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Abstract 23 

Replay can consolidate memories through offline neural reactivation related to past experiences. 24 

Category knowledge is learned across multiple experiences, and its subsequent generalisation is 25 

promoted by consolidation and replay during rest and sleep. However, aspects of replay are difficult 26 

to determine from neuroimaging studies. We provided insights into category knowledge replay by 27 

simulating these processes in a neural network which approximated the roles of the human ventral 28 

visual stream and hippocampus. Generative replay, akin to imagining new category instances, 29 

facilitated generalisation to new experiences. Consolidation-related replay may therefore help to 30 

prepare us for the future as much as remember the past. Generative replay was more effective in later 31 

network layers functionally similar to the lateral occipital cortex than layers corresponding to early 32 

visual cortex, drawing a distinction between neural replay and its relevance to consolidation. Category 33 

replay was most beneficial for newly acquired knowledge, suggesting replay helps us adapt to changes 34 

in our environment. Finally, we present a novel mechanism for the observation that the brain 35 

selectively consolidates weaker information; a reinforcement learning process in which categories 36 

were replayed according to their contribution to network performance. This reinforces the idea of 37 

consolidation-related replay as an active rather than passive process.  38 

 39 
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1. Introduction 49 

1.1 Memory consolidation-related replay 50 

Memory replay refers to the reactivation of experience-dependent neural activity during resting 51 

periods. First observed in rodent hippocampal cells during sleep (Wilson and McNaughton 1994), the 52 

phenomenon has since been detected in humans during rest (Tambini and Davachi 2013; Hermans et 53 

al. 2017; Schapiro et al. 2018; Liu et al. 2019; Wittkuhn and Schuck 2021), and sleep (Schönauer et al. 54 

2017; Zhang et al. 2018). These investigations have revealed replayed experiences are more likely to 55 

be subsequently remembered, therefore replay has been proposed to strengthen the associated 56 

neural connections and to protect memories from being forgotten. This memory consolidation-related 57 

replay can be viewed as distinct from task-related replay, the neural reactivation observed during task 58 

performance which supports cognitive processes such as memory recall (Jafarpour et al. 2014; 59 

Michelmann et al. 2019; Wimmer et al. 2020), visual understanding (Schwartenbeck et al. 2021), 60 

decision making (Liu et al. 2021), planning (Momennejad et al. 2018) and prediction (Ekman et al. 61 

2017). While traditional perspectives view memory consolidation as a gradual process of fixation 62 

whereby memories are stabilised (Squire and Alvarez 1995; McGaugh 2000), in this paper we advocate 63 

the more contemporary view that offline consolidation-related replay is more dynamic in nature 64 

(Mattar and Daw 2018). Using a computational approach, we test hypotheses that offline replay may 65 

be a creative process to serve future goals, that it matters exactly where in the brain replay occurs, 66 

that it helps us at particular stages of learning, and that the brain might actively choose the optimal 67 

experiences to replay. 68 

 69 

1.2 Generative replay of category knowledge 70 

Neural replay which supports memory consolidation during rest and sleep has been traditionally 71 

assumed to be veridical, such that we commit the events of that day to long-term memory by replaying 72 

the episodes as they were originally experienced. However, there are circumstances in which this may 73 

be suboptimal or impractical. For example, a desirable outcome of category knowledge consolidation 74 
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is to generalise to new experiences rather than recognise past instances.  This phenomenon has been 75 

observed after sleep in infants (Gómez et al. 2006; Friedrich et al. 2015; Horváth et al. 2016), and in 76 

adults (Lau et al. 2011). Sleep also recovers the generalisation of phonological categories (Fenn et al. 77 

2003), preserves generalisation performance in perceptual category learning (Graveline and Wamsley 78 

2017), and assists in the abstraction of gist-like prototype representations (Lutz et al. 2017).  It is still 79 

not understood how the brain consolidates and replays memory in the service of generalisation. In 80 

addition, although sleep benefits category learning for a limited number of well-controlled 81 

experimental stimuli (Schapiro et al. 2017), in the real world category learning takes place over many 82 

thousands of experiences, and storing each individual experience for replay is an impractical 83 

proposition. For these reasons, we propose the replay of novel, prototypical category instances would 84 

be a more efficient and effective solution. In fact, given the role of the hippocampus in both replay 85 

(Zhang et al. 2018) and the generation of prototypical concepts (Hassabis et al. 2007), we consider this 86 

the most likely form of category replay. While evidence for such generative replay of category 87 

knowledge has yet to be discovered in the human brain, replay of sequences immediately following 88 

task performance in humans has been shown to be flexible, in that items can be re-ordered based on 89 

previously learned rules (Liu et al. 2019). This is reminiscent of “pre-play” observed during task 90 

performance in rodents, where hippocampal “place cells” observed to fire in specific locations 91 

reactivate in a different order to represent a route which has not been taken before (Gupta et al. 92 

2010).  93 

Drawing inspiration from these observations, here we test the idea that replay which 94 

facilitates memory consolidation, occurring over extended offline time periods including sleep, might 95 

also be generative in nature, and that it’s flexibility may not just apply to the reorganisation of learned 96 

sequences, but the creation of entirely new instances of a category. While decoding the re-ordering 97 

of stimuli or route knowledge from brain data during replay has been shown to be a tractable 98 

approach, detecting entirely new instances of complex categories from the brain represents a 99 

significant challenge, and has yet to be demonstrated.  100 
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One approach to address this question is to simulate these processes in an artificial neural 101 

network. Prior research with artificial neural networks has modelled the replay of generated image 102 

stimuli (van de Ven et al. 2020). While revealing a promising avenue of investigation, the results of 103 

this study cannot be easily extrapolated to the brain or human visual experience. For example, the 104 

structure of only five convolutional layers in the network employed represents just a fraction of the 105 

size of larger models which have been shown to extract visual representations similar in nature to 106 

those processed by the brain (Schrimpf et al. 2018), whose complex structure can be compared to the 107 

ventral visual stream processing pathway, indicating a possible correspondence in functional 108 

architecture (Khaligh-Razavi and Kriegeskorte 2014; Güçlü and van Gerven 2015; Devereux et al. 109 

2018), and whose object recognition performance approaches that of humans (He et al. 2015). 110 

Further, the networks employed by van de Ven et al. (2020) had limited visual experience, having been 111 

pre-trained on just 10 categories of objects. In contrast, an adult human brain will harbour a lifetime 112 

of visual knowledge which facilitates the learning of novel concepts. Therefore, to simulate the 113 

learning and generative replay of new categories realistically in adults, using an experienced network 114 

which contains a pre-existing vast body of knowledge about a range of other categories is an essential 115 

starting point. Another feature of the aforementioned study which limits the comparison to humans, 116 

is that the stimuli used were low-resolution photographs measuring 32 x 32 pixels, which do not reflect 117 

the complexity of human visual experience. To accurately simulate human learning and replay, much 118 

larger, high-resolution images which go some way towards approaching the complexity and richness 119 

of everyday human visual experience are required as training stimuli. Finally, prior attempts at replay 120 

in neural networks, whether generative (Kemker and Kanan 2017; van de Ven et al. 2020) or veridical 121 

(Hayes et al. 2021) have been deployed to address the “catastrophic forgetting” problem; the 122 

tendency of artificial networks to forget old categories when new ones are learned (Robins 1995; 123 

French 1999). While this has been proposed as a potential mechanism for why biological agents do 124 

not suffer from catastrophic forgetting, empirical evidence in support of this hypothesis has not been 125 

forthcoming to date. In addition, other solutions have been put forward on how brains and models 126 
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may avoid catastrophic interference, such as Adaptive Resonance Theory (Grossberg 2013), and elastic 127 

weight consolidation (Kirkpatrick et al. 2017). 128 

In this study, we investigated whether offline generative replay of novel concepts facilitated 129 

subsequent generalisation to new experiences using models which attempt to simulate the human 130 

brain and approximate more closely the visual environment in which it learns. To do this, we 131 

implemented generative replay in a well-studied deep convolutional neural network (DCNN), which 132 

consists of a complex architecture organised into five blocks of convolutional layers and boasts a high 133 

“brain-score” indicating the representations it extracts bear a similarity to those extracted by the brain 134 

and it performs favourably to humans in a categorisation task (Schrimpf et al. 2018). The network had 135 

prior experience of learning 1000 diverse categories of objects from over a million high-resolution 136 

complex naturalistic images, a process which is the network equivalent of a lifetime of visual 137 

experience and which yields within the model an optimised, high-functioning visual system. We tasked 138 

the model with learning 10 novel categories it had not seen before, using similarly high-resolution 139 

naturalistic images to those it has seen before, with an average resolution of around 400 x 350 pixels 140 

(Deng et al. 2009), representing an approximate 140-fold increase in visual details from stimuli used 141 

in prior work. The analogue in humans would be coming across 10 new categories we had not seen 142 

before and using our lifelong experience in processing visual information to extrapolate the relevant 143 

identifying features. After learning periods, we then simulated generative replay in the network, which 144 

attempted to mimic human consolidation during sleep, and monitored the network’s performance 145 

when it “woke up” the next day, to ascertain if we could provide computational support for the theory 146 

that such a process underlies the overnight improvements in generalisation observed in humans. 147 

 148 

1.3 Effective neural loci of replay 149 

Another outstanding question regarding replay, is despite being associated with subsequent memory 150 

(Zhang et al. 2018), it is not clear where in the brain replay makes a demonstrable contribution 151 

towards generalisation. Replay has been observed throughout the brain, early in the ventral visual 152 
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stream (Ji and Wilson 2007; Deuker et al. 2013; Wittkuhn and Schuck 2021), in the ventral temporal 153 

cortex (Tambini et al. 2010; de Voogd et al. 2016), the medial temporal lobe (Staresina et al. 2013; 154 

Schapiro et al. 2018) the amygdala, (Girardeau et al. 2017; Hermans et al. 2017), motor cortex 155 

(Eichenlaub et al. 2020) and prefrontal cortex (Peyrache et al. 2009). It is not known if replay in lower-156 

level brain regions actually contributes to the observed memory improvements or whether the key 157 

neural changes are made in more advanced areas, and this question cannot be answered using current 158 

neuroimaging approaches. One prior study has implemented replay within an artificial neural network 159 

from a single location at the end of the network (van de Ven et al. 2020). However, because the 160 

compact architecture of this network did not have a clear functional correspondence with information 161 

processing pathways in the brain, and because replay from other locations within the network was 162 

not also implemented for comparison, it is difficult to yield predictions from these results regarding 163 

effective replay locations in the human brain. In the current study, because we simulated replay in a 164 

neural network which processes images in a manner reflective of the human ventral visual stream, we 165 

could compare the effectiveness of replay from different layers with a purported representational 166 

correspondence to specific regions in the brain. In doing so, we aimed to make predictions about the 167 

effective cortical targets of offline memory consolidation in humans. 168 

 169 

1.4 A time-dependent role for replay 170 

Another open question regarding human replay is the duration of its involvement throughout the 171 

learning of novel concepts. It can take humans years to learn and consolidate semantic or conceptual 172 

knowledge (Manns et al. 2003), but neuroimaging studies of replay are limited to a time-span of a day 173 

or two, therefore it is still not known how long replay contributes to this process. Humans are thought 174 

to “reconsolidate” information every time it is retrieved (Dudai 2012), suggesting replay might play a 175 

continual role in the lifespan of memory. However recordings in rodents have shown that replay 176 

diminishes with repeated exposure to an environment over multiple days (Giri et al. 2019), suggesting 177 

the brain may only replay recently learned, vulnerable information. Answering this question in 178 
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humans remains a challenge because of the impracticalities of tracking replay events for extended 179 

periods. Simulation in a human-like neural network represents a possible alternative to predict the 180 

relative contribution of replay to consolidation over long time-periods, an approach which has not 181 

been attempted to date. Here, we interleaved daily learning with nights of offline replay in a neural 182 

network which simulates the brain to understand at what stage in learning replay may be most 183 

effective in humans.  184 

 185 

1.5 Replay of weakly-learned knowledge 186 

An additional poorly understood principle of replay which we investigated in this study is why 187 

consolidation tends to selectively benefit weakly-learned over well-learned information (Kuriyama et 188 

al. 2004; Drosopoulos et al. 2007; McDevitt et al. 2015; Schapiro et al. 2018). Here, we modelled a 189 

candidate mechanism for how this occurs in the brain, by adding an auxiliary model (theoretically 190 

analogous to the hippocampus) to the neocortical-like model, which could autonomously learn the 191 

best consolidation strategy, determining what to replay and when. 192 

 193 

1.6 Hypotheses  194 

In addressing these outstanding questions regarding replay in the brain, we made a number of 195 

predictions. Because earlier brain regions are thought to extract equivalent basic features from all 196 

categories, we predicted replay of experience would be more effective in promoting learning at 197 

advanced stages of the network.  We hypothesised the replay of “imagined” prototypical replay events 198 

would be as effective as veridical replay in helping us to generalise to new, unseen experiences, thus 199 

supporting our conceptualization of replay as a creative process. We predicted that the benefits of 200 

replay may be confined to early in the learning curve when novel category knowledge is being 201 

acquired. Finally, we hypothesised that a dynamic interaction between hippocampal and neocortical-202 

like models would result in the prioritisation of weakly-learned items, in line with behavioural studies 203 

of memory consolidation. 204 
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2. Materials and Methods 205 

2.1 Neural network 206 

To simulate the learning of novel concepts in the brain, and test a number of hypotheses regarding 207 

replay, we trained a DCNN on 10 new categories of images. The neural network was VGG-16 208 

(Simonyan and Zisserman 2014). This network is trained on a vast dataset of 1.3 million high-resolution 209 

complex naturalistic photographs known as the ImageNet database (Deng et al. 2009), which contains 210 

recognisable objects from 1000 categories in different contexts. The network learns to associate the 211 

visual features of an object with its category label, until it can recognise examples of that object which 212 

it has never seen before, simulating the human ability to generalise prior knowledge to new situations. 213 

The network takes a photograph’s pixels as input, and sequentially transforms this input into more 214 

abstract features. It learns to perform these transformations by adjusting 138,357,544 connection 215 

weights across many layers. Its convolutional architecture reduces the number of possible training 216 

weights by searching for informative features in any area of the photographs.  217 

 In these experiments, we task the VGG-16 network with learning 10 new categories of images. 218 

To do this, we retained the pre-trained “base” of this network, which consisted of 19 layers, organised 219 

into five convolutional blocks. Within each block there were convolutional layers and a pooling layer, 220 

with nonlinear activation functions. To this base, we attached two fully connected layers, each 221 

followed by a “dropout” layer, which randomly zeroed out 50% of units to prevent overfitting to the 222 

training set (Srivastava et al. 2014). At the end of the network a SoftMax layer was attached, which 223 

contained just 10 outputs rather than the original 1000, and predicted which of 10 classes an image 224 

belonged to. To facilitate the learning of 10 new classes, the weights of layers attached to the pre-225 

trained base were randomly initialised. All model parameters were free to be trained. In total, 10 new 226 

models were trained, each learning 10 new and different classes.  227 

 228 

2.2 Stimuli 229 
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Photographic stimuli for new classes were drawn randomly from the larger ImageNet 2011 fall 230 

database (Russakovsky et al. 2015), and were screened manually by the experimenter to exclude 231 

classes which bore a close resemblance to classes which VGG-16 was originally trained on. In total, 232 

100 new classes were selected, and randomly assigned to the 10 different models to be trained. Within 233 

each class, a set of 1,170 training images, 130 validation images, and 50 test images were selected. 234 

The list of the selected classes is available in Supplementary Table 1. 235 

 236 

2.3 Baseline training 237 

We first trained a model without implementing replay, to serve as a baseline measure of network 238 

performance, and compare with other conditions which implemented replay. Ten models were 239 

trained on 10 new and different classes. To further prevent overfitting to the training set, images were 240 

augmented before each training epoch. This is similar to a human viewing an object at different 241 

locations, or from different angles, and facilitates the extraction of useful features rather than rote 242 

memorisation of experience. Augmentation could include up to 20-degree rotation, 20% vertical or 243 

horizontal shifting, 20% zoom, and horizontal flipping. Any blank portions of the image following 244 

augmentation were filled with a reflection of the existing image. Images were then pre-processed in 245 

accordance with Simonyan and Zisserman (2014). Depending on the experiment, the network was 246 

trained for 10 or 30 epochs. We used the Adam optimiser (Kingma and Ba 2014) with a learning rate 247 

of 0.0003. A small learning rate was chosen to reflect the fact that learning new categories in an adult 248 

human reflects a “fine-tuning” of an already highly-trained visual system. The training batch size was 249 

set to 36. The training objective was to minimise the categorical cross-entropy loss over the 10 classes. 250 

Training parameters were optimised based on validation set performance. We report the model’s 251 

performance metrics from the test set only. This is a collection of novel images from each category 252 

which the network does not learn nor is it tuned on, therefore reflecting the model’s ability to 253 

generalise to new stimuli after training, and is thus termed “generalisation performance” in the 254 

figures. Training was performed using TensorFlow version 2.2. 255 
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2.4 Replay  256 

Replay was conducted between training epochs, to simulate “days” of learning and “nights” of offline 257 

consolidation. We conceptualised replay representations as generative, in other words they 258 

represented a prototype of that category never seen before, from a particular point in the network. 259 

To generate these representations, the network activations induced by the training images from the 260 

preceding epoch were extracted from a particular layer in the network using the Keract toolbox (Remy 261 

2020). For each class separately, a multivariate distribution of activity was created from these 262 

activations using the SciPy toolbox (https://scipy.org/).  This multivariate normal distribution is an 263 

extension of the one-dimensional normal distribution to higher dimensions, and is specified by its 264 

mean and covariance matrix. This resulted in a single unique distribution for each specific class, which 265 

represented the relationship between units of the layer which had been previously observed for that 266 

class. We then sampled randomly from this distribution, creating novel activation patterns for that 267 

class at that point in the network (Fig 1A). These novel activation patterns represented a prototype of 268 

that category. The end result was a representation that was a rough approximation of the layer’s 269 

representations of that category if a real image was processed, but novel in nature (see supplementary 270 

Fig 1). The human brain equivalent would be the approximate pattern of neural activity which is 271 

representative of that category at a particular stage in the ventral visual stream.  In the brain, these 272 

hypothetical prototypical concepts would be likely generated from more high-level regions such as 273 

the hippocampus and prefrontal cortex (Hassabis et al. 2007; Bowman et al. 2020). Our model was 274 

generative as it could create new samples, however it offered several advantages over traditional 275 

generative models. We were not limited by a bottleneck symmetrical architecture, and our procedure 276 

allowed the model to learn generative samples at multiple levels of representation. Further, our model 277 

represented a proper vision model which showed parallels with the functional architecture of the 278 

ventral visual stream in the brain, whereas current generative models do not show this 279 

correspondence or scale well to such a deep architecture. Finally, our model is specialised for object 280 

recognition, with the resulting generated representations shaped by these task pressures. 281 
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  The number of novel representations created for replay was equivalent to the number of 282 

original training images (1,170). To test where in the network replay is most effective, this process was 283 

performed at one of five different network locations, namely the max pooling layers at the end of each 284 

block (Fig 1A). For the first four pooling layers, creating a multivariate distribution from such a large 285 

number of units was computationally intractable, therefore activations for each filter in these layers 286 

were first down-sampled by a factor of eight for layer one, by four for layers two and three and two 287 

for layer four. The samples drawn from the resulting distribution were then up-sampled back to their 288 

original resolution. These lower-resolution samples are also theoretically relevant, in that they were 289 

created to mimic the schematic nature of mental and dream imagery which takes place during rest 290 

and sleep. To replay these samples through the network, the VGG-16 network was temporarily 291 

disconnected at the layer where replay was implemented, and a new input layer was attached which 292 

matched the dimensions of the replay representations. This truncated network was trained on the 293 

replay samples using the same parameters as regular training. We assume that the brain actively 294 

chooses to replay each concept learned that day, by reactivating the prototypical representations 295 

extracted from many experiences and the associated category label together during sleep. After each 296 

epoch of replay training, the replay section of the network was reattached to the original base, and 297 

training on real images through the whole network resumed. To assess the effects of generative replay 298 

on stimuli disambiguation, we took 10 classes from the 100 which were highly similar (plants, see 299 

supplementary table 2), and trained an additional network on these categories. We then assessed 300 

whether replaying similar classes in the same model led to a greater relative increase in class 301 

performance from baseline accuracies. We did this by dividing the increase in generalisation 302 

performance resulting from replay by the original baseline performance. To find out how many 303 

exemplars are needed for generative replay to have a beneficial effect on category learning we trained 304 

the same models with 20, 40, 60, 80 and 100 images, again for ten “days”, and replayed an equivalent 305 

number of generated representations in each case. To simulate veridical replay, in other words the 306 

replay of each individual experience as it happened, rather than the generation of new samples, we 307 
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used the activations for each object at that layer in the network during replay periods. These were not 308 

down-sampled during the process. Given how many examples of a concept we generally encounter, 309 

veridical replay of all experience is not a realistic prospect, which is why prior attempts to simulate 310 

replay in smaller-scale networks have also avoided this scenario in their approaches (Kemker and 311 

Kanan 2017; van de Ven et al. 2020). To additionally demonstrate the improvements that replay 312 

affords on each day relative to the previous day, we calculated the performance improvement from 313 

day n to day n+1, divided by the difference between model performance on day n and 1, which 314 

represents the potential room for improvement. 315 

 316 

2.5 Replay within a reinforcement learning framework 317 

We tested a process through which items which are most beneficial for replay might be selected in 318 

the brain. We proposed that such selective replay may involve an interaction between the main 319 

concept learning network (VGG-16), and a smaller network which learned through reinforcement 320 

which concepts are most beneficial to replay through the main network during offline periods. The 321 

neural analogue of such a network could be thought of as the hippocampus, as the activity of this 322 

structure precedes the widespread reactivation of neural patterns observed during replay (Zhang et 323 

al. 2018). This approach is similar to the “teacher-student” meta-learning framework which has been 324 

shown to improve performance in deep neural networks  (Fan et al. 2018). The side network was a 325 

simple regression network with 10 inputs, one for each class, and one output, which was the predicted 326 

value for replaying that class through the main network. Classes were chosen and replayed one at a 327 

time, with a batch size of 36. To train the side network, a value of 1 was inputted for the chosen class, 328 

with zeros for the others. The predicted reward for the side network was the change in performance 329 

of the main network after each replay instance, which was quantified by a change in chi-square; a 330 

contrast of the maximum number of possible correct predictions by the main network, versus its 331 

actual correct predictions. A positive reward was therefore a reduction in chi-square, which resulted 332 

in an increase in the side network’s weight for that class. This led to the class being more likely to be 333 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2021.05.25.445587doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445587
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

chosen in future, as the network’s weights were converted into a SoftMax layer, from which classes 334 

were selected probabilistically for replay. Through this iterative process, the side network learned 335 

which classes were more valuable to replay, and continually updated its preferences based on the 336 

performance of the main network. Reducing the chi-square in this dynamic manner improves the 337 

overall network accuracy as it progressively reduces the disparity between the network’s 338 

classifications and the actual class identities. To generate initial values for the side network, one batch 339 

of each class was replayed through the main network. The Adam optimiser was used with a learning 340 

rate of 0.001 and the objective was to minimise the mean squared error loss. The side network was 341 

trained for 50 epochs with each replay batch. The assessment of network improvement was always 342 

performed on the validation set, and the reported values are accuracy on the test set, reflecting the 343 

ability of the network to generalise to new situations. 344 

 345 

3. Results 346 

3.1 Localising where in the ventral visual stream generative replay is likely to enhance 347 

generalisation 348 

We first sought to establish where in the visual brain the replay of category knowledge might be most 349 

effective in helping to generalise to new experiences, as the functional relevance of replay observed 350 

in many different brain regions has yet to be established. To obtain a baseline measure of how the 351 

network would perform without replay, the network learned 10 new categories in the absence of 352 

offline replay. Next, we implemented generative memory replay. To do this, we captured the “typical” 353 

activation of the network for a category and sampled from this gist-like representation to create novel, 354 

abstracted representations for replay (Fig 1A).  355 

We simulated generative replay from different layers in the DCNN, equivalent to different 356 

brain regions along the ventral stream. Specifically, we trained the network over 10 epochs, mimicking 357 

10 days of learning in humans, and replayed prototypical representations after each training epoch, 358 
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simulating 10 nights of offline consolidation during sleep. In Fig 1B we show how replay affects the 359 

ability of the network to generalise to new exemplars of the categories over the course of learning.  360 

Replay substantially speeds up the learning process, with replay from layer four already reaching the 361 

final baseline generalisation performance three days earlier. Fig 1C shows the final best performing 362 

models in each replay condition. A one-way repeated-measures ANOVA on the final models revealed 363 

a difference across conditions (F(5,45) = 7.23, p < 0.001), with planned Bonferroni-corrected post-hoc 364 

comparisons revealing that only replay from layer 4 (t(9) = -4.31, p = 0.002) was significantly higher than 365 

baseline. We performed an additional analysis to confirm that the down-sampling of earlier layers did 366 

not explain this finding, by further down-sampling the replay representations in layer four by a factor 367 

of seven, and generalisation performance in this layer was still significantly higher than baseline (see 368 

supplementary Fig 2). Therefore, there is a differential benefit of replay throughout the network, 369 

where replay in the early layers is of limited benefit, whereas replay in the later layers boosts 370 

generalisation performance to a greater degree. This predicts that early visual areas in the brain may 371 

not store sufficiently complex category-specific representations, curtailing the effectiveness of 372 

generated replay representations, whereas areas further along the ventral visual stream, such as the 373 

lateral occipital cortex, might be better positioned to support the generation of novel, prototypical 374 

concepts which accelerates learning in the absence of real experience and helps us to generalise to 375 

new situations. We further investigated if generative replay could benefit category learning where few 376 

exemplars are available. In Figure 2D we show that generative replay from layer four could improve 377 

generalisation when learning and replaying just 20, 40 or 60 exemplars (all t-tests below Bonferroni-378 

corrected threshold of p = 0.01). We also assessed the effects of replay on class disambiguation in this 379 

layer, by training a model containing conceptually highly similar classes collated from all of the other 380 

models, and comparing the relative increase in generalisation performance from the original class 381 

accuracies. Figure 2E shows a replay-induced performance increase for conceptually similar items, but 382 

this did not reach statistical significance (t(9) = -2.10, p = 0.065).  383 

 384 
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 385 

Fig 1. The effects of generative replay from different layers of a model of the human ventral visual 386 

stream on generalisation to new exemplars. (A) The VGG-16 network attempts to simulate the brain’s 387 

visual system by looking at photographs and extracting relevant features to help categorise the objects 388 

within. We trained this network on 10 new categories of objects it had not seen before. In between 389 

learning episodes, to simulate sleep-facilitated consolidation in humans, we implemented offline 390 
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memory replay as a generative process. In other words, the network “imagined” new examples of a 391 

category based on the distribution of features it has learned so far for that object (activation space), 392 

and used these representations (novel representation) to consolidate its memory. The network did 393 

not create an actual visual stimulus to learn from, rather it recreated the neuronal pattern of activity 394 

that it would typically generate from viewing an object from that category. We display here an 395 

example of replaying from a mid-point in the network, but all five locations where replay was 396 

implemented are indicated by the coloured circles. The brain regions which have been reported to 397 

contain functionally similar representations to different network layers, derived from Güçlü and van 398 

Gerven (2015), are listed beneath. (B) The effects of memory replay from different layers on the 399 

network’s ability to generalise to new examples of the 10 categories, throughout the course of 10 400 

learning episodes. Plotted values represent the mean accuracies from 10 different models which each 401 

learned 10 new and different categories. (C) The final recognition accuracies (+/- S.E.M.), averaged 402 

across 10 models, on the new set of photographs after 10 epochs of learning. We reveal the location 403 

in a model of the ventral stream where replay maximally enhances generalisation performance is an 404 

advanced layer which bears an approximate functional correspondence to the lateral occipital cortex 405 

(LOC) in humans. The benefits of replay from other locations were less pronounced, with the earliest 406 

layer showing the least benefit to generalisation. (D) The benefits of replay from layer four on 407 

generalisation performance with limited numbers of exemplars (E) The effect of generative replay 408 

from layer four on the generalisation performance of classes when learned alongside diverse 409 

categories or where all are conceptually similar.  410 

 411 

3.2 Tracking the benefits of replay across learning 412 

In the second experiment, we extended training to 30 days of experience, interleaved with nights of 413 

offline generative replay to simulate learning over longer timescales and predict when in learning 414 

replay might be more effective (Fig 2A). Guided by the results of experiment one, we implemented 415 

replay from an advanced layer corresponding to the lateral occipital cortex. A mixed between-within 416 
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ANOVA showed an interaction between condition and day (F(29,522) = 5.03, p < 0.001) with planned 417 

post-hoc Bonferroni-corrected comparisons (p < 0.00167) revealing a difference between generative 418 

replay and baseline for days two to six, and eight (Fig 2B). Visualising the network’s improvement in 419 

performance from day to day relative to the potential room for improvement from the previous day 420 

confirmed that the benefits of generative replay were limited to early learning (Fig 2C). Therefore, 421 

offline generative replay might be more effective at improving generalisation to new exemplars at the 422 

earliest stages of learning. This suggests replay might facilitates rapid generalisation, which maximises 423 

performance given a limited set of experiences with a category.  424 

We were interested to compare generative replay with the unlikely veridical, high-resolution 425 

scenario whereby humans could replay thousands of encounters with individual objects exactly as 426 

they were experienced. We termed this “veridical replay” (Fig 2A), which involved capturing the exact 427 

neural patterns associated with each experienced object during learning, and replaying these from 428 

the same point in the network.  A mixed between-within ANOVA did not reveal any difference 429 

between generative and veridical replay in terms of generalisation performance (F(1,18) = 0.16, p = 430 

0.696), nor was an interaction effect observed between day and condition (F(29,522) = 0.29, p = 0.999, 431 

Fig 2B). Therefore, generative replay was comparably effective to veridical replay of experience in 432 

consolidating memory, despite being entirely imagined from the networks prior experience. This 433 

provides tentative support for the hypothesis that generative replay is a putative form of category 434 

replay in humans, as it would appear vastly more efficient to imagine new concepts from an extracted 435 

prototype. 436 

 The aforementioned results simulated the benefits of replay under optimal conditions where 437 

humans encounter the same categories every day, however there are instances where exposure will 438 

be limited. To what extent can offline replay compensate for this limited learning? We simulated this 439 

in our model of the ventral stream by limiting the learning of actual category photographs to one day, 440 

and substituted all subsequent learning experiences with offline replay, termed “continuous replay” 441 

(Fig 2A). Despite the absence of further exposure to the actual objects, we found the network could 442 
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increase its generalisation accuracy from 32% to 83% purely by replaying imagined instances of 443 

concepts it has partially learned. This result may inform our understanding of the human ability to 444 

quickly learn from limited experience. However, a mixed-between ANOVA revealed a statistically 445 

significant interaction effect between day and condition (F(29,522) = 3.78, p < 0.001), with planned 446 

Bonferroni post-hoc comparisons revealing a difference between generative replay and continuous 447 

replay from day nine onwards (all p < 0.00167). Therefore, replayed representations appear to be 448 

dynamic in nature, as the prototypes generated from that first experience were not sufficient to train 449 

the network to its maximum performance, as is observed when learning and replay are interleaved. 450 

This suggests that replayed representations continue to improve as they are informed by ongoing 451 

learning, therefore generative replay in the human brain throughout learning may be envisaged as a 452 

constantly evolving “snapshot” of what has been learned so far about that category. 453 
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Fig 2. The facilitatory effects of memory replay across category learning. We simulate the long-455 

term consolidation of category memory by extending training to 30 days. (A) Schematic showing the 456 

different experimental conditions. “No replay” involves the model of the visual system learning the 457 

10 new categories without replay in between episodes. “Generative replay” simulates the brain 458 

imagining and replaying novel instances of a category during “night” periods of offline consolidation, 459 

from a layer bearing some functional approximation to the lateral occipital cortex. “Veridical replay” 460 

simulates the hypothetical performance of a human who, each night, replays every single event 461 

which has been experienced the preceding day. “Continuous replay” simulates a single day of 462 

learning, followed by days and nights of replay, investigating the potential benefit afforded by replay 463 

given only brief exposure to a category. For both day-time learning of real images and night-time 464 

consolidation of generated representations, the number of training stimuli was always 1,170 for 465 

each class. (B) The ability of the network to generalise to new exemplars of a category during each 466 

day throughout the learning process. Generalisation performance is measured by the proportion (+/- 467 

S.E.M.) of correctly recognised test images across 10 models. Generative replay maximally increases 468 

performance early in training, suggesting it might be optimal for new learning and recent memory 469 

consolidation. Despite being comprised of internally generated fictive experiences, generative replay 470 

was comparably effective to veridical replay throughout the learning process, positing it as an 471 

attractive, efficient and more realistic solution to memory consolidation which does not involve 472 

remembering all experiences. Continuous replay after just one day of learning substantially 473 

improved generalisation performance, but never reached the accuracy levels of networks which 474 

engaged in further learning. (C) The improvement in performance that generative replay affords on 475 

each day relative to the possible improvements from the previous day. 476 

 477 

3.3 Determining how the brain might select experiences for replay 478 

We proposed that replay may be a learning process in itself, whereby the hippocampus selects replay 479 

items, and learns through feedback from the neocortex the optimal ones to replay. In our previous 480 
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simulations we selected all categories for replay in equal number, however to simulate the 481 

autonomous nature of replay selection in the brain, we supplemented our model of the ventral visual 482 

stream with a small reinforcement learning network, approximating the theoretical role of the 483 

hippocampus in deciding what to replay (Fig 3A). The hippocampus-like model could choose one of 484 

the 10 categories to replay, and received a reward from the main network for that action, based on 485 

the improvement in network performance.  486 

We trained our model of the visual system on 10 novel categories, implementing replay during 487 

offline periods as before, and compared its generalisation performance with that of the dual 488 

interactive hippocampal-cortical model. In terms of overall accuracy, although generative RL replay 489 

appeared to lag briefly behind generative replay at the beginning of training, both approaches 490 

performed similarly, with a mixed between-within ANOVA revealing no difference between the two 491 

conditions in terms of generalisation performance (F(1,18) = 0.15, p = 0.704), nor was an interaction 492 

effect observed between day and condition (F(29,522) = 1.28, p = 0.153, Fig 3B). Fig 3C plots the 493 

difference between the two conditions across learning. However, the reinforcement learning network 494 

which simulated the hippocampal replay systematically selected categories which were originally 495 

relatively weakly learned more often (R2 = 0.24, F(1, 98) = 31.15, p < 0.001, Fig 3D), which resulted in 496 

their selective improvement (R2 = 0.18, F(1, 98) = 21.15, p < 0.001). However, this came at a cost, with 497 

originally well-learned categories being replayed less often and a drop in their generalisation accuracy. 498 

We present the idea that such a reinforcement learning process may underlie the “rebalancing” of 499 

experience in the brain, and that replay may therefore help to compensate for the fact that some 500 

categories are more difficult to learn than others. 501 

 502 
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 503 

Fig 3. Replay as a reinforcement learning process simulates the brain’s tendency to consolidate 504 

weaker knowledge. (A) Replay in a model which approximates the visual system is controlled by a 505 

reinforcement learning (RL) network which aims to assume the role of the hippocampus. The RL 506 

network selects one of 10 categories to replay through the visual system and receives a reward 507 

based on the improved performance, learning through trial and error which categories to replay. (B) 508 

Overall generalisation performance on new category exemplars was similar for both generative 509 

replay and generative replay controlled by a reinforcement learning network. Generalisation 510 

performance represents mean accuracy (+/- S.E.M) on test images across 10 models which each 511 

learned 10 new categories. (C) The difference between generative replay and generative RL replay 512 

performance for each day. (D) The RL network learns to replay categories which were originally more 513 

difficult for the model of the visual system, and improves their accuracy. This effectively 514 

“rebalanced” memory such that category knowledge was more evenly distributed, and offers a 515 

candidate mechanism as to how the brain chooses weakly learned information for replay. Plotted 516 
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values represent the 100 categories across 10 models. A proportion of the generalisation 517 

performance values are overlapping. 518 

 519 

4. Discussion 520 

We simulated the consolidation of category knowledge in a large-scale neural network model which 521 

approximates functional aspects of the human ventral visual system, by replaying prototypical 522 

representations thought to be formed and initiated by the hippocampus. The notion that replay of 523 

visual experiences might be generative in nature has been suggested by limited-capacity models which 524 

have been trained on low-resolution photographic images (van de Ven et al. 2020). However, our 525 

results using a model of the visual brain whose representations has compared favourably with actual 526 

brain data, represent more persuasive evidence that humans are unlikely to replay experiences 527 

verbatim during rest and sleep to improve category knowledge, and might be more likely to replay 528 

novel, imagined instances instead. In addition, the large number (117,000) of high-resolution complex 529 

naturalistic images we used for training in this experiment more closely reflected real-world learning 530 

and facilitated the extraction of gist-like features. While empirical evidence exists that humans replay 531 

novel sequences of stimuli (Liu et al. 2019), our work suggests that the brain might go further and uses 532 

learned features of objects to construct entirely fictive experiences to replay. We speculate that this 533 

creative process is particularly important for the consolidation of category knowledge as opposed to 534 

the replay of episodic memory (Deuker et al. 2013; Schapiro et al. 2018; Zhang et al. 2018), because 535 

of the requirement to abstract prototypical features and use these to generalise to new examples of 536 

a category. We propose that generative replay confers additional advantages such as constituting less 537 

of a burden on memory resources, as not all experiences need to be remembered. Further, our replay 538 

representations were highly effective in consolidating category knowledge despite being down-539 

sampled, and these compressed, low-resolution samples would reduce storage requirements further. 540 

Perhaps the simulation that most favourably supported the hypothesis that category replay in the 541 

brain likely adopts this compressed, prototypical format is that it aided generalisation to a similar 542 
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degree as the exact veridical replay of experience in boosting generalisation performance. Therefore, 543 

the main advantage to generative replay over veridical replay is that it represents a feasible, efficient 544 

solution to memory consolidation without compromising effectiveness. In addition, generative replay 545 

can add to events which have been experienced. Our findings therefore encourage a 546 

reconceptualization of the nature of consolidation-related replay in humans, that it is not only 547 

generative, but also low resolution or “blurry”, as is the case with internally generated imagery in 548 

humans (Giusberti et al. 1992; Lee et al. 2012). In fact, the kind of replay we propose here may be the 549 

driving force behind the transformation of memory into a more schematic, generalised form which 550 

preserves regularities across experiences while allowing unique elements of experience to fade (Love 551 

and Medin 1998; Winocur and Moscovitch 2011; Sweegers and Talamini 2014). The challenge for 552 

future empirical studies in humans to confirm our hypothesis, will be to decode prototypical replay 553 

representations during rest and sleep. In addition, future modelling and empirical work should address 554 

the sequential nature of learning and replay, as life experience does not consist of still snapshots of 555 

experience, such as those used in these experiments. Prior modelling work has shown that a video 556 

game-playing agent can improve its performance by learning inside its own generated environment 557 

(Ha and Schmidhuber 2018), which is more akin to an unfolding dream during sleep, and may provide 558 

inspiration for modelling the generative replay of video-like events to support category learning. 559 

 Simulating replay in a human-like network also allowed us to answer a question not currently 560 

tractable in neuroimaging studies: where in the visual stream is replay functionally relevant to 561 

consolidation? In a prior simulation of replay in a neural network, van de Ven et al. (2020) 562 

demonstrated generative replay could attenuate forgetting when performed after the final 563 

convolutional layer, but its effectiveness was not compared to earlier layers, and the network 564 

employed, consisting of five convolutional layers, had not been compared with the human visual 565 

system. Deeper networks, such as the one used here, consisting of 23 layers in total, organised into 566 

five blocks of convolutional layers, not only extract useful category features from naturalistic images, 567 

but representations in network layers have demonstrated a degree of representational 568 
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correspondence with specific brain regions along the ventral visual stream (Khaligh-Razavi and 569 

Kriegeskorte 2014; Güçlü and van Gerven 2015; Devereux et al. 2018), albeit not capturing all 570 

observable variance (Xu and Vaziri-Pashkam 2021). In keeping with our observation that low-571 

resolution, coarse, schematic replay was effective in helping the network to generalise, we found the 572 

most effective location for replay to be in the most advanced layers of the network, layers which are 573 

less granular in their representations. This region shares some functional similarities with the lateral 574 

occipital cortex in humans, a region which represents more complex, high-level features (Güçlü and 575 

van Gerven 2015). In contrast, generative replay from the earliest layers corresponding to early visual 576 

cortex was less effective. These layers are sensitive to low-level visual features such as contrast, edges 577 

and colour, therefore generating samples from these layers will yield rudimentary-level category-578 

specific information, which are of limited utility for replay and generalisation. High-level 579 

representations on the other hand, may contain more unique combinations and abstractions of these 580 

lower-level features. We also found replay from the penultimate layer was more effective than the 581 

final layer, suggesting the optimal replay location represents a balance between the presence of 582 

sufficiently complex category information and the number of downstream neuronal weights available 583 

to be updated based on replaying these features. These findings may encourage a re-evaluation of the 584 

functional relevance of replay in early visual cortices in both animals and humans, and generate 585 

specific hypotheses for potential perturbation studies to investigate the effects of disruptive 586 

stimulation at different stages of the ventral stream during offline consolidation.  587 

 Our simulations also revealed a phenomenon never before tested in humans, that the 588 

effectiveness of replay depends on the stage of learning. We acquire factual information about the 589 

world sporadically over time across contexts, for example we may encounter a new species at a zoo 590 

one day, and subsequently see the same animal on a wildlife documentary, and so on. Ultimately the 591 

consolidation of semantic information in the neocortex can take up to years to complete (Manns et 592 

al. 2003). However, our simulations suggest that replay may be most beneficial during the initial 593 

encounters with a novel category, when we are still working out its identifiable features and have not 594 
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yet learned to generalise perfectly to unseen instances. It is therefore possible humans replay a 595 

category less and less with increasing familiarity, and there is some support for this idea in the animal 596 

literature (Giri et al. 2019). We speculate that if this is the case, the enhanced effectiveness for recent 597 

memories may have an adaptive function, allowing us to generalise quickly with limited information. 598 

In fact, our simulations showed that after a single learning episode, replay can compensate 599 

substantially for an absence of subsequent experience. Our results provide novel hypotheses for 600 

human experiments, testing for an interaction between the stage of category learning and the extent 601 

of replay. The fact that replay early in the learning process was more effective provides further support 602 

for our proposal that vague, imprecise replay events are useful for generalisation, as the networks 603 

imaginary representations at that stage would be an imperfect approximation of the category in 604 

question. We acknowledge there may be a “ceiling effect”, whereby later in training there is no further 605 

room for improvement, however we would posit that over the human lifespan, we are operating in 606 

the non-converged portion of the learning curve that we display here. 607 

 Our results also represent the first mechanistic account of how the brain selects weakly-608 

learned information for replay and consolidation (Kuriyama et al. 2004; Drosopoulos et al. 2007; 609 

McDevitt et al. 2015; Schapiro et al. 2018). The hippocampus triggers replay events in the neocortex 610 

(Zhang et al. 2018), with a loop of information back and forth between the two brain areas (Rothschild 611 

et al. 2017), although the content of this neural dialogue is not known. Our simulations suggest that 612 

the hippocampus may learn the optimal categories to replay based on feedback from the neocortex. 613 

Our results showed that such a process resulted in the “rebalancing” of experience in an artificial 614 

neural network, where generalisation performance was improved for weakly learned items, and 615 

attenuated for items which were strongly learned. A reorganisation of knowledge of this kind has been 616 

observed in electrophysiological investigations in rodents, where the neural representations of novel 617 

environments are strengthened through reactivation at the peak of the theta cycle, while those 618 

corresponding to familiar environments are weakened through replay during the trough (Poe et al. 619 

2000). This more even distribution of knowledge could be adaptive in both ensuring adequate 620 
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recognition performance across all categories and forming a more general foundation on top of which 621 

future conceptual knowledge can be built. There have been recent theoretical and empirical 622 

demonstrations of how items get selected for replay within a reinforcement learning framework, such 623 

as the “tagging” of items that elicit a large prediction error during the learning phase (Momennejad 624 

et al. 2018), and the replay of events that are more likely to be encountered in future and which lead 625 

to the highest reward (Mattar and Daw 2018; Liu et al. 2021). However, these accounts do not explain 626 

why even in the absence of such prediction errors, or without knowing the likelihood of future events, 627 

knowledge which has been weakly-learned during waking periods is consistently targeted for replay 628 

and consolidation during sleep (Kuriyama et al. 2004; Drosopoulos et al. 2007; McDevitt et al. 2015; 629 

Schapiro et al. 2018). Our interactive networks suggest that offline reinforcement learning could 630 

account for the selection of weakly-learned knowledge during the replay process itself, and future 631 

experiments could assess whether our models choose the same categories for replay as humans when 632 

trained on the same stimuli. 633 

 In summary, our simulations provide supportive evidence that category replay in humans is a 634 

generative process and make the prediction that it is functionally relevant at advanced stages of the 635 

ventral stream. We have generated hypotheses about when during learning replay is likely to be 636 

effective and offer a novel account of replay as a learning process in and of itself between the 637 

hippocampus and neocortex. We hope these findings encourage a closer dialogue between theoretical 638 

models and empirical experiments. These findings also add credence to the emerging perspective that 639 

deep learning networks are powerful tools which are becoming increasingly well-positioned to resolve 640 

challenging neuroscientific questions (Richards et al. 2019). 641 
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Supplementary table 1: List of ImageNet classes by model 827 
Model 1 n12360108 begonia 
  n02822579 bedstead bedframe 
  n02427724 waterbuck 
  n03098688 control room 
  n02944075 camisole 
  n01603600 waxwing 
  n03196598 digital display alphanumeric display 
  n02848216 blade 
  n07712856 tortilla chip 
  n03592669 jalousie 
Model 2 n11853356 Christmas cactus Schlumbergera buckleyi Schlumbergera baridgesii 
  n04177820 settle settee 
  n03904183 pedestrian crossing zebra crossing 
  n04355511 sundress 
  n03487444 hand lotion 
  n12899752 angel's trumpet Brugmansia suaveolens Datura suaveolens 
  n12655869 raspberry raspberry bush 

  
n12948053 common European dogwood red dogwood blood-twig pedwood Cornus 
sanguinea 

  n02869737 bongo bongo drum 
  n02415253 Dall sheep Dall's sheep white sheep Ovis montana dalli 
Model 3 n03375575 foil 
  n03082807 compressor 
  n03262932 easy chair lounge chair overstuffed chair 
  n02047614 puffin 
  n03317788 faience 
  n09475044 wasp's nest wasps' nest hornet's nest hornets' nest 

  
n11784497 jack-in-the-pulpit Indian turnip wake-robin Arisaema triphyllum Arisaema 
atrorubens 

  n03941231 pinata 
  n02813399 bay window bow window 
  n04544325 wainscoting wainscotting 
Model 4 n03993053 potty seat potty chair 
  n04082886 reticle reticule graticule 
  n03421324 garter belt suspender belt 
  n03766044 miller milling machine 
  n03505504 headscarf 
  n12384839 love-in-a-mist running pop wild water lemon Passiflora foetida 
  n03619793 kitbag kit bag 
  n07600696 candied apple candy apple taffy apple caramel apple toffee apple 
  n02068974 dolphin 
  n03237992 dressing gown robe-de-chambre lounging robe 
Model 5 n02918964 bumper car Dodgem 
  n02392824 white rhinoceros Ceratotherium simum Diceros simus 
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  n01806364 blue peafowl Pavo cristatus 
  n02956699 capitol 
  n04290079 spun yarn 
  n08596076 littoral litoral littoral zone sands 
  n02887970 bracelet bangle 
  n10635788 sphinx 
  n07901457 muscat muscatel muscadel muscadelle 
  n07870167 lasagna lasagne 
Model 6 n04324387 stockroom stock room 
  n04591517 wind turbine 
  n02988486 CD-R compact disc recordable CD-WO compact disc write-once 
  n04568069 weathervane weather vane vane wind vane 
  n04514241 uplift 
  n03207835 dishtowel dish towel tea towel 
  n13206817 maidenhair maidenhair fern 
  n03307792 external drive 
  n12666965 cape jasmine cape jessamine Gardenia jasminoides Gardenia augusta 
  n12950126 valerian 
Model 7 n03986355 portfolio 
  n11848479 night-blooming cereus 
  n04439712 tinfoil tin foil 
  n03160740 damask 
  n01612122 sparrow hawk American kestrel kestrel Falco sparverius 
  n09206896 arroyo 
  n12392549 stinging nettle Urtica dioica 
  n02343772 gerbil gerbille 
  n07875436 risotto Italian rice 
  n02060133 fulmar fulmar petrel Fulmarus glacialis 
Model 8 n03655072 legging leging leg covering 
  n10738111 unicyclist 
  n09270735 dune sand dune 
  n03409393 gable gable end gable wall 
  n02331046 rat 
  n03452267 gramophone acoustic gramophone 
  n10105733 forward 
  n07911677 cocktail 
  n03797182 muffler 
  n01563128 warbler 
Model 9 n04197110 shipwreck 
  n10470779 priest 
  n02769290 backhoe 
  n03478756 hall 
  n04519153 valve 
  n04289027 sprinkler 
  n02782778 ballpark park 
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  n03558404 ice skate 
  n04138261 satin 
  n02700064 alternator 
Model 10 n03524150 hockey stick 
  n03716966 mandolin 
  n02962200 carburetor carburettor 
  n03237340 dresser 
  n04004210 printed circuit 
  n02917377 bullhorn loud hailer loud-hailer 
  n07879953 tempura 
  n04087826 ribbing 
  n02404432 longhorn Texas longhorn 
  n07830593 hot sauce 
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Supplementary table 2: Conceptually similar classes (plants) 847 

 848 
 849 

Model 1 (1) n12360108 begonia 
Model 2 (1) n11853356 Christmas cactus Schlumbergera buckleyi Schlumbergera baridgesii 
Model 2 (6) n12899752 angel's trumpet Brugmansia suaveolens Datura suaveolens 

Model 2 (8) 
n12948053 common European dogwood red dogwood blood-twig pedwood Cornus 
sanguinea 

Model 4 (6) n12384839 love-in-a-mist running pop wild water lemon Passiflora foetida 
Model 6 (7) n13206817 maidenhair maidenhair fern 
Model 6 (9) n12666965 cape jasmine cape jessamine Gardenia jasminoides Gardenia augusta 
Model 6 (10) n12950126 valerian 
Model 7 (2) n11848479 night-blooming cereus 
Model 7 (7) n12392549 stinging nettle Urtica dioica 
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