-cluster heterogeneity and inter-cluster distances, 

suggesting that the features from Dual HoloNet embedding are suitable for sub-clustering analysis.  

To determine the optimal number of subclusters in each cell type, we combined community 

detection with spectral clustering [24] and grid search. We used clustering evaluation functions to 

estimate the cohesion values of subclusters and used rank voting to select the optimal number of 

subclusters in each class. To determine the optimal balance between the branches of classification 

and regression, we varied the ratio of two loss weights and evaluated the sub-clustering results by 
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the mean intensity differences of ER/PR and HER2 among the subclusters. Figure 3(e) shows the 

mean intensity values in different ratios of the loss of classification and regression, and we chose 

the embedding that provided the maximum mean intensity differences. 

Subclustering Analysis in Cell Line Samples  

Figure 4(a) represents the subcluster distribution maps with the optimal loss weight in each cell 

type. We obtained four subclusters with loss weight ratio 1:1 in ER/PR-HER2-, four subclusters 

with loss weight ratio 5:1 in ER/PR-HER2+ and ER/PR+HER2- cell types, and three subclusters 

with loss weight ratio 5:1 in ER/PR+HER2+. After the subclusters were obtained in different cell 

type groups, we observed the cell population of subclusters in cell line sample cases. In Figure 

4(b), we found that MCF7 and T47D cell lines are dominated by ER/PR+HER2- cell type, but 

they consist of markedly different distribution of the subclusters. While Cluster 13 is the major 

subcluster in MCF7, Cluster 15 is the major component in T47D. Moreover, the SKBR3 cell line 

whose major cell type is ER/PR+HER2+ consists of Cluster 9-11 equally. In the BT474 cell line, 

Cluster 6 and 7 dominate ER/PR-HER2+ cell type. MDA-MD-231 cell line where most of the cells 

belong to ER/PR-HER2- mainly composed Cluster 1-3. In addition, Cluster 3 and 4 exist in 

ER/PR-HER2- of the MCF7 cell line, and Cluster 8 mainly dominates the ER/PR-HER2+ cell type 

of the SKBR3 cell line.  

To know the natures of these subclusters, we quantified their average intensities and the 

distributions of the breast cancer cell lines in each subcluster. Because our hologram embedding 

was designed to identify the features partially discriminative to the marker intensities, the mean 

intensity values of the subclusters were generally statistically different (Figure 5(a)-(d)). In 

ER/PR-HER2- cell type, the mean subcluster intensities in both channels were gradually increased 

from Cluster 1 to 4 (Figure 5(a)). Most of the cells in Cluster 1 and 2 whose mean intensities are 
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low were from MDA-MB-231. Cluster 3 has a mixed population of MDA-MB-231 and MCF7. 

Cluster 4, whose mean intensities are the highest, mainly consists of MCF7 along with minor 

populations from T47D, BT474, and MDA-MB-231 (Figure 5(e) and (i)). In ER/PR-HER2+ cell 

type, the subclusters also had different mean intensities (Figure 5(b)). Cluster 5, 6, and 7 were 

mainly from BT474. In Cluster 8, whose intensities are the highest among the subclusters, BT474 

and SKBR3 co-existed equally (Figure 5(f) and (j)). In ER/PR+HER2+ cell type, the mean 

intensities of ER/PR channel increased from Cluster 9 to 11 while the mean HER2 intensities 

decreased (Figure 5(c)). The major cell line in these subclusters is SKBR3, but Cluster 9 has a 

minor cell population from BT474 (Figure 5(g) and (k)). In ER/PR+HER2- cell type, the mean 

intensities in both channels increased from Cluster 12 to 15 (Figure 5(d)). Cluster 12 and 13 

consisted of MCF7 along with minor proportions of T47D. Cluster 14 and 15 consisted of T47D 

along with minor proportions of MCF7 in Cluster 14 and SKBR3 in Cluster 15 (Figure 5(h) and 

(l)).  

Table 1. Summary of the distributions of breast cancer cell lines in the identified subclusters. 

Cell Type ER/PR-HER2- ER/PR-HER2+ ER/PR+HER2+ ER/PR+HER2- 
Subcluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

MCF7   + ++        ++ ++ +  
T47D    +        + + ++ ++ 

SKBR3        + ++ ++ ++    + 

BT474    + ++ ++ ++ + +       
MDA-MB-

231 ++ ++ ++ +            

 

As summarized in Table 1, in Cluster 3, 4, 8, 9, and 15, the cells from different cell types co-exist. 

Cluster 3 is near the boundary between ER/PR-HER2- and ER/PR+HER2-. Cluster 4 is near the 

boundary among ER/PR-HER2-, ER/PR-HER2+ and ER/PR+HER2-. Cluster 8 and 9 are near the 

boundary between ER/PR-HER2+ and ER/PR+HER2-. Cluster 15 is near the boundary between 
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ER/PR+HER2- and ER/PR+HER2+. While there exist breast cancer cells whose phenotypes are 

near characteristics near the boundaries among the previously known cell types, these cells were 

treated to belong to a single cell type for a diagnostic purpose previously. We used our hologram 

embedding to identify those subclusters of breast cancer cells sharing similar characteristics among 

the known cell types. 

Characterizing the Heterogeneity of Breast Cancer Cells from Patients  

The previous results are based on the multiple breast cancer cell lines. To confirm the clinical 

significance of these subclusters, we used two the hologram data from two breast cancer patient 

cases used in the previous study [3]. Here we used the proposed HoloNet model of classification 

to identify the cell type distribution of these patient cases. Figure 6(a) shows the proportions of 

the cell types from two breast cancer patients. While the cell types of the most significant 

proportion are ER/PR-HER2- in Patient case 1 and ER/PR+HER2- in Patient case 2, their overall 

cell type distributions are marginally different. We used our hologram embedding to obtain feature 

vectors of cellular holograms from these patients and profile them with our subclusters of breast 

cancer cells. In Figure 6(b), we found that Patient case 1 has much more Cluster 1 from ER/PR-

HER2- than Patient case 2 while Patient case 2 has much more Cluster 4 from ER/PR-HER2- than 

Patient case 1. Given our finding that Cluster 4 share the phenotypes from ER/PR-HER2+ and 

ER/PR+HER2-. The characteristics of ER/PR-HER2- in these two patients are distinct. 

For ER/PR+HER2- type, two patients have the similar largest proportions of Cluster 15, sharing 

the similar characteristics of ER/PR+HER2+. However, Patient case 1 has a much more proportion 

of Cluster 13 than Patient case 2, while Patient case 2 has much more Cluster 12. Since there are 

significant differences in both channels between Cluster 12 and 13, the cellular phenotypes in 

ER/PR+HER2- of these patients are also distinct. Taken together, we demonstrated that some of 
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the identified subclusters existed in the breast cancer patient samples, and the subclustering results 

can provide much richer information on the disease status.  

 

Discussion 

We developed the HoloNet, which can efficiently learn high-level diffraction features from the 

complex holograms to precisely discriminate breast cancer cell types in both supervised and 

unsupervised learning setting. Especially, the holo-block unit adapts different large-scale filters to 

collect multi-scale feature information to identify detailed local cellular features. It is because the 

local feature information in holograms does not correspond to a particular part of cellular images 

but rather the entire images. These large-scale filters applied to holograms can collect more related 

local cellular information. Our HoloNet can efficiently extract cell information from holograms to 

provide better performances of cell classification and intensity regression than other existing deep 

learning models. 

We demonstrated that the feature embedding directly from holograms enabled us to identify 

detailed subclusters of breast cancer cells. We added the intensity regression into the Dual HoloNet 

model along with the classification of the previously known cell types. This structure was able to 

help the neural network pay more attention to specific hologram features to enhance the difference 

of the marker intensities among different cell types. Then we optimized the loss weights to 

maximize the differences of the marker intensities among potential subclusters. This hologram 

embedding allowed us to identify the subclusters within the known cell types for refined cellular 

phenotyping. Some of the subclusters identified in our study have the phenotypes shared by 

multiple breast cancer cell types since they are located near the class boundaries in the feature 
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space. Identifying these rare and subtle cellular phenotypes can be significant in clinical decision-

making because they may have different drug sensitivity and resistance from the previously known 

cell types. We expect that HoloNet, in conjunction with LDIH, opens a new opportunity to fully 

characterize intra/inter-tumor heterogeneity in breast cancer and provide clinicians with valuable 

information for patient-specific breast cancer therapy. 

 

Methods 

Data collection 

Breast cancer cells were captured by the surface coated by antibodies (HER2, EpCAM, EGFR, 

and MUC1 [3]) and bio-adhesives, and then stained by anti-ER/PR and anti-HER2 conjugated 

with chromogen. Then cellular holograms were obtained by a LDIH system, and the image patches 

containing a cell were cropped with 64Х64 pixel size in both hormonal staining channels. These 

image data include four different cell types: ER/PR-HER2-, ER/PR-HER2+, ER/PR+HER2-, and 

ER/PR-HER2+, from five cell lines (MCF7, T47D, SKBR3, BT474, and MDA-MB-231) [3]. The 

number of all holograms was 5026. For more efficient training, data augmentation was applied to 

balance the size of different cell types by using random rotation and flipping. Then we separated 

the data into training (65%), validation (15%), and testing (20%) with 5-fold cross validation for 

model evaluation. The ground truth of intensity values of ER/PR and HER2 of cell images were 

obtained from the reconstructed images.  

Holographical deep learning network (HoloNet) 

We constructed the HoloNet based on the concept of convolutional neural network [18-20] by 

adding several large-kernel-size filters to efficiently extract hologram features. Here we designed 
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a block called holo-block, which combines local and global holographical features. The parameters 

K, L, and s in a holo-block (Figure 2(a)) represent the kernel size of the convolutional layer, 

number of a feature layer, and sliding, respectively. There are three holo-blocks with different 

kernel size of convolutional layers, which are 16X16, 24X24, and 32X32, respectively, and 

average pooling layers are used to obtain and emphasize specific feature information. The number 

of feature layer in these blocks was 64. The sliding numbers were set to 1, 2, and 4 for each holo-

block. Moreover, a convolutional layer with batch normalization and three fully connected layers 

are connected to these holo-blocks to build the HoloNet model. Rectified linear unit (ReLu) was 

used as an activation function in the model [25]. Based on the HoloNet architecture, we 

implemented a DL model to classify four types of breast cancer cells by a softmax layer. Then, for 

the intensity regression, we constructed the HoloNet architecture with a fully connected layer to 

predict intensity values of ER/PR and HER2 staining channels from holograms. 

HoloNet dual embedding model (Dual HoloNet) 

The architecture of HoloNet dual embedding model (Dual HoloNet) includes the HoloNet model 

with two fully connected layers of intensity regression and the cell type classification (Figure 3(a)). 

The total loss function of the training is shown as:    

�����Āā�� = ÿ × �������ĀĀ�Ā���ā�Āÿ + Ā × �����ÿāÿÿĀĀ�Āÿ 

,where ñ and ò are the loss weights of classification and intensity regression for loss balancing. 

Here we used Brier loss [26] for the classification loss as below: 

�������ĀĀ�Ā���ā�Āÿ = 1�∑∑(�ā� 2 �ā�)2�
�=1

�
ā=1  
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,where N is the number of observations and R means the number of categorical labels. � and � 

represent the predictive and true label distribution, respectively. Brier loss function is similar to 

mean square error loss but has the same ability of loss energy as the cross-entropy function. 

Neural Network Training 

We used Adam optimizer with learning rate=1024 and batch size=128. The categorical cross-

entropy was used as a loss function for training the HoloNet model for cell classification, and the 

mean square error loss function was used for HoloNet model training for the intensity regression. 

We set the input image size as 64×64×2 for the classification and 64×64 in each staining channel 

for the regression. For the HoloNet model, the maximum epoch was 100 for the classification and 

500 for the regression. The pixel value of input image was normalized from 0 to 1. We also 

automatically reduce the learning rate by multiplying with 0.1 in every 20 epochs. For training the 

dual HoloNet model, we set that brier loss function as a loss function for the classification and the 

maximum epoch=150. We used default parameters in the Keras library, and the environment in 

Python was TensorFlow 1.15 with CUDA 10.0 for both HoloNet models. 

Unsupervised Clustering and Subcluster Selection 

We used the second last layer of the Dual HoloNet model to extract the feature vector of 500 

dimensions, and the UMAP method [23] was used to reduce these 500 dimensional feature vectors 

to three-dimensional space. In the parameters of the UMAP method, the number of the 

neighborhood was set to 20 and the dimension of the space was 3. Also, the minimum distance 

among the observation was set to 0.1, and the string metric was the correlation to compute distance 

in high dimensional space. Then, the pairwise distances between hologram feature vectors were 

calculated to generate a similarity matrix. The threshold value of similarity was set to 0.5 to build 

an adjacent matrix. This adjacent matrix was used as community detection to obtain subclusters 
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by using spectral clustering [24]. The grid search method was used to find the optimal numbers of 

subclusters in each cell type. We set the number of subclusters from 1 to 10 and evaluated the 

clustering quality of different clustering numbers using clustering evaluation functions including 

silhouette coefficient [27], Dunn’s index [28], Calinski-Harabasz index [29], and Davies-Bouldin 

index [30]. Then the optimal number of subclusters in each cell type was selected by voting the 

highest rank from the list of clustering values among different subclustering numbers. 

Loss Weight Optimization 

We used grid search to determine the optimal ratio of loss weight in each cell type for subclustering. 

We calculated Euclidean distances of the mean intensity values of ER/PR and HER2 channels 

among subclusters and then averaged those Euclidean distances. We evaluated this mean 

Euclidean intensity distance among the subclusters with the varying loss ratios: 1:1, 3:1, 5:1, 10:1 

and 100:1 (classification : regression). Then we select the optimal weight combinations which 

provide the maximum intensity difference in each cell type (Figure 3(e)). 
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Figure 1. Workflow of the proposed deep learning models and the analysis of cell 

phenotyping in digital lensless inline holography. 
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Figure 2. Structure and performance of the holographic deep learning network (HoloNet). (a) The architecture of the 

HoloNet. (b) Comparison of the performances of cell type classification between holograms and reconstructed images with 

different deep learning structures. (c) Intensity regression results from the HoloNet. (d) Comparison of the regression 

performance between different deep learning structures. * indicates the statistical significance (p<0.01)
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Figure 3. Pipeline of HoloNet-based unsupervised learning. (a) The architecture of 

the HoloNet dual embedding model (Dual HoloNet) with unsupervised subclustering 

selection. (b-d) Feature distribution maps from the HoloNet with holograms (b), the 

HoloNet with reconstructed images (c). the Dual HoloNet with holograms (d). (e)

Determination of the loss weight in each cell type.
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Figure 4. Subcluster results from hologram embedding. (a) Distribution of hologram

features from Dual HoloNet embedding and the subclustering results in each cell type.

(b) Subcluster distribution in each cell line. 
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Figure 5.  Characteristics of the identified subclusters of breast cancer cells. (a-d) Differences of the 

mean intensities of the subclusters in each breast cancer cell type. (e-h) UMAP visualization of hologram 

features color-coded with the subclusters. The pie plots indicate the proportion of the cell lines in each 

subcluster (the color code of cell lines are in (i-l)). (i-l) UMAP visualization of hologram features color-

coded with the cell lines. * indicates the statistical significance (p<0.001)
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Figure 6. Profiling breast cancer cells from patient samples using the identified 

subclusters. (a) Distributions of the known types of breast cancer cells in two 

patients. (b) Distributions of the subclusters of breast cancer cells in two patients. 
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