

1 **Title: The Evolutionary History of Small RNAs in the Solanaceae**

2 **Short Title: Solanaceae Small RNA Evolution**

3

4 Patricia Baldrich^{1,*}, Sébastien Bélanger^{1,*}, Shuyao Kong^{2,*}, Suresh Pokhrel^{1,2,*}, Saleh
5 Tamim^{4,5,*}, Chong Teng¹, Courtney Schiebout^{1,6}, Sai Guna Ranjan Gurazada^{4,7}, Pallavi
6 Gupta^{1,8}, Parth Patel^{4,9}, Hamid Razifard², Mayumi Nakano¹, Ayush Dusia^{4,10}, Blake C.
7 Meyers^{1,3,#}, and Margaret H. Frank^{1,2,#}

8

9 * Contributed equally to the work (in alphabetical order)

10

11 #co-corresponding authors: Blake Meyers (bmeyers@danforthcenter.org) and Margaret
12 Frank (mhf47@cornell.edu)

13

14 1 - Donald Danforth Plant Science Center, St. Louis, MO 63132

15 2 - School of Integrative Plant Science, Cornell University, Ithaca, NY 14853

16 3 - Division of Plant Science and Technology, University of Missouri, Columbia, MO
17 65211

18 4 - Center for Bioinformatics and Computational Biology, University of Delaware,
19 Newark DE 19711

20 5 - Current address: Genomics Research Center, AbbVie, North Chicago IL 60064

21 6 - Current address: Dartmouth College

22 7 - Corteva Agriscience, Wilmington, DE 19805

23 8 - Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211

24 9 - Current address: Johnson & Johnson

25 10 - Current address: VMware Inc.

26

27 Margaret H. Frank, Donald Danforth Plant Science Center, St. Louis, MO 63132;

28 Current: Cornell University, School of Integrative Plant Science, Ithaca, NY 14853

29 <https://orcid.org/0000-0002-8269-8240>

30

31 *Sébastien Bélanger, Donald Danforth Plant Science Center, St. Louis, MO 63132
32 <https://orcid.org/0000-0002-6755-8207>

33
34 *Saleh Tamim, Center for Bioinformatics and Computational Biology, University of
35 Delaware, Newark DE 19711, Current: Genomics Research Center, AbbVie, North
36 Chicago IL 60064. <http://orcid.org/0000-0002-6215-7041>

37
38 Chong Teng, Donald Danforth Plant Science Center, St. Louis, MO 63132
39 <https://orcid.org/0000-0001-9898-6442>

40
41 *Patricia Baldrich, Donald Danforth Plant Science Center, St. Louis, MO 63132
42 <https://orcid.org/0000-0003-4669-6632>

43
44 *Suresh Pokhrel, Division of Plant Science and Technology, University of Missouri,
45 Columbia, MO 65211; Donald Danforth Plant Science Center, St. Louis, MO 63132
46 <http://orcid.org/0000-0002-5323-1940>

47
48 Blake C. Meyers, Division of Plant Science and Technology, University of Missouri,
49 Columbia, MO 65211; Donald Danforth Plant Science Center, St. Louis, MO 63132
50 <https://orcid.org/0000-0003-3436-6097>

51
52 *Shuyao Kong, Cornell University, School of Integrative Plant Science, Ithaca, NY
53 14853 <https://orcid.org/0000-0002-3124-8899>

54
55 Hamid Razifard, Cornell University, School of Integrative Plant Science, Ithaca, NY
56 14853 <https://orcid.org/0000-0002-6343-3052>

57
58 Previous contributors:
59 Mayumi Nakano, Donald Danforth Plant Science Center, St. Louis, MO 63132
60 <https://orcid.org/0000-0001-9317-4509>

61

62 Ayush Dusia, University of Delaware, Newark DE 19711. current: VMware Inc.,
63 <https://orcid.org/0000-0003-1310-8523>

64

65 Pallavi Gupta, Institute for Data Science & Informatics, University of Missouri, Columbia,
66 MO 65211. <https://orcid.org/0000-0003-0146-239X>

67

68 Courtney Schiebout, Donald Danforth Plant Science Center, current: Dartmouth
69 College, <https://orcid.org/0000-0002-4830-8237>

70

71 Parth Patel, Center for Bioinformatics and Computational Biology, University of
72 Delaware, Newark DE 19711, current: Johnson & Johnson, <https://orcid.org/0000-0002-0195-3933>

73

74

75 Sai Guna Ranjan Gurazada, Center for Bioinformatics and Computational Biology,
76 University of Delaware, Newark DE 19711, Current: Corteva Agriscience, Wilmington,
77 DE 19805. <https://orcid.org/0000-0002-3084-5683>

78

79 **ONE-SENTENCE SUMMARY**

80

81 We use over 255 publicly-available small RNA datasets to characterize the small RNA
82 landscape for the Solanaceae family.

83

84 **AUTHOR CONTRIBUTIONS**

85

86 B.C.M and M.H.F. conceived the original research plan and supervised the analyses,
87 and supervised and completed the writing; P.B., S.B., S.K., S.P., S.T., C.T., C.S., H.R.,
88 S.G.R.G, P. G. and P.P. performed the analyses, generated tables and figures, and
89 contributed to writing of the article; M.N and A.D. provided technical assistance with
90 data processing. M.H.F. agrees to serve as the author responsible for contact and
91 ensures communication.

92

93 **FUNDING INFORMATION**

94

95 The work was supported with funding from NSF IOS awards 1842698, 754097 and
96 USDA NIFA award 2019-67013-29010 to Meyers; NSF IOS awards
97 1523668 and 1942437 to M. Frank.

98

99

100 **ABSTRACT**

101

102 The Solanaceae or "nightshade" family is an economically important group that harbors
103 a remarkable amount of diversity. To gain a better understanding of how the unique
104 biology of the Solanaceae relates to the family's small RNA genomic landscape, we
105 downloaded over 255 publicly available small RNA datasets that comprise over 2.6
106 billion reads of sequence data. We applied a suite of computational tools to predict and
107 annotate two major small RNA classes: (1) microRNAs (miRNAs), typically 20-22 nt
108 RNAs generated from a hairpin precursor and functioning in gene silencing, and (2)
109 short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs (hc-siRNAs)
110 typically functioning to repress repetitive regions of the genome via RNA-directed DNA
111 methylation, as well as secondary phased siRNAs (phasiRNAs) and trans-acting
112 siRNAs (tasiRNAs) generated via miRNA-directed cleavage of a Pol II-derived RNA
113 precursor. Our analyses described thousands of small RNA loci, including poorly-
114 understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth,
115 death, expansion, and contraction of these small RNA loci are dynamic evolutionary
116 processes that characterize the Solanaceae family. These analyses indicate that
117 individuals within the same genus share similar small RNA landscapes, whereas
118 comparisons between distinct genera within the Solanaceae reveal relatively few
119 commonalities.

120

121

122 INTRODUCTION

123

124 Plant genomes encode thousands of small RNA (sRNA) loci that participate in a wide
125 variety of processes, including developmental transitions, epigenetic patterning, biotic
126 and abiotic stress responses, and local and long-distance communication. sRNAs are
127 18 to 24 nucleotide (nt) non-coding sequences that are loaded into Argonaute (AGO)
128 proteins to direct transcriptional or post-transcriptional gene silencing in a sequence-
129 specific manner. sRNAs can be divided into different classes based on their length,
130 biogenesis, and mode of action. This study focuses on microRNAs (miRNAs) and short
131 interfering RNAs (siRNAs).

132 MicroRNAs are typically 21- or 22-nt in length and originate from a self-complementary,
133 single-stranded (ss)RNA molecule, a Pol II product, that forms a hairpin structure. This
134 characteristic secondary structure is typically recognized by DICER-LIKE 1 (DCL1) and
135 processed through two sequential cleavage events into a mature double-stranded
136 (ds)RNA duplex; each of these mature miRNAs has the potential to be loaded into
137 Argonaute effector proteins (Axtell et al., 2011).

138 Small interfering RNAs (siRNAs) can be divided into multiple categories: hairpin
139 siRNAs, which are generated in a manner similar to miRNAs, heterochromatic siRNAs
140 (hc-siRNAs), and secondary siRNAs. hc-siRNAs are the most abundant and diverse
141 sRNA class in plants; they are typically 24-nt in length and originate from
142 heterochromatic regions of the genome (e.g. repetitive regions and transposable
143 elements). hc-siRNA precursors are transcribed by RNA Pol IV, converted into dsRNA
144 by RNA-DEPENDENT RNA POLYMERASE 2 (RDR2), and finally recognized and
145 cleaved by DCL3, generating mature duplexes of which individual sRNAs guide
146 sequence-specific RNA-directed DNA methylation (RdDM) (Won et al., 2014). In
147 contrast, secondary siRNAs are generated from coding and non-coding Pol II transcripts
148 and require a miRNA “trigger” to initiate production. Secondary siRNAs include phased
149 siRNAs (phasiRNAs), trans-acting siRNAs (tasiRNAs), and epigenetically activated
150 siRNAs (easiRNAs). PhasiRNA production is typically initiated by a 22-nt miRNA trigger

151 that recognizes and directs the cleavage of ssRNA targets, which are then transformed
152 into dsRNA by RDR6, and processed into “in phase” sRNAs via cleavage in a
153 sequential manner by DCL4 and DCL5 (Fei et al., 2013; Chen et al., 2018b).

154 The evolutionary history of sRNA biogenesis pathways is complex. While the core
155 pathways supporting the biogenesis of major sRNA classes are conserved across the
156 land plants, lineage-specific instances of duplication, subfunctionalization, and gene
157 loss often lead to complicated evolutionary relationships amongst AGO, DCL, and RDR
158 family members. In the AGO family, the moss genome of *Physcomitrella patens*, for
159 instance, contains three AGO genes (AGO1/4/7), while flowering plant genomes often
160 contain 10 to 20 AGO family members (Axtell, 2018). The *Arabidopsis* genome, for
161 example, contains ten AGO genes encoding proteins that can be broadly grouped into
162 three clades: AGO1/5/10, AGO2/3/7/8, and AGO4/6/9 (Zhang et al., 2015). These
163 individual AGO clades interact with distinct classes of sRNAs. For example, AGO1
164 predominantly binds 21 or 22-nt miRNAs, AGO4 binds 24-nt hc-siRNAs in the canonical
165 RNA dependent DNA methylation (RdDM) pathway, while AGO2 binds 22-nt siRNAs
166 that function in viral responses (Ma and Zhang, 2018). Additional AGOs have
167 undergone further subfunctionalization in select species, for example, there are four
168 AGO1 paralogs in rice, each of which has distinct miRNA binding affinities (Wu et al.,
169 2009). There are also instances of *de novo* function arising within the AGO gene family.
170 For example, maize AGO18b is a grass-specific AGO that functions the regulation of
171 inflorescence meristem development and negatively regulates spikelet number on the
172 tassel (Sun et al., 2018). Despite the functional importance of gene family expansion
173 and contraction amongst key components of sRNA biogenesis machinery, relatively
174 little characterization of the DCL, RDR, and AGO families has been carried out in the
175 Solanaceae. Existing data focused on small subsets of Solanaceae species have
176 characterized lineage-specific expansion events within the AGO (Liao et al., 2020),
177 RDR, and DCL families (Esposito et al., 2018). Given the abundance of genomic
178 resources now available for the Solanaceae, a more comprehensive, cross-species
179 characterization of these gene family members will help resolve questions with respect
180 to the evolution of unique aspects of sRNA biogenesis within this family.

181 The Solanaceae harbors a remarkable amount of morphological and metabolomic
182 diversity. The nightshade family includes staple crops (e.g. potato and eggplant), high-
183 value crops (e.g. tomato, pepper, petunia, and tobacco), and emerging crop systems
184 (e.g. ground cherry), making it the third most economically important plant family in the
185 world. Moreover, several species in the Solanaceae family serve as popular model
186 systems for studies of biological processes pronounced within this family, including fruit
187 ripening (Klee and Giovannoni, 2011; Shinozaki et al., 2018), plant-pathogen
188 interactions (Goodin et al., 2015; Pombo et al., 2020), and the production of specialized
189 metabolites (Fan et al., 2019; Leong et al., 2019). These model systems are supported
190 by high-quality reference genomes (Mueller et al., 2005; Potato Genome Sequencing
191 Consortium et al., 2011; Bombarely et al., 2012; Tomato Genome Consortium, 2012;
192 Qin et al., 2014; Bombarely et al., 2016) that have facilitated the generation and
193 analysis of genomic-scale deep sequencing datasets within the family. There are
194 currently more than 250 Solanaceae libraries, equating to over 2.6 billion reads of
195 publicly-available sRNA data available in the NCBI short read archive (SRA). Previous
196 work focused on specific aspects of sRNA biology within the Solanaceae have identified
197 unique sRNA phenomena that are associated with the diverse biology of this family.
198 One specific case is the miR482/miR2118 superfamily in Solanaceae, which also
199 includes miR5300 members. In eudicots, this family of 22-nt miRNAs targets the
200 encoded sequence of the P-loop motif of NLR disease resistance proteins (Shivaprasad
201 et al., 2012), generating a secondary siRNA cascade with implications for basal innate
202 immunity (Zhai et al., 2011; Shivaprasad et al., 2012). Evolutionary studies indicate that
203 this superfamily originated prior to the split of the *Solanum* and *Nicotiana* genera (de
204 Vries et al., 2015), and superfamily members have even been found in Gymnosperm
205 species, indicating that this miRNA family has deep evolutionary origins (Xia et al.,
206 2015).

207 Genomic resources that support cross-species analyses in land plants have grown
208 substantially over the last two decades. There are now more than 200 fully-sequenced
209 genomes covering major branches of the land plant phylogeny. In addition to the
210 availability of plant genomes, innovations in RNA library construction and sequencing
211 technologies, as well as algorithms and bioinformatic resources, have drastically

212 reduced experimental costs and facilitated the large-scale production of publicly-
213 available sRNA sequence data. Two recent studies using publicly-available and newly
214 generated sRNA datasets harvested from a broad range of land plant taxa have taken
215 advantage of these resources and substantially improved the annotation of miRNA,
216 phasiRNA and hc-siRNA loci in land plant genomes ([Lunardon et al., 2020](#); [Chen et al.,](#)
217 [2019](#)). These studies both show that siRNA loci are minimally conserved across
218 species, while mature miRNAs tend to be conserved across lineages ([Chen et al., 2019](#);
219 [Lunardon et al., 2020](#)). There are numerous lineage- or species-specific miRNA
220 sequences which correspond to young miRNAs ([Cuperus et al., 2011](#); [Chávez Montes](#)
221 [et al., 2014](#); [Lunardon et al., 2020](#)). Although large-scale studies produce a massive
222 amount of data and describe major evolutionary trends, they are often unable to capture
223 lineage- and species-specific phenomena.

224 In this study, we applied a suite of computational tools to a large collection of publicly-
225 available sRNA libraries to investigate the unique aspects of miRNAs and siRNA
226 biology within the Solanaceae. We describe thousands of sRNA loci, some of which are
227 unique to the Solanaceae. For example, we found that an annotated, Solanaceae-
228 specific miRNA family is actually a MITE-derived siRNA, and we observed family-wide
229 expression of *DCL2*-derived 21-nt phasiRNAs. Our analyses also revealed aspects of
230 sRNA biology that are only conserved at the sub-family level, including a lineage-
231 specific expansion of previously unidentified miRNAs in *Nicotiana*, a distinct split in
232 phasiRNA production between the *Solanum/Capsicum* and *Nicotiana/Petunia* branches
233 of the family, and distinct clusters of 22-nt sRNAs that are expressed in response to
234 viral infection in tomato. Overall, our analyses indicate that individuals within the same
235 genus share similar sRNA landscapes, whereas comparisons between distinct genera
236 within the Solanaceae reveal relatively few commonalities.

237

238 **RESULTS**

239

240 **Evolution of small RNA biogenesis genes in the Solanaceae**

241 sRNA biogenesis and function are regulated by proteins in the Nuclear RNA
242 Polymerase (NRP), RNA-dependent RNA polymerase (RDR), Double-stranded RNA
243 binding protein (DRB), Dicer-Like protein (DCL) and Argonaute protein (AGO) families.
244 To describe and interpret sRNA biogenesis and function in the Solanaceae, we
245 performed a phylogenetic analysis of these proteins encoded in genomes of
246 *Arabidopsis thaliana*, two Convolvulaceae outgroups (*Ipomoea trifida* and *Ipomoea*
247 *triloba*) and seven Solanaceae species (*Nicotiana benthamiana*, *N. tabacum*, *Petunia*
248 *axillaris*, *P. inflata*, *Capsicum annuum*, *Solanum lycopersicum* and *S. tuberosum*). In
249 Supplemental Table 1 we summarize the number of protein genes encoded for *NRP*,
250 *RDR*, *DCL*, *DRB* and *AGO* gene families in each species. Two observations emerged
251 from this table. First, some gene families expanded when comparing *Arabidopsis* to
252 members of the Convolvulaceae and/or Solanaceae families. For instance, the number
253 of genes expanded in the *AGO* family comparing *A. thaliana* (10 *AGO*s) to
254 Convolvulaceae (13 *AGO*s) or Solanaceae for the genus *Petunia* (12 or 13 *AGO*s) and
255 the genus *Solanum* (13 or 15 *AGO*s). A second observation was the appearance of
256 missing gene annotations for specific gene families in certain species (e.g. *NRP* genes
257 encoded in tomato and potato). Thus, we chose to focus on *AGO* and *DCL* gene
258 families in all species. All annotated genes are detailed in Supplemental Table 1. Their
259 evolutionary relationships are visualized in Figure 1 and Supplemental Figure 1.

260 *AGO* proteins are required to load sRNAs and to catalyze their functional activity. *AGO*
261 proteins can either trigger the biogenesis of sRNAs, through the miRNA-directed
262 cleavage of *TAS/PHAS* transcripts, or catalyze sRNA regulatory activity through
263 transcriptional or post-transcriptional regulation. Our phylogenetic analysis identified an
264 expansion of specific and distinct *AGO* genes for Convolvulaceae and Solanaceae
265 species when compared to *Arabidopsis*. For example, we identified a Convolvulaceae-
266 specific expansion for *AGO5* (to three copies) and *AGO7* (to two copies) that did not
267 occur in the Solanaceae (Figure 1; Supplemental Table 1). We also identified differential
268 *AGO* gene family expansion and loss across the Solanaceae. For instance, we
269 expected to find two copies of *AGO2/AGO3* (based on gene family membership in *A.*
270 *thaliana*) but we only identified one homolog in *Capsicum*, *Nicotiana* ssp. And *Petunia*
271 ssp., and three in *Solanum* ssp. (Figure 1; Supplemental Table 1). A common feature

272 that we observed across the Solanaceae was a family-wide expansion of *AGO1*;
273 depending on the particular species, we identified two to three *AGO1* paralogs within
274 the Solanaceae (Figure 1; Supplemental Table 1). To test whether this *AGO1*
275 expansion coincides with evidence for subfunctionalization, we downloaded and
276 visualized public expression data for the two *AGO1* paralogs we identified in *Solanum*
277 *lycopersicum* (Figure 1B; http://bar.utoronto.ca/eplant_tomato/). Interestingly, we
278 observed a distinct expression pattern of both copies with one mainly accumulating
279 during vegetative development (Solyc06g072300), while the other mainly accumulated
280 in fruits during reproductive development (Solyc03g098280). This observation suggests
281 that indeed, these *AGO1* paralogs are in the process of subfunctionalization in tomato.
282 We also discovered that *AGO2* expanded into triplicate copies that are located in
283 tandem on chromosome 2 in tomato (Figure 1A). Existing public data indicates that only
284 one of the three *AGO2* copies is expressed, and this is predominantly during fruit
285 development (Figure 1C). In brief, we discovered lineage-specific expansions of *AGO*
286 subfamily members in the Convolvulaceae and Solanaceae. Public expression data for
287 tomato indicates that these *AGO1* and *AGO2* paralogs may have subfunctionalized
288 following duplication.

289 We annotated additional sRNA biogenesis genes, including *NRP*, *RDR*, *DRB* and *DCL*
290 (Figure 2; Supplemental Figure 1; Supplemental Table 1), and discovered a subfamily
291 expansion of *DCL2* in the *Solanum* (tomato and potato) and *Capsicum* (pepper) branch
292 of the Solanaceae. For all three species, *DCL2* expanded through a tandem duplication
293 on chromosome 11 (annotated as chromosome 12 for pepper). In tomato, *DCL2*
294 underwent additional duplication events, expanding to three tandem duplicates on
295 chromosome 11 and additional copy on chromosome 6 (Figure 2). To gain insights into
296 the impact of gene expansion on function, we downloaded public expression data for
297 tomato, and found that the *DCL2* copy on chromosome 6 (Solyc06g048960) is broadly
298 throughout the whole plant and the three paralogs on chromosome 11
299 (Solyc11g008520; Solyc11g008530; Solyc11g008540) are specifically enriched in
300 flowers and fruits (Figure 2B). We also observed much higher expression levels for two
301 of the *DCL2* paralogs on chromosome 11 (Solyc11g008530; Solyc11g008540) relative
302 to the broadly expressed copy of *DCL2* on chromosome 6 (Solyc06g048960). Together,

303 these observations highlight a Solanaceae-specific expansion and putative
304 subfunctionalization of *DCL2*. See additional details about *DCL2* in our phasiRNA
305 analysis, below.

306
307 **Mining publicly-available Solanaceae sRNA data**
308 We selected seven core species in the Solanaceae (tomato, potato, pepper,
309 ‘petunia_ax’ *Petunia axillaris*, ‘petunia_in’ *P. inflata*, tobacco, ‘benth’ [*Nicotiana*
310 *benthamiana*]) for our cross-species analyses of sRNA loci. These species were
311 selected based on the availability of fully sequenced genome assemblies and publicly-
312 available sRNA data. Notably, we excluded eggplant from this study due to the paucity
313 of publicly-available *S. melongena* sequence data. In total, we analyzed over 2.6 billion
314 sRNA reads from 255 different libraries. By far, tomato and potato were the most
315 extensively sampled, having 84 and 73 high-quality publicly available libraries,
316 respectively, while tobacco was the least sampled species (represented by only 9
317 libraries on the NCBI SRA; Supplemental Dataset 1). The depth of sequencing also
318 varied quite substantially across libraries. This was largely due to the differences in
319 sequencing technologies. In line with previous studies, we counterbalanced this
320 heterogeneity in sequence depth by merging all high-quality libraries together and
321 treating them as independent reference sets (Lunardon et al., 2020). Most of these
322 reference sets included organ atlas samples that represent expression patterns from
323 diverse organ systems and developmental stages. The total number of genome aligned
324 reads for each species varied from just over 70-million reads for *Petunia axillaris* and
325 tobacco to more than 650 million reads for tomato (Supplemental Dataset 1).

326
327 **MicroRNA predictions indicate an expansion of novel miRNAs in *Nicotiana*
328 species**

329 We identified previously annotated and novel miRNAs across the Solanaceae using two
330 software programs: ShortStack and miR-PREFeR (Axtell, 2013; Lei and Sun, 2014).
331 While ShortStack was more conservative, and predicted fewer miRNAs in each species,
332 our miR-PREFeR datasets included some less reliable miRNA predictions. To maximize
333 our miRNA predictions while maintaining high-quality standards, we applied a post-

334 prediction filter that used previously published criteria for defining miRNAs, including a
335 minimum free energy of < -0.2 kcal/mol/nucleotide for precursor folding and the
336 expression of both miRNA/miRNA* strands of the miRNA duplex (Axtell and Meyers,
337 2018). After filtering, we combined both software predictions into a consensus set of
338 miRNAs with assigned annotations based on $\geq 85\%$ sequence similarity to miRBase
339 v22 (Supplemental Dataset 2). Overall, our analyses predicted between 124 and 440
340 miRNAs across the Solanaceous species (Figure 3; Supplemental Dataset 2). The
341 depth of sequence data did not correlate strongly with the number of miRNAs that we
342 predicted for a given species. For example, pepper (330) and benthi (440) had the
343 highest number of predicted miRNAs by far, even though these species are only
344 supported by a moderate
345 depth of sequence data relative to tomato, which only had 194 predicted miRNAs
346 (Supplemental Dataset 2). This indicates that our miRNA predictions were generally not
347 constrained by sampling.

348
349 We were surprised to find more than 400 predicted miRNAs in the benthi genome. To
350 gain higher confidence in these benthi predictions, we manually filtered the benthi
351 miRNA precursors based on the folding and expression of their predicted precursors
352 using StrucVis (Supplemental Datasets 2 & 3; <https://github.com/MikeAxtell/strucVis>).
353 Even after manual filtering, we had a substantial number of predicted miRNAs for benthi
354 (368), indicating that these predictions reflect a real lineage-specific miRNA expansion
355 in *Nicotiana* (Figure 3). In agreement with this conclusion, we also identified a relatively
356 high number of miRNAs in tobacco (194), despite having the lowest depth of sequence
357 data for this species. Notably, less than half of the miRNAs that we identified in either of
358 the two *Nicotiana* genomes could be annotated using miRBase, indicating that miRNA
359 expansion in *Nicotiana* was likely driven by the evolution of “young” lineage-specific
360 miRNAs. To learn how evolutionary age of these *Nicotiana*-specific miRNAs influences
361 function, we performed miRNA target predictions with the benthi miRNA dataset
362 (Supplemental dataset 4). We found that the more recently evolved, benthi specific
363 miRNAs were predicted to target fewer mRNAs (33.5 mRNAs) than the miRBase-
364 conserved miRNAs in benthi (55.6 mRNAs) (Supplemental Dataset 4), and that average

365 penalty scores for benthic-specific miRNAs were slightly higher (3.6) than the miRBase-
366 conserved miRNAs (3.5). Higher scores equate to a less reliable miRNA target match
367 (Kakrana et al., 2015), therefore the benthic-specific miRNAs tend to have less reliable
368 target predictions. Overall, this analysis indicates that more recently evolved *Nicotiana*
369 miRNAs have fewer and less reliable targets, which may equate to more limited
370 functions.

371

372 We also characterized a substantial expansion of predicted miRNAs in pepper (330),
373 which is congruent with previous miRNA predictions for this species (Seo et al., 2018;
374 Taller et al., 2018). In contrast, we predicted relatively few miRNAs for both of the
375 petunia genomes (124 - *P. inflata* and 126 - *P. axillaris*). This reduced number of
376 predicted miRNAs in petunia may simply reflect a lack of sample diversity for these
377 species; publicly-available sRNA-seq datasets for petunia are predominantly composed
378 of floral samples (Supplemental Dataset 1). Indeed, a previous analysis using combined
379 miRNA prediction software and a homology based search for known miRNAs
380 characterized about 140 miRNAs for both petunia genomes, indicating that our *de novo*
381 predictions on their own are missing putative miRNA loci. Increasing the diversity of
382 sRNA samples would likely improve miRNA annotations for this genus (Bombarely et
383 al., 2016). Finally, we only identified a moderate number of predicted miRNAs in the
384 Solanum genus (potato = 160, tomato = 194), despite having a substantial amount of
385 sequence data (>80 sRNA libraries) for tomato. Solanum is by far the best
386 characterized genus in the Solanaceae with regard to sRNA biology. Given that our
387 predictions for this genus are similar to those from previous studies, we are likely
388 approaching a consistent set of Solanum-specific miRNA predictions (Tomato Genome
389 Consortium, 2012; Zhang et al., 2013; Cardoso et al., 2018; Zuo et al., 2020; Deng et
390 al., 2021).

391

392 **miRNA families are conserved within genera**

393 To gain insight into miRNA conservation across Solanaceous species, we collapsed all
394 predicted miRNAs into clusters using a 75% sequence similarity cutoff, and annotated
395 the clusters with miRBase (v22 all land plant miRNAs (Kozomara et al., 2019);

396 Supplemental Dataset 5). This resulted in 911 clusters; 392 of which are present in two
397 or more species, 172 that are conserved at the genus level (i.e. *Solanum*-conserved,
398 *Petunia*-conserved, and *Nicotiana*-conserved), and only 12 that are conserved across
399 all seven species in this study (Supplemental Dataset 5; Figure 3B-C). The 12
400 conserved clusters can be further condensed into a handful of known miRNA families
401 based on annotations that are broadly conserved across the land plants (e.g. -
402 miR156/157, miR164, miR169/miR399, miR171, miR399, miR165/166/168, and
403 miR172, miR482/miR2118 (Axtell and Meyers, 2018). We designated clusters that
404 could not be annotated with miRBase as “novel.” The majority of these novel clusters
405 appear to be newly-evolved, species-specific miRNAs, while the majority of clusters that
406 are conserved across multiple species (present across ≥ 3 species) aligned with
407 annotated miRNAs in miRBase. In agreement with previous studies showing that
408 lineage-specific miRNAs tend to be weakly expressed relative to conserved miRNAs,
409 we found that the expression of conserved miRNAs was significantly higher on average
410 relative to novel miRNAs (Supplemental Figure 2; benthic p-value = 0.00057903, pepper
411 p-value = 1.98548E-08, potato p-value = 1.97921E-06, tomato p-value = 2.27413E-07,
412 petunia p-value = 2.39254E-05, tobacco p-value = 5.89638E-08; (Axtell et al., 2007)).
413

414 **Solanaceae-specific miRNA family miR5303 is derived from MITE loci**

415 Among the most conserved miRNA groupings, we identified three clusters containing a
416 Solanaceae-specific miRNA, miR5303 (Gu et al., 2014). With the exception of petunia,
417 the miR5303 family was present in relatively high copy numbers across the
418 Solanaceous genomes (7 to 11 miRNAs in each species; Supplemental Dataset 5;
419 Supplemental Figure 3). It is rare for miRNAs to be present in such high copy numbers;
420 however, our findings are congruent with a previous study that identified a high number
421 of miR5303 copies in tomato, potato, eggplant, and pepper (Gu et al., 2014). To
422 correctly identify miR5303 family members, we first aligned all miR5303 variants in
423 miRBase v22 (Figure 4), and found that most of the variants are 24-nt in length, which
424 again, is atypical for a bona fide miRNA family (Meyers et al 2008; Fig 4A). We identified
425 nine miR5303 variants that are 21-nt in length in our tomato predictions that have $\geq 75\%$
426 similarity with miR5303 miRBase entries, and found that six of these tomato miRNAs

427 clustered into a family containing a conserved 5' - UUUUG consensus sequence
428 (highlighted by yellow rectangles in Fig 4B). To further characterize the function of this
429 family, we performed a miRNA target prediction analysis using all coding sequences in
430 the tomato genome as putative targets. We found that miR5303 family members are
431 predicted to target thousands of genes in the tomato genome, which again, is unusual
432 for a miRNA family (Supplemental Dataset 6). Given the presence of 24 nucleotide
433 mature miRNA variants that are reminiscent of 24-nt siRNAs, and the perfect/near
434 perfect folding of miR5303 precursor sequences that are often formed by inverted
435 repeats (Figure 4C), we decided to test whether miR5303 actually originates from
436 miniature inverted-repeat transposable elements (MITEs) in Solanaceae genomes.
437 Notably, MITEs exist in high copy numbers, can form hairpin sequences that are
438 structurally similar to miRNAs, and are known to generate 24-nt siRNAs (Kuang et al.,
439 2009). To test whether miR5303 family members originated from MITEs, we blasted
440 precursors of miR5303 from tomato against a plant MITE database (Chen et al, 2013)
441 and found that they align perfectly with annotated MITEs, with the miR5303 mature
442 miRNA variants mapping to the terminal inverted repeat (TIR) ends of the MITEs
443 (Figure 4D). We therefore conclude that miR5303 is not a miRNA, but a MITE.

444

445 **Identification of 21-nt *PHAS* loci support genus-level conservation of phasiRNA 446 biology**

447 We applied two bioinformatic tools: PHASIS (Kakrana et al. 2017) and ShortStack
448 (Axtell 2013), to assemble a list of 21-nt *PHAS* loci across the Solanaceae. To classify
449 coding versus non-coding phasiRNAs we merged *PHAS* locus coordinates with gene
450 annotation files for each species. Some of the lesser studied Solanaceae genomes
451 have incomplete annotations which resulted in an overprediction of non-coding loci for
452 petunia, pepper, and benth. To correct this imbalance, we used BLAST to align all non-
453 coding *PHAS* loci to the NCBI nr database (Altschul et al., 1990), and manually
454 annotated loci that aligned to protein-coding, rRNA, and non-coding RNA sequences
455 (Figure 5; Supplemental Dataset 7). *PHAS* loci are typically triggered by 22-nt miRNAs
456 that have a 5' Uracil bias (Chen et al., 2010; Cuperus et al., 2010). To identify putative
457 triggers for 21-nt phasiRNA production, we ran target predictions using our list of mature

458 22-nt miRNAs plus miR390 as triggers and predicted *PHAS* loci as targets
459 (Supplemental Dataset 8).

460 PhasiRNAs are predominantly generated from transcripts of genes encoding disease
461 resistance-related NB-LRRs, pentatricopeptide repeat (PPR) proteins, MYB
462 transcription factors, and trans-acting siRNA (*TAS*) loci (Liu et al., 2020; Shivaprasad et
463 al. 2012). We identified 2-3 times more *PHAS* loci in *Solanum* (tomato and potato) and
464 *Capsicum* (pepper) species than *Nicotiana* and *Petunia* (Figure 5). The majority of these
465 *Solanum/Capsicum* loci were derived from disease resistance-related genes that are
466 putatively triggered by the miR482/miR2118 superfamily (Figure 5A; Supplemental
467 Dataset 8). We also characterized an *NB-LRR* pseudogene, *TAS5*, which was recently
468 shown to function in pathogen response in tomato (Canto-Pastor et al., 2019). In
469 contrast, the *Nicotiana* and *Petunia* genomes expressed relatively few disease
470 resistance related phasiRNAs, and likewise, had very few loci with predicted
471 miR482/miR2118 target sites (Figure 5A; Supplemental Dataset 8). We also found a
472 substantial number of non-coding loci that we decided to examine in further detail with
473 the goal of uncovering novel *TAS* loci within the Solanaceae. As a quality control, we
474 confirmed that *TAS3*, a deeply-conserved non-coding phasiRNA, was detected in all of
475 our species datasets (Supplemental Dataset 7; (Xia et al., 2013)). Most notably, we
476 discovered a previously uncharacterized, non-coding locus in both tomato and potato
477 (Figure 5B). This locus is >80% conserved between the two species and generates
478 highly abundant 21-nt siRNAs, some of which putatively target genes encoding MYB
479 transcription factors (Supplemental Figure 4). We performed a BLAST alignment
480 between the tomato *PHAS* locus and all other non-coding *PHAS* loci to determine
481 whether this locus exists outside of *Solanum*. This search failed to uncover any
482 significant alignments, indicating that this novel phasiRNA evolved after *Solanum* split
483 from other genera in the Solanaceae (Särkinen et al., 2013).

484 As mentioned above, PPR-derived *PHAS* loci are abundantly expressed in other
485 species. In our analysis, we only identified two PPR-related *PHAS* loci in the
486 Solanaceae: one in tomato (Solyc10g076450) and one in potato
487 (PGSC0003DMG400020556). We did, however, find strong evidence for another, well-

488 described siRNA mechanism for the transcriptional regulation of PPR genes, in which
489 non-coding *TAS-like-1/2* (*TASL1/2*) loci are triggered by miR7122, generating 21-nt
490 products that in turn target, and likely silence, PPR genes (Xia et al., 2013; Figure 5C).
491 We identified *TASL1/2* and its associated miR7122 trigger in both *Nicotiana* species
492 (benthii and tobacco). As demonstrated in other species, major 21-nt products from
493 these *TASL* loci target PPR genes (Supplemental Figure 4A-F). Surprisingly, we found
494 no evidence for *TASL1/2* and its miR7122 trigger in other Solanaceae genera. Given
495 the conservation of this locus in other eudicots outside of the Solanaceae family, we
496 hypothesize that miR7122-*TASL1/2* is conserved in *Nicotiana* and was independently
497 lost from the other genera in the nightshade family (Xia et al., 2013).

498 To investigate whether *PHAS* loci are generated from orthologous genes across
499 species, we constructed gene orthogroups and searched for conserved *PHAS* loci
500 within these orthogroupings (Supplemental Dataset 9). Overall, this analysis yielded
501 surprisingly few orthologous *PHAS* loci within the Solanaceae. Following up on our
502 earlier analysis of *DCL2* duplication within sub-groups of the Solanaceae, we also
503 discovered that *DICER-LIKE2* (*DCL2*) is broadly expressed as a phasiRNA-producing
504 locus that is present in all of the species in our study (Figure 6). Interestingly, this *PHAS*
505 locus has been previously reported in the Fabaceae, where it is triggered by different
506 miRNAs in medicago and soybean, indicating convergent evolution of phasiRNA
507 production at *DCL2* (Zhai et al., 2011). A *DCL2* *PHAS* locus has also been identified in
508 tomato (Canto-Pastor et al. 2019); however, this is the first instance of its widespread
509 presence across the nightshade family. As reported earlier in the results, *DCL2* has
510 expanded through tandem duplications that are shared in the tomato, potato, and
511 pepper genomes (Figure 2). We found the genomic regions containing these tandem
512 *DCL2* paralogs to be structurally conserved on *Solanum* chr11/*Capsicum* chr12 (Figure
513 6A). Recently, a *DCL2*-dependent miRNA (miR6026) was validated as a trigger for
514 phasiRNAs derived from the *DCL2* locus in tomato (Wang et al., 2018), creating a
515 negative feedback loop on *DCL2*. To investigate whether the same miRNA trigger
516 initiates *DCL2* phasiRNA production in the rest of the Solanaceae, or, as in the
517 Fabaceae (Zhai et al., 2011), independent triggers evolved at this locus, we looked for
518 shared miRNA-*PHAS* locus interactions. We identified a conserved target site with a

519 strong target score for miR10533 in tomato, potato, pepper, and petunia (Figure 6B).
520 Like miR6026, miR10533 is also dependent on DCL2 for its biogenesis (Wang et al.,
521 2018). However, unlike in the Fabaceae, where phasiRNA production proceeds
522 immediately after the miRNA target site (Zhai et al., 2011), *DCL2* phasiRNAs are
523 produced both upstream and downstream of the miR10533/miR6026 target sites in the
524 Solanaceae (Figure 6A). This imprecise initiation of phasing either indicates that there
525 are additional miRNA triggers for this locus, or we are seeing the product of trans-
526 triggering from 22-nt siRNAs that are generated by neighboring *DCL2* paralogs (Figure
527 6).

528

529 **hc-siRNAs and transposable elements across SOL genomes**

530 Transposable elements (TEs) are recognized as one of the major evolutionary forces
531 that can shape genomes, via mutations and genome rearrangements. Presumably as
532 protection from the possible detrimental consequences generated by TEs, plants have
533 evolved a mechanism using 24-nt heterochromatic siRNAs (hc-siRNAs) that methylate
534 and repress TEs (Ahmed et al., 2011; Wang et al., 2013). In order to analyze the hc-
535 siRNA landscape in Solanaceae, we first identified TEs in all the available genomes.
536 We observed that TEs represent between 25% (in petunia) and 48% of the genome (in
537 *benthii*) (Supplemental Figure 5). As expected, the majority of TEs belong to an
538 abundant LTR retrotransposon family, with most LTRs mapping specifically to
539 Gypsy/Ty3 and Copia/Ty1 elements (Galindo-González et al., 2017) (Supplemental
540 Figure 5A). Previous work mapped an expansion of LTRs in the Pepper genome; our
541 results indicate that this observation applies broadly across the Solanaceae, and is
542 likely a generalized signature of Solanaceous genomes (Park et al., 2012; Vicent and
543 Casacuberta, 2017). After identifying TEs we analyzed the number of 24-nt reads that
544 originate from each of the transposon superfamilies. Due to the repetitive nature of TEs,
545 we did not attempt to further classify the sRNA reads into TE subfamilies. We observed
546 that most of the sRNA reads mapped to retrotransposons, including LTR and non-LTR
547 TEs (Supplemental Figure 5B). However, we were surprised to find that a large portion
548 of hc-siRNAs also mapped to SINE elements. SINE elements comprise a unique subset
549 of TEs; they are transcribed by RNA polymerase III, do not encode proteins, and are

550 widespread in almost all multicellular eukaryotic genomes, with the exception
551 *Drosophila* (Kramerov and Vassetzky, 2011). Our discovery of SINE-derived hc-siRNAs
552 indicates that similar to LTRs, the spread of non-autonomous SINE elements is
553 repressed via hc-siRNA-directed methylation.

554

555 Next, we analyzed the distribution of hc-siRNAs across Solanaceous genomes. We
556 focused this analysis on tomato, pepper, potato and tobacco, which all have
557 chromosome-scale assemblies. As expected, we found relatively high accumulation of
558 hc-siRNAs along the telomeric ends of chromosomes; these hc-siRNAs promote
559 telomere methylation in an RdDM-dependent manner (Vrbsky et al., 2010). We also
560 observed a striking lack of hc-siRNAs across the entire potato genome (Figure 7). This
561 result is similar to a previous observation described in strawberry, where, as in potato,
562 asexual cloning is the primary means of propagation. Clonally propagated strawberry
563 accumulates very low levels of DNA methylation relative to sexually propagated plants
564 (Niederhuth et al., 2016). In the same way, we postulate that depleted hc-siRNA levels
565 in potato could be caused by repeated rounds of asexual propagation. Further studies
566 comparing sexually versus asexually propagated potato varieties would help resolve the
567 connection between mode of reproduction and whether circumventing meiosis over
568 multiple generations leads to degeneration of RNA-directed DNA methylation.

569

570 **Discovery of 22 nucleotide clusters expressed in response to geminivirus
571 infection**

572 A recent study in *Arabidopsis* characterized a class of 22-nt stress-responsive siRNAs
573 that impact global translational repression (Wu et al. 2020). To test whether a similar
574 class of sRNAs is present in the Solanaceae, we performed an analysis on our tomato
575 expression libraries which contain the most extensive sampling with regard to abiotic
576 and biotic stress treatments. We found a strongly-expressed cluster of 22-nt sRNA
577 reads that mapped to a 4.8 kb region of the *S. lycopersicum* genome. Interestingly, this
578 22-nt sRNA cluster was uniquely expressed in a set of geminivirus infected samples
579 (ToLCV-infected and TYLCV-infected), and absent from the rest of the tomato
580 expression libraries, including mock-treated controls (Figure 8). This cluster of 22-nt

581 sRNAs contains a *DISEASE RESISTANCE PROTEIN* (Solyc05g005330.3.1) and
582 *ABSCISIC ALDEHYDE OXIDASE 3* (Solyc05g005333.1.1). To investigate whether
583 there are additional 22-nt clusters that are specifically expressed in response to viral
584 infection, we applied an intensive, genome-wide analysis to uncover highly expressed
585 22-nt sRNA clusters in the two viral-infected samples, using our mock treated libraries
586 as controls. This genome-wide search uncovered 1,521 22-nt sRNA clusters in total,
587 390 of which passed our filtering criteria (Supplemental Figure 6 and Supplemental
588 Dataset 10), of which, 22 showed more than a 4-fold induction in both viral treatments
589 (Supplemental Figure 6B and Supplemental Dataset 10). Apart from the cluster shown
590 in Figure 8A & B, one prominent example is the two clusters shown in Figure 8C & D,
591 which are induced by 1,000-fold in response to ToLCV infection and by 10,000-fold in
592 response to TYLCV. These highly-expressed, viral-induced clusters overlap with three
593 gene copies of *EIN3-BINDING F-BOX PROTEIN 1* (Solyc05g008700.2.1,
594 Solyc05g008720.1.1, and Solyc05g008730.1.1), one *MYZUS PERSICAЕ-INDUCED*
595 *LIPASE 1* (Solyc05g008710.1.1), and one *RNA-DEPENDENT RNA POLYMERASE*
596 (Solyc05g008740.1.1). Further studies are needed to test whether these geminivirus-
597 induced 22-nt sRNA clusters have a functional role in plant defense to viral pathogens.

598

599 **DISCUSSION**

600

601 The Solanaceae family is widely used as a model for studying the evolutionary
602 diversification of specialized metabolism (Fan et al., 2019), morphology (Koenig and
603 Sinha, 2007; Martinez et al., 2020), fruit development (Klee and Giovannoni, 2011), and
604 biotic and abiotic stress tolerance. In this study, we took advantage of the numerous
605 publicly-available sRNA datasets that have been generated for the family to explore
606 unique aspects of sRNA biology within the Solanaceae. We found several features that
607 are shared amongst diverse Solanaceous species including a Solanales-wide
608 duplication of sRNA biogenesis machinery, a previously-annotated Solanaceae-specific
609 miRNA family that we show is actually a MITE-derived miRNA-like siRNA, and DCL2-
610 derived 21-nt phasiRNAs that are broadly expressed across the diverse taxa in our
611 study. We also found several phenomena that evolved within sub-family lineages of the

612 Solanaceae. We discovered a *Nicotiana*-specific expansion of novel miRNAs, a distinct
613 split in the number and types of phasiRNAs that are produced in the *Capsicum/Solanum*
614 versus the *Petunia/Nicotiana* branches of the family, a dramatic depletion of 24-nt hc-
615 siRNAs in asexually propagated potato, and 22-nt siRNA clusters that accumulate in
616 response to viral infection in tomato. Below, we discuss some of the evolutionary
617 implications for Solanaceae-wide and sub-family specific sRNA phenomena that we
618 discovered in this study.

619

620 **Expansion and subfunctionalization of sRNA biogenesis machinery within the**
621 **Solanaceae**

622 In our reconstruction of sRNA biogenesis machinery gene trees, we
623 characterized lineage-specific expansions of *AGO1*, *AGO2* and *DCL2* gene families.
624 While *AGO1* increased in copy number across the Solanaceae, *AGO2* and *DCL2*
625 specifically expanded in the *Solanum*, and *Solanum/Capsicum* branches of the family,
626 respectively, through tandem duplications. The tandem *DCL2* paralogs have been
627 previously characterized to function as part of the tomato viral defense response ([Wang
628 et al., 2018](#)), discussed in further detail below. Using public expression data for tomato,
629 we identified distinct expression patterns in vegetative and reproductive organs for
630 *DCL2* paralogs, with enriched abundance in reproductive organs, suggesting that these
631 gene paralogs are undergoing subfunctionalization. Recent studies show that 24-nt
632 phasiRNAs are produced only in reproductive organs of angiosperms, while 21-nt
633 phasiRNAs are produced in both vegetative and reproductive tissues (Xia et al, 2019,
634 Pokhrel et al., 2020). The 24-nt reproductive phasiRNAs are triggered by miR2275 in
635 most of the angiosperms while in Solanaceous species, the miRNA trigger remains
636 unknown (Xia et al, 2019, Pokhrel et al, 2021). Given that *DCL2* was shown to process
637 endogenous 22-nt miRNAs, and that the expression of some *DCL2* paralogs peak in
638 reproductive organs, it would be interesting to functionally test whether this *DCL2*
639 paralog expressed in reproductive tissues specifically processes a 22-nt miRNA that
640 triggers reproductive 24-nt phasiRNA biogenesis.

641

642 **Solanaceae-wide miR5303 cluster is derived from MITEs**

643 Our cross-species miRNA predictions and clustering revealed 12 family-wide clusters of
644 miRNAs. While the majority of these clusters are associated with deeply-conserved land
645 plant miRNA families that are shared outside of the Solanaceae, we investigated the
646 Solanaceae-specific cluster annotated as miR5303 (Mohorianu et al., 2011). We
647 discovered that this family exhibits many features that are atypical of miRNAs. For
648 example, related miR5303 sequences in miRBase include both 21-nt and 24-nt mature
649 sequences and most of the Solanaceae genomes harbor relatively high copy numbers
650 of miR5303 isomiRs that putatively target thousands of genes based on our miRNA-
651 target prediction analysis. We found that, similar to a previous study on MITE-derived
652 miRNA-like siRNAs, mature miR5303 “miRNA” sequences align perfectly to the terminal
653 inverted repeat (TIR) region of Solanaceae MITEs. (Kuang et al., 2009). How did our
654 miRNA prediction pipeline lead to the identification of MITE-derived sRNAs? MITEs
655 have near perfect hairpin folding and express sRNAs within mature miRNA size ranges,
656 and thus fit many of the criteria used to predict novel miRNA precursors. It has been
657 proposed that MITEs may contribute to the *de novo* evolution of miRNAs. However, this
658 model is somewhat controversial, as MITEs tend to express imprecise sRNAs that are
659 variable in both length and sequence, and thus are more likely the products of siRNA
660 rather than miRNA biogenesis machinery (Cui et al, 2017). Even so, the conspicuous
661 presence of miR5303-related sRNAs exclusively in the Solanaceae is intriguing, and
662 further investigation into putative functional roles for these siRNAs could be interesting.
663

664 ***DCL2* is a broadly expressed *PHAS* locus that may control viral responses across
665 the Solanaceae**

666 In a previous study focused on mechanisms of viral resistance in tomato, paralogous
667 copies of *DCL2* were shown to process a 22-nt miRNA (miR6026) that has dual
668 functions, participating in antiviral responses and creating a self-regulating feedback
669 loop by triggering *DCL2* phasiRNA production ([Wang et al., 2018](#)). In this study we
670 identified *DCL2* as a widely-expressed *PHAS* locus that is present in all seven
671 Solanaceous species in our study. Contrary to previous characterization of this locus,
672 we predicted that another 22-nt miRNA, miR10533, triggers phasiRNA production in
673 *Solanum*, *Capsicum*, and *Petunia* genera. Similar to miR6026, miR10533 targets

674 disease resistance-related genes in addition to *DCL2* (Supplemental Dataset 8). Based
675 on the accumulation patterns of *DCL2* phasiRNAs, neither miRNA appears to be an
676 obvious trigger, although target mimic experiments with miR6026 showed reduced
677 *DCL2* phasiRNA production (Wang et al., 2018). We identified the miR6026 site more
678 than 250 bp outside of our predicted phasiRNA production region, whereas miR10533 is
679 sandwiched within the phasiRNA register (Figure 6). The lack of an obvious trigger
680 suggests two possibilities: 1) there may be another, as yet unidentified miRNA trigger,
681 and/or 2) as hypothesized by previous authors, the 22-nt sRNA products generated
682 from the *DCL2* paralogs may be cross triggering one another in *cis*, creating multiple
683 phasiRNA initiation sites (Wang et al., 2018). We have performed extensive miRNA
684 predictions for tomato, given the depth of sRNA sequence data available for this
685 species, and thus it is unlikely that we are simply missing an additional trigger for *DCL2*
686 phasiRNA production. Consistent with the second hypothesis, we observed weaker
687 phasing scores across most of the *DCL2 PHAS* loci, indicating that cross-locus
688 regulatory interactions trigger phasiRNA production across *DCL2* loci.

689

690 *DCL2 PHAS* loci have also been identified in two different Fabaceae models, soybean
691 and medicago, where they are triggered by independent miRNAs (Li et al., 2010; Zhai et
692 al., 2011). Our study, in combination with this previous work, shows that phasiRNA
693 target-trigger interactions around *DCL2* have evolved multiple times within and across
694 eudicot families. This evolutionary hotspot for phasiRNA production fits into a model in
695 which the expression of sRNA biogenesis machinery is regulated via self-triggered
696 phasiRNA production. Depending on the species, different components of sRNA
697 biogenesis machinery are processed into *PHAS* loci. In soybean, for example, SGS3 is
698 targeted for phasiRNA production (Song et al., 2011), and in *Arabidopsis*, AGO1 and
699 *DCL1* are both processed into *PHAS* loci (Xie et al., 2003; Vaucheret et al., 2004). Why
700 do plants use post-transcriptional regulation to control siRNA biogenesis machinery?
701 One potential theory is that by regulating sRNA biogenesis machinery at the post-
702 transcriptional level, plants can maintain a standing pool of transcripts for sRNA
703 biogenesis that can be rapidly released and translated in response to pathogens.

704

705 **Lineage-specific expression of miRNAs and phasiRNAs**

706 One of our goals in this study was to identify miRNAs that are uniquely conserved within
707 the Solanaceae; however, as discussed above, we demonstrate that miR5303, the only
708 Solanaceae-specific “miRNA family” that we were able to predict in all of our study
709 species, is actually a MITE-derived siRNA. Rather than uncovering broadly conserved
710 miRNAs, we discovered numerous instances of lineage-specific miRNAs, with the most
711 pronounced example coming from our representative species for *Nicotiana*. Even after
712 stringent filtering, we predicted over 350 miRNAs in the benthii genome, with more than
713 half of these comprising previously unannotated, lineage-specific miRNAs. Congruent
714 with previous observations, we show that these lineage-specific miRNAs are generally
715 expressed at lower levels than deeply conserved family members (Supplemental Figure
716 2) (Axtell et al., 2007). There are, however, a handful of newly annotated miRNAs that
717 are abundantly expressed (>1,000 rpm; Supplemental Figure 2). Given the ease of
718 agrobacterium infiltration in benthii, followup studies using transiently expressed target
719 mimic knockdowns and PARE sequencing may provide new insight into the targets and
720 putative functions of these rapidly-evolving *Nicotiana*-specific miRNAs. One bottleneck
721 that we encountered in this analysis was a lack of deep sRNA sequence data for
722 tobacco. Despite the lack of sampling in tobacco, we still predicted more than 150
723 miRNAs for this genome, which is similar to the number of miRNAs that we found in the
724 tomato genome, despite having almost 10 times more sRNA sequence data for tomato.
725 We are likely looking at the tip of the iceberg when it comes to miRNA discoveries in
726 tobacco, and we predict that deeper sequencing in tobacco and related *Nicotiana*
727 species will facilitate big gains when it comes to miRNA discovery in the Solanaceae.
728

729 In a reverse trend, our genome-wide 21-nt phasiRNA predictions uncovered relatively
730 few *PHAS* loci for *Nicotiana* and *Petunia* species compared to the *Solanum/Capsicum*
731 branch of the family (Figure 5A). A distinct lack of *PHAS* loci encoding NB-LRRs in
732 *Nicotiana* and *Petunia* accounts for one of the biggest differences in the number of
733 *PHAS* loci between these two branches of the family. We also discovered two strongly
734 expressed non-coding *PHAS* loci that are conserved at the sub-family level. One is
735 conserved in both benthii and tobacco, and was previously described to function in the

736 post-transcriptional regulation of PPR genes (Supplemental Figure 4) (Xia et al., 2013).
737 The other locus is uncharacterized, and specific to tomato and potato (Figure 5B). We
738 discovered that this new *PHAS* locus produces a prominent 21-nt siRNA that putatively
739 targets MYB transcription factors (Figure 5D). It would be interesting to test whether this
740 Solanum-specific *PHAS* locus really does function in regulating the expression of MYB
741 transcription factors. PhasiRNA production is triggered by miRNAs. Therefore, it is
742 logical that in addition to discovering lineage-specific miRNAs, we also found lineage-
743 specific *PHAS* loci across the Solanaceae.

744

745 **Repressed hc-siRNA expression reflects a history of asexual propagation in**
746 **potato**

747 Our genome-wide hc-siRNA analysis revealed a low abundance of 24-nt TE-associated
748 siRNAs in potato. We hypothesize that this relative depletion in potato is caused by the
749 asexual means of propagation that is common for this crop. Epigenetic marks are
750 faithfully copied during mitosis; however, during meiosis, they are reset by RdDM-based
751 repatterning, which involves TE-derived hc-siRNAs directing DNA methylation (Daxinger
752 et al., 2009; Schoft et al., 2009; Mosher and Melnyk, 2010; Slotkin et al., 2009;
753 Verhoeven and Preite, 2014). Asexual propagation circumvents meiosis, and thus this
754 RdDM-based resetting of epigenetic marks is avoided (Verhoeven and Preite, 2014),
755 and over many rounds of asexual propagation DNA methyl-cytosine marks and their
756 associated hc-siRNAs may become depleted. In line with this hypothesis, a related
757 study investigating genome-wide DNA methylation patterns in diverse species found a
758 stark depletion in CHH cytosine methylation in strawberry, another asexually
759 propagated species (Niederhuth et al., 2016). However, there are limitations to our
760 conclusions regarding depleted hc-siRNAs in potato. These limitations include imperfect
761 sampling, notably, the majority of our potato samples are from vegetative tissues
762 (although this is true for most of the species in this study; Supplemental Dataset 1), and
763 insufficient information about the source tissue that was used to generate these public
764 datasets, particularly information regarding how many generations of asexual
765 reproduction the source tissue underwent prior to sampling. Since sRNA-derived TE
766 silencing gradually accumulates over multiple generations, a well-devised study

767 comparing long-term asexually versus sexually propagated source tissue would help
768 resolve whether levels of RdDM are directly impacted by assexual propagation, and
769 whether these hc-siRNAs could be reactivated during reproductive development.

770

771 **22-nt clusters expressed in response to viral infection in tomato**

772 Recent work in *Arabidopsis* uncovered 22-nt siRNAs that are expressed in response to
773 environmental stress, and are capable of impacting global translational repression,
774 including the translation of their cognate genes. Moreover, this translational repression
775 is correlated with an inhibition of growth and activation of stress-response pathways
776 (Wu et al. 2020). In this study, we identified similar 22-nt siRNA clusters in tomato that
777 are expressed in response to viral infection. Whether these siRNAs are also involved in
778 attenuating global translation and growth so that more resources can be allocated to
779 antiviral response remains to be seen. Several of the clusters that we identified are
780 generated from genes involved in ABA production and ethylene signaling, indicating that
781 these 22-nt siRNA clusters may coordinate genomic responses to pathogen attack by
782 fine tuning the expression of ABA and ethylene pathways. Future work investigating
783 whether this response is initiated by the plant in order to activate defense mechanisms
784 or perhaps is hijacked by the virus in order to silence antiviral responses would provide
785 insight into the evolutionary function of these distinctive siRNAs.

786

787 **CONCLUSION**

788 In conclusion, while genera within the Solanaceae share unifying features in the
789 evolutionary history of their sRNA biology, there are many lineage-specific phenomena
790 that are not broadly shared across the family. This conclusion is important as it provides
791 valuable information on the appropriateness of a given model species for providing
792 generalized insights into sRNA biology. Simultaneously, we encountered limitations due
793 to disparate sampling within the Solanaceae. For example, while sample data exist
794 across developmental stages, environments, and genotypes to support investigations
795 into tomato sRNA biology, there is a lack of publicly-available resources to study
796 tomato's sister species, eggplant (Chapman, 2019). Similarly, our understanding of
797 sRNA biology for *Petunia hybrida* is largely limited to reproductive samples. Given the

798 sub-family phenomena that we identified in this study, we suggest that delving into
799 under-sampled taxa rather than increasing sampling in well-studied species will yield a
800 greater return on investment when it comes to discovering new aspects of sRNA biology
801 within the Solanaceae.

802

803 MATERIALS AND METHODS

804

805 Evolution of small RNA biogenesis protein genes in the Solanaceae

806 We downloaded protein sequence files from Phytozome v13, the Sweetpotato
807 Genomics Resource, and the SOL Genomics Network databases, and selected
808 proteomes for *Arabidopsis thaliana*, two Convolvulaceae (*Ipomoea trifida* and *Ipomoea*
809 *triloba*) and the seven Solanaceae species (*Nicotiana benthamiana*, *Nicotiana tabacum*,
810 *Petunia axillaris*, *Petunia inflata*, *Capsicum annuum*, *Solanum lycopersicum* and
811 *Solanum tuberosum*) for analysis (Supplemental Table 2). We used SonicParanoid
812 v1.2.6 ([Cosentino and Iwasaki, 2018](#)) and OrthoFinder v2.3.11 ([Emms and Kelly, 2015](#))
813 to perform a gene orthology inference using default parameters. To identify orthologous
814 groups related to NRP, RDR, DCL, DRB and AGO proteins, we used the reference
815 protein IDs available in the UniProt database for *A. thaliana*. We then aligned the
816 retrieved protein sequences using default parameters in MUSCLE v3.8.1551 ([Edgar,](#)
817 [2004](#)), and trimmed alignments with trimAL v1.4.rev15 applying the -gappyout option
818 ([Capella-Gutierrez et al., 2009](#)). To infer phylogenetic trees we implemented the
819 maximum likelihood method in IQ-TREE v1.6.12 with the following parameters: -alrt
820 1000 and -bb 1000 ([Minh et al., 2013](#); [Nguyen et al., 2015](#); [Kalyaanamoorthy et al.,](#)
821 [2017](#)). We used iTOL v4 ([Letunic and Bork, 2019](#)) to visualize consensus trees and
822 summarize orthologous protein genes for the five gene families investigated in each
823 species (Supplemental Table 1). To investigate organ-specific expression for the DCL1,
824 AGO1, and AGO2 paralogs identified for tomato, we downloaded expression data for
825 *Solanum lycopersicum* from The Bio-Analytic Resource for Plant Biology ([Waese et al.,](#)
826 [2017](#)).

827 **Data collection, quality filters, and read processing**

828 We downloaded raw sRNA seq and PARE libraries for *Solanum lycopersicum* (tomato),
829 *S. tuberosum* (potato), *Nicotiana benthamiana*, *N. tabaccum* (tobacco), *Capsicum*
830 *annum* (pepper), *Petunia axillaris*/*P. inflata* (petunia) from the NCBI SRA
831 (<https://www.ncbi.nlm.nih.gov/sra>; detailed information regarding raw and processed
832 libraries can be found in Supplemental Dataset 1. Briefly, we processed raw FASTQ
833 reads using a Python script that performs quality filtering, trimming, adapter removal,
834 and then converts reads into chopped tag count files
835 (<https://github.com/atulkakrana/preprocess.seq> (Bolger et al., 2014)). We then mapped
836 our reads to their respective reference genomes (Supplemental Table 2) using Bowtie 1
837 (Langmead, 2010) allowing for zero mismatches. We applied two criteria for filtering out
838 low-quality data: first, we excluded libraries with low mapping rates, and second, we
839 removed libraries that lacked a significant accumulation of 21-nt and 24-nt reads based
840 on size distribution plots (Supplemental Figure 7), indicating potential RNA degradation.
841 We assembled species-specific expression databases using these final, high-quality,
842 processed datasets (Nakano et al., 2020).

843

844 **Solanaceae genome versions and functional gene annotations**

845 We used the following reference genomes and their associated annotation files to build
846 expression databases and perform the bioinformatic analyses described in this study:
847 *Capsicum annum* Zunla-1 v2.0 (<http://public.genomics.org.cn/BGI/pepper/>) (Qin et al.,
848 2014), *Petunia axillaris* and *P. inflata* (Bombarely et al., 2016), *Nicotiana tabacum* v4
849 (Edwards et al., 2017), *Nicotiana benthamiana* v 0.3 (Bombarely et al., 2012), *Solanum*
850 *tuberosum* (Potato Genome Sequencing Consortium, 2011), and *Solanum lycopersicum*
851 build 2.5 (Tomato Genome Consortium, 2012) (<ftp://ftp.solgenomics.net/genomes/>).

852

853 **MicroRNA Predictions**

854 We used three different software packages to obtain a robust prediction of microRNAs
855 (miRNAs) across our Solanaceous model genomes: ShortStack (Axtell, 2013), miR-
856 PREFeR (Lei and Sun, 2014), and miRPD (a version of miReap optimized for plant
857 miRNA prediction; (Sun et al., 2013)). We standardized the minimum mapping coverage
858 and size of hits across the three programs in order to control for dissimilarities in

859 software performance. The vast majority of miRNAs fall between 20-22 nt in length so
860 we narrowed our predictions to this 20-22 nt size range. Each program employs a
861 different method for calculating coverage. In ShortStack we set the minimum coverage
862 to 15, while in miR-PREFeR and miRPD we set the minimum coverage to 20. We then
863 filtered out predicted miRNA precursors based on recently published guidelines for
864 miRNA predictions (Axtell and Meyers, 2018). Briefly, we required that all miRNAs
865 express both strands of the miRNA duplex (the mature miRNA and miRNA-star), and
866 originate from a precursor that folds with a normalized minimum free energy (MFE) of <
867 -0.2 kcal/mol/nucleotide. Notably, enforcing the expression of a complementary miRNA-
868 star sequence resulted in little to no filtering, so we applied a more stringent filter
869 requiring that the abundance of the complementary miRNA-star reads were $\geq 10\%$ of the
870 abundance of the mature miRNA.

871
872 We applied additional filtering for “novel” miRNAs that did not match miRBase entries
873 (see “miRNA conservation across species,” below). To remove hairpin structures that
874 might originate from MITEs and tRNAs, we filtered out novel miRNAs that aligned to our
875 list of annotated transposable elements (TEs) and tRNA datasets for the Solanaceae
876 (Supplemental Dataset 11). We found a surprising number of novel miRNAs in our
877 *Nicotiana benthamiana* (hereafter, “benthii”) dataset which warranted manual curation.
878 To investigate whether our novel benthii miRNAs originate from canonical precursor
879 structures, we mapped our shortread data onto predicted miRNA precursors using
880 `structVis` v0.4 (github: <https://github.com/MikeAxtell/structVis>), and removed novel
881 miRNAs that showed non-canonical folding and/or miRNA/miRNA* expression. After
882 these filtering steps we found the miRPD results to be highly inconsistent, producing
883 unrealistically high numbers of predicted miRNAs for some of our species and zero
884 predicted miRNAs for others. Thus, we decided to limit our analyses to the ShortStack
885 and miR-PREFeR results. To create a consensus set of miRNAs for these two
886 prediction programs, we collapsed precursors with overlapping coordinates from these
887 two software programs into unique entries. Overall, we found that ShortStack was more
888 conservative, predicting fewer miRNAs than miR-PREFeR; however, the miRNAs were
889 also predicted with appreciable confidence and resulted in minimal post-prediction

890 filtering. Our hybrid prediction approach in combination with stringent filtering allowed
891 for sensitive, yet robust predictions across the species.

892

893 **MicroRNA conservation across species**

894 To facilitate cross species comparisons of conserved and novel miRNAs within the
895 Solanaceae, we first clustered mature miRNA sequences for the predicted miRNAs
896 (described above) into families by requiring pairwise sequence overlap of $\geq 75\%$. To
897 annotate the miRNA families, we aligned mature miRNA sequences to the latest v22
898 miRBase database of all land plants requiring an 85% match, and provided new IDs for
899 novel miRNA families (Kozomara and Griffiths-Jones, 2014; Kozomara et al., 2019). We
900 tabulated all novel and previously annotated miRNA families across the Solanaceae in a
901 master table that reports presence and absence for each miRNA family (Supplemental
902 Dataset 5).

903

904 **PHAS locus predictions and annotations**

905 We used three programs to identify *PHAS* loci: ShortStack (Axtell, 2013), PHASIS
906 (Kakrana et al., 2017), and PhaseTank (Guo et al., 2015). We ran PHASIS and
907 PhaseTank using the default parameters listed in the program manuals and filtered the
908 results for high-confidence loci that were identified with a p-value of $\leq .001$. We ran
909 ShortStack using the same parameters that were applied to our miRNA predictions.
910 PhaseTank did not perform consistently across the analyzed genomes; it only reported
911 *PHAS* loci for unassembled regions of the genomes. After we removed unassembled
912 contigs, the program returned no results, so we decided to remove PhaseTank from our
913 analysis pipeline. We merged the *PHAS* loci obtained from PHASIS and ShortStack into
914 a single list for each species, and collapsed loci located within 400 nucleotides of each
915 other into individual *PHAS* predictions (Supplemental Dataset 7).

916

917 We annotated coding versus non-coding *PHAS* loci using available CDS GFF files. To
918 characterize non-coding *PHAS* loci we aligned our non-coding *PHAS* loci to the NCBI
919 non-redundant (nr) database and annotated the loci with one of the top ten hits using
920 default alignment parameters in BLAST (Altschul et al., 1990). To test whether coding

921 *PHAS* loci were generated from orthologous genes across species, we constructed
922 gene orthogroups for species with associated peptide fasta files. Finally, we linked
923 these orthogroup predictions with annotation files for tomato, Arabidopsis, and pepper
924 (Supplemental Dataset 9). The published pepper gff file lacks annotations, so we
925 generated our own pepper annotation file by running a BLASTP search against the
926 NCBI NR database and retrieving the best BLAST hit for each entry.

927

928 **miRNA target predictions**

929 We used sPARTA, a miRNA target prediction program to identify miRNA targets with
930 the following specifications: -genomeFeature 0 -tarPred H -tarScore S (Kakrana et al.,
931 2015). We applied a cut off penalty score of ≤ 4 to filter for reliable miRNA-mRNA target
932 interactions in benthi (Supplemental Dataset 4) and tomato (Supplemental Dataset 6).
933 *PHAS* loci are triggered by 22 bp miRNAs that have a 5' Uracil bias (Chen et al., 2010;
934 Cuperus et al., 2010). We ran sPARTA with the -featureFile option to identify miRNAs
935 from our predicted miRNA list that trigger *PHAS* locus production from our predicted
936 PhasiRNA list. We applied a penalty score of ≤ 4 to filter for *PHAS* locus triggers,
937 prioritized miRNA triggers that start with Uracil (U), and selected miRNA triggers equal
938 to 22 bp with the exception of miR390 (Supplemental Dataset 8).

939

940 **Hc-siRNAs and transposable elements across SOL genomes**

941 To analyze hc-siRNAs, we first ran RepeatMasker (<http://www.repeatmasker.org>) on
942 each one of the analyzed genomes using the Viridiplantae RepBase database
943 (<http://www.girinst.org/repbase>) as a library, to identify transposable elements (TE).
944 Next, we used the identified TEs as a database to map sRNA reads using Bowtie
945 (Langmead, 2010) with default parameters and categorized all 24-nt long reads that
946 mapped to any of our identified TEs as hc-siRNAs. It was impossible to identify the
947 specific origin of these sRNAs due to the repetitive nature of TEs, so we only
948 considered TE superfamilies for this study. Genome-wide representation of hc-siRNAs
949 was visualized by plotting Manhattan plots with the qqman R package (Turner, 2014).

950 We plotted the data based on the genome mapping coordinate along the chromosome
951 for each hc-siRNA and its relative abundance.

952

953 **Identification of 22-nt clusters expressed in response to geminivirus infection**

954 To discover 22-nt sRNA clusters that may be linked to geminivirus infection in tomato,
955 we downloaded sRNA libraries for control and infected treatments from the
956 TOMATO_sRNA_SOL Next-Gen DB (Nakano et al., 2020) and filtered for 22-nt reads.
957 We tuned the parameters for 22-nt cluster identification using two fruit peel libraries
958 (Tomato_S_7 and Tomato_S_8, cv. Ailsa Craig, Gao et al., 2015) and two leaf libraries
959 (Tomato_S_50, cv. Moneymaker, and Tomato_S_53, line FL505, Bai et al., 2016). To
960 identify clusters that accumulate in response to geminivirus infection, we analyzed two
961 infected leaf libraries (Sly_leaves_t2, cv. Pusa Ruby, Saraf et al., 2015; Tomato_S_52,
962 cv. Moneymaker, Bai et al., 2016) and their corresponding control libraries
963 (Sly_leaves_t1 and Tomato_S_50, respectively). We applied the following analysis
964 pipeline to identify 22-nt sRNA clusters: first, we ran ShortStack with the parameters
965 tuned to yield the highest reproducibility between repeated runs, relatively high similarity
966 between results from similar samples (e.g. leaf vs. leaf), and relatively high difference
967 between results from distinct samples (e.g. leaf vs. fruit peel), without compromising the
968 alignment rate (Johnson et al., 2016). This fine tuning resulted in the following
969 parameter set: --mmap u --mismatch 1 --bowtie_m 3 --ranmax 2 --pad 125 --mincov
970 75rpm. Using these parameters, we ran ShortStack to identify all of the 22-nt sRNA
971 clusters in the aforementioned four libraries. Next, we filtered out clusters that were
972 shorter than 200 bp in length, and clusters that were inconsistently expressed in one
973 infected-control sample pair, but not in the other. We applied a threshold of absolute
974 log2 fold change greater than two in order to identify differentially expressed clusters
975 between the geminivirus infected and mock-treated samples.

976

977 **Data visualization and representation**

978 We visualized the 22-nt sRNA clusters using the transcriptome browser function in the
979 TOMATO_sRNA_SOL Expression database (Nakano et al., 2006; Nakano et al., 2020;
980 <https://mpss.meyerslab.org/>). We generated dot plots using the ggplot2 package

981 (Wickham, 2016), heatmaps using gplots package (Warnes et al., 2019), and heatmaps
982 of DCL2 and AGO1 paralog expression using the TBTools heatmap function (Chen et
983 al., 2018a).

984

985 **SUPPLEMENTAL DATA**

986 Supplemental Dataset 1 – SRA Sample Processing

987 Supplemental Dataset 2 – miRNAs Annotated by Species

988 Supplemental Dataset 3 – Benthic structVis Filtering

989 Supplemental Dataset 4 – Benthic miRNA Target Predictions

990 Supplemental Dataset 5 – Solanaceae miRNA Families

991 Supplemental Dataset 6 – Tomato miRNA Target Predictions

992 Supplemental Dataset 7 – phasiRNAs Annotated by Species

993 Supplemental Dataset 8 – PHAS Locus miRNA Interactions

994 Supplemental Dataset 9 – Solanaceae Orthogroups

995 Supplemental Dataset 10 – Table of 22-nt sRNA Clusters

996 Supplemental Dataset 11 – Solanaceae TEs

997

998 **SUPPLEMENTAL TABLES**

999

1000 **Supplemental Table 1: Summary of annotated *AGO*, *DCL*, *DRB*, *NRP* and *RDR***
1001 **family members in Solanaceous and outgroup genomes.**

Species	Ploidy*	AGO	DCL	DRB	NRP	RDR
<i>Arabidopsis thaliana</i>	2n = 2x = 10	10	4	7	3	6
<i>Capsicum annuum</i>	2n = 2x = 24	11	5	4	5	5
<i>Ipomoea triloba</i>	2n = 2x = 30	13	4	7	5	6
<i>Ipomoea trifida</i>	2n = 2x = 30	13	4	7	4	5
<i>Nicotiana benthamiana</i>	2n = 4x = 38	18	4	7	6	7
<i>Nicotiana tabacum</i>	2n = 4x = 48	21	8	7	6	10
<i>Petunia axillaris</i>	2n = 2x = 14	12	4	3	3	4
<i>Petunia inflata</i>	2n = 2x = 14	13	4	5	3	5

<i>Solanum lycopersicum</i> 2n = 2x = 24 13	7	3	2	6
<i>Solanum tuberosum</i> 2n = 2x = 24 15	5	5	1	8

1002 *The ploidy was assessed using the Kew Royal Botanical Gardens database
 1003 (<https://cvalues.science.kew.org>)

1004

1005 **Supplemental Table 2: Reference genomes and software used for bioinformatic**
 1006 **analyses**

Species	Genome Version	File Source	Analyses
<i>Arabidopsis thaliana</i>	Araport11	Phytozome v13	MUSCLE, IQ-TREE, OrthoFinder
<i>Ipomoea triloba</i>	NSP323_V3 (Wu et al., 2018)	Sweetpotato Genomics Resource	MUSCLE, IQ-TREE, OrthoFinder
<i>Ipomoea trifida</i>	NSP306_V3 (Wu et al., 2018)	Sweetpotato Genomics Resource	MUSCLE, IQ-TREE, OrthoFinder
<i>Capsicum annuum</i>	Zunla-1 v2.0 (Qin et al., 2014)	http://public.genomics.cs.org.cn/BGI/pepper/	Expression DB, OrthoFinder, miR-Prefer, ShortStack, PHASIS, MUSCLE, IQ-TREE
<i>Petunia axillaris</i>	V1.6.2 (Bombarely et al., 2016)	ftp://ftp.solgenomics.net/genomes/	Expression DB, miR-Prefer, ShortStack, PHASIS, MUSCLE, IQ-TREE
<i>Petunia inflata</i>	V1.0.1 (Bombarely et al., 2016)	ftp://ftp.solgenomics.net/genomes/	Expression DB, miR-Prefer, ShortStack, PHASIS, MUSCLE, IQ-TREE
<i>Nicotiana tabacum</i>	V4.5 (Edward et al. 2017)	ftp://ftp.solgenomics.net/genomes/	Expression DB, miR-Prefer, ShortStack, PHASIS, MUSCLE, IQ-TREE
<i>Nicotiana</i>	V0.3 (Bombarely et	ftp://ftp.solgenomics	Expression DB,

<i>benthamiana</i>	al., 2012)	.net/genomes/	miR-Prefer, ShortStack, PHASIS
<i>Nicotiana benthamiana</i>	V0.4.4 (Bombarely et al., 2012)	ftp://ftp.solgenomics.net/genomes/	MUSCLE, IQ-TREE
<i>Solanum tuberosum</i>	ITAG v1.0 (Potato Genome Sequencing Consortium et al., 2011)	ftp://ftp.solgenomics.net/genomes/	Expression DB, miR-Prefer, ShortStack (miRNA prediction)
<i>Solanum tuberosum</i>	v3.4	ftp://ftp.solgenomics.net/genomes/	MUSCLE, IQ-TREE, Orthogroups
<i>Solanum tuberosum</i>	V4.04 (Hardigan et al., 2016)	http://solanaceae.pl/antbiology.msu.edu/pgsc_download.shtml	PHASIS, ShortStack (PHAS locus prediction)
<i>Solanum lycopersicum</i>	V3.2	ftp://ftp.solgenomics.net/genomes/	Expression DB, miR-Prefer, ShortStack, PHASIS,
<i>Solanum lycopersicum</i>	V2.4 (Tomato Genome Consortium, 2012)	ftp://ftp.solgenomics.net/genomes/	MUSCLE, IQ-TREE
<i>Mimulus guttatus</i>	JGI v2.0 (Hellsten et al., 2013)	https://phytozome.jgi.doe.gov/pz/portal.html#!bulk?org=Org_Mguttatus	miR-Prefer, ShortStack, PHASIS,

1007

1008

1009

1010

1011 **ACKNOWLEDGEMENTS**

1012

1013 We thank Rui Xia for generating the annotation file that we used for the pepper
1014 (*Capscium annuum*) genome, and Feray Demirci and Deepti Ramachandruni for

1015 assistance with aspects of data processing. The work was supported with funding from
1016 NSF IOS awards 1842698, 754097 and 1650843, and USDA NIFA award 2019-67013-
1017 29010 to Meyers; NSF IOS awards 1523668 and 1942437 to M. Frank.

1018

1019 **FIGURE LEGENDS**

1020

1021 **Figure 1: Solanaceae-specific diversification of the AGO family highlights expansion and**
1022 **subfunctionalization of subfamily members.** Phylogenetic tree of proteins encoded by the
1023 AGO gene family in the Solanaceae (A). Clades of AGO subfamily members are drawn with
1024 distinct colors. Yellow boxes highlight groups of AGO genes that have expanded in Solanaceae.
1025 Red circles indicate AGO homologs in tomatoes. Heatmaps show the relative expression of
1026 AGO1 and AGO2 from public data (B). Orthologous protein groups were identified using
1027 OrthoFinder and SonicParanoid. Protein alignments and phylogeny analysis were completed
1028 using MUSCLE and IQ- TREE. Phylogenetic tree was illustrated using iTOL.

1029 **Figure 2: Phylogenetic analysis of DCL family members encoded in the Solanaceae**
1030 **highlights a *Solanum/Capsicum*-specific expansion of DCL2.** Phylogenetic tree of protein
1031 sequences indicating *DCL* subfamily members in the Solanaceae (A). Subclades of the *DCL*
1032 family are drawn with distinct colors and yellow boxes highlight groups of *DCL2* that expanded
1033 in *Capsicum* and *Solanum* genera. Red circles indicate tomato paralogs for *DCL2*. Heatmaps
1034 show the relative abundance of these tomato *DCL2* paralogs in diverse samples (B). Protein
1035 orthologous groups were identified using OrthoFinder and SonicParanoid. Protein alignments
1036 and phylogeny analysis were done using MUSCLE and IQ- TREE. Phylogenetic tree was
1037 visualized using iTOL.

1038

1039 **Figure 3: MicroRNA predictions across Solanaceae support a lineage-specific expansion**
1040 **of miRNAs.** Venn diagrams of total miRNAs predicted by miRPrefer (red), Shortstack (yellow),
1041 and both programs (orange) for each species (A). Upset plots showing novel (B) and known (C)
1042 miRNAs that are shared across Solanaceae species. For each Upset plot: the bottom left panel
1043 shows the entire size of each set as a horizontal histogram, the bottom right panel shows the
1044 intersection matrix, and the upper right panel shows the size of each combination as a vertical
1045 histogram. The red line marks miRNAs common to all species, the purple line marks miRNAs
1046 common to both *Petunia* species, the orange line marks miRNAs common to both *Solanum*

1047 species, the green line marks miRNAs common to both *Nicotiana* species, and the blue and
1048 yellow lines mark benth- and pepper-specific miRNAs, respectively.

1049

1050 **Figure 4: miR5303 aligns to MITE terminal inverted repeat (TIR) sequences.** The
1051 previously-annotated Solanaceae-specific miRNA family, miR5303, exhibits many features that
1052 disqualify it as a bona fide miRNA. The majority of the miR5303 miRBase entries include mature
1053 sequences that are 24-nt in length, indicating that these sRNAs are likely derived from siRNA
1054 producing loci (A). miR5303 miRBase entries are highly variable in their sequence; we identified
1055 a consensus sequence to isolate true miR5303 family members (highlighted in the yellow box
1056 and shown in Supplemental Figure 3) (A). miRNAs > 22-nt in length were filtered out; however,
1057 the predicted miR5303 family members that are 21 or 22 nt follow the same 5' consensus
1058 sequence (UUUUG) as the miRBase entries (B). The predicted precursors of miR5303 family
1059 members have near perfect hairpin folding, indicating that these loci are likely inverted repeats,
1060 rather than real miRNA precursors (C), and BLAST alignment of miR5303 family members to
1061 the plant MITE database produces a perfect alignment between the miR5303 species and MITE
1062 TIR sequences (D).

1063

1064 **Figure 5: Genus-specific trends of 21-nt *PHAS* loci within the Solanaceae.** *Solanum*
1065 (tomato and potato) and *Capsicum* (pepper) genera produce 2-3 times more *PHAS* loci and
1066 predominantly express disease resistance-related coding loci, relative to *Nicotiana* (tobacco and
1067 benth) and *Petunia* genera (A). The raw number of loci for each category in (A) is shown in
1068 white. All of the species express non-coding *PHAS* loci (green). A previously unidentified non-
1069 coding *TAS*-like locus is shown for on chromosome 5 in tomato (left) and potato (right) (B), and
1070 a previously identified non-coding *Nicotiana*-conserved *TAS*-like 1/2 locus is plotted for tobacco
1071 (left) and benth (right) (C).

1072

1073 **Figure 6: *DCL2* phasiRNA-producing loci are conserved across Solanaceous species.**
1074 *DCL2* paralogs in pepper, tomato, and potato, and orthologs in petunia, benth, and tobacco all
1075 produce 21-nt phasiRNAs (A). We identified conserved miRNA target sites for miR10533 and
1076 miR6026 in pepper, tomato, potato, and petunia (red and yellow arrow respectively denotes
1077 cleavage sites) that have strong target scores, and may be a conserved mechanism for
1078 triggering *DCL2* *PHAS* locus production in these species (B).

1079

1080 **Figure 7: hc-siRNA expression across chromosomes in Solanaceae.** Normalized read
1081 counts for 24-nt TE-associated hc-siRNAs are plotted across the assembled chromosomes for
1082 tobacco, tomato, potato, and pepper. The x-axis represents the chromosome number,
1083 alternating between grey and black, and the y-axis represents the average number of reads at
1084 each chromosome position. The average read number was calculated based on the number of
1085 available libraries for each species. The majority of hc-siRNAs map outside of the
1086 pericentromeric regions. Unexpectedly, potato accumulates a low proportion of 24-nt hc-siRNAs
1087 relative to total sRNAs.

1088

1089 **Figure 8: Tomato produces 22-nt sRNA clusters in response to geminivirus infection.**
1090 Small RNA reads mapped to two tomato loci (Ch05:268043..272842 (A and B) and
1091 Ch05:2979082..2987879 (C and D)) for a geminivirus infected and control sample pair shows
1092 strong expression of 22-nt siRNAs (shown as green dots) in response to viral treatments. The
1093 central red and blue boxes represent gene models from version 3.0 of the *S. lycopersicum*
1094 genome, and shaded boxes represent repetitive sequences. Dots represent sRNA reads, color-
1095 coded by length, mapped to a genomic region, with abundance represented by the position
1096 along the Y axis. Hollow dots are multi-mapped reads (more than one location in the genome),
1097 and solid dots are uniquely mapped reads. (A) and (C) are expression plots of a control, mock-
1098 infected sample, and (B) and (D) are from a corresponding virus-infected sample.

1099

1100

1101 REFERENCES

1102 Ahmed I, Sarazin A, Bowler C, Colot V, Quesneville H (2011) Genome-wide
1103 evidence for local DNA methylation spreading from small RNA-targeted sequences
1104 in *Arabidopsis*. *Nucleic Acids Res* 39: 6919–6931

1105 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment
1106 search tool. *J Mol Biol* 215: 403–410

1107 Axtell MJ (2018) The small RNAs of *Physcomitrella patens* : Expression, function
1108 and evolution. *Annual Plant Reviews* online 113–142

1109 Axtell MJ (2013) ShortStack: comprehensive annotation and quantification of small
1110 RNA genes. *RNA* 19: 740–751

1111 Axtell MJ, Meyers BC (2018) Revisiting Criteria for Plant MicroRNA Annotation in
1112 the Era of Big Data. *The Plant Cell* 30: 272–284

1113 Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs
1114 of land plants. *Plant Cell* 19: 1750–1769

1115 Axtell MJ, Westholm JO, Lai EC (2011) Vive la différence: biogenesis and evolution
1116 of microRNAs in plants and animals. *Genome Biol* 12: 221

1117 Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina
1118 sequence data. *Bioinformatics* 30: 2114–2120

1119 Bombarely A, Moser M, Amrad A, Bao M, Bapaume L, Barry CS, Bliek M, Boersma
1120 MR, Borghi L, Bruggmann R, et al (2016) Insight into the evolution of the
1121 Solanaceae from the parental genomes of *Petunia hybrida*. *Nat Plants* 2: 16074

1122 Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB (2012) A draft
1123 genome sequence of *Nicotiana benthamiana* to enhance molecular plant-microbe
1124 biology research. *Mol Plant Microbe Interact* 25: 1523–1530

1125 Canto-Pastor A, Santos BA, Valli AA, Summers W, Schornack S, Baulcombe DC
1126 Enhanced resistance to bacterial and oomycete pathogens by short tandem target
1127 mimic RNAs in tomato. doi: 10.1101/396564

1128 Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009). trimAl: a tool for
1129 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*
1130 25:1972-1973.

1131 Cardoso TC de S, Alves TC, Caneschi CM, Santana DDRG, Fernandes-Brum CN,
1132 Reis GLD, Daude MM, Ribeiro THC, Gómez MMD, Lima AA, et al (2018) New
1133 insights into tomato microRNAs. *Sci Rep* 8: 16069

1134 Chapman MA (2019) Introduction: The Importance of Eggplant. In MA Chapman,
1135 ed, *The Eggplant Genome*. Springer International Publishing, Cham, pp 1–10

1136 Chen C, Chen H, He Y, Xia R (2018a) TBtools, a Toolkit for Biologists integrating
1137 various biological data handling tools with a user-friendly interface. *bioRxiv* 289660

1138 Chen C, Zeng Z, Liu Z, Xia R (2018b) Small RNAs, emerging regulators critical for
1139 the development of horticultural traits. *Horticulture Research* 5: 6–8

1140 Chen H-M, Chen L-T, Patel K, Li Y-H, Baulcombe DC, Wu S-H (2010) 22-
1141 Nucleotide RNAs trigger secondary siRNA biogenesis in plants. *Proc Natl Acad Sci
1142 U S A* 107: 15269–15274

1143 Cosentino S, Iwasaki W (2018). SonicParanoid: fast, accurate and easy orthology
1144 inference. *Bioinformatics*. 35(1):149-51.

1145 Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan
1146 CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt
1147 miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in

1148 *Arabidopsis*. *Nat Struct Mol Biol* 17: 997–1003

1149 Daxinger L, Kanno T, Bucher E, van der Winden J, Naumann U, Matzke AJM,
1150 Matzke M (2009) A stepwise pathway for biogenesis of 24-nt secondary siRNAs
1151 and spreading of DNA methylation. *EMBO J* 28: 48–57

1152 Deng K, Yin H, Xiong F, Feng L, Dong P, Ren M (2021) Genome-wide miRNA
1153 expression profiling in potato (*Solanum tuberosum* L.) reveals TOR-dependent
1154 post-transcriptional gene regulatory networks in diverse metabolic pathway. *PeerJ*
1155 9: e10704

1156 Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and
1157 high throughput. *Nucleic Acids Res* 32: 1792–1797

1158 Emms DM, Kelly S (2015). OrthoFinder: solving fundamental biases in whole
1159 genome comparisons dramatically improves orthogroup inference accuracy.
1160 *Genome biology* 16: 157.

1161 Esposito S, Aversano R, D'Amelia V, Villano C, Alioto D, Mirouze M, Carputo D
1162 (2018) Dicer-like and RNA-dependent RNA polymerase gene family identification
1163 and annotation in the cultivated *Solanum tuberosum* and its wild relative *S. commersonii*. *Planta* 248: 729–743

1165 Fan P, Leong BJ, Last RL (2019) Tip of the trichome: evolution of acylsugar
1166 metabolic diversity in Solanaceae. *Curr Opin Plant Biol* 49: 8–16

1167 Fei Q, Xia R, Meyers BC (2013) Phased, Secondary, Small Interfering RNAs in
1168 Posttranscriptional Regulatory Networks. *Plant Cell* 25: 2400–2415

1169 Galindo-González L, Mhiri C, Deyholos MK, Grandbastien M-A (2017) LTR-
1170 retrotransposons in plants: Engines of evolution. *Gene* 626: 14–25

1171 Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2015) *Nicotiana benthamiana*: Its
1172 History and Future as a Model for Plant–Pathogen Interactions. *Molecular Plant–
1173 Microbe Interactions* 2015: 28–39

1174 Gu M, Liu W, Meng Q, Zhang W, Chen A, Sun S, Xu G (2014) Identification of
1175 microRNAs in six solanaceous plants and their potential link with phosphate and
1176 mycorrhizal signaling. *J Integr Plant Biol* 56: 1164–1178

1177 Guo Q, Qu X, Jin W (2015) PhaseTank: genome-wide computational identification
1178 of phasiRNAs and their regulatory cascades. *Bioinformatics* 31: 284–286

1179 Hardigan MA, Crisovan E, Hamilton JP, Kim J, Laimbeer P, Leisner CP, Manrique-
1180 Carpintero NC, Newton L, Pham GM, Vaillancourt B, et al (2016) Genome
1181 Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy
1182 Number Variation in Asexually Propagated *Solanum tuberosum*. *Plant Cell* 28:
1183 388–405

1184 Hellsten U, Wright KM, Jenkins J, Shu S, Yuan Y, Wessler SR, Schmutz J, Willis
1185 JH, Rokhsar DS (2013) Fine-scale variation in meiotic recombination in *Mimulus*
1186 inferred from population shotgun sequencing. *Proc Natl Acad Sci U S A* 110:
1187 19478–19482

1188 Kakrana A, Li P, Patel P, Hammond R, Anand D, Mathioni SM, Meyers BC (2017)
1189 PHASIS: A computational suite for de novo discovery and characterization of
1190 phased, siRNA-generating loci and their miRNA triggers. *bioRxiv* 158832

1191 Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017).
1192 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature*
1193 methods. 14:587.

1194 Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and
1195 quality attributes. *Annu Rev Genet* 45: 41–59

1196 Koenig DP, Sinha NR (2007) Genetic Control of Leaf Shape. *Encyclopedia of Life*
1197 Sciences. doi: 10.1002/9780470015902.a0020101

1198 Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA
1199 sequences to function. *Nucleic Acids Res* 47: D155–D162

1200 Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence
1201 microRNAs using deep sequencing data. *Nucleic Acids Res* 42: D68–73

1202 Kramerov DA, Vassetzky NS (2011) Origin and evolution of SINEs in eukaryotic
1203 genomes. *Heredity* 107: 487–495

1204 Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell
1205 CR, Baker B (2009) Identification of miniature inverted-repeat transposable
1206 elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new
1207 functional implications for MITEs. *Genome Res* 19: 42–56

1208 Langmead B (2010) Aligning short sequencing reads with Bowtie. *Curr Protoc*
1209 *Bioinformatics* Chapter 11: Unit 11.7

1210 Lei J, Sun Y (2014) miR-PREFeR: an accurate, fast and easy-to-use plant miRNA
1211 prediction tool using small RNA-Seq data. *Bioinformatics* 30: 2837–2839

1212 Leong BJ, Lybrand DB, Lou Y-R, Fan P, Schilmiller AL, Last RL (2019) Evolution of
1213 metabolic novelty: A trichome-expressed invertase creates specialized metabolic
1214 diversity in wild tomato. *Sci Adv* 5: eaaw3754

1215 Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: Recent updates and
1216 new developments. *Nucleic Acids Res* 47: W256–W259

1217 Liao Z, Hodén KP, Singh RK, Dixelius C (2020) Genome-wide identification of
1218 Argonautes in Solanaceae with emphasis on potato. *Scientific Reports*. doi:

1219 10.1038/s41598-020-77593-y

1220 Li H, Deng Y, Wu T, Subramanian S, Yu O (2010) Misexpression of miR482,
1221 miR1512, and miR1515 increases soybean nodulation. *Plant Physiol* 153: 1759–
1222 1770

1223 Liu Y, Teng C, Xia R, Meyers BC (2020) Phased secondary small interfering RNAs
1224 (phasiRNAs) in plants: their biogenesis, genic sources, and roles in stress
1225 responses, development, and reproduction. *Plant Cell*

1226 Lunardon A, Johnson NR, Hagerott E, Phifer T (2020) Integrated annotations and
1227 analyses of small RNA–producing loci from 47 diverse plants. *Genome*

1228 Martinez CC, Li S, Woodhouse MR, Sugimoto K, Sinha NR (2020) Spatial
1229 transcriptional signatures define margin morphogenesis along the proximal-distal
1230 and medio-lateral axes in tomato (*Solanum lycopersicum*) leaves. *Plant Cell*. doi:
1231 10.1093/plcell/koaa012

1232 Ma Z, Zhang X (2018) Actions of plant Argonautes: predictable or unpredictable?
1233 *Curr Opin Plant Biol* 45: 59–67

1234 Minh BQ, Nguyen MA, von Haeseler A (2013). Ultrafast approximation for
1235 phylogenetic bootstrap. *Molecular biology and evolution*. 30:1188–95.

1236 Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G, Sorefan
1237 K, Moulton V, Dalmay T (2011) Profiling of short RNAs during fleshy fruit
1238 development reveals stage-specific sRNAome expression patterns: Time course
1239 study of short RNAs during fruit development. *Plant J* 67: 232–246

1240 Mosher RA, Melnyk CW (2010) siRNAs and DNA methylation: seedy epigenetics.
1241 *Trends in Plant Science* 15: 204–210

1242 Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH,
1243 Ahrens R, Wang Y, et al (2005) The SOL Genomics Network: a comparative
1244 resource for Solanaceae biology and beyond. *Plant Physiol* 138: 1310–1317

1245 Nakano M, McCormick K, Demirci C, Demirci F, Gurazada SGR, Ramachandruni
1246 D, Dusia A, Rothhaupt JA, Meyers BC (2020) Next-Generation Sequence
1247 Databases: RNA and Genomic Informatics Resources for Plants. *Plant Physiol* 182:
1248 136–146

1249 Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015). IQ-TREE: a fast and
1250 effective stochastic algorithm for estimating maximum-likelihood phylogenies.
1251 *Molecular biology and evolution*. 32:268–74.

1252 Niederhuth CE, Bewick AJ, Ji L, Alabady MS, Kim KD, Li Q, Rohr NA, Rambani A,
1253 Burke JM, Udall JA, et al (2016) Widespread natural variation of DNA methylation
1254 within angiosperms. *Genome Biol* 17: 194

1255 Park M, Park J, Kim S, Kwon J-K, Park HM, Bae IH, Yang T-J, Lee Y-H, Kang B-C,
1256 Choi D (2012) Evolution of the large genome in *Capsicum annuum* occurred
1257 through accumulation of single-type long terminal repeat retrotransposons and their
1258 derivatives. *Plant J* 69: 1018–1029

1259 Pokhrel, S., Huang, K., & Meyers, B. C. (2021). Conserved and non-conserved
1260 triggers of 24-nt reproductive phasiRNAs in eudicots. *BioRxiv*,
1261 <https://doi.org/10.1101/2021.01.20.427321>

1262

1263 Pokhrel, S., Huang, K., Bélanger, S., Caplan, J. L., Kramer, E. M., & Meyers, B. C.
1264 (2020). Pre-meiotic, 21-nucleotide Reproductive PhasiRNAs Emerged in Seed
1265 Plants and Diversified in Flowering Plants. *BioRxiv*.
1266 <https://doi.org/10.1101/2020.10.16.341925>

1267

1268 Pombo MA, Rosli HG, Fernandez-Pozo N, Bombarely A (2020) *Nicotiana
benthamiana*, A Popular Model for Genome Evolution and Plant–Pathogen
1269 Interactions. *The Tobacco Plant Genome* 231–247

1270

1271 Potato Genome Sequencing Consortium, Xu X, Pan S, Cheng S, Zhang B, Mu D,
1272 Ni P, Zhang G, Yang S, Li R, et al (2011) Genome sequence and analysis of the
1273 tuber crop potato. *Nature* 475: 189–195

1274 Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, et al
1275 (2014) Whole-genome sequencing of cultivated and wild peppers provides insights
1276 into *Capsicum* domestication and specialization. *Proc Natl Acad Sci U S A* 111:
1277 5135–5140

1278 Särkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for
1279 evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. *BMC
1280 Evol Biol* 13: 214

1281 Schoft VK, Chumak N, Mosiolek M, Slusarz L, Komnenovic V, Brownfield L, Twell
1282 D, Kakutani T, Tamaru H (2009) Induction of RNA-directed DNA methylation upon
1283 decondensation of constitutive heterochromatin. *EMBO Rep* 10: 1015–1021

1284 Seo E, Kim T, Park JH, Yeom S-I, Kim S, Seo M-K, Shin C, Choi D (2018)
1285 Genome-wide comparative analysis in Solanaceous species reveals evolution of
1286 microRNAs targeting defense genes in *Capsicum* spp. *DNA Res* 25: 561–575

1287 Shinozaki Y, Nicolas P, Fernandez-Pozo N, Ma Q, Evanich DJ, Shi Y, Xu Y, Zheng
1288 Y, Snyder SI, Martin LBB, et al (2018) High-resolution spatiotemporal transcriptome
1289 mapping of tomato fruit development and ripening. *Nature Communications*. doi:
1290 10.1038/s41467-017-02782-9

1291 Shivaprasad PV, Chen H-M, Patel K, Bond DM, Bruno A C, Baulcombe DC (2012)
1292 A MicroRNA Superfamily Regulates Nucleotide Binding Site–Leucine-Rich Repeats
1293 and Other mRNAs. *Plant Cell* 24: 859–874

1294 Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, Martienssen
1295 RA (2009) Epigenetic reprogramming and small RNA silencing of transposable
1296 elements in pollen. *Cell* 136: 461–472

1297 Song Q-X, Liu Y-F, Hu X-Y, Zhang W-K, Ma B, Chen S-Y, Zhang J-S (2011)
1298 Identification of miRNAs and their target genes in developing soybean seeds by
1299 deep sequencing. *BMC Plant Biol* 11: 5

1300 Sun W, Xiang X, Zhai L, Zhang D, Cao Z, Liu L, Zhang Z (2018) AGO18b
1301 negatively regulates determinacy of spikelet meristems on the tassel central spike
1302 in maize. *J Integr Plant Biol* 60: 65–78

1303 Sun X, Zhang J, Li A, Yuan X (2013) mirPD: A pattern-based approach for
1304 identifying microRNAs from deep sequencing data. *Digital Signal Processing* 23:
1305 1887–1896

1306 Taller D, Bálint J, Gyula P, Nagy T, Barta E, Baksa I, Szittyá G, Taller J, Havelda Z
1307 (2018) Correction: Expansion of *Capsicum annuum* fruit is linked to dynamic tissue-
1308 specific differential expression of miRNA and siRNA profiles. *PLoS One* 13:
1309 e0203582

1310 Tomato Genome Consortium (2012) The tomato genome sequence provides
1311 insights into fleshy fruit evolution. *Nature* 485: 635–641

1312 Turner SD (2014) qqman: an R package for visualizing GWAS results using Q-Q
1313 and manhattan plots. *bioRxiv* 005165

1314 Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1
1315 in the miRNA pathway and its regulation by the miRNA pathway are crucial for
1316 plant development. *Genes Dev* 18: 1187–1197

1317 Verhoeven KJF, Preite V (2014) Epigenetic variation in asexually reproducing
1318 organisms. *Evolution* 68: 644–655

1319 Vicent CM, Casacuberta JM (2017) Impact of transposable elements on polyploid
1320 plant genomes. *Ann Bot* 120: 195–207

1321 Vrbsky J, Akimcheva S, Watson JM, Turner TL, Daxinger L, Vyskot B, Aufsatz W,
1322 Riha K (2010) siRNA-mediated methylation of *Arabidopsis* telomeres. *PLoS Genet*
1323 6: e1000986

1324 de Vries S, Kloesges T, Rose LE (2015) Evolutionarily Dynamic, but Robust,
1325 Targeting of Resistance Genes by the miR482/2118 Gene Family in the
1326 Solanaceae. *Genome Biol Evol* 7: 3307–3321

1327 Waese J, Fan J, Pasha A, Yu H, Fucile G, Shi R, Cumming M, Kelley L, Sternberg
1328 M, Krishnakumar V, Ferlanti E, Miller J, Town C, Stuerzlinger W, Provart NJ

1329 (2017). ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis
1330 Generation in Plant Biology. *Plant Cell* 29:1806–1821.

1331 Wang X, Weigel D, Smith LM (2013) Transposon variants and their effects on gene
1332 expression in *Arabidopsis*. *PLoS Genet* 9: e1003255

1333 Wang Z, Hardcastle TJ, Pastor AC, Yip WH, Tang S, Baulcombe DC (2018) A
1334 novel DCL2-dependent miRNA pathway in tomato affects susceptibility to RNA
1335 viruses. *Genes & Development* 32: 1155–1160

1336 Won SY, Yumul RE, Chen X (2014) Small RNAs in Plants. In SH Howell, ed,
1337 Molecular Biology. Springer New York, New York, NY, pp 95–127

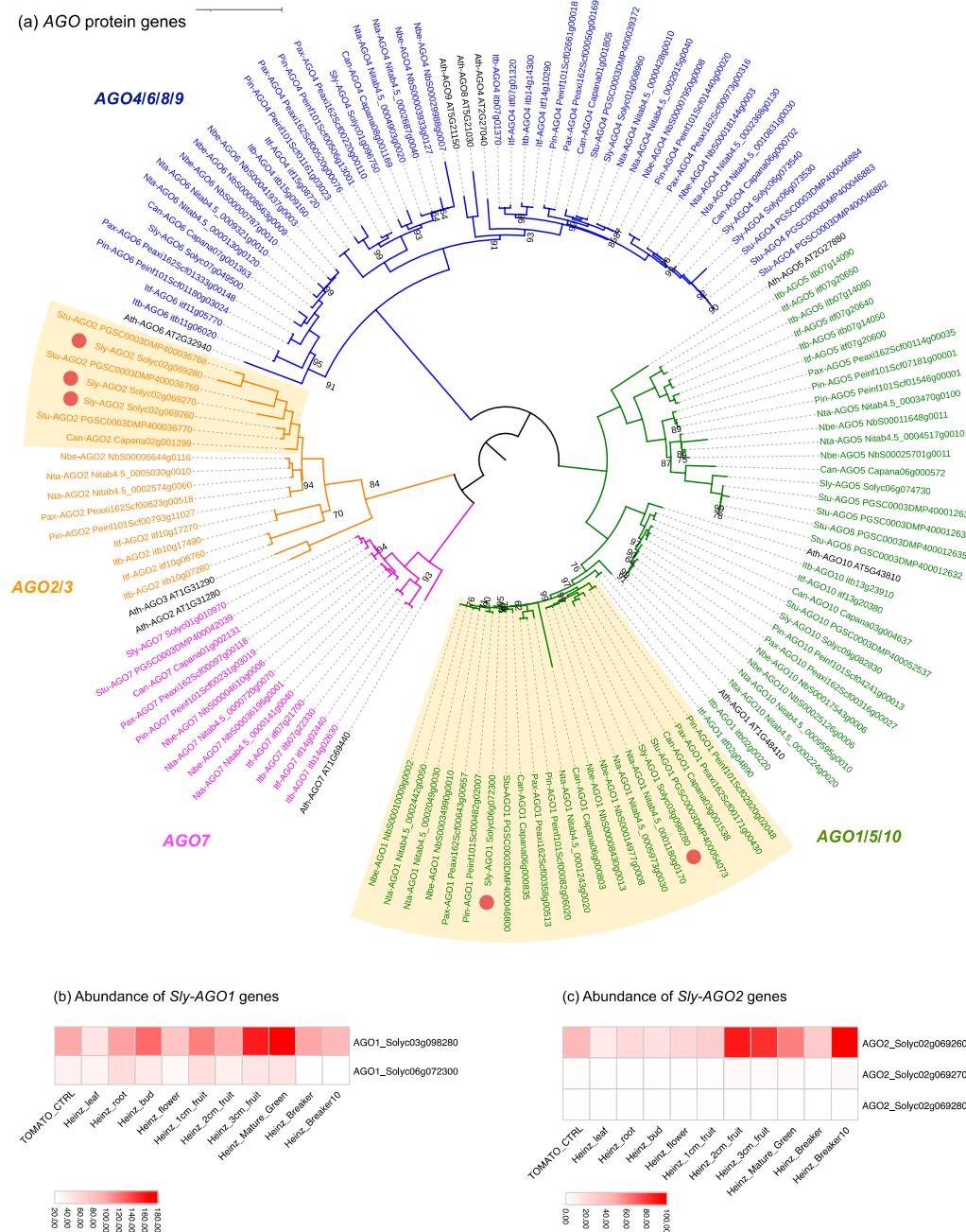
1338 Wu, H., Li, B., Iwakawa, H. oki, Pan, Y., Tang, X., Ling-hu, Q., Liu, Y., Sheng, S.,
1339 Feng, L., Zhang, H., Zhang, X., Tang, Z., Xia, X., Zhai, J., & Guo, H. (2020). Plant
1340 22-nt siRNAs mediate translational repression and stress adaptation. *Nature* 581:
1341 81–93

1342 Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009) Rice MicroRNA Effector
1343 Complexes and Targets. *The Plant Cell* 21: 3421–3435

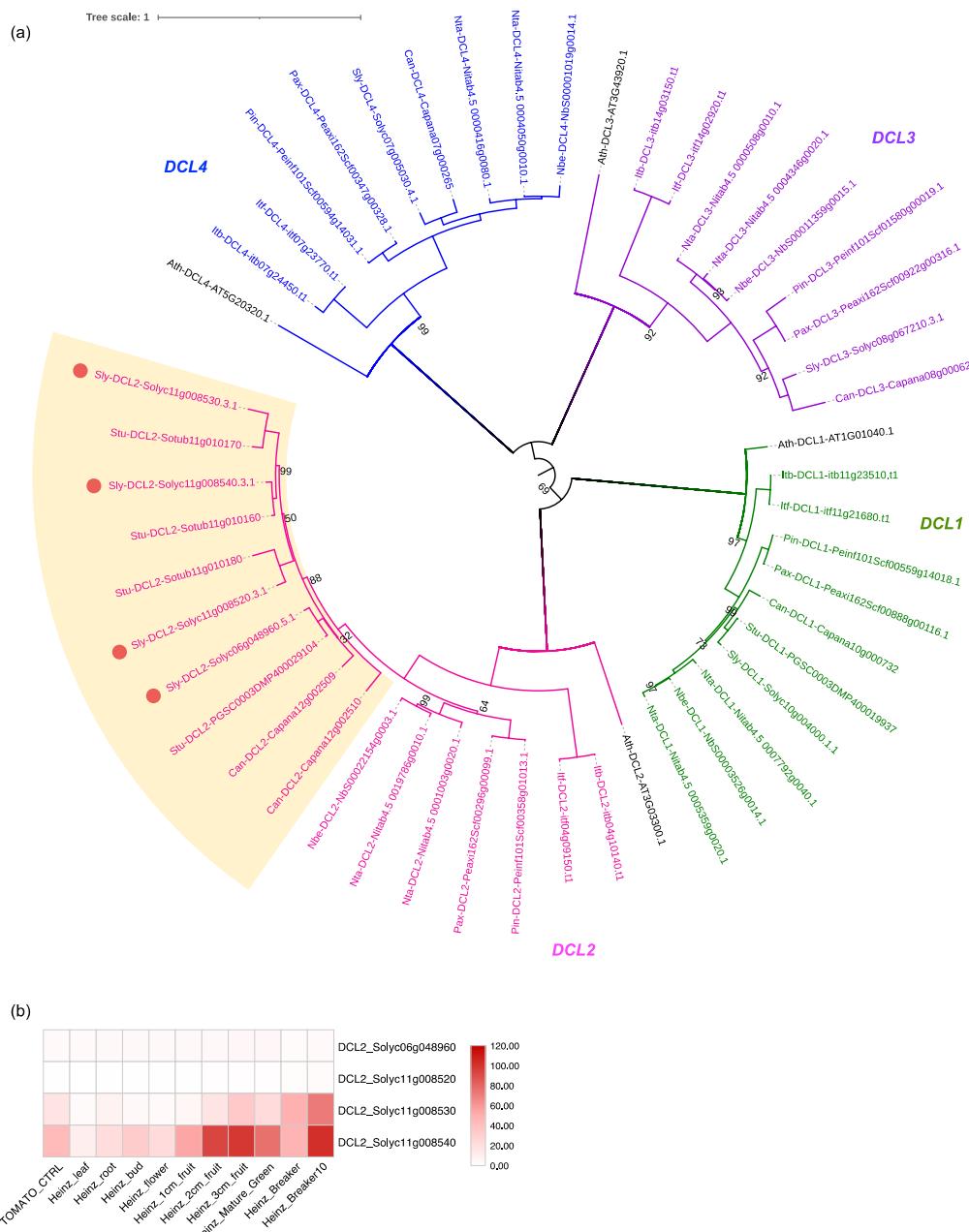
1344 Xia R, Meyers BC, Liu Z, Beers EP, Ye S, Liu Z (2013) MicroRNA superfamilies
1345 descended from miR390 and their roles in secondary small interfering RNA
1346 Biogenesis in Eudicots. *Plant Cell* 25: 1555–1572

1347 Xia R, Xu J, Ariket S, Meyers BC (2015) Extensive Families of miRNAs and PHAS
1348 Loci in Norway Spruce Demonstrate the Origins of Complex phasiRNA Networks in
1349 Seed Plants. *Mol Biol Evol* 32: 2905–2918

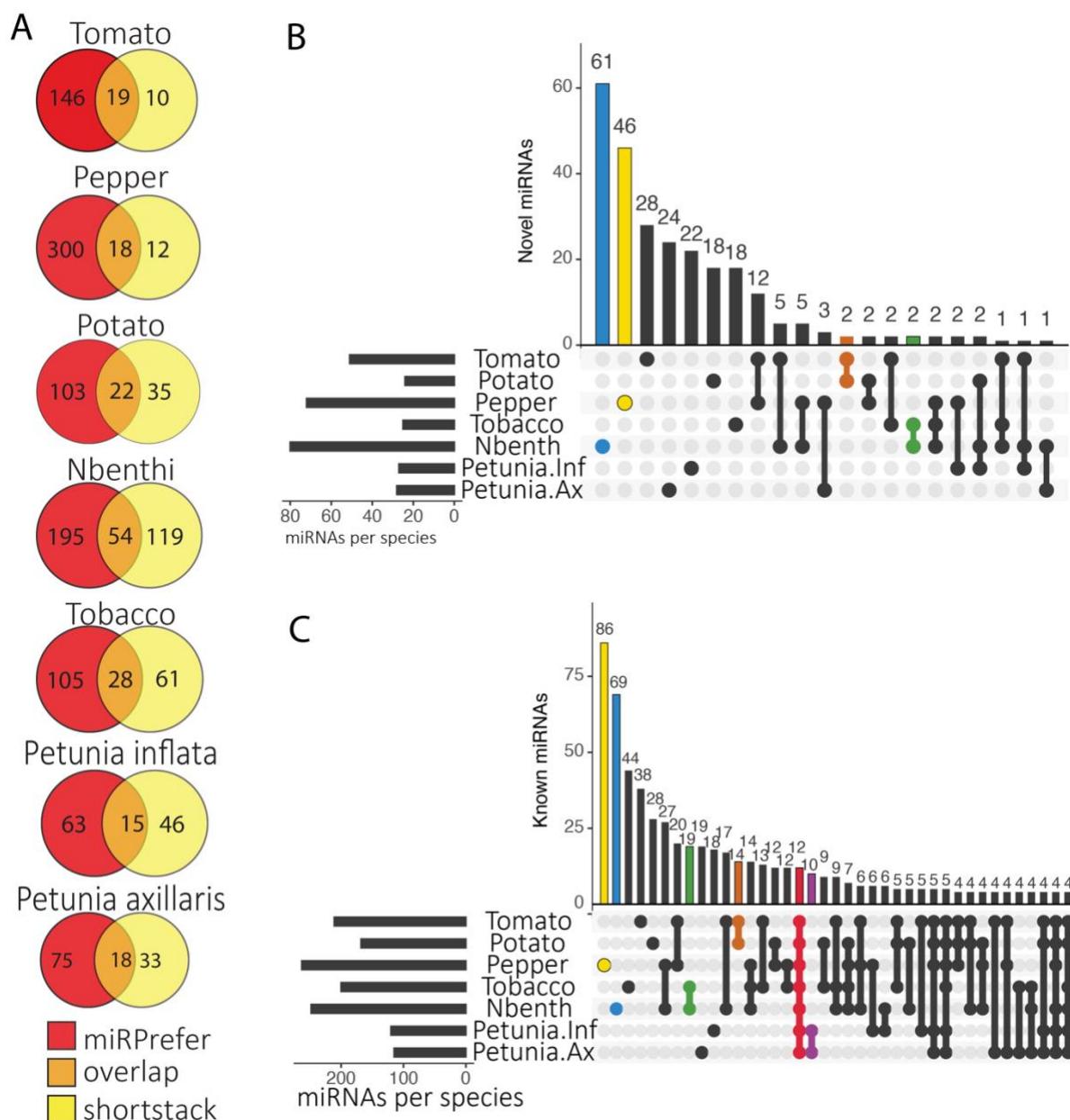
1350 Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-
1351 Like1 in *Arabidopsis* by microRNA-guided mRNA degradation. *Curr Biol* 13: 784–
1352 789

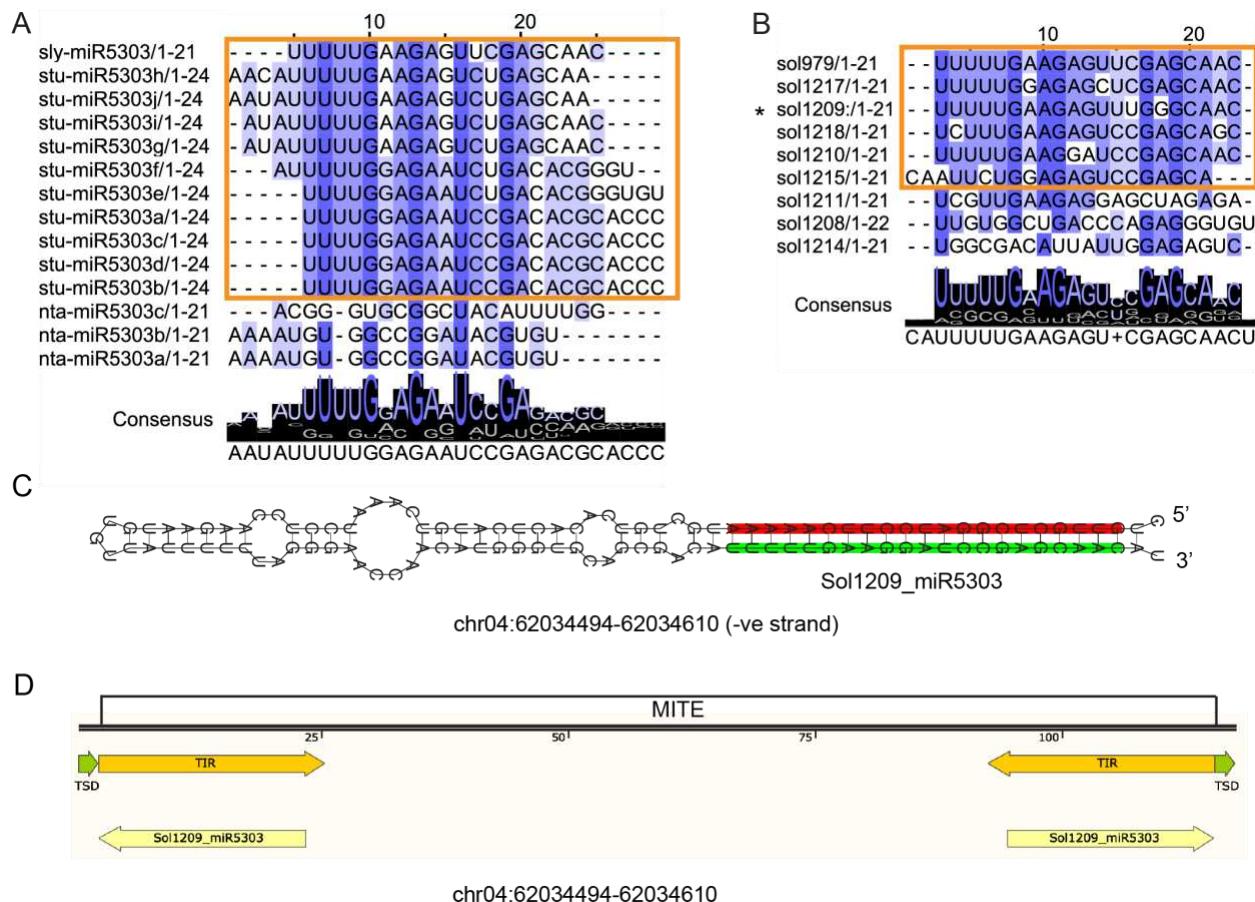

1353 Zhai J, Jeong D-H, De Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto
1354 SL, Grusak MA, et al (2011) MicroRNAs as master regulators of the plant NB-LRR
1355 defense gene family via the production of phased, trans-acting siRNAs. *Genes Dev*
1356 25: 2540–2553

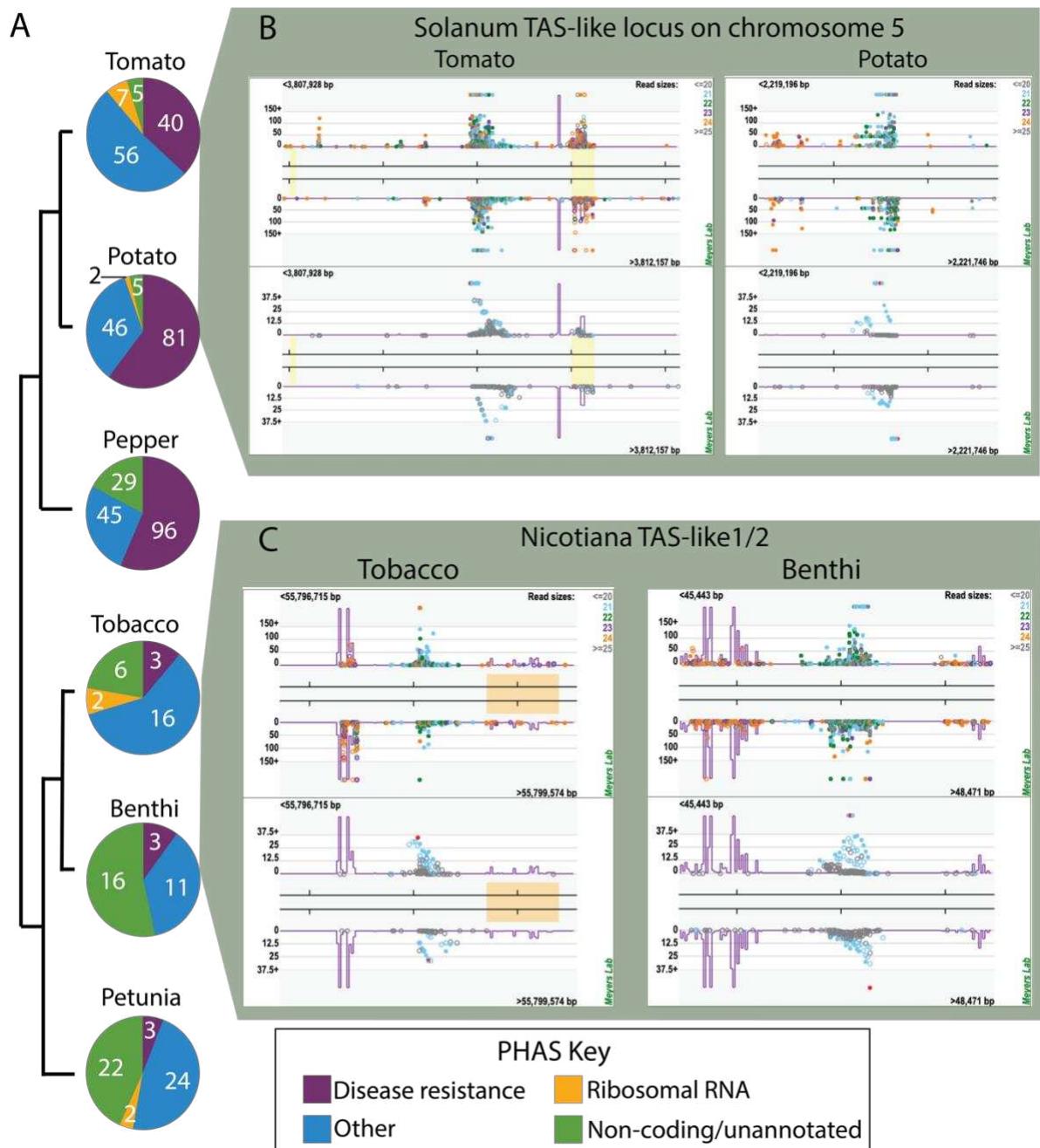
1357 Zhang H, Xia R, Meyers BC, Walbot V (2015) Evolution, functions, and mysteries of
1358 plant ARGONAUTE proteins. *Curr Opin Plant Biol* 27: 84–90

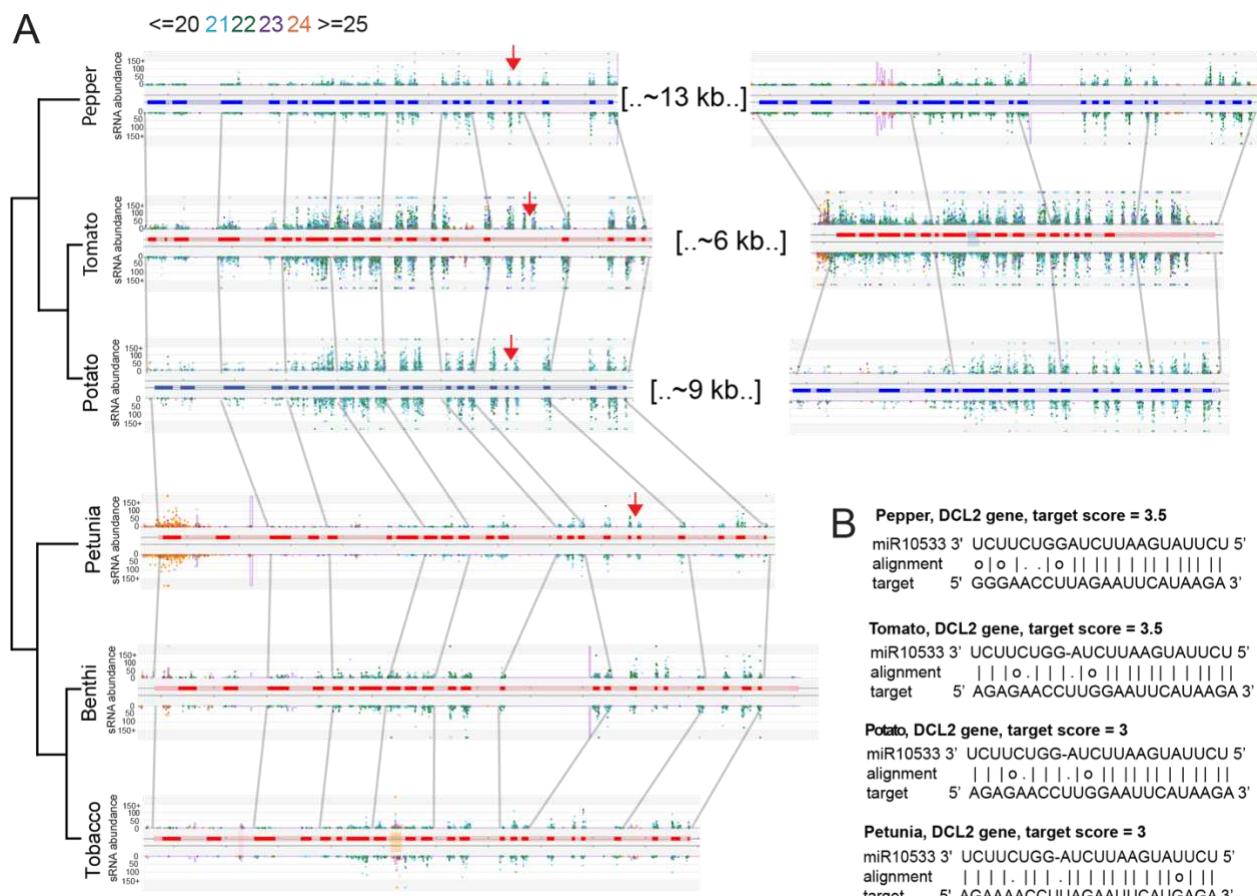

1359 Zhang R, Marshall D, Bryan GJ, Hornyik C (2013) Identification and
1360 characterization of miRNA transcriptome in potato by high-throughput sequencing.
1361 *PLoS One* 8: e57233

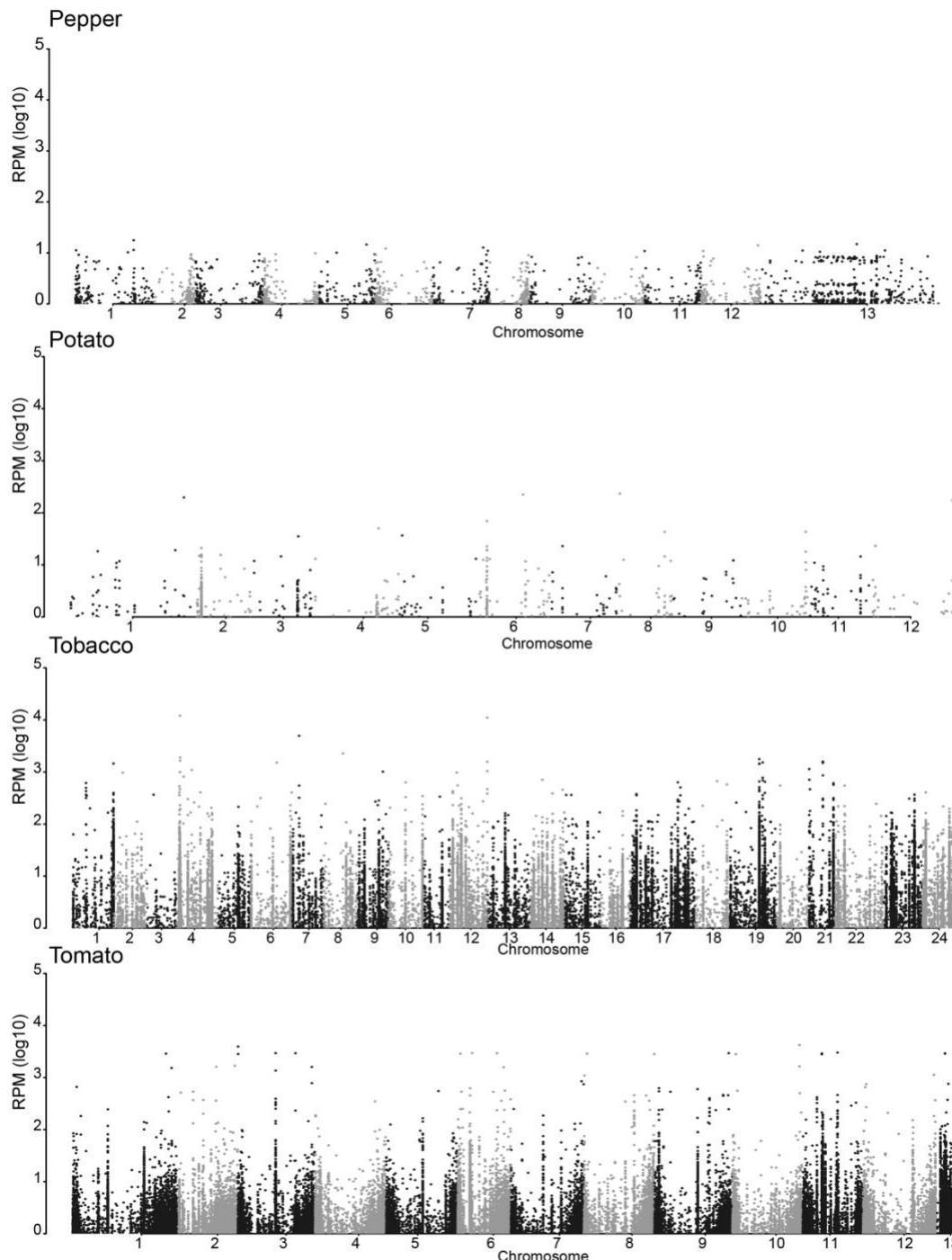
1362 Zuo J, Grierson D, Courtney LT, Wang Y, Gao L, Zhao X, Zhu B, Luo Y, Wang Q,
1363 Giovannoni JJ (2020) Relationships between genome methylation, levels of non-
1364 coding RNAs, mRNAs and metabolites in ripening tomato fruit. *Plant J* 103: 980–


1365 994


Figure 1: Solanaceae-specific diversification of the AGO family highlights expansion and subfunctionalization of subfamily members. Phylogenetic tree of proteins encoded by the AGO gene family in the Solanaceae (A). Clades of AGO subfamily members are drawn with distinct colors. Yellow boxes highlight groups of AGO genes that have expanded in Solanaceae. Red circles indicate AGO homologs in tomatoes. Heatmaps show the relative expression of AGO1 and AGO2 from public data (B). Orthologous protein groups were identified using OrthoFinder and SonicParanoid. Protein alignments and phylogeny analysis were completed using MUSCLE and IQ-TREE. Phylogenetic tree was illustrated using iTOL.


Figure 2: Phylogenetic analysis of DCL family members encoded in the Solanaceae highlights a *Solanum/Capsicum*-specific expansion of DCL2. Phylogenetic tree of protein sequences indicating *DCL* subfamily members in the Solanaceae (A). Subclades of the *DCL* family are drawn with distinct colors and yellow boxes highlight groups of *DCL2* that expanded in *Capsicum* and *Solanum* genera. Red circles indicate tomato paralogs for *DCL2*. Heatmaps show the relative abundance of these tomato *DCL2* paralogs in diverse samples (B). Protein orthologous groups were identified using OrthoFinder and SonicParanoid. Protein alignments and phylogeny analysis were done using MUSCLE and IQ- TREE. Phylogenetic tree was visualized using iTOL.


Figure 3: MicroRNA predictions across Solanaceae support a lineage-specific expansion of miRNAs. Venn diagrams of total miRNAs predicted by miRPrefer (red), Shortstack (yellow), and both programs (orange) for each species (A). Upset plots showing novel (B) and known (C) miRNAs that are shared across Solanaceae species. For each Upset plot: the bottom left panel shows the entire size of each set as a horizontal histogram, the bottom right panel shows the intersection matrix, and the upper right panel shows the size of each combination as a vertical histogram. The red line marks miRNAs common to all species, the purple line marks miRNAs common to both *Petunia* species, the orange line marks miRNAs common to both *Solanum* species, the green line marks miRNAs common to both *Nicotiana* species, and the blue and yellow lines mark benthic- and pepper-specific miRNAs, respectively.


Figure 4: miR5303 aligns to MITE terminal inverted repeat (TIR) sequences. The previously-annotated Solanaceae-specific miRNA family, miR5303, exhibits many features that disqualify it as a bona fide miRNA. The majority of the miR5303 miRBase entries include mature sequences that are 24-nt in length, indicating that these sRNAs are likely derived from siRNA producing loci (A). miR5303 miRBase entries are highly variable in their sequence; we identified a consensus sequence to isolate true miR5303 family members (highlighted in the yellow box and shown in Supplemental Figure 3) (A). We filtered out miRNAs > 22-nt in length; however, our predicted miR5303 family members that are 21 or 22 nt follow the same 5' consensus sequence (UUUUG) as the miRBase entries (B). The predicted precursors of miR5303 family members have near perfect hairpin folding, indicating that these loci are likely inverted repeats, rather than real miRNA precursors (C), and BLAST alignment of miR5303 family members to the plant MITE database produces a perfect alignment between the miR5303 species and MITE TIR sequences (D).

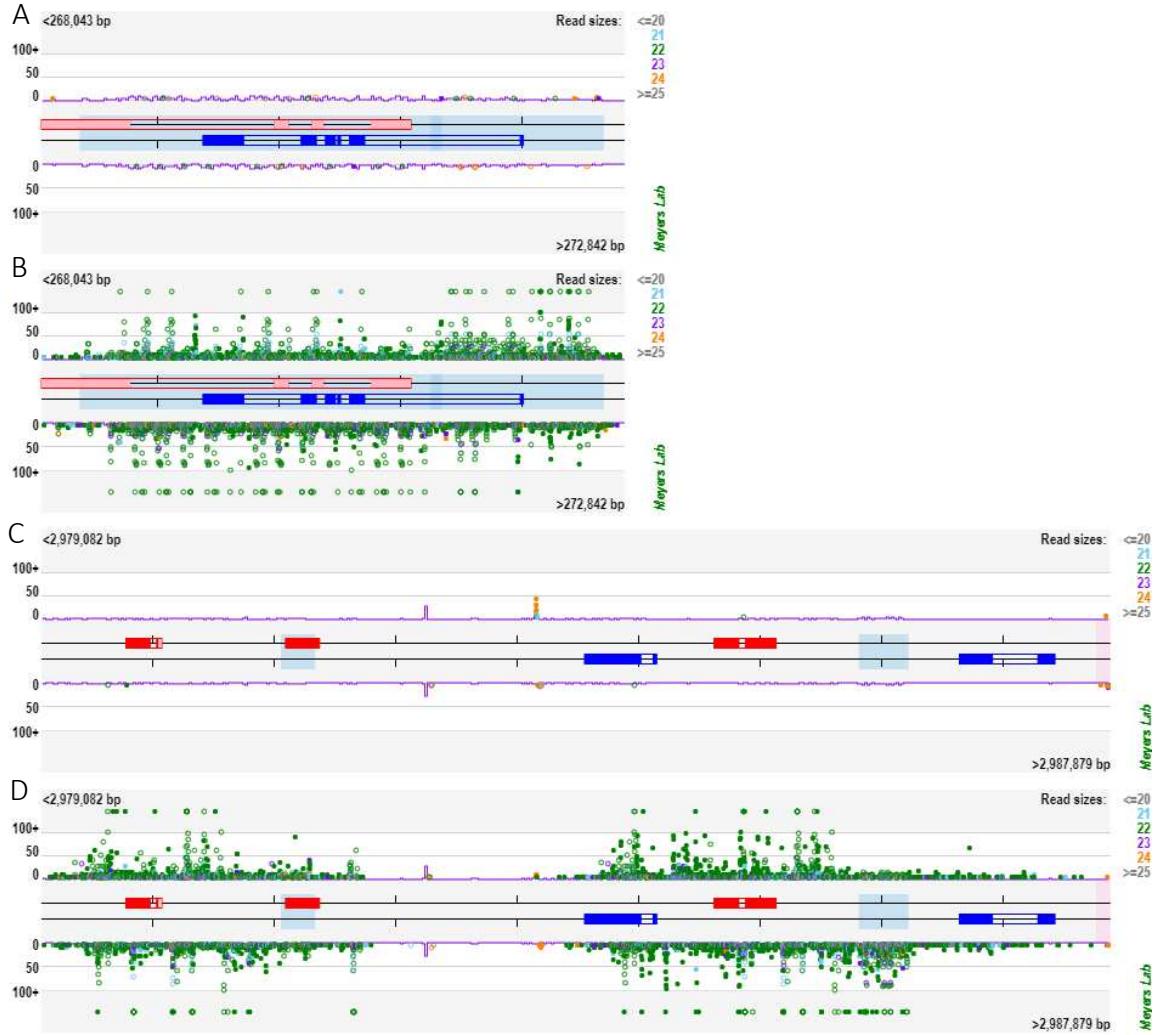

Figure 5: Genus-specific trends of 21-nt PHAS loci within the Solanaceae. *Solanum* (tomato and potato) and *Capsicum* (pepper) genera produce 2-3 times more PHAS loci and predominantly express disease resistance-related coding loci, relative to *Nicotiana* (tobacco and benthii) and *Petunia* genera (A). The raw number of loci for each category in (A) is shown in white. All of the species express non-coding PHAS loci (green). A previously unidentified non-coding TAS-like locus is shown for on chromosome 5 in tomato (left) and potato (right) (B), and a previously identified non-coding *Nicotiana*-conserved TAS-like 1/2 locus is plotted for tobacco (left) and benthii (right) (C).

Figure 6: *DCL2* phasiRNA-producing loci are conserved across Solanaceous species. *DCL2* paralogs in pepper, tomato, and potato, and orthologs in petunia, benthi, and tobacco all produce 21-nt phasiRNAs (A). We identified conserved miRNA target sites for miR10533 and miR6026 in pepper, tomato, potato, and petunia (red and yellow arrow respectively denotes cleavage sites) that has a strong target score, and may be a conserved mechanism for triggering *DCL2 PHAS* locus production in these species (B).

Figure 7: hc-siRNA expression across chromosomes in Solanaceae. Normalized read counts for 24-nt TE-associated hc-siRNAs are plotted across the assembled chromosomes for tobacco, tomato, potato, and pepper. The x-axis represents the chromosome number, alternating between grey and black, and the y-axis represents the average number of reads at each chromosome position. The average read number was calculated based on the number of available libraries for each species. As expected, the majority of hc-siRNAs map to telomeric ends. Unexpectedly, potato accumulates a low proportion of 24-nt hc-siRNAs relative to total sRNAs.

Figure 8: Tomato produces 22-nt sRNA clusters in response to geminivirus infection.

Small RNA reads mapped to two tomato loci (Ch05:268043..272842 (A and B) and Ch05:2979082..2987879 (C and D)) for a geminivirus infected and control sample pair shows strong expression of 22-nt siRNAs (shown as green dots) in response to viral treatments. The central red and blue boxes represent gene models from the 3.0 version of *S. lycopersicum* genome, and shaded boxes represent repetitive sequences. Dots represent sRNA reads, color-coded by length, mapped to the genomic region, with abundance represented by the position along the Y axis. Hollow dots are multi-mappers, and solid dots are unique-mappers. (A) and (C) are expression plots of control, mock-infected samples, and (B) and (D) are from the corresponding virus-infected samples.