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Abstract
Lens-free digital in-line holography (LDIH) produces cellular diffraction patterns (holograms)
with a large field of view that lens-based microscopes cannot offer. It is a promising diagnostic
tool allowing comprehensive cellular analysis with high-throughput capability. Holograms are,
however, far more complicated to discern by the human eye, and conventional computational
algorithms to reconstruct images from hologram limit the throughput of hologram analysis. To
efficiently and directly analyze holographic images from LDIH, we developed a novel deep
learning architecture called a holographical deep learning network (HoloNet) for cellular
phenotyping. The HoloNet uses holo-branches that extract large features from diffraction patterns
and integrates them with small features from convolutional layers. Compared with other state-of-
the-art deep learning methods, HoloNet achieved better performance for the classification and
regression of the raw holograms of the breast cancer cells stained with well-known breast cancer
markers, ER/PR and HER2. Moreover, we developed the HoloNet dual embedding model to
extract high-level diffraction features related to breast cancer cell types and their marker intensities

of ER/PR and HER?2 to identify previously unknown subclusters of breast cancer cells. This
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hologram embedding allowed us to identify rare and subtle subclusters of the phenotypes
overlapped by multiple breast cancer cell types. We demonstrate that our HoloNet efficiently
enables LDIH to perform a more detailed analysis of heterogeneity of cell phenotypes for precise

breast cancer diagnosis.

Introduction

Breast cancer exhibits significant inter-tumor and intra-tumor heterogeneity, presenting significant
diagnostic and therapeutic. Therefore, breast cancer tissues are biopsied to determine the hormone
and growth factor receptor status for effective treatment because the hormonal status significantly
affects the progress and phenotypes of breast cancer [1-3]. Specifically, the levels of nuclear
estrogen (ER) or progesterone receptors (PR) are measured to determine whether breast cancer
cells will respond to anti-estrogens therapy using tamoxifen, fulvestrant or aromatase inhibitors.
Also, human epidermal growth factor receptor 2 (HER?2) is a tyrosine kinase receptor on the
surface of breast cancer cells, and HER2-positive cancers are much more likely to benefit from
anti-HER?2 treatment with Herceptin [1, 3]. Based on this hormone status, breast cancer can be
identified into four different types: ER/PR-HER2-, ER/PR-HER2+, ER/PR+HER2+,
ER/PR+HER2-. Moreover, several breast cancer subtypes have been identified in recent years,
based on molecular and gene expression, and related clinical treatments are being developed [2].
Precise diagnosis and analysis of these breast cancer types, or subtypes out of heterogeneous tissue
samples can provide more efficient and better treatments on breast cancer patients. However, such
diagnosis is severely hampered by the limited data throughput and high cost of the current

diagnosis workflow based on light microscopes.
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Lens-free digital in-line holography (LDIH) has been developed to address this challenge. LDIH
is a powerful imaging technique that extracts the 3D positional information of an object into a
single shot of 2D interference patterns, i.e., hologram images, and computationally reconstructs a
three-dimensional (3D) image of the object. In addition, LDIH has a deep observation depth that
can overcome the technical limitations and extract more detailed information than conventional
microscopes. LDIH has been used in various fields, such as biological sample monitoring [4-6]
and cell dynamic analysis [7-8], because holographic diffraction can be obtained to extract 3D cell
morphological and biochemical information in a wide field of view [3]. But there are some issues
with reconstructing 3D image from a hologram image. However, reconstructing 3D images
requires substantial computational resources and time, and the artifact or information loss could
happen. Alternatively, if we directly use raw holograms, it is much challenging to decern
meaningful features by human vision and cognition, although the diffraction patterns contain rich

information.

Deep learning (DL) has recently revolutionized machine learning and is highly capable of
analyzing complex, large, and high-dimensional datasets [9-11]. DL approaches can learn
meaningful features within complex datasets to analyze uncharacterized image patterns and
recognize hidden patterns [9-11]. Due to these advantages of feature learning, DL approaches can
effectively deal with the diffraction images because the features of the diffraction patterns cannot
be directly recognized or analyzed by human intuition. Moreover, DL needs a large amount of data
for effective model training. Because LDIH can capture large-scale datasets with a large field of
view, LDIH can help DL algorithms avoid overfitting issues and build more robust neural network
models. Also, since DL approaches directly learn complex diffraction patterns, they can avoid the

errors or artifacts during reconstruction processing and make the LDIH applications robust.
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In recent years, DL approaches have been applied to LDIH, including reconstruction improvement
[12, 13], phase retrieval [14], and classification and monitoring of various biological samples [3,
15, 16]. Min et al. developed an artificial intelligence diffraction analysis (AIDA) platform to
make automated, rapid, high-throughput, and accurate cancer cell analysis [3]. AIDA platform
allowed for quantitative molecular profiling of holograms from individual cells and revealed
cellular heterogeneity. This platform can also directly perform cell recognition and color
classification from raw holograms by Convolutional Neural Network (CNN) models. Moreover,
Kim et al. have developed a deep transfer learning (DTL) approach to directly classify raw
holograms generated from cells and microbeads without a reconstruction process [17]. DTL model
extracts feature information using the pretrained VGG19 model as a general-purpose feature

extractor [17] to identify and count microbeads on cells.

In this paper, we designed and implemented a novel deep learning approach analyze holograms
from LDIH for breast cancer cell classification and analysis. Figure 1 shows the overview of our
computational framework. Firstly, we used ER/PR and HER2 immuno-stained holograms as input
data. Then we developed a novel holographic deep learning architecture, termed to HoloNet learn
cellular diffraction features efficiently. We used this model to identify breast cancer cell types and
predict ER/PR and HER?2 intensity values. Here, we demonstrated that the proposed HoloNet could
efficiently extract cellular hologram features to precisely classify different cell types and estimate
intensity values. After cell classification and intensity regression, a holographical deep learning
network with a dual embedding model is built to learn holographic feature vectors to generate
feature distribution maps. These feature distribution maps are processed by manifold learning and

unsupervised clustering methods to obtain previously unknown subclusters in breast cancer cell

types.
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Results

Overview of Proposed Workflow

As described in Figure 1, the holograms were acquired by an LDIH imaging system form the
breast cancer cell line (MCF7, T47D, SKBR3, BT474, and MDA-MB-231) immune-stained with
anti-ER/PR and anti-HER?2 conjugated with chromogens. We designed a novel holographic deep
learning model to classify four breast cancer cell types: ER/PR-HER2-, ER/PR-HER2+,
ER/PR+HER2+, and ER/PR+HER2- and predict intensity values of ER/PR and HER2 immuno-
staining. Second, we advanced our holographical deep learning model to extract high-level
features to generate feature distribution maps. Using these features, we identified previously
unknown subclusters hidden in heterogeneous samples by combining manifold learning and

unsupervised clustering.

Hologram Classification by HoloNet

We design a novel deep learning holographical network (HoloNet) to extract and analyze
holographical features. Figure 2(a) shows the architecture of the proposed HoloNet model. A
holo-block is built to combine local details of objects with global features using a large kernel size
of the convolutional filter and a concatenated layer. The HoloNet architecture is combined with a
softmax layer as the output layer to classify breast cancer cell types. The cell classification results
of the proposed HoloNet model are shown in Figure 2(b). Here we compare the classification
performance with two types of input images, holograms and reconstructed images. We also used
CNN [18-20] and Resnet [21] models to compare with the HoloNet model. First, we found that
holograms provide more efficient features than reconstructed images in breast cancer cell

classification. Even though the reconstructed images are built from holograms, the detailed
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information may be lost during the reconstruction processing, as we mentioned before. In addition,
the HoloNet model with holograms has better performance than other DL models with holograms
or reconstructed images. The HoloNet model provides better accuracy and F1-score than different
approaches and achieved 95.5% classification performance (Figure 2(b)). Although our HoloNet
model has better classification performance than Densenet [22], Densenet almost provides similar
performance as the HoloNet model does. It is because the HoloNet model and Densenet both used
a similar concept of combining multiple-scale image features. Also, the proposed HoloNet model

has better accuracy than previous work [3] over 5% increase for classifying breast cancer cell types.
Hologram Regression by HoloNet

The marker intensities of ER/PR or HER?2 are the important features of phenotyping breast cancer
cells. Conventionally, Therefore, we quantify their intensities directly from raw hologram using
HoloNet with the fully connected layer of the regression output. The HoloNet regression model
can directly and precisely obtain intensity values of ER/PR and HER2 channels without the
reconstruction process. Figure 2(c) shows that the HoloNet model can efficiently provide the
ability of intensity prediction in both ER/PR and HER? staining channels, which the R? scores are
0.9743 and 0.9795, respectively. Here we also use the network structures of CNN [18-20] and
Resnet [21] to predict the intensity values and compare the outcomes with our HoloNet model. We
found that the HoloNet model can predict the more accurate intensities of both staining channels

than other DL models.
Sub-clustering of Breast Cancer Cells with HoloNet Dual Embedding

Since deep learning models can extract rich features from input images, we further develop

hologram feature embedding methods to identify previously uncharacterized subtypes of breast
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cancer cells. Figure 3(a) shows that the workflow of feature extraction and sub-clustering analysis.
We developed HoloNet dual embedding learning model, called Dual HoloNet, to obtain the
diffraction feature vectors. The hologram features extracted from HoloNet are used for the cell
type classification and the intensity regression simultaneously. This structure will help the HoloNet
learn the features for subclustering in each breast cancer cell type while paying more attention to
the features related to the intensities. Therefore, the resulting subclusters can have differential
intensity distributions in each cell type. Then the feature vector is obtained from the Dual HoloNet
model and processed by Uniform Manifold Approximation and Projection (UMAP) method [23]
to learn the feature manifold and reduce the dimension of features. Figure 3(b) and 3(c) show the
feature distributions of breast cancer cells obtained by the HoloNet with holographic input images
and reconstructed input images, respectively. The feature distribution map from the reconstructed
input images shows that the clusters of different cell types can be distinctly separated because of
the distance. But, due to the lack of intra-cluster heterogeneity, it is difficult to find potential sub-
clusters. The feature distribution map from holograms exhibited high levels of intra-cluster
heterogeneity while the inter-cluster distances become smaller than the features from the
reconstruction images. In contrast, the hologram distribution map from the Dual HoloNet model
in Figure 3(d) showed the sizeable intra-cluster heterogeneity and inter-cluster distances,

suggesting that the features from Dual HoloNet embedding are suitable for sub-clustering analysis.

To determine the optimal number of subclusters in each cell type, we combined community
detection with spectral clustering [24] and grid search. We used clustering evaluation functions to
estimate the cohesion values of subclusters and used rank voting to select the optimal number of
subclusters in each class. To determine the optimal balance between the branches of classification

and regression, we varied the ratio of two loss weights and evaluated the sub-clustering results by
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the mean intensity differences of ER/PR and HER2 among the subclusters. Figure 3(e) shows the
mean intensity values in different ratios of the loss of classification and regression, and we chose

the embedding that provided the maximum mean intensity differences.

Subclustering Analysis in Cell Line Samples

Figure 4(a) represents the subcluster distribution maps with the optimal loss weight in each cell
type. We obtained four subclusters with loss weight ratio 1:1 in ER/PR-HER2-, four subclusters
with loss weight ratio 5:1 in ER/PR-HER2+ and ER/PR+HER?2- cell types, and three subclusters
with loss weight ratio 5:1 in ER/PR+HER2+. After the subclusters were obtained in different cell
type groups, we observed the cell population of subclusters in cell line sample cases. In Figure
4(b), we found that MCF7 and T47D cell lines are dominated by ER/PR+HER2- cell type, but
they consist of markedly different distribution of the subclusters. While Cluster 13 is the major
subcluster in MCF7, Cluster 15 is the major component in T47D. Moreover, the SKBR3 cell line
whose major cell type is ER/PR+HER2+ consists of Cluster 9-11 equally. In the BT474 cell line,
Cluster 6 and 7 dominate ER/PR-HER2+ cell type. MDA-MD-231 cell line where most of the cells
belong to ER/PR-HER2- mainly composed Cluster 1-3. In addition, Cluster 3 and 4 exist in
ER/PR-HER2- of the MCF7 cell line, and Cluster 8 mainly dominates the ER/PR-HER2+ cell type

of the SKBR3 cell line.

To know the natures of these subclusters, we quantified their average intensities and the
distributions of the breast cancer cell lines in each subcluster. Because our hologram embedding
was designed to identify the features partially discriminative to the marker intensities, the mean
intensity values of the subclusters were generally statistically different (Figure 5(a)-(d)). In
ER/PR-HER2- cell type, the mean subcluster intensities in both channels were gradually increased

from Cluster 1 to 4 (Figure 5(a)). Most of the cells in Cluster 1 and 2 whose mean intensities are
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low were from MDA-MB-231. Cluster 3 has a mixed population of MDA-MB-231 and MCF7.
Cluster 4, whose mean intensities are the highest, mainly consists of MCF7 along with minor
populations from T47D, BT474, and MDA-MB-231 (Figure 5(e) and (i)). In ER/PR-HER2+ cell
type, the subclusters also had different mean intensities (Figure 5(b)). Cluster 5, 6, and 7 were
mainly from BT474. In Cluster 8, whose intensities are the highest among the subclusters, BT474
and SKBR3 co-existed equally (Figure 5(f) and (j)). In ER/PR+HER2+ cell type, the mean
intensities of ER/PR channel increased from Cluster 9 to 11 while the mean HER2 intensities
decreased (Figure 5(c)). The major cell line in these subclusters is SKBR3, but Cluster 9 has a
minor cell population from BT474 (Figure 5(g) and (k)). In ER/PR+HER2- cell type, the mean
intensities in both channels increased from Cluster 12 to 15 (Figure 5(d)). Cluster 12 and 13
consisted of MCF7 along with minor proportions of T47D. Cluster 14 and 15 consisted of T47D

along with minor proportions of MCF7 in Cluster 14 and SKBR3 in Cluster 15 (Figure 5(h) and

@).

Table 1. Summary of the distributions of breast cancer cell lines in the identified subclusters.

Cell Type ER/PR-HER2- ER/PR-HER2+ ER/PR+HER2+ ER/PR+HER2-
Subcluster | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MCF7 + ++ ++ | ++ +
T47D + + + ++ | ++
SKBR3 + ++ | 4+ |+ +
BT474 + ++ | |+ + +

MDA-MB-

231 ++ | |+t +

As summarized in Table 1, in Cluster 3, 4, 8, 9, and 15, the cells from different cell types co-exist.
Cluster 3 is near the boundary between ER/PR-HER2- and ER/PR+HER?2-. Cluster 4 is near the
boundary among ER/PR-HER2-, ER/PR-HER2+ and ER/PR+HER?2-. Cluster 8 and 9 are near the

boundary between ER/PR-HER2+ and ER/PR+HER?2-. Cluster 15 is near the boundary between
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ER/PR+HER2- and ER/PR+HER2+. While there exist breast cancer cells whose phenotypes are
near characteristics near the boundaries among the previously known cell types, these cells were
treated to belong to a single cell type for a diagnostic purpose previously. We used our hologram
embedding to identify those subclusters of breast cancer cells sharing similar characteristics among

the known cell types.

Characterizing the Heterogeneity of Breast Cancer Cells from Patients

The previous results are based on the multiple breast cancer cell lines. To confirm the clinical
significance of these subclusters, we used two the hologram data from two breast cancer patient
cases used in the previous study [3]. Here we used the proposed HoloNet model of classification
to identify the cell type distribution of these patient cases. Figure 6(a) shows the proportions of
the cell types from two breast cancer patients. While the cell types of the most significant
proportion are ER/PR-HER?2- in Patient case 1 and ER/PR+HER?2- in Patient case 2, their overall
cell type distributions are marginally different. We used our hologram embedding to obtain feature
vectors of cellular holograms from these patients and profile them with our subclusters of breast
cancer cells. In Figure 6(b), we found that Patient case 1 has much more Cluster 1 from ER/PR-
HER?2- than Patient case 2 while Patient case 2 has much more Cluster 4 from ER/PR-HER?2- than
Patient case 1. Given our finding that Cluster 4 share the phenotypes from ER/PR-HER2+ and

ER/PR+HER?2-. The characteristics of ER/PR-HER2- in these two patients are distinct.

For ER/PR+HER?2- type, two patients have the similar largest proportions of Cluster 15, sharing
the similar characteristics of ER/PR+HER2+. However, Patient case 1 has a much more proportion
of Cluster 13 than Patient case 2, while Patient case 2 has much more Cluster 12. Since there are
significant differences in both channels between Cluster 12 and 13, the cellular phenotypes in

ER/PR+HER?2- of these patients are also distinct. Taken together, we demonstrated that some of
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the identified subclusters existed in the breast cancer patient samples, and the subclustering results

can provide much richer information on the disease status.

Discussion

We developed the HoloNet, which can efficiently learn high-level diffraction features from the
complex holograms to precisely discriminate breast cancer cell types in both supervised and
unsupervised learning setting. Especially, the holo-block unit adapts different large-scale filters to
collect multi-scale feature information to identify detailed local cellular features. It is because the
local feature information in holograms does not correspond to a particular part of cellular images
but rather the entire images. These large-scale filters applied to holograms can collect more related
local cellular information. Our HoloNet can efficiently extract cell information from holograms to
provide better performances of cell classification and intensity regression than other existing deep

learning models.

We demonstrated that the feature embedding directly from holograms enabled us to identify
detailed subclusters of breast cancer cells. We added the intensity regression into the Dual HoloNet
model along with the classification of the previously known cell types. This structure was able to
help the neural network pay more attention to specific hologram features to enhance the difference
of the marker intensities among different cell types. Then we optimized the loss weights to
maximize the differences of the marker intensities among potential subclusters. This hologram
embedding allowed us to identify the subclusters within the known cell types for refined cellular
phenotyping. Some of the subclusters identified in our study have the phenotypes shared by

multiple breast cancer cell types since they are located near the class boundaries in the feature
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space. Identifying these rare and subtle cellular phenotypes can be significant in clinical decision-
making because they may have different drug sensitivity and resistance from the previously known
cell types. We expect that HoloNet, in conjunction with LDIH, opens a new opportunity to fully
characterize intra/inter-tumor heterogeneity in breast cancer and provide clinicians with valuable

information for patient-specific breast cancer therapy.

Methods

Data collection

Breast cancer cells were captured by the surface coated by antibodies (HER2, EpCAM, EGFR,
and MUCI [3]) and bio-adhesives, and then stained by anti-ER/PR and anti-HER2 conjugated
with chromogen. Then cellular holograms were obtained by a LDIH system, and the image patches
containing a cell were cropped with 64X64 pixel size in both hormonal staining channels. These
image data include four different cell types: ER/PR-HER2-, ER/PR-HER2+, ER/PR+HER2-, and
ER/PR-HER2+, from five cell lines (MCF7, T47D, SKBR3, BT474, and MDA-MB-231) [3]. The
number of all holograms was 5026. For more efficient training, data augmentation was applied to
balance the size of different cell types by using random rotation and flipping. Then we separated
the data into training (65%), validation (15%), and testing (20%) with 5-fold cross validation for
model evaluation. The ground truth of intensity values of ER/PR and HER?2 of cell images were

obtained from the reconstructed images.

Holographical deep learning network (HoloNet)

We constructed the HoloNet based on the concept of convolutional neural network [18-20] by

adding several large-kernel-size filters to efficiently extract hologram features. Here we designed
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a block called holo-block, which combines local and global holographical features. The parameters
K, L, and s in a holo-block (Figure 2(a)) represent the kernel size of the convolutional layer,
number of a feature layer, and sliding, respectively. There are three holo-blocks with different
kernel size of convolutional layers, which are 16X16, 24X24, and 32X32, respectively, and
average pooling layers are used to obtain and emphasize specific feature information. The number
of feature layer in these blocks was 64. The sliding numbers were set to 1, 2, and 4 for each holo-
block. Moreover, a convolutional layer with batch normalization and three fully connected layers
are connected to these holo-blocks to build the HoloNet model. Rectified linear unit (ReLLu) was
used as an activation function in the model [25]. Based on the HoloNet architecture, we
implemented a DL model to classify four types of breast cancer cells by a softmax layer. Then, for
the intensity regression, we constructed the HoloNet architecture with a fully connected layer to

predict intensity values of ER/PR and HER?2 staining channels from holograms.
HoloNet dual embedding model (Dual HoloNet)

The architecture of HoloNet dual embedding model (Dual HoloNet) includes the HoloNet model
with two fully connected layers of intensity regression and the cell type classification (Figure 3(a)).

The total loss function of the training is shown as:

LOSSTotal =aX LOSSClassification + ﬁ X LOSSRegression

,where o and 3 are the loss weights of classification and intensity regression for loss balancing.

Here we used Brier loss [26] for the classification loss as below:

1 N R
LOSSclassification = Nz Z(fti - Oti)z

t=1i=1
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,where N is the number of observations and R means the number of categorical labels. f and o
represent the predictive and true label distribution, respectively. Brier loss function is similar to

mean square error loss but has the same ability of loss energy as the cross-entropy function.

Neural Network Training

We used Adam optimizer with learning rate=10"* and batch size=128. The categorical cross-
entropy was used as a loss function for training the HoloNet model for cell classification, and the
mean square error loss function was used for HoloNet model training for the intensity regression.
We set the input image size as 64X64 X2 for the classification and 64X64 in each staining channel
for the regression. For the HoloNet model, the maximum epoch was 100 for the classification and
500 for the regression. The pixel value of input image was normalized from O to 1. We also
automatically reduce the learning rate by multiplying with 0.1 in every 20 epochs. For training the
dual HoloNet model, we set that brier loss function as a loss function for the classification and the
maximum epoch=150. We used default parameters in the Keras library, and the environment in

Python was TensorFlow 1.15 with CUDA 10.0 for both HoloNet models.
Unsupervised Clustering and Subcluster Selection

We used the second last layer of the Dual HoloNet model to extract the feature vector of 500
dimensions, and the UMAP method [23] was used to reduce these 500 dimensional feature vectors
to three-dimensional space. In the parameters of the UMAP method, the number of the
neighborhood was set to 20 and the dimension of the space was 3. Also, the minimum distance
among the observation was set to 0.1, and the string metric was the correlation to compute distance
in high dimensional space. Then, the pairwise distances between hologram feature vectors were
calculated to generate a similarity matrix. The threshold value of similarity was set to 0.5 to build

an adjacent matrix. This adjacent matrix was used as community detection to obtain subclusters
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by using spectral clustering [24]. The grid search method was used to find the optimal numbers of
subclusters in each cell type. We set the number of subclusters from 1 to 10 and evaluated the
clustering quality of different clustering numbers using clustering evaluation functions including
silhouette coefficient [27], Dunn’s index [28], Calinski-Harabasz index [29], and Davies-Bouldin
index [30]. Then the optimal number of subclusters in each cell type was selected by voting the

highest rank from the list of clustering values among different subclustering numbers.
Loss Weight Optimization

We used grid search to determine the optimal ratio of loss weight in each cell type for subclustering.
We calculated Euclidean distances of the mean intensity values of ER/PR and HER2 channels
among subclusters and then averaged those Euclidean distances. We evaluated this mean
Euclidean intensity distance among the subclusters with the varying loss ratios: 1:1, 3:1, 5:1, 10:1
and 100:1 (classification : regression). Then we select the optimal weight combinations which

provide the maximum intensity difference in each cell type (Figure 3(e)).
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Figure 5. Characteristics of the identified subclusters of breast cancer cells. (a-d) Differences of the
mean intensities of the subclusters in each breast cancer cell type. (e-h) UMAP visualization of hologram
features color-coded with the subclusters. The pie plots indicate the proportion of the cell lines in each
subcluster (the color code of cell lines are in (i-1)). (i-1) UMAP visualization of hologram features color-
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