

No evidence of human genome integration of SARS-CoV-2 found by long-read DNA sequencing

Nathan Smits^{1,10}, Jay Rasmussen^{2,10}, Gabriela O. Bodea^{1,2,10}, Alberto A. Amarilla^{3,10}, Patricia Gerdes¹, Francisco J. Sanchez-Luque^{4,5}, Prabha Ajjikuttira², Naphak Modhiran³, Benjamin Liang³, Jamila Faivre⁶, Ira W. Deveson^{7,8}, Alexander A. Khromykh^{3,9}, Daniel Watterson^{3,9}, Adam D. Ewing¹, Geoffrey J. Faulkner^{1,2,11,*}

¹Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia.

²Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia.

³School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD 4072, Australia.

⁴GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain.

⁵MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.

⁶INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France.

⁷Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney NSW 2010, Australia.

⁸St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia.

⁹Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane QLD 4072, Australia.

¹⁰These authors contributed equally.

¹¹Lead contact.

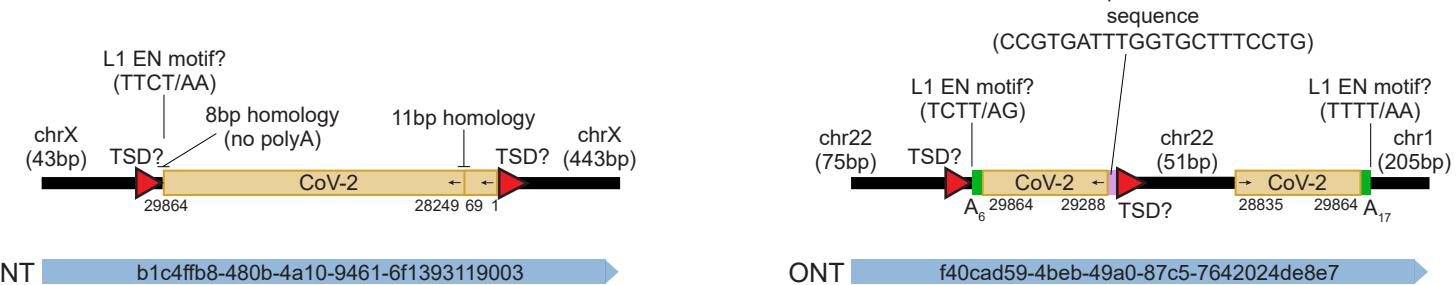
*Correspondence should be addressed to G.J.F. (faulknergj@gmail.com).

1 **SUMMARY**

2 A recent study proposed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
3 hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected
4 cells. If confirmed, this finding could have significant clinical implications. Here, we applied
5 deep (>50x) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells
6 infected with SARS-CoV-2, and did not find the virus integrated into the genome. By
7 examining ONT data from separate HEK293T cultivars, we completely resolved 78 L1
8 insertions arising *in vitro* in the absence of L1 overexpression systems. ONT sequencing
9 applied to hepatitis B virus (HBV) positive liver cancer tissues located a single HBV
10 insertion. These experiments demonstrate reliable resolution of retrotransposon and
11 exogenous virus insertions via ONT sequencing. That we found no evidence of SARS-CoV-2
12 integration suggests such events are, at most, extremely rare *in vivo*, and therefore are
13 unlikely to drive oncogenesis or explain post-recovery detection of the virus.

14 **INTRODUCTION**

15 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-
16 stranded ~30kbp polyadenylated RNA betacoronavirus (V'kovski et al., 2020; Wu et al.,
17 2020). SARS-CoV-2 does not encode a reverse transcriptase (RT) and therefore is not
18 expected to integrate into genomic DNA as part of its life cycle. This assumption is of
19 fundamental importance to the accurate diagnosis and potential long-term clinical
20 consequences of SARS-CoV-2 infection, as demonstrated by other viruses known to
21 incorporate into genomic DNA, such as human immunodeficiency virus 1 (HIV-1) and
22 hepatitis B virus (HBV) (Bill and Summers, 2004; Fujimoto et al., 2012; Jiang et al., 2012;
23 Nagaya et al., 1987). Notably, a recent work by Zhang *et al.* reported potential evidence of
24 SARS-CoV-2 integration into the genome of infected human cells (Zhang et al., 2021). Prior
25 analyses of mammalian genome sequences, as well as *in vivo* and *in vitro* experimental data,
26 indicate single-stranded RNA viruses can act as templates for endogenous RTs (Belyi et al.,
27 2010; Feschotte and Gilbert, 2012; Geuking et al., 2009; Horie et al., 2010; Kawasaki et al.,
28 2021; Klenerman et al., 1997). These studies provide a conceptual basis to further investigate
29 genomic integration of SARS-CoV-2, as pursued by Zhang *et al.*.


30 LINE-1 (L1) retrotransposons reside in all mammalian genomes (Kazazian and
31 Moran, 2017). In humans, L1 transcribes a bicistronic mRNA encoding two proteins, ORF1p
32 and ORF2p, essential to L1 mobility (Moran et al., 1996). ORF2p possesses endonuclease
33 (EN) and RT activities, and exhibits strong *cis* preference for reverse transcription of L1
34 mRNA (Doucet et al., 2015; Garcia-Perez et al., 2007; Kulpa and Moran, 2006; Monot et al.,
35 2013; Moran et al., 1996; Wei et al., 2001). Nonetheless, the L1 protein machinery can *trans*
36 mobilise polyadenylated cellular RNAs, especially those produced by *Alu* and SINE-VNTR-
37 *Alu* (SVA) retrotransposons, but also including protein-coding gene mRNAs (Dewannieux et
38 al., 2003; Esnault et al., 2000; Garcia-Perez et al., 2007; Hancks et al., 2011; Raiz et al.,
39 2012). Somatic L1 mobilisation *in cis* is observed in embryonic cells, the neuronal lineage,
40 and various cancers (Ervony et al., 2015; Feusier et al., 2019; Rodriguez-Martin et al., 2020;
41 Sanchez-Luque et al., 2019; Schauer et al., 2018; Scott et al., 2016). By contrast, somatic L1-
42 mediated *trans* mobilisation is apparently rare *in vivo* (Ervony et al., 2015; Rodriguez-Martin
43 et al., 2020; Sanchez-Luque et al., 2019) and is likely repressed by various mechanisms (Ahl
44 et al., 2015; Deniz et al., 2019; Doucet et al., 2015; Ewing et al., 2020; Sanchez-Luque et al.,
45 2019). While *Alu* and, to a lesser extent, SVA are readily mobilised in cultured cell assays by
46 L1 proteins, the same machinery produces less than one non-retrotransposon cellular RNA
47 insertion for every 2000 L1 insertions (Dewannieux et al., 2003; Hancks et al., 2011; Wei et

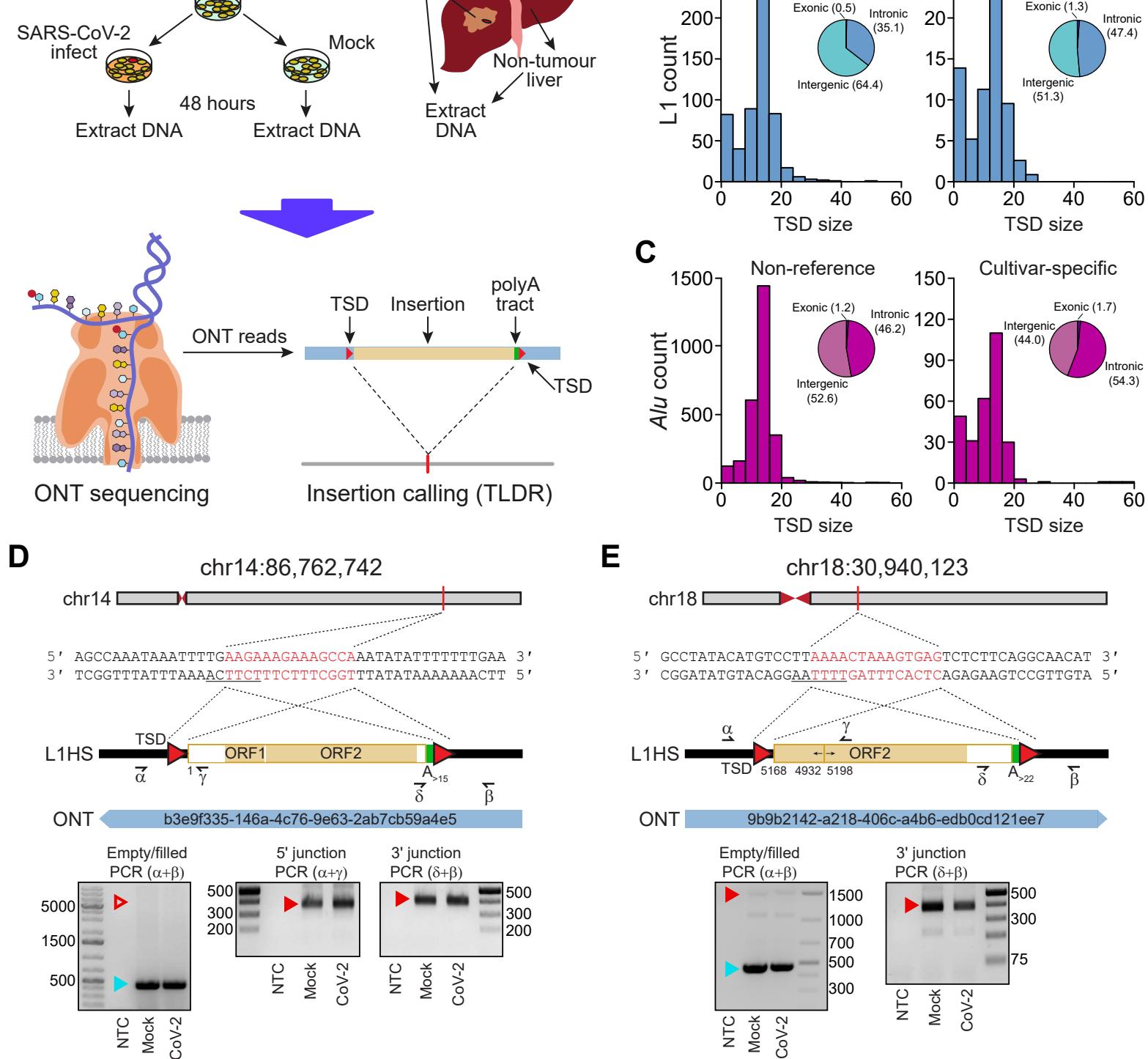
48 al., 2001). Both *cis* and *trans* L1-mediated insertions incorporate target site duplications
49 (TSDs) and a 3' polyA tract, and integrate at the degenerate L1 EN motif 5'-TTTT/AA
50 (Dewannieux et al., 2003; Esnault et al., 2000; Garcia-Perez et al., 2007; Gilbert et al., 2005;
51 Hancks et al., 2009; Jurka, 1997; Moran et al., 1996; Raiz et al., 2012). These sequence
52 hallmarks can together discriminate artifacts from genuine insertions (Faulkner and Billon,
53 2018).

54 In their work, Zhang *et al.* overexpressed L1 in HEK293T cells, infected these with
55 SARS-CoV-2, and identified DNA fragments of the virus through PCR amplification. These
56 results, alongside other less direct (Kazachenka and Kassiotis, 2021; Yan et al., 2021)
57 analyses, were interpreted as evidence of SARS-CoV-2 genomic integration. Crucially,
58 Zhang *et al.* then detected 63 putative SARS-CoV-2 integrants by Oxford Nanopore
59 Technologies (ONT) long-read sequencing. Of these, only a single integrant on chromosome
60 X was spanned by an ONT read aligned to one locus, and was flanked by potential TSDs
61 (**Figure 1A**). However, this SARS-CoV-2 integrant did not incorporate a 3' polyA tract, as is
62 expected for an L1-mediated insertion, and involved an unusual 28kb internal deletion of the
63 SARS-CoV-2 sequence. Overall, the SARS-CoV-2 integrants reported by Zhang *et al.* were
64 26-fold enriched in exons, despite the L1 EN showing no preference for these regions (Flasch
65 et al., 2019; Sultana et al., 2019). Zhang *et al.* also used Illumina short-read sequencing to
66 map putative SARS-CoV-2 integration junctions in HEK293T cells without L1
67 overexpression. A lack of spanning reads and the tendency of Illumina library preparation to
68 produce artefacts (Treiber and Waddell, 2017) leave this analysis open to interpretation.

69 The application of ONT sequencing to HEK293T cells nonetheless held conceptual
70 merit. ONT reads can span germline and somatic retrotransposition events end-to-end, and
71 resolve the sequence hallmarks of L1-mediated integration (Ewing et al., 2020; Siudeja et al.,
72 2021). Through this approach, we previously found two somatic L1 insertions in the liver
73 tumour sample of an individual positive for hepatitis C virus (HCV), a ~10kbp positive-sense
74 single-stranded non-polyadenylated RNA virus (Lauer and Walker, 2001), including one
75 PCR-validated L1 insertion spanned by a single ONT read (Ewing et al., 2020; Shukla et al.,
76 2013). Moreover, HEK293T cells are arguably a context favourable to L1 activity. They
77 express L1 ORF1p (Philippe et al., 2016), accommodate engineered L1-mediated
78 retrotransposition *in cis* and *in trans* (Hancks et al., 2011; Kubo et al., 2006; Niewiadomska
79 et al., 2007; Sanchez-Luque et al., 2019), and support SARS-CoV-2 viral replication (**Figure**
80 **S1**). Endogenous L1-mediated insertions can be detected in cell culture by genomic analysis
81 of separate cultivars derived from a common population (Klawitter et al., 2016; Nguyen et

A

Figure 1. Key potential SARS-CoV-2 insertions reported by Zhang *et al.* **(A)** A cartoon summarising the features of a putative SARS-CoV-2 integrant on chromosome X. Numerals underneath the SARS-CoV-2 sequence represent positions relative to the QLD02 virus isolate. Potential TSDs are shown as red triangles, and motifs resembling potential pre-integration L1 EN recognition sites are highlighted, with question marks in labels intended to flag uncertain L1 involvement. No 3' polyA tract was found. Homologous regions at sequence junctions are marked. One spanning ONT read is positioned underneath the cartoon and its identifier is displayed. **(B)** As for (A), except showing an ONT read spanning two SARS-CoV-2 insertions, on chromosome 22 and chromosome 1. The alignments to chromosome 22 were flagged as supplementary by the minimap2 aligner. 3' polyA tracts are represented as green rectangles. Note: these chromosome 22 and chromosome X instances are the key examples reported by Zhang *et al.* in support of SARS-CoV-2 genomic integration. Neither example has a complete set of retrotransposition hallmarks (TSD, 3' polyA tract, L1 EN motif) and the support of a uniquely aligned ONT read.


82 al., 2018). Based on this experimental rationale, we sought to replicate the central findings of
83 Zhang *et al.* and, after deeply ONT sequencing SARS-CoV-2-infected HEK293T cells, did
84 not detect SARS-CoV-2 genomic integration.

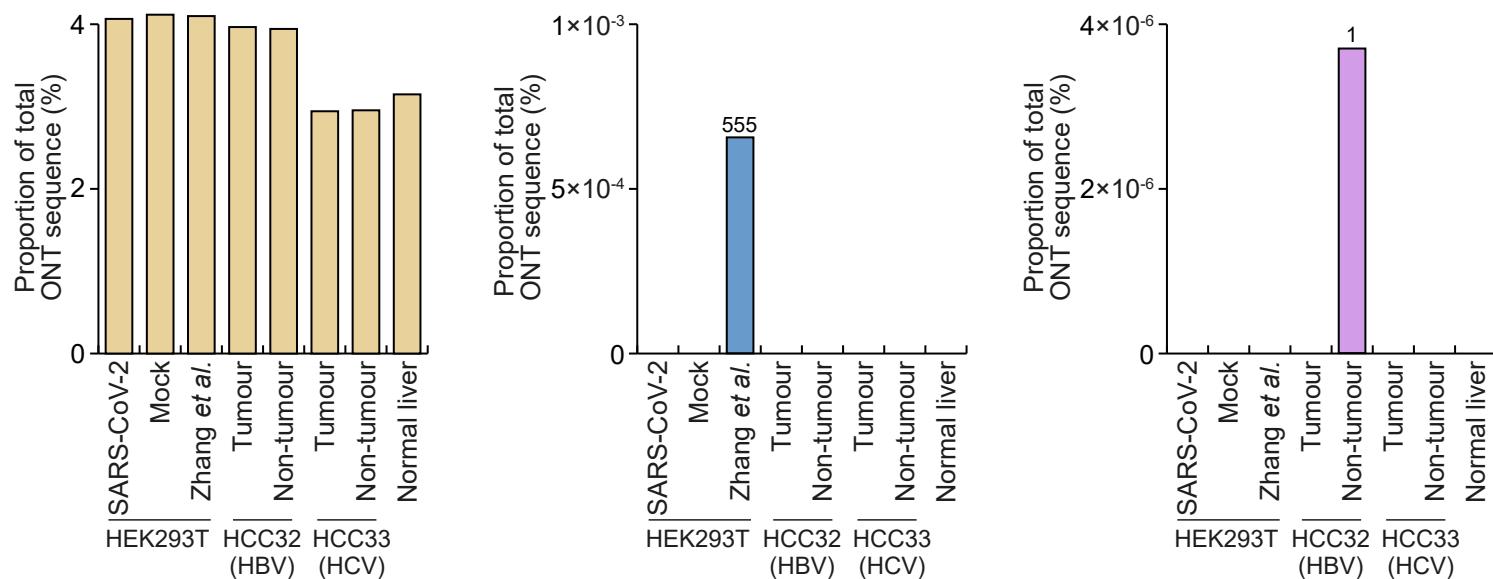
85

86 RESULTS

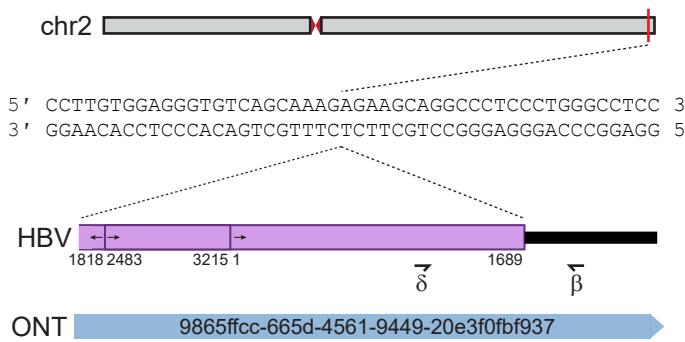
87 We ONT sequenced (~54 \times genome-wide depth, read length N50 ~ 39kbp) genomic DNA
88 harvested from HEK293T cells infected with SARS-CoV-2 at a multiplicity of infection
89 (MOI) of 1.0, as well as mock infected cells (~28 \times depth, N50 ~ 47kbp) (**Figures 2A and S1**,
90 and **Table S1**). As positive controls, we ONT sequenced the tumour and non-tumour liver
91 tissue of a HBV-positive hepatocellular carcinoma patient (Shukla *et al.*, 2013). HBV is a
92 DNA virus known to be integrated into sites of genomic damage via DNA double-strand
93 break repair (Bill and Summers, 2004). As negative controls, we used the aforementioned
94 HCV-positive hepatocellular carcinoma samples, and a normal liver sample (Ewing *et al.*,
95 2020) (**Table S1**). We viewed HCV-infected samples as a suitable negative control because
96 HCV and SARS-CoV-2 are both positive-sense single-stranded RNA viruses, yet HCV is not
97 polyadenylated and is therefore unlikely to attract the L1 machinery, and has not been found
98 to integrate into infected hepatocytes or liver tumour genomes (Fujimoto *et al.*, 2012; Lauer
99 and Walker, 2001). To these data, we added those of Zhang *et al.*, and then used the
100 Transposons from Long DNA Reads (TLDR) (Ewing *et al.*, 2020) software to call SARS-
101 CoV-2, HBV, HCV and non-reference retrotransposon insertions spanned by at least one
102 uniquely aligned ONT read. TLDR detected no SARS-CoV-2, HBV or HCV insertions.

103 In total, TLDR identified 575 non-reference human-specific L1 (L1HS) insertions,
104 which were typically flanked by TSDs with a median length of 14bp (**Figure 2B** and **Table**
105 **S2**). No tumour-specific L1 insertions were found, apart from the two previously detected in
106 the HCV-infected liver tumour (Ewing *et al.*, 2020; Shukla *et al.*, 2013). Seventy-eight L1
107 insertions were found only in our SARS-CoV-2 infected HEK293T cells (66) or the mock
108 infected control (12) and produced TSDs with a median length of 14bp (**Figure 2B**). Of the
109 78 events, 69 (88.5%) were detected by a single spanning read and 13 carried a 3'
110 transduction (Holmes *et al.*, 1994; Moran *et al.*, 1999) (**Table S2**). After random
111 downsampling, the more deeply sequenced SARS-CoV-2 infected HEK293T cells still had
112 more than 2-fold more putative cultivar-specific L1 insertions than the mock infected
113 HEK293T cells. Next, we chose at random 6/69 L1 insertions detected by one spanning read
114 for manual curation and PCR validation. All 6 L1 insertions bore a TSD and a 3' polyA tract,
115 and integrated at a degenerate L1 EN motif (**Figures 2D, 2E** and **S2A-S2D**). Three were 5'

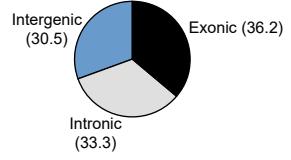
Figure 2. Detection of endogenous L1-mediated retrotransposition in human cells. (A) Experimental design. HEK293T cells were divided into two populations (cultivars), which were then either SARS-CoV-2 infected or mock infected. DNA was extracted from each cultivar, as well as from hepatocellular carcinoma patient samples, and subjected to ONT sequencing. ONT reads were used to call non-reference L1 and virus insertions with TLDR, which also resolves TSDs and other retrotransposition hallmarks. TSDs: red triangles; polyA tract: green rectangle; ONT read: blue rectangle. Some illustrations are adapted from a previous study (Ewing et al., 2020). (B) TSD size distribution for non-reference L1 insertions, as annotated by TLDR, as well as cultivar-specific L1 insertions found only in either our HEK293T cells infected with SARS-CoV-2 or our mock infected cells. Pie charts indicate the percentages of exonic, intronic and intergenic insertions, annotated by RefSeq coordinates. (C) As for (B), except showing data for Alu insertions. (D) Detailed characterisation of an L1 insertion detected in SARS-CoV-2 infected HEK293T cells by a single spanning ONT read aligned to chromosome 14. Nucleotides highlighted in red correspond to the integration site TSD. The cartoon indicates a full-length L1HS insertion flanked by TSDs (red triangles), and a 3' polyA tract (green), with the underneath numeral representing the 5' end position relative to the mobile L1HS sequence L1.3 (Dombroski et al., 1993). The relevant spanning ONT read, with identifier, is also positioned underneath the cartoon. Symbols (α , β , δ , γ) represent the approximate position of primers used for empty/filled site and L1-genome junction PCR validation reactions. These are displayed in gel images if successful. Ladder band sizes are as indicated, NTC; non-template control. Red triangles indicate L1 amplicon expected sizes (empty triangle: no product; filled triangle: capillary sequenced on-target product). Blue triangles indicate expected empty site sizes. (E) As for (D), except for a 5' inverted/deleted L1HS located on chromosome 18. Please see Figures S1 and S2, and Tables S1 and S2 for further information.

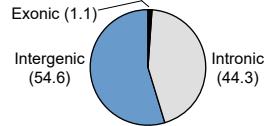

116 inverted (Kazazian et al., 1988; Ostertag and Kazazian, 2001) (**Figures 2E, S2C and S2D**)
117 and one carried a 3' transduction (Holmes et al., 1994) traced to a mobile (Rodriguez-Martin
118 et al., 2020) full-length non-reference L1HS (**Figure S2C**). Three PCR amplified in the
119 SARS-CoV-2 and mock infected samples (**Figures 2D, 2E and S2A**) and three did not
120 amplify in either sample (**Figures S2B-S2D**). The 6 integration sites were on average
121 spanned by 86 reads not containing the L1 insertion (**Figure S2E**), a ratio (1:86) suggesting
122 the L1s were absent from most cells. An additional analysis revealed 293 putative *Alu* (291)
123 and SVA (2) insertions specific to either one of the HEK293T populations, with 290 of these
124 found in the SARS-CoV-2 infected cells and 275 (93.9%) detected by a single spanning read
125 (**Table S2**). The median TSD size for this cohort was 13bp (**Figure 2C**). Altogether, these
126 and earlier (Ewing et al., 2020; Siudeja et al., 2021) experiments show that lone spanning
127 ONT reads can recover *bona fide* retrotransposition events, and highlight endogenous L1
128 activity in HEK293T cells lacking L1 overexpression systems.

129 We next tested whether our computational analysis parameters excluded genuine
130 HBV, HCV or SARS-CoV-2 insertions. We directly aligned our ONT reads to the genome of
131 the SARS-CoV-2 isolate (QLD002, GISAID EPI_ISL_407896) used here, as well as to a
132 geographically diverse set of HBV and HCV genomes (**Table S1**), and a highly mobile L1HS
133 sequence (Dombroski et al., 1993). In total, 3.6% of our ONT sequence bases aligned to
134 L1HS, whereas no alignments to the SARS-CoV-2 or HCV genomes were observed (**Figure**
135 **3A**). One read from the HBV-infected non-tumour liver sample aligned to 2,770bp of a HBV
136 genotype B isolate, and the remaining 2,901bp aligned to an intergenic region of
137 chromosome 2 (**Figure 3B** and **Table S2**). To validate this HBV insertion, we PCR amplified
138 and capillary sequenced its 3' junction (**Figure 3B**). The HBV sequence was linearised and
139 rearranged (**Figure 3B**) as per prior reports (Fujimoto et al., 2012; Jiang et al., 2012; Nagaya
140 et al., 1987). Direct inspection of ONT read alignments thus recovered a HBV integrant,
141 which are found in ~1 per 10^1 - 10^4 infected hepatocytes (Mason et al., 2016; Tu et al., 2018),
142 yet did not reveal reads alignable to the SARS-CoV-2 genome in our ONT datasets.


143 Reanalysing the ONT data generated by Zhang *et al.*, we found 555 reads (out of ~12
144 million) that generated an alignment of \geq 100bp to the SARS-CoV-2 genome (**Figure 3A**).
145 These reads (median length 924bp) were however 65.6% shorter than the overall dataset
146 (2,686kbp) and were comprised of a much higher average proportion of SARS-CoV-2
147 sequence (52.3%) than the proportion of L1HS sequence found in reads aligned to L1HS
148 (17.1%). Of the 555 reads, 79 generated an alignment of \geq 100bp to the human genome,
149 including one matching the aforementioned integrant on chromosome X that lacked a 3'

L1HS


HBV


chr2:240,227,151

SARS-CoV-2 genomic breakpoints

L1-mediated integration points

Figure 3. ONT reads occasionally align to viral genome sequences. (A) Percentages of total ONT sequence alignable to L1HS (left), SARS-CoV-2 (middle) and HBV (right) isolate genomes. Read counts for SARS-CoV-2 and HBV are provided above histogram columns. No reads were aligned to the HCV isolate genomes. HEK293T data were generated here (SARS-CoV-2, mock) or by Zhang *et al.*. HCC tumour/non-tumour liver pairs were sequenced here (HCC32; HBV-positive) or previously (Ewing *et al.*, 2020) (HCC33; HCV-positive). Normal liver ONT sequencing from our prior work (Ewing *et al.*, 2020) was included as an additional control. (B) A HBV insertion detected in non-tumour liver. In this example, an ONT read from the non-tumour liver of HCC32 spanned the 3' junction of a HBV integrant located on chromosome 2. Of the HBV isolate genomes considered here, this read aligned best to a representative of genotype B (Genbank accession AB602818). The HBV sequence was rearranged consistent with its linearisation prior to integration (Fujimoto *et al.*, 2012; Jiang *et al.*, 2012; Nagaya *et al.*, 1987). Numerals indicate positions relative to AB602818. Symbols (β , δ) represent the approximate position of primers used to PCR validate the HBV insertion. The gel image at right shows the 3' junction PCR results. Ladder band sizes are as indicated. The red filled triangle indicates an on-target product confirmed by capillary sequencing. Repeated attempts to PCR amplify the 5' junction of the HBV integrant did not return an on-target product, perhaps due to a genomic deletion at the insertion site. (C) Percentages of exonic (black), intronic (grey) and intergenic (blue) genomic alignment breakpoints for ONT reads also aligned to the SARS-CoV-2 genome, and also for the non-reference L1-mediated insertions reported here. Genomic features were annotated according to RefSeq coordinates. Please see Tables S1 and S2 for further information.

150 polyA tract (**Figure 1A**). An analysis of the corresponding 79 human genome alignment
151 breakpoints, which could be interpreted as putative SARS-CoV-2 insertion points, as per
152 Zhang *et al.*, indicated 36.2% were exonic (**Figure 3C**). By comparison, 1.1% of all non-
153 reference L1-mediated insertions reported here were exonic (**Figure 3C**), as were 1.3% and
154 1.7% of cultivar-specific L1 and *Alu* insertions, respectively (**Figures 2B** and **2C**). Finally,
155 we investigated why TLDR called neither of the two SARS-CoV-2 insertions highlighted by
156 Zhang *et al.* (**Figure 1**), and found ambiguity in the ONT read alignments supporting these
157 examples led to their exclusion. Specifically, the putative chromosome X insertion (**Figure**
158 **1A**) was filtered due to its short 5' genomic flank alignment, whereas the chromosome 22
159 example was filtered because the corresponding ONT read alignment was marked as
160 supplementary to another alignment on chromosome 1 (**Figure 1B**). These analyses
161 confirmed SARS-CoV-2 alignable reads were present in the Zhang *et al.* ONT dataset, yet
162 these reads were unusually short and could include molecular artifacts interpreted by Zhang
163 *et al.* as SARS-CoV-2 integrants.

164

165 **DISCUSSION**

166 We did not observe L1-mediated SARS-CoV-2 genomic integration in HEK293T cells,
167 despite availability of the L1 machinery (Hancks *et al.*, 2011; Kubo *et al.*, 2006;
168 Niewiadomska *et al.*, 2007; Philippe *et al.*, 2016; Sanchez-Luque *et al.*, 2019) and detected
169 L1, *Alu* and SVA retrotransposition events. The higher number of L1 and *Alu* insertions
170 found in our SARS-CoV-2-infected HEK293T cells is of potential interest given viral
171 infection can repress host factors limiting L1 activity (Hrecka *et al.*, 2011; Laguette *et al.*,
172 2011; Zhao *et al.*, 2013). This preliminary finding perhaps indicates SARS-CoV-2 infection
173 could increase L1 or *Alu* retrotransposition *in vitro*, a possibility requiring experimental
174 confirmation. The comparative rarity of SVA insertions, and absence of SARS-CoV-2
175 insertions, is however congruent with the relative frequencies of L1, *Alu*, SVA and non-
176 retrotransposon cellular RNA insertions driven by L1 proteins in prior cultured cell assays
177 (Dewannieux *et al.*, 2003; Hancks *et al.*, 2011; Wei *et al.*, 2001).

178 Our approach has several notable differences and caveats when compared to that of
179 Zhang *et al.*. Each study used different SARS-CoV-2 isolates, and here the multiplicity of
180 infection (MOI 1.0) was double that of Zhang *et al.* (MOI 0.5). The high molecular weight
181 DNA extraction method, ONT library preparation kit and depth and quality of sequencing
182 applied to HEK293T cells by Zhang *et al.* (standard isopropanol precipitation, SQK-LSK109
183 kit, ~21× depth, N50 ~ 11 kbp) and here (Nanobind kit, SQK-LSK110 kit, ~54× depth, N50 ~

184 39kbp) differed. Nevertheless, the DNA extraction protocols of each study would limit
185 retention of extrachromosomal SARS-CoV-2 DNA potentially generated by ectopic L1
186 reverse transcription (Dhellin et al., 1997). The origins of the ONT reads aligned to the
187 SARS-CoV-2 genome reported by Zhang *et al.* are therefore unclear in our view. Zhang *et al.*
188 only ONT sequenced HEK293T cells transfected with an L1 expression plasmid, which
189 human cells would not carry *in vivo*. We did not analyse SARS-CoV-2 patient samples
190 although, arguably, HEK293T cells present an environment far more conducive to L1 activity
191 than those cells accessed *in vivo* by SARS-CoV-2 (Sungnak et al., 2020; Wiersinga et al.,
192 2020). Widespread cell death post-infection also reduces the probability SARS-CoV-2
193 integrants would persist in the body (Karki et al., 2021; Varga et al., 2020). This view aligns
194 with a very recent report of negligible SARS-CoV-2 DNA being detected by PCR in COVID-
195 19 patient nasal swabs (Briggs et al., 2021).

196 Finally, the incredible enrichment reported by Zhang *et al.* for putative SARS-CoV-2
197 insertions in exons, which this and prior studies (Flasch et al., 2019; Sultana et al., 2019)
198 have shown are not preferred by the L1 EN, contradicts the involvement of L1 in the events
199 interpreted by Zhang *et al.* as SARS-CoV-2 genomic integrants. We conclude L1 *cis*
200 preference strongly disfavours SARS-CoV-2 retrotransposition, making the phenomenon
201 mechanistically plausible but likely very rare, as for other polyadenylated non-
202 retrotransposon cellular RNAs (Dewannieux et al., 2003; Doucet et al., 2015; Esnault et al.,
203 2000; Garcia-Perez et al., 2007; Hancks et al., 2011; Kulpa and Moran, 2006; Monot et al.,
204 2013; Moran et al., 1996; Wei et al., 2001).

205

206 ACKNOWLEDGEMENTS

207 The authors thank the human subjects of this study who donated tissues to the Centre
208 Hépatobiliaire, Paul-Brousse Hospital. We thank S. Richardson and R. Shukla for helpful
209 discussions, K. Chappell and P. Young for project support, and Queensland Health for
210 providing the SARS-CoV-2 virus isolate QLD02. This study was funded by an Australian
211 Government Research Training Program (RTP) Scholarships (N.S.), an NHMRC-ARC
212 Dementia Research Development Fellowship (GNT1108258, G.O.B.), seed funding provided
213 by the Australian Infectious Disease Research Centre to establish SARS-CoV-2 research at
214 the University of Queensland (A.A.K), an Australian Department of Health Medical Research
215 Future Fund (MRFF) Novel Coronavirus Vaccine Development Grant (APP1202445-2020,
216 D.W.), an MRFF Investigator Grant (MRF1175457, A.D.E.), an NHMRC Investigator Grant
217 (GNT1173711, G.J.F.), a CSL Centenary Fellowship (G.J.F.), and the Mater Foundation.

218

219 **AUTHOR CONTRIBUTIONS**

220 N.S., J.R., G.O.B., A.A.A., P.G., F.J.S-L., P.A., N.M. and B.L. performed experiments and
221 analysed data. A.D.E. and G.J.F. performed bioinformatic analysis. J.F., I.W.D., A.A.K.,
222 D.W. and G.J.F. provided resources. G.J.F. designed the project and wrote the manuscript.

223

224 **DECLARATION OF INTERESTS**

225 The authors declare no competing interests.

226

227 **REFERENCES**

228 Ahl, V., Keller, H., Schmidt, S., and Weichenrieder, O. (2015). Retrotransposition and
229 Crystal Structure of an Alu RNP in the Ribosome-Stalling Conformation. *Mol. Cell* *60*, 715–
230 727.

231 Amarilla, A.A., Modhiran, N., Setoh, Y.X., Peng, N.Y.G., Sng, J.D.J., Liang, B., McMillan,
232 C.L.D., Freney, M.E., Cheung, S.T.M., Chappell, K.J., et al. (2021). An optimized high-
233 throughput immuno-plaque assay for SARS-CoV-2. *Front. Microbiol.* *12*, 625136.

234 Belyi, V.A., Levine, A.J., and Skalka, A.M. (2010). Unexpected inheritance: multiple
235 integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate
236 genomes. *PLoS Pathog.* *6*, e1001030.

237 Bill, C.A., and Summers, J. (2004). Genomic DNA double-strand breaks are targets for
238 hepadnaviral DNA integration. *Proc. Natl. Acad. Sci. U. S. A.* *101*, 11135–11140.

239 Briggs, E., Ward, W., Rey, S., Law, D., Nelson, K., Bois, M., Ostrov, N., Lee, H.H., Laurent,
240 J.M., and Mita, P. (2021). Assessment of potential SARS-CoV-2 virus N gene integration
241 into human genome reveals no significant impact on RT-qPCR COVID-19 diagnostic testing
242 (medRxiv).

243 Deniz, Ö., Frost, J.M., and Branco, M.R. (2019). Regulation of transposable elements by
244 DNA modifications. *Nat. Rev. Genet.* *20*, 417–431.

245 Dewannieux, M., Esnault, C., and Heidmann, T. (2003). LINE-mediated retrotransposition of
246 marked Alu sequences. *Nat. Genet.* *35*, 41–48.

247 Dhellin, O., Maestre, J., and Heidmann, T. (1997). Functional differences between the human
248 LINE retrotransposon and retroviral reverse transcriptases for in vivo mRNA reverse
249 transcription. *EMBO J.* *16*, 6590–6602.

250 Dombroski, B.A., Scott, A.F., and Kazazian, H.H., Jr (1993). Two additional potential
251 retrotransposons isolated from a human L1 subfamily that contains an active
252 retrotransposable element. *Proc. Natl. Acad. Sci. U. S. A.* *90*, 6513–6517.

253 Doucet, A.J., Wilusz, J.E., Miyoshi, T., Liu, Y., and Moran, J.V. (2015). A 3' Poly(A) Tract
254 Is Required for LINE-1 Retrotransposition. *Mol. Cell* *60*, 728–741.

255 Esnault, C., Maestre, J., and Heidmann, T. (2000). Human LINE retrotransposons generate
256 processed pseudogenes. *Nat. Genet.* 24, 363–367.

257 Ervony, G.D., Lee, E., Mehta, B.K., Benjamini, Y., Johnson, R.M., Cai, X., Yang, L.,
258 Haseley, P., Lehmann, H.S., Park, P.J., et al. (2015). Cell lineage analysis in human brain
259 using endogenous retroelements. *Neuron* 85, 49–59.

260 Ewing, A.D., Smits, N., Sanchez-Luque, F.J., Faivre, J., Brennan, P.M., Richardson, S.R.,
261 Cheetham, S.W., and Faulkner, G.J. (2020). Nanopore Sequencing Enables Comprehensive
262 Transposable Element Epigenomic Profiling. *Mol. Cell* 80, 915–928.

263 Faulkner, G.J., and Billon, V. (2018). L1 retrotransposition in the soma: a field jumping
264 ahead. *Mob. DNA* 9, 22.

265 Feschotte, C., and Gilbert, C. (2012). Endogenous viruses: insights into viral evolution and
266 impact on host biology. *Nat. Rev. Genet.* 13, 283–296.

267 Feusier, J., Watkins, W.S., Thomas, J., Farrell, A., Witherspoon, D.J., Baird, L., Ha, H.,
268 Xing, J., and Jorde, L.B. (2019). Pedigree-based estimation of human mobile element
269 retrotransposition rates. *Genome Res.* 29, 1567–1577.

270 Flasch, D.A., Macia, Á., Sánchez, L., Ljungman, M., Heras, S.R., García-Pérez, J.L., Wilson,
271 T.E., and Moran, J.V. (2019). Genome-wide de novo L1 Retrotransposition Connects
272 Endonuclease Activity with Replication. *Cell* 177, 837–851.

273 Fujimoto, A., Totoki, Y., Abe, T., Boroevich, K.A., Hosoda, F., Nguyen, H.H., Aoki, M.,
274 Hosono, N., Kubo, M., Miya, F., et al. (2012). Whole-genome sequencing of liver cancers
275 identifies etiological influences on mutation patterns and recurrent mutations in chromatin
276 regulators. *Nat. Genet.* 44, 760–764.

277 Garcia-Perez, J.L., Doucet, A.J., Bucheton, A., Moran, J.V., and Gilbert, N. (2007). Distinct
278 mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse
279 transcriptase. *Genome Res.* 17, 602–611.

280 Geuking, M.B., Weber, J., Dewannieux, M., Gorelik, E., Heidmann, T., Hengartner, H.,
281 Zinkernagel, R.M., and Hangartner, L. (2009). Recombination of retrotransposon and
282 exogenous RNA virus results in nonretroviral cDNA integration. *Science* 323, 393–396.

283 Gilbert, N., Lutz, S., Morrish, T.A., and Moran, J.V. (2005). Multiple fates of L1
284 retrotransposition intermediates in cultured human cells. *Mol. Cell. Biol.* 25, 7780–7795.

285 Hancks, D.C., Ewing, A.D., Chen, J.E., Tokunaga, K., and Kazazian, H.H., Jr (2009). Exon-
286 trapping mediated by the human retrotransposon SVA. *Genome Res.* 19, 1983–1991.

287 Hancks, D.C., Goodier, J.L., Mandal, P.K., Cheung, L.E., and Kazazian, H.H., Jr (2011).
288 Retrotransposition of marked SVA elements by human L1s in cultured cells. *Hum. Mol.*
289 *Genet.* 20, 3386–3400.

290 Holmes, S.E., Dombroski, B.A., Krebs, C.M., Boehm, C.D., and Kazazian, H.H., Jr (1994). A
291 new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces
292 a chimaeric insertion. *Nat. Genet.* 7, 143–148.

293 Horie, M., Honda, T., Suzuki, Y., Kobayashi, Y., Daito, T., Oshida, T., Ikuta, K., Jern, P.,
294 Gojobori, T., Coffin, J.M., et al. (2010). Endogenous non-retroviral RNA virus elements in
295 mammalian genomes. *Nature* *463*, 84–87.

296 Hrecka, K., Hao, C., Gierszewska, M., Swanson, S.K., Kesik-Brodacka, M., Srivastava, S.,
297 Florens, L., Washburn, M.P., and Skowronski, J. (2011). Vpx relieves inhibition of HIV-1
298 infection of macrophages mediated by the SAMHD1 protein. *Nature* *474*, 658–661.

299 Jiang, Z., Jhunjhunwala, S., Liu, J., Haverty, P.M., Kennemer, M.I., Guan, Y., Lee, W.,
300 Carnevali, P., Stinson, J., Johnson, S., et al. (2012). The effects of hepatitis B virus
301 integration into the genomes of hepatocellular carcinoma patients. *Genome Res.* *22*, 593–601.

302 Jurka, J. (1997). Sequence patterns indicate an enzymatic involvement in integration of
303 mammalian retroposons. *Proc. Natl. Acad. Sci. U. S. A.* *94*, 1872–1877.

304 Karki, R., Sharma, B.R., Tuladhar, S., Williams, E.P., Zalduondo, L., Samir, P., Zheng, M.,
305 Sundaram, B., Banoth, B., Malireddi, R.K.S., et al. (2021). Synergism of TNF- α and IFN- γ
306 Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection
307 and Cytokine Shock Syndromes. *Cell* *184*, 149–168.

308 Kawasaki, J., Kojima, S., Mukai, Y., Tomonaga, K., and Horie, M. (2021). 100-My history of
309 bornavirus infections hidden in vertebrate genomes. *Proc. Natl. Acad. Sci. U. S. A.* *118*.

310 Kazachenka, A., and Kassiotis, G. (2021). SARS-CoV-2-Host Chimeric RNA-Sequencing
311 Reads Do Not Necessarily Arise From Virus Integration Into the Host DNA. *Front.*
312 *Microbiol.* *12*, 676693.

313 Kazazian, H.H., Jr, and Moran, J.V. (2017). Mobile DNA in Health and Disease. *N. Engl. J.*
314 *Med.* *377*, 361–370.

315 Kazazian, H.H., Jr, Wong, C., Youssoufian, H., Scott, A.F., Phillips, D.G., and Antonarakis,
316 S.E. (1988). Haemophilia A resulting from de novo insertion of L1 sequences represents a
317 novel mechanism for mutation in man. *Nature* *332*, 164–166.

318 Klawitter, S., Fuchs, N.V., Upton, K.R., Muñoz-Lopez, M., Shukla, R., Wang, J., Garcia-
319 Cañadas, M., Lopez-Ruiz, C., Gerhardt, D.J., Sebe, A., et al. (2016). Reprogramming triggers
320 endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. *Nat.*
321 *Commun.* *7*, 10286.

322 Klenerman, P., Hengartner, H., and Zinkernagel, R.M. (1997). A non-retroviral RNA virus
323 persists in DNA form. *Nature* *390*, 298–301.

324 Kubo, S., Seleme, M.D.C., Soifer, H.S., Perez, J.L.G., Moran, J.V., Kazazian, H.H., Jr, and
325 Kasahara, N. (2006). L1 retrotransposition in nondividing and primary human somatic cells.
326 *Proc. Natl. Acad. Sci. U. S. A.* *103*, 8036–8041.

327 Kulpa, D.A., and Moran, J.V. (2006). Cis-preferential LINE-1 reverse transcriptase activity
328 in ribonucleoprotein particles. *Nat. Struct. Mol. Biol.* *13*, 655–660.

329 Laguette, N., Sobhian, B., Casartelli, N., Ringéard, M., Chable-Bessia, C., Ségral, E., Yatim,
330 A., Emiliani, S., Schwartz, O., and Benkirane, M. (2011). SAMHD1 is the dendritic- and
331 myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. *Nature* *474*, 654–657.

332 Lauer, G.M., and Walker, B.D. (2001). Hepatitis C virus infection. *N. Engl. J. Med.* **345**, 41–
333 52.

334 Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**,
335 3094–3100.

336 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
337 G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence
338 Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–2079.

339 Mason, W.S., Gill, U.S., Litwin, S., Zhou, Y., Peri, S., Pop, O., Hong, M.L.W., Naik, S.,
340 Quaglia, A., Bertoletti, A., et al. (2016). HBV DNA Integration and Clonal Hepatocyte
341 Expansion in Chronic Hepatitis B Patients Considered Immune Tolerant. *Gastroenterology*
342 **151**, 986–998.

343 Monot, C., Kuciak, M., Viollet, S., Mir, A.A., Gabus, C., Darlix, J.-L., and Cristofari, G.
344 (2013). The specificity and flexibility of L1 reverse transcription priming at imperfect T-
345 tracts. *PLoS Genet.* **9**, e1003499.

346 Moran, J.V., Holmes, S.E., Naas, T.P., DeBerardinis, R.J., Boeke, J.D., and Kazazian, H.H.,
347 Jr (1996). High frequency retrotransposition in cultured mammalian cells. *Cell* **87**, 917–927.

348 Moran, J.V., DeBerardinis, R.J., and Kazazian, H.H., Jr (1999). Exon shuffling by L1
349 retrotransposition. *Science* **283**, 1530–1534.

350 Nagaya, T., Nakamura, T., Tokino, T., Tsurimoto, T., Imai, M., Mayumi, T., Kamino, K.,
351 Yamamura, K., and Matsubara, K. (1987). The mode of hepatitis B virus DNA integration in
352 chromosomes of human hepatocellular carcinoma. *Genes Dev.* **1**, 773–782.

353 Nguyen, T.H.M., Carreira, P.E., Sanchez-Luque, F.J., Schauer, S.N., Fagg, A.C., Richardson,
354 S.R., Davies, C.M., Jesuadian, J.S., Kempen, M.-J.H.C., Troskie, R.-L., et al. (2018). L1
355 Retrotransposon Heterogeneity in Ovarian Tumor Cell Evolution. *Cell Rep.* **23**, 3730–3740.

356 Niewiadomska, A.M., Tian, C., Tan, L., Wang, T., Sarkis, P.T.N., and Yu, X.-F. (2007).
357 Differential inhibition of long interspersed element 1 by APOBEC3 does not correlate with
358 high-molecular-mass-complex formation or P-body association. *J. Virol.* **81**, 9577–9583.

359 Ostertag, E.M., and Kazazian, H.H., Jr (2001). Twin priming: a proposed mechanism for the
360 creation of inversions in L1 retrotransposition. *Genome Res.* **11**, 2059–2065.

361 Philippe, C., Vargas-Landin, D.B., Doucet, A.J., van Essen, D., Vera-Otarola, J., Kuciak, M.,
362 Corbin, A., Nigumann, P., and Cristofari, G. (2016). Activation of individual L1
363 retrotransposon instances is restricted to cell-type dependent permissive loci. *Elife* **5**, e13926.

364 Raiz, J., Damert, A., Chira, S., Held, U., Klawitter, S., Hamdorf, M., Löwer, J., Strätling,
365 W.H., Löwer, R., and Schumann, G.G. (2012). The non-autonomous retrotransposon SVA is
366 trans-mobilized by the human LINE-1 protein machinery. *Nucleic Acids Res.* **40**, 1666–1683.

367 Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and
368 Mesirov, J.P. (2011). Integrative genomics viewer. *Nat. Biotechnol.* **29**, 24–26.

369 Rodriguez-Martin, B., Alvarez, E.G., Baez-Ortega, A., Zamora, J., Supek, F.,

370 Demeulemeester, J., Santamarina, M., Ju, Y.S., Temes, J., Garcia-Souto, D., et al. (2020).
371 Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1
372 retrotransposition. *Nat. Genet.* 52, 306–319.

373 Sanchez-Luque, F.J., Kempen, M.-J.H.C., Gerdes, P., Vargas-Landin, D.B., Richardson, S.R.,
374 Troskie, R.-L., Jesuadian, J.S., Cheetham, S.W., Carreira, P.E., Salvador-Palomeque, C., et
375 al. (2019). LINE-1 Evasion of Epigenetic Repression in Humans. *Mol. Cell* 75, 590–604.

376 Schauer, S.N., Carreira, P.E., Shukla, R., Gerhardt, D.J., Gerdes, P., Sanchez-Luque, F.J.,
377 Nicoli, P., Kindlova, M., Ghisletti, S., Santos, A.D., et al. (2018). L1 retrotransposition is a
378 common feature of mammalian hepatocarcinogenesis. *Genome Res.* 28, 639–653.

379 Scott, E.C., Gardner, E.J., Masood, A., Chuang, N.T., Vertino, P.M., and Devine, S.E.
380 (2016). A hot L1 retrotransposon evades somatic repression and initiates human colorectal
381 cancer. *Genome Res.* 26, 745–755.

382 Shukla, R., Upton, K.R., Muñoz-Lopez, M., Gerhardt, D.J., Fisher, M.E., Nguyen, T.,
383 Brennan, P.M., Baillie, J.K., Collino, A., Ghisletti, S., et al. (2013). Endogenous
384 retrotransposition activates oncogenic pathways in hepatocellular carcinoma. *Cell* 153, 101–
385 111.

386 Siudeja, K., van den Beek, M., Riddiford, N., Boumard, B., Wurmser, A., Stefanutti, M.,
387 Lameiras, S., and Bardin, A.J. (2021). Unraveling the features of somatic transposition in the
388 *Drosophila* intestine. *EMBO J.* 40, e106388.

389 Sultana, T., van Essen, D., Siol, O., Bailly-Bechet, M., Philippe, C., Zine El Aabidine, A.,
390 Pioger, L., Nigumann, P., Saccani, S., Andrau, J.-C., et al. (2019). The Landscape of L1
391 Retrotransposons in the Human Genome Is Shaped by Pre-insertion Sequence Biases and
392 Post-insertion Selection. *Mol. Cell* 74, 555–570.

393 Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-
394 López, C., Maatz, H., Reichart, D., Sampaziotis, F., et al. (2020). SARS-CoV-2 entry factors
395 are highly expressed in nasal epithelial cells together with innate immune genes. *Nat. Med.*
396 26, 681–687.

397 Treiber, C.D., and Waddell, S. (2017). Resolving the prevalence of somatic transposition in
398 *Drosophila*. *Elife* 6, e28297.

399 Tu, T., Budzinska, M.A., Vondran, F.W.R., Shackel, N.A., and Urban, S. (2018). Hepatitis B
400 virus DNA integration occurs early in the viral life cycle in an in vitro infection model via
401 sodium taurocholate cotransporting polypeptide-dependent uptake of enveloped virus
402 particles. *J. Virol.* 92, e02007–e02017.

403 Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., and Rozen,
404 S.G. (2012). Primer3—new capabilities and interfaces. *Nucleic Acids Res.* 40, e115–e115.

405 Varga, Z., Flammer, A.J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A.S.,
406 Mehra, M.R., Schuepbach, R.A., Ruschitzka, F., and Moch, H. (2020). Endothelial cell
407 infection and endotheliitis in COVID-19. *Lancet* 395, 1417–1418.

408 V'kovski, P., Kratzel, A., Steiner, S., Stalder, H., and Thiel, V. (2020). Coronavirus biology
409 and replication: implications for SARS-CoV-2. *Nat. Rev. Microbiol.* 19, 155–170.

410 Wei, W., Gilbert, N., Ooi, S.L., Lawler, J.F., Ostertag, E.M., Kazazian, H.H., Boeke, J.D.,
411 and Moran, J.V. (2001). Human L1 retrotransposition: cispreference versus trans
412 complementation. *Mol. Cell. Biol.* 21, 1429–1439.

413 Wiersinga, W.J., Rhodes, A., Cheng, A.C., Peacock, S.J., and Prescott, H.C. (2020).
414 Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019
415 (COVID-19): A Review. *JAMA* 324, 782–793.

416 Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-
417 H., Pei, Y.-Y., et al. (2020). A new coronavirus associated with human respiratory disease in
418 China. *Nature* 579, 265–269.

419 Yan, B., Chakravorty, S., Mirabelli, C., Wang, L., Trujillo-Ochoa, J.L., Chauss, D., Kumar,
420 D., Lionakis, M.S., Olson, M.R., Wobus, C.E., et al. (2021). Host-Virus Chimeric Events in
421 SARS-CoV-2-Infected Cells Are Infrequent and Artifactual. *J. Virol.* 95, e0029421.

422 Zhang, L., Richards, A., Barrasa, M.I., Hughes, S.H., Young, R.A., and Jaenisch, R. (2021).
423 Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human
424 cells and can be expressed in patient-derived tissues. *Proc. Natl. Acad. Sci. U. S. A.* 118,
425 e2105968118.

426 Zhao, K., Du, J., Han, X., Goodier, J.L., Li, P., Zhou, X., Wei, W., Evans, S.L., Li, L., Zhang,
427 W., et al. (2013). Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-
428 Goutières syndrome-related SAMHD1. *Cell Rep.* 4, 1108–1115.

429

430 FIGURE LEGENDS

431 **Figure 1. Key potential SARS-CoV-2 insertions reported by Zhang *et al.***

432 **(A)** A cartoon summarising the features of a putative SARS-CoV-2 integrant on chromosome
433 X. Numerals underneath the SARS-CoV-2 sequence represent positions relative to the QLD02
434 virus isolate. Potential TSDs are shown as red triangles, and motifs resembling potential pre-
435 integration L1 EN recognition sites are highlighted, with question marks in labels intended to
436 flag uncertain L1 involvement. No 3' polyA tract was found. Homologous regions at sequence
437 junctions are marked. One spanning ONT read is positioned underneath the cartoon and its
438 identifier is displayed.

439 **(B)** As for (A), except showing an ONT read spanning two SARS-CoV-2 insertions, on
440 chromosome 22 and chromosome 1. The alignments to chromosome 22 were flagged as
441 supplementary by the minimap2 aligner. 3' polyA tracts are represented as green rectangles.
442 Note: these chromosome 22 and chromosome X instances are the key examples reported by
443 Zhang *et al.* in support of SARS-CoV-2 genomic integration. Neither example has a complete
444 set of retrotransposition hallmarks (TSD, 3' polyA tract, L1 EN motif) *and* the support of a
445 uniquely aligned ONT read.

446

447 **Figure 2. Detection of endogenous L1-mediated retrotransposition in human cells.**

448 (A) Experimental design. HEK293T cells were divided into two populations (cultivars), which
449 were then either SARS-CoV-2 infected or mock infected. DNA was extracted from each
450 cultivar, as well as from hepatocellular carcinoma patient samples, and subjected to ONT
451 sequencing. ONT reads were used to call non-reference L1 and virus insertions with TLDR,
452 which also resolves TSDs and other retrotransposition hallmarks. TSDs: red triangles; polyA
453 tract: green rectangle; ONT read: blue rectangle. Some illustrations are adapted from a previous
454 study (Ewing et al., 2020).

455 (B) TSD size distribution for non-reference L1 insertions, as annotated by TLDR, as well as
456 cultivar-specific L1 insertions found only in either our HEK293T cells infected with SARS-
457 CoV-2 or our mock infected cells. Pie charts indicate the percentages of exonic, intronic and
458 intergenic insertions, annotated by RefSeq coordinates.

459 (C) As for (B), except showing data for *Alu* insertions.

460 (D) Detailed characterisation of an L1 insertion detected in SARS-CoV-2 infected HEK293T
461 cells by a single spanning ONT read aligned to chromosome 14. Nucleotides highlighted in red
462 correspond to the integration site TSD. Underlined nucleotides correspond to the L1 EN motif.
463 The cartoon indicates a full-length L1HS insertion flanked by TSDs (red triangles), and a 3'
464 polyA tract (green), with the underneath numeral representing the 5' end position relative to
465 the mobile L1HS sequence L1.3 (Dombroski et al., 1993). The relevant spanning ONT read,
466 with identifier, is also positioned underneath the cartoon. Symbols (α , β , δ , γ) represent the
467 approximate position of primers used for empty/filled site and L1-genome junction PCR
468 validation reactions. These are displayed in gel images if successful. Ladder band sizes are as
469 indicated, NTC; non-template control. Red triangles indicate L1 amplicon expected sizes
470 (empty triangle: no product; filled triangle: capillary sequenced on-target product). Blue
471 triangles indicate expected empty site sizes.

472 (E) As for (D), except for a 5' inverted/deleted L1HS located on chromosome 18.

473 Please see Figures S1 and S2, and Tables S1 and S2 for further information.

474

475 **Figure 3. ONT reads occasionally align to viral genome sequences.**

476 (A) Percentages of total ONT sequence alignable to L1HS (left), SARS-CoV-2 (middle) and
477 HBV (right) isolate genomes. Read counts for SARS-CoV-2 and HBV are provided above
478 histogram columns. No reads were aligned to the HCV isolate genomes. HEK293T data were
479 generated here (SARS-CoV-2, mock) or by Zhang *et al.* HCC tumour/non-tumour liver pairs

480 were sequenced here (HCC32; confirmed HBV-positive) or previously (Ewing et al., 2020)
481 (HCC33; HCV-positive). Normal liver ONT sequencing from our prior work (Ewing et al.,
482 2020) was included as an additional control.
483 **(B)** A HBV insertion detected in non-tumour liver. In this example, an ONT read from the
484 non-tumour liver of HCC32 spanned the 3' junction of a HBV integrant located on
485 chromosome 2. Of the HBV isolate genomes considered here, this read aligned best to a
486 representative of genotype B (Genbank accession AB602818). The HBV sequence was
487 rearranged consistent with its linearisation prior to integration (Fujimoto et al., 2012; Jiang et
488 al., 2012; Nagaya et al., 1987). Numerals indicate positions relative to AB602818. Symbols
489 (β , δ) represent the approximate position of primers used to PCR validate the HBV insertion.
490 The gel image at right shows the 3' junction PCR results. Ladder band sizes are as indicated.
491 The red filled triangle indicates an on-target product confirmed by capillary sequencing.
492 Repeated attempts to PCR amplify the 5' junction of the HBV integrant did not return an on-
493 target product, perhaps due to a genomic deletion at the insertion site.
494 **(C)** Percentages of exonic (black), intronic (grey) and intergenic (blue) genomic alignment
495 breakpoints for ONT reads also aligned to the SARS-CoV-2 genome, and also for the non-
496 reference L1-mediated insertions reported here. Genomic features were annotated according
497 to RefSeq coordinates.
498 Please see Tables S1 and S2 for further information.
499

500 **STAR METHODS**

501

502 **RESOURCE AVAILABILITY**

503 **Lead contact**

504 Further information and requests for resources and reagents should be directed to and will be
505 fulfilled by the Lead Contact, Geoffrey J. Faulkner (faulknergej@gmail.com).
506

507 **Materials availability**

508 This study did not generate new unique reagents.
509

510 **Data and code availability**

511 Oxford Nanopore Technologies sequencing data generated by this study were deposited in the
512 European Nucleotide Archive (ENA) under project PRJEB44816. TLDR and instructions for
513 its use and application are available at <https://github.com/adamewing/TLDR>.

514

515 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

516 Liver tumour and non-tumour tissue were previously obtained from a HBV-positive patient
517 (HCC32, male, 73yrs) who underwent surgical resection at the Centre Hepatobiliaire, Paul-
518 Brousse Hospital, and made available for research purposes with approval from the French
519 Institute of Medical Research and Health (Reference: 11-047). Further ethics approvals were
520 provided by the Mater Health Services Human Research Ethics Committee (Reference: HREC-
521 15-MHS-52) and the University of Queensland Medical Research Review Committee
522 (Reference: 2014000221). HEK293T and Vero E6 cells were obtained from the American Type
523 Culture Collection (ATCC).

524

525 **METHOD DETAILS**

526 **SARS-CoV-2 infection of HEK293T cells**

527 HEK293T cells and African green monkey kidney cells (Vero E6) were maintained in standard
528 Dulbecco's Modified Eagle Medium (DMEM). Culture media were supplemented with sodium
529 pyruvate (11mg/L), penicillin (100U/mL), streptomycin (100 μ g/mL) (P/S) and 10% foetal calf
530 serum (FCS) (Bovogen, USA). Cells were maintained at 37 °C with 5% CO₂.

531 An early Australian SARS-CoV-2 isolate (hCoV-19/Australia/QLD02/2020; GISAID
532 Accession EPI_ISL_407896) was sampled from patient nasopharyngeal aspirates by
533 Queensland Health Forensic and Scientific Services and used to inoculate Vero E6 African
534 green monkey kidney cells (passage 2). A viral stock (passage 3) was then generated on Vero
535 E6 cells and stored at -80°C. Viral titration was determined by immuno-plaque assay (iPA), as
536 previously described (Amarilla et al., 2021). To verify viral replication in HEK293T cells, a
537 growth kinetic was assessed using a multiplicity of infection (MOI) of 0.01, 0.1 or 1.0, and
538 showed efficient SARS-CoV-2 replication (**Figure S1**).

539 HEK293T viral infection was undertaken as follows: 3 \times 10⁶ HEK293T cells were
540 seeded onto 6-well plates pre-coated with polylysine one day before infection. Cells were
541 infected at MOI of 1 in 200 μ L of DMEM (2% FCS and P/S) and incubated for 30min at 37°C.
542 Plates were rocked every 5min to ensure the monolayer remained covered with inoculum. The
543 inoculum was then removed, and the monolayer washed five times with 1mL of additive-free
544 DMEM. Finally, cells were maintained with 3mL of DMEM (supplemented with 2% foetal
545 bovine serum and P/S) and incubated at 37°C with 5% CO₂. Cell supernatant was harvested 0,
546 1, 2 and 3 days post-infection. The mock infected control differed only in that virus was not
547 added to the inoculum media.

548 Genomic DNA was extracted from mock and SARS-CoV-2 infected (MOI 1.0)
549 HEK293T cells sampled 2 days post-infection, using a Nanobind CBB Big DNA Kit
550 (Circulomics) following the manufacturer's instructions for high molecular weight (HMW)
551 DNA extraction. DNA was eluted in elution buffer (10mM Tris-Cl, pH 8.5) and concentration
552 measured by Qubit dsDNA High-Sensitivity Assay Kit on a Qubit Fluorometer (Life
553 Technologies).

554

555 **Hepatocellular carcinoma sample processing**

556 DNA was extracted from the HCC32 tissues in our earlier study (Shukla et al., 2013) with a
557 DNeasy Blood and Tissue Kit (QIAGEN, Germany) and stored at -80°C. To enrich for HMW
558 DNA, 4.5µg of DNA from the patient HCC32 tumour and non-tumour liver samples was
559 diluted to 75ng/µL in a 1.5mL Eppendorf DNA LoBind tube and processed with a Short Read
560 Eliminator XS Kit (Circulomics) following the manufacturer's instructions.

561

562 **ONT sequencing**

563 DNA libraries were prepared at the Kinghorn Centre for Clinical Genomics (KCCG) using 3-
564 4µg HMW input DNA, without shearing, and a SQK-LSK110 ligation sequencing kit. 350-
565 500ng of each prepared library was sequenced separately on one PromethION (Oxford
566 Nanopore Technologies) flow cell (FLO-PRO002, R9.4.1 chemistry) (**Table S1**). SARS-CoV-
567 2 infected HEK293T DNA was sequenced on two flow cells. Flow cells were washed (nuclease
568 flush) and reloaded at 24hr and 48hr with 350-500ng of additional library to maximise output.
569 Bases were called with guppy 4.0.11 (Oxford Nanopore Technologies).

570

571 **ONT bioinformatic analyses**

572 To call non-reference insertions with TLDR (Ewing et al., 2020), ONT reads generated here,
573 by Zhang *et al.*, and by our previous ONT study of human tissues (Ewing et al., 2020) (**Table**
574 **S1**) were aligned to the human reference genome build hg38 using minimap2 (Li, 2018)
575 version 2.17 (index parameter: -x map-ont; alignment parameters: -ax map-ont -L -t 32) and
576 SAMtools (Li et al., 2009) version 1.12. BAM files were then processed as a group with
577 TLDR (Ewing et al., 2020) version 1.1 (parameters -e virus.fa -p 128 -m 1 --max_te_len
578 40000 --max_cluster_size 100 --min_te_len 100 --keep_pickles -n
579 nonref.collection.hg38.chr.bed.gz). The file virus.fa was composed of: representative HBV
580 and HCV isolate genomes (**Table S1**), the SARS-CoV-2 isolate used here (GISaid
581 Accession EPI_ISL_407896), the L1HS sequence L1.3 (Dombroski et al., 1993) (Genbank

582 Accession L19088), several *Alu* and SVA subfamily consensus sequences, and a consensus
583 sequence for human endogenous retrovirus K (HERVK), the youngest human long terminal
584 repeat (LTR) retrotransposon family. The file nonref.collection.hg38.chr.bed.gz is a
585 collection of known non-reference retrotransposon insertions available from
586 github.com/adamewing/tldr/. The TLDR output table was further processed to remove calls
587 not passing all TLDR filters, representing homopolymer insertions, where MedianMapQ < 50
588 or family = “NA” or remappable = “FALSE” or UnmapCover < 0.75 or LengthIns < 100 or
589 EndTE-StartTE < 100 or strand = “None” or SpanReads < 1. As 3’ truncation is rarely
590 encountered for L1-mediated insertions, calls where EndTE was more than 10bp less than the
591 consensus length were filtered, as were *Alu* insertions 5’ truncated by more than 1bp. The
592 filtered TLDR output table is provided as **Table S2**. Insertions detected in only our mock or
593 SARS-CoV-2 infected HEK293T datasets, but not in both experiments, and not matching a
594 known non-reference insertion, were designated as putative cultivar-specific insertions
595 (**Table S2**). Many if not most of these insertions were likely to have occurred in cell culture
596 prior to the cultivars being separated.

597 To identify L1HS and viral sequences, we directly aligned all reads to the virus.fa file
598 with minimap2 (index parameter: -x map-ont; alignment parameters: -ax map-ont -L -t 32).
599 Reads containing alignments of \geq 100bp to a sequence present in virus.fa were counted with
600 SAMtools idxstats. Alignments to HBV, HCV or SARS-CoV-2 were excluded if they
601 overlapped by \geq 10bp with a genomic alignment of \geq 100bp. Read alignments were visualised
602 with SAMtools view and the Integrative Genomics Viewer (Robinson et al., 2011) version
603 2.8.6.

604

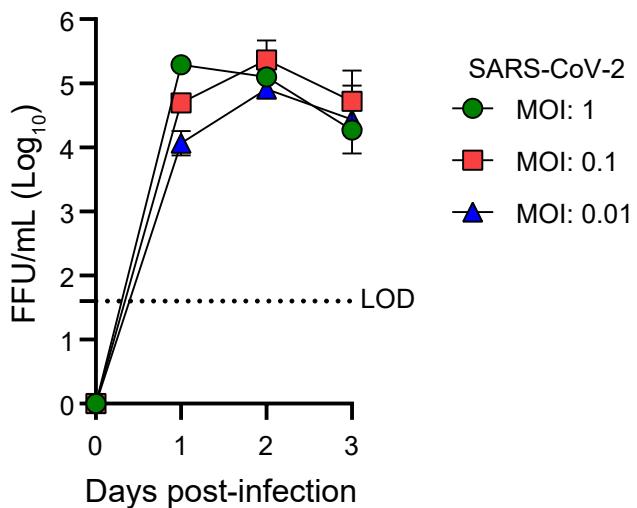
605 **PCR validation**

606 We used Primer3 (Untergasser et al., 2012) to design PCR primers for 6 L1 insertions found
607 by a single spanning ONT read, using the reference genome and L1HS sequences as inputs
608 (**Table S2**). These validation experiments were conducted in three phases. Firstly, we
609 performed an “empty/filled site” PCR using primers positioned on either side of the L1,
610 where the filled site is the L1 allele, and the empty site is the remaining allele(s). Each
611 empty/filled reaction was performed using a DNA Engine Tetrad 2 Thermal Cycler (Bio-
612 Rad) and Expand Long Range Enzyme Mix, with 1X Expand Long Range Buffer with
613 MgCl₂, 50pmol of each primer, 0.5mM dNTPs, 5% DMSO, 100ng of template DNA and
614 1.75U of enzyme, in a 25 μ L final volume. PCR cycling conditions were as follows: (92°C,
615 3min) \times 1; (92°C, 30sec; 54-57°C, 30sec; 68°C, 7min) \times 10; (92°C, 30sec; 52-55°C, 30sec;

616 68°C, 7min + 20sec/cycle)×30; (68°C, 10min; 4°C, hold)×1. Amplicons were visualised on a
617 1% agarose gel stained with SYBR SAFE (Invitrogen). GeneRuler™ 1kb plus (Thermo
618 Scientific) was used as the ladder. Secondly, we combined each empty/filled primer with a
619 primer positioned within the L1 sequence, to amplify the 5' and 3' L1-genome junctions.
620 These reactions were undertaken on a DNA Engine Tetrad 2 Thermal Cycler (Bio-Rad), with
621 MyTaq HS DNA polymerase, 1X MyTaq Reaction Buffer, 10pmol of each primer, 10ng of
622 template DNA, and 2.5U of enzyme, in a 25µL final volume. PCR cycling conditions were as
623 follows: (95°C, 1min)×1; (95°C, 15sec; 53-55°C, 15sec; 72°C, 15sec)×35; (72°C, 5min; 4°C,
624 hold)×1. Amplicons were visualised on a 1.5% agarose gel stained with SYBR SAFE
625 (Invitrogen). Thirdly, we repeated the 5' L1-genome junction-specific PCR using 200ng
626 template DNA. All PCRs were performed with non-template control, as well as DNA
627 extracted from the same HEK293T cells (SARS-CoV-2 and mock) subjected to genomic
628 analysis. Notably, L1 insertions that did not amplify in either cultivar were still likely to be
629 genuine events as they carried all of the relevant sequence hallmarks of L1-mediated
630 retrotransposition.

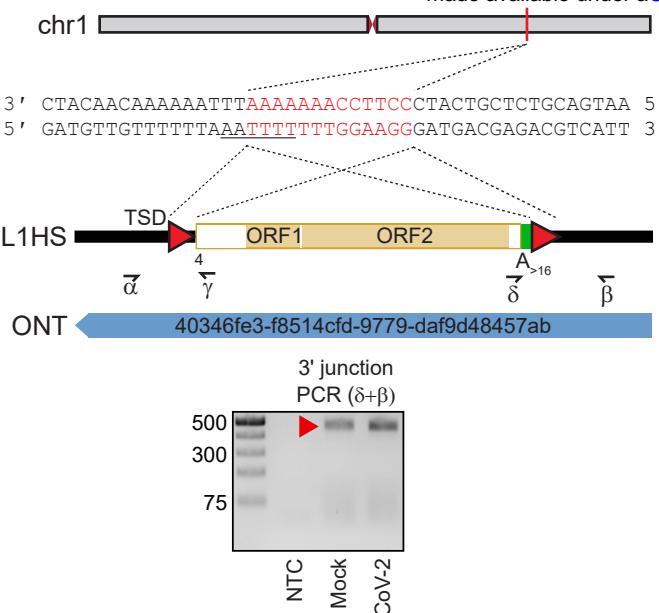
631 PCR primers for the HBV insertion 3' junction (**Figure 3B** and **Table S2**) were
632 designed with Primer3 using the reference genome and closest match HBV sequence
633 (Genbank accession AB602818) as inputs. PCR amplification and capillary sequencing was
634 conducted as per the L1 insertions, except using Expand Long Range polymerase (Roche)
635 with 1X Expand Long Range buffer with MgCl₂, 10pmol of each primer, 100ng of template
636 DNA, 500µM of PCR Nucleotide Mix, and 3.5U of enzyme, in a 25µL final volume. PCR
637 cycling conditions were as follows: (92°C, 2min)×1; (92°C, 15sec; 65°C, 15sec; 68°C,
638 7:30min)×10; (92°C, 15sec; 65°C, 15sec; 68°C, 7min+ 20sec per cycle)×35 (68°C, 10min;
639 4°C, hold)×1. Amplicons were visualized on a 1.2% agarose gel.

640 Amplicons in each experiment were visualised using a GelDoc (Bio-Rad) and, if of
641 the correct size, gel extracted using a Qiagen MinElute Gel Extraction Kit and capillary
642 sequenced by the Australian Genomics Research Facility (Brisbane).


643

644 QUANTIFICATION AND STATISTICAL ANALYSIS

645 Error bars and replicate values are defined in figure legends, where appropriate. No statistical
646 tests for significance were conducted.


KEY RESOURCES TABLE

REAGENT OR RESOURCE	SOURCE	IDENTIFIER
Bacterial and Virus Strains		
SARS-CoV-2 isolate hCoV-19/Australia/QLD02/2020	Queensland Health Forensic and Scientific Services	EPI_ISL_407896
Biological Samples		
Snap frozen hepatocellular carcinoma and matched non-tumour liver tissue	Centre Hépatobiliaire, Paul-Brousse Hospital	HCC32
Chemicals, Peptides, and Recombinant Proteins		
SYBR Safe DNA Gel Stain	Invitrogen	S33102
Agarose	Bioline	BIO-41026
Carboxymethylcellulose	Sigma-Aldrich	C4888
KPL Milk Diluent/Blocking Solution Concentrate	SeraCare	5140-0011
IRDye 800CW Goat anti-Mouse IgG Antibody	LI-COR	926-32210
Anti-SARS-CoV-2-spike antibody	Amarilla et al., 2021	CR3022
Critical Commercial Assays		
Ligation Sequencing Kit	Oxford Nanopore Technologies	SQK-LSK110
Qubit dsDNA HS Assay Kit	Invitrogen	Q32851
Nanobind CBB Big DNA Kit	Circulomics	NB-900-001-01
Short Read Eliminator XS Kit	Circulomics	SS-100-121-01
Expand Long Template PCR System	Merck	11681834001
MyTaq DNA Polymerase	Bioline	BIO-21105
Deposited Data		
Nanopore WGS of mock and SARS-CoV-2 infected HEK293T cells, and HBV infected samples from liver cancer patient HCC32	This paper	PRJEB44816
Nanopore WGS of SARS-CoV-2 infected HEK293T cells overexpressing L1	Zhang et al., 2021	PRJNA721333
Nanopore WGS of normal liver and HCV infected samples from liver cancer patient HCC33	Ewing et al., 2020	PRJNA629858
Experimental Models: Cell Lines		
Human embryonic kidney 293T (HEK293T) cells	ATCC	CRL-1568
<i>Cercopithecus aethiops</i> Vero E6 cells	ATCC	CRL-3216
Oligonucleotides		
Oligo sequences are shown in Table S2.	Integrated DNA Technologies	N/A
Software and Algorithms		
TLDR	https://github.com/ada-mewing/tldr	Ewing et al., 2020
Minimap2	https://github.com/lh3/minimap2	Li et al., 2018
SAMtools	https://github.com/samtools/samtools/	Li et al., 2009
IGV	https://software.broadinstitute.org/software/igv/	Robinson et al., 2011
Primer3	https://bioinfo.ut.ee/primer3-0.4.0/	Untergasser et al., 2012

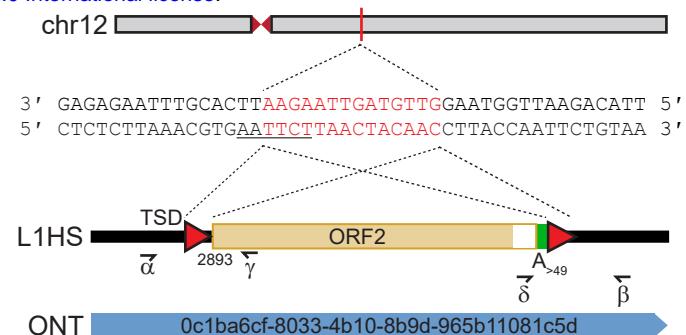
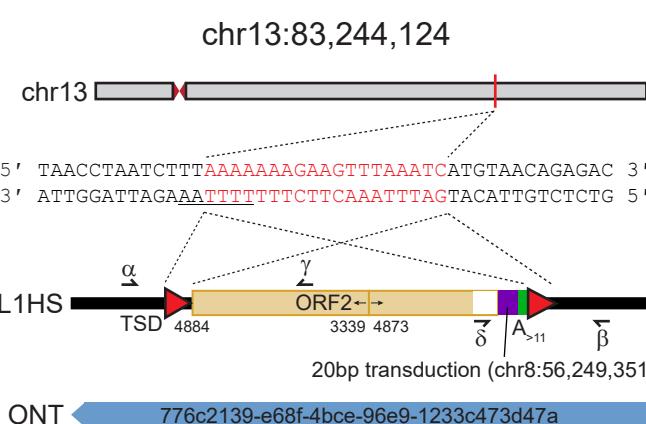
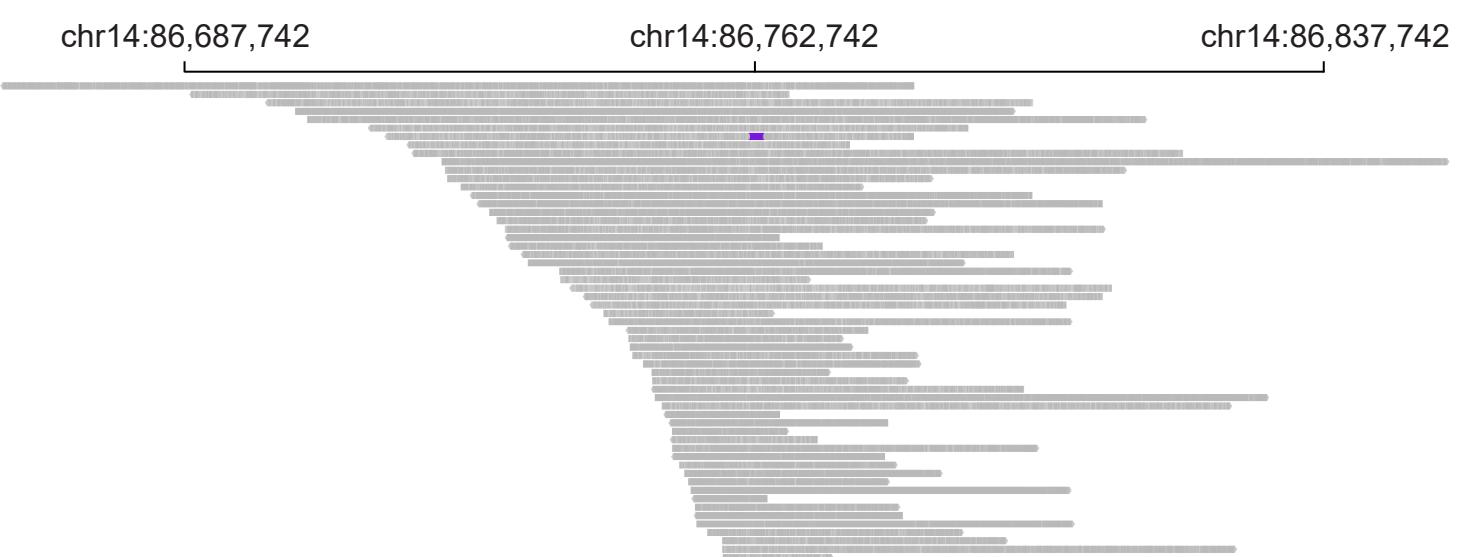


Figure S1. SARS-CoV-2 is replication competent in HEK293T cells, related to Figure 2. HEK293T cells were infected with SARS-CoV-2 isolate QLD02 at an MOI of 0.01, 0.1 and 1.0. Inoculum was removed after infection and cells were washed before the addition of growth media. Supernatant was collected at the indicated time points and viral titres were quantified as focus-forming units (FFU) per mL by immuno-plaque assay (iPA) (Amarilla et al., 2021) with a limit of detection (LOD) as indicated. Data are represented as the mean \pm standard deviation of three replicates.


A

B


C

D

E

Figure S2. Additional L1HS insertions detected by ONT sequencing in HEK293T cells, related to Figure 2.

(A) A near full-length L1. **(B)** A 5' truncated L1. **(C)** A 5' inverted/deleted L1 carrying a 3' transduction (purple rectangle) traced to a non-reference source L1. **(D)** A 5' inverted/deleted L1. **(E)** Integrative Genomics Viewer (Robinson et al., 2011) visualisation of read alignments spanning the L1 integration site displayed in Figure 2D. The L1 is coloured purple. Note: panels (A-D) show the genomic coordinates of an L1 insertion, as well as the sequence at the insertion site. Nucleotides highlighted in red correspond to the integration site TSD. Underlined nucleotides correspond to the L1 EN motif. Cartoons summarise the features of each L1, with the underneath numerals representing the 5' end position relative to the mobile L1HS sequence L1.3 (Dombroski et al., 1993), TSDs shown as red triangles, and 3' polyA tracts coloured as green rectangles. One spanning ONT read with its identifier is positioned underneath each cartoon. Symbols (α , β , δ , γ) represent the approximate position of primers used for empty/filled and L1-genome junction PCR validation reactions. The results of the L1-genome 3' junction PCR are shown for panel (A). Ladder band sizes are as indicated, NTC; non-template control. The red filled triangle indicates an on-target product confirmed by capillary sequencing. No on-target products were observed for the corresponding 5' junction PCR or the examples shown in panels (B-D).