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23 Abstract

24 Replay can consolidate memories through offline neural reactivation related to past experiences.
25 Category knowledge is learned across multiple experiences, and its subsequent generalisation is
26 promoted by consolidation and replay during rest and sleep. However, aspects of replay are difficult
27  to determine from neuroimaging studies. We provided insights into category knowledge replay by
28  simulating these processes in a neural network which approximated the roles of the human ventral
29  visual stream and hippocampus. Generative replay, akin to imagining new category instances,
30 facilitated generalisation to new experiences. Consolidation-related replay may therefore help to
31 prepare us for the future as much as remember the past. Generative replay was more effective in later
32 network layers functionally similar to the lateral occipital cortex than layers corresponding to early
33  visual cortex, drawing a distinction between neural replay and its relevance to consolidation. Category
34 replay was most beneficial for newly acquired knowledge, suggesting replay helps us adapt to changes
35 in our environment. Finally, we present a novel mechanism for the observation that the brain
36  selectively consolidates weaker information; a reinforcement learning process in which categories
37  were replayed according to their contribution to network performance. This reinforces the idea of
38  consolidation-related replay as an active rather than passive process.
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49 1. Introduction

50 1.1 Memory consolidation-related replay

51 Memory replay refers to the reactivation of experience-dependent neural activity during resting
52 periods. First observed in rodent hippocampal cells during sleep (Wilson and McNaughton 1994), the
53 phenomenon has since been detected in humans during rest (Tambini and Davachi 2013; Hermans et
54 al. 2017; Schapiro et al. 2018; Liu et al. 2019; Wittkuhn and Schuck 2021), and sleep (Schonauer et al.
55 2017; Zhang et al. 2018). These investigations have revealed replayed experiences are more likely to
56 be subsequently remembered, therefore replay has been proposed to strengthen the associated
57 neural connections and to protect memories from being forgotten. This memory consolidation-related
58 replay can be viewed as distinct from task-related replay, the neural reactivation observed during task
59 performance which supports cognitive processes such as memory recall (Jafarpour et al. 2014;
60 Michelmann et al. 2019; Wimmer et al. 2020), visual understanding (Schwartenbeck et al. 2021),
61 decision making (Liu et al. 2021), planning (Momennejad et al. 2018) and prediction (Ekman et al.
62 2017). While traditional perspectives view memory consolidation as a gradual process of fixation
63  whereby memories are stabilised (Squire and Alvarez 1995; McGaugh 2000), in this paper we advocate
64  the more contemporary view that offline consolidation-related replay is more dynamic in nature
65  (Mattar and Daw 2018). Using a computational approach, we test hypotheses that offline replay may
66 be a creative process to serve future goals, that it matters exactly where in the brain replay occurs,
67  that it helps us at particular stages of learning, and that the brain might actively choose the optimal
68 experiences to replay.

69

70 1.2 Generative replay of category knowledge

71 Neural replay which supports memory consolidation during rest and sleep has been traditionally
72 assumed to be veridical, such that we commit the events of that day to long-term memory by replaying
73  the episodes as they were originally experienced. However, there are circumstances in which this may

74 be suboptimal or impractical. For example, a desirable outcome of category knowledge consolidation
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75 is to generalise to new experiences rather than recognise past instances. This phenomenon has been
76 observed after sleep in infants (Gémez et al. 2006; Friedrich et al. 2015; Horvath et al. 2016), and in
77 adults (Lau et al. 2011). Sleep also recovers the generalisation of phonological categories (Fenn et al.
78  2003), preserves generalisation performance in perceptual category learning (Graveline and Wamsley
79 2017), and assists in the abstraction of gist-like prototype representations (Lutz et al. 2017). It is still
80 not understood how the brain consolidates and replays memory in the service of generalisation. In
81 addition, although sleep benefits category learning for a limited number of well-controlled
82 experimental stimuli (Schapiro et al. 2017), in the real world category learning takes place over many
83  thousands of experiences, and storing each individual experience for replay is an impractical
84 proposition. For these reasons, we propose the replay of novel, prototypical category instances would
85  be a more efficient and effective solution. In fact, given the role of the hippocampus in both replay
86  (Zhangetal. 2018) and the generation of prototypical concepts (Hassabis et al. 2007), we consider this
87  the most likely form of category replay. While evidence for such generative replay of category
88 knowledge has yet to be discovered in the human brain, replay of sequences immediately following
89  task performance in humans has been shown to be flexible, in that items can be re-ordered based on
90 previously learned rules (Liu et al. 2019). This is reminiscent of “pre-play” observed during task
91 performance in rodents, where hippocampal “place cells” observed to fire in specific locations
92 reactivate in a different order to represent a route which has not been taken before (Gupta et al.
93  2010).

94 Drawing inspiration from these observations, here we test the idea that replay which
95 facilitates memory consolidation, occurring over extended offline time periods including sleep, might
96  also be generative in nature, and that it’s flexibility may not just apply to the reorganisation of learned
97 sequences, but the creation of entirely new instances of a category. While decoding the re-ordering
98 of stimuli or route knowledge from brain data during replay has been shown to be a tractable
99 approach, detecting entirely new instances of complex categories from the brain represents a

100 significant challenge, and has yet to be demonstrated.
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101 One approach to address this question is to simulate these processes in an artificial neural
102 network. Prior research with artificial neural networks has modelled the replay of generated image
103 stimuli (van de Ven et al. 2020). While revealing a promising avenue of investigation, the results of
104  this study cannot be easily extrapolated to the brain or human visual experience. For example, the
105 structure of only five convolutional layers in the network employed represents just a fraction of the
106 size of larger models which have been shown to extract visual representations similar in nature to
107  those processed by the brain (Schrimpf et al. 2018), whose complex structure can be compared to the
108  ventral visual stream processing pathway, indicating a possible correspondence in functional
109 architecture (Khaligh-Razavi and Kriegeskorte 2014; Giiglii and van Gerven 2015; Devereux et al.
110  2018), and whose object recognition performance approaches that of humans (He et al. 2015).
111 Further, the networks employed by van de Ven et al. (2020) had limited visual experience, having been
112 pre-trained on just 10 categories of objects. In contrast, an adult human brain will harbour a lifetime
113 of visual knowledge which facilitates the learning of novel concepts. Therefore, to simulate the
114 learning and generative replay of new categories realistically in adults, using an experienced network
115  which contains a pre-existing vast body of knowledge about a range of other categories is an essential
116  starting point. Another feature of the aforementioned study which limits the comparison to humans,
117 is that the stimuli used were low-resolution photographs measuring 32 x 32 pixels, which do not reflect
118  the complexity of human visual experience. To accurately simulate human learning and replay, much
119 larger, high-resolution images which go some way towards approaching the complexity and richness
120  of everyday human visual experience are required as training stimuli. Finally, prior attempts at replay
121 in neural networks, whether generative (Kemker and Kanan 2017; van de Ven et al. 2020) or veridical
122  (Hayes et al. 2021) have been deployed to address the “catastrophic forgetting” problem; the
123  tendency of artificial networks to forget old categories when new ones are learned (Robins 1995;
124 French 1999). While this has been proposed as a potential mechanism for why biological agents do
125 not suffer from catastrophic forgetting, empirical evidence in support of this hypothesis has not been

126  forthcoming to date. In addition, other solutions have been put forward on how brains and models
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127 may avoid catastrophic interference, such as Adaptive Resonance Theory (Grossberg 2013), and elastic
128  weight consolidation (Kirkpatrick et al. 2017).

129 In this study, we investigated whether offline generative replay of novel concepts facilitated
130  subsequent generalisation to new experiences using models which attempt to simulate the human
131 brain and approximate more closely the visual environment in which it learns. To do this, we
132 implemented generative replay in a well-studied deep convolutional neural network (DCNN), which
133 consists of a complex architecture organised into five blocks of convolutional layers and boasts a high
134 “brain-score” indicating the representations it extracts bear a similarity to those extracted by the brain
135  andit performs favourably to humans in a categorisation task (Schrimpf et al. 2018). The network had
136 prior experience of learning 1000 diverse categories of objects from over a million high-resolution
137 complex naturalistic images, a process which is the network equivalent of a lifetime of visual
138 experience and which yields within the model an optimised, high-functioning visual system. We tasked
139  the model with learning 10 novel categories it had not seen before, using similarly high-resolution
140 naturalistic images to those it has seen before, with an average resolution of around 400 x 350 pixels
141 (Deng et al. 2009), representing an approximate 140-fold increase in visual details from stimuli used
142 in prior work. The analogue in humans would be coming across 10 new categories we had not seen
143 before and using our lifelong experience in processing visual information to extrapolate the relevant
144 identifying features. After learning periods, we then simulated generative replay in the network, which
145 attempted to mimic human consolidation during sleep, and monitored the network’s performance
146  when it “woke up” the next day, to ascertain if we could provide computational support for the theory
147  that such a process underlies the overnight improvements in generalisation observed in humans.

148

149 1.3 Effective neural loci of replay

150  Another outstanding question regarding replay, is despite being associated with subsequent memory
151 (Zhang et al. 2018), it is not clear where in the brain replay makes a demonstrable contribution

152  towards generalisation. Replay has been observed throughout the brain, early in the ventral visual
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153 stream (Ji and Wilson 2007; Deuker et al. 2013; Wittkuhn and Schuck 2021), in the ventral temporal
154  cortex (Tambini et al. 2010; de Voogd et al. 2016), the medial temporal lobe (Staresina et al. 2013;
155  Schapiro et al. 2018) the amygdala, (Girardeau et al. 2017; Hermans et al. 2017), motor cortex
156 (Eichenlaub et al. 2020) and prefrontal cortex (Peyrache et al. 2009). It is not known if replay in lower-
157 level brain regions actually contributes to the observed memory improvements or whether the key
158 neural changes are made in more advanced areas, and this question cannot be answered using current
159 neuroimaging approaches. One prior study has implemented replay within an artificial neural network
160 from a single location at the end of the network (van de Ven et al. 2020). However, because the
161 compact architecture of this network did not have a clear functional correspondence with information
162 processing pathways in the brain, and because replay from other locations within the network was
163 not also implemented for comparison, it is difficult to yield predictions from these results regarding
164  effective replay locations in the human brain. In the current study, because we simulated replay in a
165 neural network which processes images in a manner reflective of the human ventral visual stream, we
166  could compare the effectiveness of replay from different layers with a purported representational
167 correspondence to specific regions in the brain. In doing so, we aimed to make predictions about the
168 effective cortical targets of offline memory consolidation in humans.

169

170 1.4 A time-dependent role for replay

171  Another open question regarding human replay is the duration of its involvement throughout the
172 learning of novel concepts. It can take humans years to learn and consolidate semantic or conceptual
173  knowledge (Manns et al. 2003), but neuroimaging studies of replay are limited to a time-span of a day
174  ortwo, therefore it is still not known how long replay contributes to this process. Humans are thought
175  to “reconsolidate” information every time it is retrieved (Dudai 2012), suggesting replay might play a
176 continual role in the lifespan of memory. However recordings in rodents have shown that replay
177 diminishes with repeated exposure to an environment over multiple days (Giri et al. 2019), suggesting

178  the brain may only replay recently learned, vulnerable information. Answering this question in
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179 humans remains a challenge because of the impracticalities of tracking replay events for extended
180 periods. Simulation in a human-like neural network represents a possible alternative to predict the
181 relative contribution of replay to consolidation over long time-periods, an approach which has not
182 been attempted to date. Here, we interleaved daily learning with nights of offline replay in a neural
183 network which simulates the brain to understand at what stage in learning replay may be most
184  effective in humans.

185

186 1.5 Replay of weakly-learned knowledge

187  An additional poorly understood principle of replay which we investigated in this study is why
188 consolidation tends to selectively benefit weakly-learned over well-learned information (Kuriyama et
189 al. 2004; Drosopoulos et al. 2007; McDevitt et al. 2015; Schapiro et al. 2018). Here, we modelled a
190 candidate mechanism for how this occurs in the brain, by adding an auxiliary model (theoretically
191 analogous to the hippocampus) to the neocortical-like model, which could autonomously learn the
192 best consolidation strategy, determining what to replay and when.

193

194 1.6 Hypotheses

195 In addressing these outstanding questions regarding replay in the brain, we made a number of
196 predictions. Because earlier brain regions are thought to extract equivalent basic features from all
197 categories, we predicted replay of experience would be more effective in promoting learning at
198 advanced stages of the network. We hypothesised the replay of “imagined” prototypical replay events
199  would be as effective as veridical replay in helping us to generalise to new, unseen experiences, thus
200  supporting our conceptualization of replay as a creative process. We predicted that the benefits of
201 replay may be confined to early in the learning curve when novel category knowledge is being
202 acquired. Finally, we hypothesised that a dynamic interaction between hippocampal and neocortical-
203 like models would result in the prioritisation of weakly-learned items, in line with behavioural studies

204  of memory consolidation.
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205 2. Materials and Methods

206 2.1 Neural network

207  To simulate the learning of novel concepts in the brain, and test a number of hypotheses regarding
208 replay, we trained a DCNN on 10 new categories of images. The neural network was VGG-16
209 (Simonyan and Zisserman 2014). This network is trained on a vast dataset of 1.3 million high-resolution
210  complex naturalistic photographs known as the ImageNet database (Deng et al. 2009), which contains
211 recognisable objects from 1000 categories in different contexts. The network learns to associate the
212  visual features of an object with its category label, until it can recognise examples of that object which
213 it has never seen before, simulating the human ability to generalise prior knowledge to new situations.
214  The network takes a photograph’s pixels as input, and sequentially transforms this input into more
215 abstract features. It learns to perform these transformations by adjusting 138,357,544 connection
216  weights across many layers. Its convolutional architecture reduces the number of possible training
217  weights by searching for informative features in any area of the photographs.

218 In these experiments, we task the VGG-16 network with learning 10 new categories of images.
219  Todothis, we retained the pre-trained “base” of this network, which consisted of 19 layers, organised
220 into five convolutional blocks. Within each block there were convolutional layers and a pooling layer,
221  with nonlinear activation functions. To this base, we attached two fully connected layers, each
222  followed by a “dropout” layer, which randomly zeroed out 50% of units to prevent overfitting to the
223 training set (Srivastava et al. 2014). At the end of the network a SoftMax layer was attached, which
224  contained just 10 outputs rather than the original 1000, and predicted which of 10 classes an image
225 belonged to. To facilitate the learning of 10 new classes, the weights of layers attached to the pre-
226  trained base were randomly initialised. All model parameters were free to be trained. In total, 10 new
227 models were trained, each learning 10 new and different classes.

228

229 2.2 Stimuli
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230 Photographic stimuli for new classes were drawn randomly from the larger ImageNet 2011 fall
231 database (Russakovsky et al. 2015), and were screened manually by the experimenter to exclude
232 classes which bore a close resemblance to classes which VGG-16 was originally trained on. In total,
233 100 new classes were selected, and randomly assigned to the 10 different models to be trained. Within
234  each class, a set of 1,170 training images, 130 validation images, and 50 test images were selected.
235  The list of the selected classes is available in Supplementary Table 1.

236

237 2.3 Baseline training

238  We first trained a model without implementing replay, to serve as a baseline measure of network
239 performance, and compare with other conditions which implemented replay. Ten models were
240  trained on 10 new and different classes. To further prevent overfitting to the training set, images were
241 augmented before each training epoch. This is similar to a human viewing an object at different
242 locations, or from different angles, and facilitates the extraction of useful features rather than rote
243 memorisation of experience. Augmentation could include up to 20-degree rotation, 20% vertical or
244 horizontal shifting, 20% zoom, and horizontal flipping. Any blank portions of the image following
245 augmentation were filled with a reflection of the existing image. Images were then pre-processed in
246  accordance with Simonyan and Zisserman (2014). Depending on the experiment, the network was
247  trained for 10 or 30 epochs. We used the Adam optimiser (Kingma and Ba 2014) with a learning rate
248 of 0.0003. A small learning rate was chosen to reflect the fact that learning new categories in an adult
249 human reflects a “fine-tuning” of an already highly-trained visual system. The training batch size was
250  setto 36. The training objective was to minimise the categorical cross-entropy loss over the 10 classes.
251  Training parameters were optimised based on validation set performance. We report the model’s
252 performance metrics from the test set only. This is a collection of novel images from each category
253  which the network does not learn nor is it tuned on, therefore reflecting the model’s ability to
254  generalise to new stimuli after training, and is thus termed “generalisation performance” in the

255 figures. Training was performed using TensorFlow version 2.2.

10


https://doi.org/10.1101/2021.05.25.445587
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445587; this version posted January 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

256 2.4 Replay

257 Replay was conducted between training epochs, to simulate “days” of learning and “nights” of offline
258 consolidation. We conceptualised replay representations as generative, in other words they
259 represented a prototype of that category never seen before, from a particular point in the network.
260  To generate these representations, the network activations induced by the training images from the
261 preceding epoch were extracted from a particular layer in the network using the Keract toolbox (Remy
262 2020). For each class separately, a multivariate distribution of activity was created from these

263 activations using the SciPy toolbox (https://scipy.org/). This multivariate normal distribution is an

264  extension of the one-dimensional normal distribution to higher dimensions, and is specified by its
265 mean and covariance matrix. This resulted in a single unique distribution for each specific class, which
266 represented the relationship between units of the layer which had been previously observed for that
267 class. We then sampled randomly from this distribution, creating novel activation patterns for that
268 class at that point in the network (Fig 1A). These novel activation patterns represented a prototype of
269  that category. The end result was a representation that was a rough approximation of the layer’s
270 representations of that category if a real image was processed, but novel in nature (see supplementary
271 Fig 1). The human brain equivalent would be the approximate pattern of neural activity which is
272 representative of that category at a particular stage in the ventral visual stream. In the brain, these
273 hypothetical prototypical concepts would be likely generated from more high-level regions such as
274  the hippocampus and prefrontal cortex (Hassabis et al. 2007; Bowman et al. 2020). Our model was
275  generative as it could create new samples, however it offered several advantages over traditional
276  generative models. We were not limited by a bottleneck symmetrical architecture, and our procedure
277 allowed the model to learn generative samples at multiple levels of representation. Further, our model
278 represented a proper vision model which showed parallels with the functional architecture of the
279  ventral visual stream in the brain, whereas current generative models do not show this
280  correspondence or scale well to such a deep architecture. Finally, our model is specialised for object

281 recognition, with the resulting generated representations shaped by these task pressures.

11
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282 The number of novel representations created for replay was equivalent to the number of
283 original training images (1,170). To test where in the network replay is most effective, this process was
284 performed at one of five different network locations, namely the max pooling layers at the end of each
285 block (Fig 1A). For the first four pooling layers, creating a multivariate distribution from such a large
286 number of units was computationally intractable, therefore activations for each filter in these layers
287  were first down-sampled by a factor of eight for layer one, by four for layers two and three and two
288  for layer four. The samples drawn from the resulting distribution were then up-sampled back to their
289 original resolution. These lower-resolution samples are also theoretically relevant, in that they were
290 created to mimic the schematic nature of mental and dream imagery which takes place during rest
291 and sleep. To replay these samples through the network, the VGG-16 network was temporarily
292 disconnected at the layer where replay was implemented, and a new input layer was attached which
293 matched the dimensions of the replay representations. This truncated network was trained on the
294 replay samples using the same parameters as regular training. We assume that the brain actively
295 chooses to replay each concept learned that day, by reactivating the prototypical representations
296  extracted from many experiences and the associated category label together during sleep. After each
297 epoch of replay training, the replay section of the network was reattached to the original base, and
298  training on real images through the whole network resumed. To assess the effects of generative replay
299 on stimuli disambiguation, we took 10 classes from the 100 which were highly similar (plants, see
300 supplementary table 2), and trained an additional network on these categories. We then assessed
301  whether replaying similar classes in the same model led to a greater relative increase in class
302 performance from baseline accuracies. We did this by dividing the increase in generalisation
303 performance resulting from replay by the original baseline performance. To find out how many
304  exemplars are needed for generative replay to have a beneficial effect on category learning we trained
305 the same models with 20, 40, 60, 80 and 100 images, again for ten “days”, and replayed an equivalent
306 number of generated representations in each case. To simulate veridical replay, in other words the

307 replay of each individual experience as it happened, rather than the generation of new samples, we

12
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308 used the activations for each object at that layer in the network during replay periods. These were not
309 down-sampled during the process. Given how many examples of a concept we generally encounter,
310 veridical replay of all experience is not a realistic prospect, which is why prior attempts to simulate
311 replay in smaller-scale networks have also avoided this scenario in their approaches (Kemker and
312 Kanan 2017; van de Ven et al. 2020). To additionally demonstrate the improvements that replay
313 affords on each day relative to the previous day, we calculated the performance improvement from
314  day n to day n+1, divided by the difference between model performance on day n and 1, which
315 represents the potential room for improvement.

316

317 2.5 Replay within a reinforcement learning framework

318  We tested a process through which items which are most beneficial for replay might be selected in
319 the brain. We proposed that such selective replay may involve an interaction between the main
320 concept learning network (VGG-16), and a smaller network which learned through reinforcement
321  which concepts are most beneficial to replay through the main network during offline periods. The
322 neural analogue of such a network could be thought of as the hippocampus, as the activity of this
323 structure precedes the widespread reactivation of neural patterns observed during replay (Zhang et
324  al. 2018). This approach is similar to the “teacher-student” meta-learning framework which has been
325 shown to improve performance in deep neural networks (Fan et al. 2018). The side network was a
326 simple regression network with 10 inputs, one for each class, and one output, which was the predicted
327  value for replaying that class through the main network. Classes were chosen and replayed one at a
328 time, with a batch size of 36. To train the side network, a value of 1 was inputted for the chosen class,
329  with zeros for the others. The predicted reward for the side network was the change in performance
330 of the main network after each replay instance, which was quantified by a change in chi-square; a
331 contrast of the maximum number of possible correct predictions by the main network, versus its
332 actual correct predictions. A positive reward was therefore a reduction in chi-square, which resulted

333 in an increase in the side network’s weight for that class. This led to the class being more likely to be

13
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334  chosen in future, as the network’s weights were converted into a SoftMax layer, from which classes
335  were selected probabilistically for replay. Through this iterative process, the side network learned
336  which classes were more valuable to replay, and continually updated its preferences based on the
337 performance of the main network. Reducing the chi-square in this dynamic manner improves the
338 overall network accuracy as it progressively reduces the disparity between the network’s
339 classifications and the actual class identities. To generate initial values for the side network, one batch
340  of each class was replayed through the main network. The Adam optimiser was used with a learning
341 rate of 0.001 and the objective was to minimise the mean squared error loss. The side network was
342  trained for 50 epochs with each replay batch. The assessment of network improvement was always
343 performed on the validation set, and the reported values are accuracy on the test set, reflecting the
344  ability of the network to generalise to new situations.

345

346 3. Results

347 3.1 Localising where in the ventral visual stream generative replay is likely to enhance
348  generalisation

349  We first sought to establish where in the visual brain the replay of category knowledge might be most
350 effective in helping to generalise to new experiences, as the functional relevance of replay observed
351 in many different brain regions has yet to be established. To obtain a baseline measure of how the
352 network would perform without replay, the network learned 10 new categories in the absence of
353 offline replay. Next, we implemented generative memory replay. To do this, we captured the “typical”
354  activation of the network for a category and sampled from this gist-like representation to create novel,
355  abstracted representations for replay (Fig 1A).

356 We simulated generative replay from different layers in the DCNN, equivalent to different

357 brain regions along the ventral stream. Specifically, we trained the network over 10 epochs, mimicking

358 10 days of learning in humans, and replayed prototypical representations after each training epoch,
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359  simulating 10 nights of offline consolidation during sleep. In Fig 1B we show how replay affects the
360 ability of the network to generalise to new exemplars of the categories over the course of learning.
361 Replay substantially speeds up the learning process, with replay from layer four already reaching the
362 final baseline generalisation performance three days earlier. Fig 1C shows the final best performing
363 models in each replay condition. A one-way repeated-measures ANOVA on the final models revealed
364  a difference across conditions (F(sas) = 7.23, p < 0.001), with planned Bonferroni-corrected post-hoc
365  comparisons revealing that only replay from layer 4 (t9)=-4.31, p =0.002) was significantly higher than
366 baseline. We performed an additional analysis to confirm that the down-sampling of earlier layers did
367 not explain this finding, by further down-sampling the replay representations in layer four by a factor
368 of seven, and generalisation performance in this layer was still significantly higher than baseline (see
369  supplementary Fig 2). Therefore, there is a differential benefit of replay throughout the network,
370  where replay in the early layers is of limited benefit, whereas replay in the later layers boosts
371  generalisation performance to a greater degree. This predicts that early visual areas in the brain may
372  not store sufficiently complex category-specific representations, curtailing the effectiveness of
373  generated replay representations, whereas areas further along the ventral visual stream, such as the
374 lateral occipital cortex, might be better positioned to support the generation of novel, prototypical
375 concepts which accelerates learning in the absence of real experience and helps us to generalise to
376 new situations. We further investigated if generative replay could benefit category learning where few
377 exemplars are available. In Figure 2D we show that generative replay from layer four could improve
378  generalisation when learning and replaying just 20, 40 or 60 exemplars (all t-tests below Bonferroni-
379 corrected threshold of p =0.01). We also assessed the effects of replay on class disambiguation in this
380 layer, by training a model containing conceptually highly similar classes collated from all of the other
381 models, and comparing the relative increase in generalisation performance from the original class
382 accuracies. Figure 2E shows a replay-induced performance increase for conceptually similar items, but
383  this did not reach statistical significance (t)=-2.10, p = 0.065).

384
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386  Fig 1. The effects of generative replay from different layers of a model of the human ventral visual
387  stream on generalisation to new exemplars. (A) The VGG-16 network attempts to simulate the brain’s
388  visualsystem by looking at photographs and extracting relevant features to help categorise the objects
389  within. We trained this network on 10 new categories of objects it had not seen before. In between
390 learning episodes, to simulate sleep-facilitated consolidation in humans, we implemented offline
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391 memory replay as a generative process. In other words, the network “imagined” new examples of a
392  category based on the distribution of features it has learned so far for that object (activation space),
393 and used these representations (novel representation) to consolidate its memory. The network did
394 not create an actual visual stimulus to learn from, rather it recreated the neuronal pattern of activity
395 that it would typically generate from viewing an object from that category. We display here an
396 example of replaying from a mid-point in the network, but all five locations where replay was
397 implemented are indicated by the coloured circles. The brain regions which have been reported to
398 contain functionally similar representations to different network layers, derived from Gii¢lii and van
399  Gerven (2015), are listed beneath. (B) The effects of memory replay from different layers on the
400 network’s ability to generalise to new examples of the 10 categories, throughout the course of 10
401 learning episodes. Plotted values represent the mean accuracies from 10 different models which each
402 learned 10 new and different categories. (C) The final recognition accuracies (+/- S.E.M.), averaged
403 across 10 models, on the new set of photographs after 10 epochs of learning. We reveal the location
404 in a model of the ventral stream where replay maximally enhances generalisation performance is an
405 advanced layer which bears an approximate functional correspondence to the lateral occipital cortex
406 (LOC) in humans. The benefits of replay from other locations were less pronounced, with the earliest
407  layer showing the least benefit to generalisation. (D) The benefits of replay from layer four on
408  generalisation performance with limited numbers of exemplars (E) The effect of generative replay
409 from layer four on the generalisation performance of classes when learned alongside diverse
410  categories or where all are conceptually similar.

411

412 3.2 Tracking the benefits of replay across learning

413 In the second experiment, we extended training to 30 days of experience, interleaved with nights of
414  offline generative replay to simulate learning over longer timescales and predict when in learning
415 replay might be more effective (Fig 2A). Guided by the results of experiment one, we implemented

416 replay from an advanced layer corresponding to the lateral occipital cortex. A mixed between-within
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417  ANOVA showed an interaction between condition and day (F(9,522) = 5.03, p < 0.001) with planned
418 post-hoc Bonferroni-corrected comparisons (p < 0.00167) revealing a difference between generative
419 replay and baseline for days two to six, and eight (Fig 2B). Visualising the network’s improvement in
420 performance from day to day relative to the potential room for improvement from the previous day
421 confirmed that the benefits of generative replay were limited to early learning (Fig 2C). Therefore,
422 offline generative replay might be more effective at improving generalisation to new exemplars at the
423 earliest stages of learning. This suggests replay might facilitates rapid generalisation, which maximises
424 performance given a limited set of experiences with a category.

425 We were interested to compare generative replay with the unlikely veridical, high-resolution
426  scenario whereby humans could replay thousands of encounters with individual objects exactly as
427  they were experienced. We termed this “veridical replay” (Fig 2A), which involved capturing the exact
428 neural patterns associated with each experienced object during learning, and replaying these from
429  the same point in the network. A mixed between-within ANOVA did not reveal any difference
430 between generative and veridical replay in terms of generalisation performance (F(1,13 = 0.16, p =
431  0.696), nor was an interaction effect observed between day and condition (F(29,522) = 0.29, p = 0.999,
432 Fig 2B). Therefore, generative replay was comparably effective to veridical replay of experience in
433 consolidating memory, despite being entirely imagined from the networks prior experience. This
434 provides tentative support for the hypothesis that generative replay is a putative form of category
435 replay in humans, as it would appear vastly more efficient to imagine new concepts from an extracted
436 prototype.

437 The aforementioned results simulated the benefits of replay under optimal conditions where
438 humans encounter the same categories every day, however there are instances where exposure will
439 be limited. To what extent can offline replay compensate for this limited learning? We simulated this
440 in our model of the ventral stream by limiting the learning of actual category photographs to one day,
441 and substituted all subsequent learning experiences with offline replay, termed “continuous replay”

442 (Fig 2A). Despite the absence of further exposure to the actual objects, we found the network could
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443 increase its generalisation accuracy from 32% to 83% purely by replaying imagined instances of
444  concepts it has partially learned. This result may inform our understanding of the human ability to
445 quickly learn from limited experience. However, a mixed-between ANOVA revealed a statistically
446  significant interaction effect between day and condition (F9s22) = 3.78, p < 0.001), with planned
447 Bonferroni post-hoc comparisons revealing a difference between generative replay and continuous
448 replay from day nine onwards (all p < 0.00167). Therefore, replayed representations appear to be
449 dynamic in nature, as the prototypes generated from that first experience were not sufficient to train
450  the network to its maximum performance, as is observed when learning and replay are interleaved.
451  This suggests that replayed representations continue to improve as they are informed by ongoing
452 learning, therefore generative replay in the human brain throughout learning may be envisaged as a

453  constantly evolving “snapshot” of what has been learned so far about that category.
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455  Fig 2. The facilitatory effects of memory replay across category learning. We simulate the long-

456  term consolidation of category memory by extending training to 30 days. (A) Schematic showing the
457 different experimental conditions. “No replay” involves the model of the visual system learning the
458 10 new categories without replay in between episodes. “Generative replay” simulates the brain

459 imagining and replaying novel instances of a category during “night” periods of offline consolidation,
460 from a layer bearing some functional approximation to the lateral occipital cortex. “Veridical replay”
461 simulates the hypothetical performance of a human who, each night, replays every single event

462  which has been experienced the preceding day. “Continuous replay” simulates a single day of

463  learning, followed by days and nights of replay, investigating the potential benefit afforded by replay
464  given only brief exposure to a category. For both day-time learning of real images and night-time
465 consolidation of generated representations, the number of training stimuli was always 1,170 for

466 each class. (B) The ability of the network to generalise to new exemplars of a category during each
467 day throughout the learning process. Generalisation performance is measured by the proportion (+/-
468  S.E.M.) of correctly recognised test images across 10 models. Generative replay maximally increases
469 performance early in training, suggesting it might be optimal for new learning and recent memory
470  consolidation. Despite being comprised of internally generated fictive experiences, generative replay
471  was comparably effective to veridical replay throughout the learning process, positing it as an

472 attractive, efficient and more realistic solution to memory consolidation which does not involve

473 remembering all experiences. Continuous replay after just one day of learning substantially

474 improved generalisation performance, but never reached the accuracy levels of networks which

475 engaged in further learning. (C) The improvement in performance that generative replay affords on
476 each day relative to the possible improvements from the previous day.

477

478 3.3 Determining how the brain might select experiences for replay

479  We proposed that replay may be a learning process in itself, whereby the hippocampus selects replay

480 items, and learns through feedback from the neocortex the optimal ones to replay. In our previous
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481 simulations we selected all categories for replay in equal number, however to simulate the
482 autonomous nature of replay selection in the brain, we supplemented our model of the ventral visual
483 stream with a small reinforcement learning network, approximating the theoretical role of the
484 hippocampus in deciding what to replay (Fig 3A). The hippocampus-like model could choose one of
485  the 10 categories to replay, and received a reward from the main network for that action, based on
486 the improvement in network performance.

487 We trained our model of the visual system on 10 novel categories, implementing replay during
488 offline periods as before, and compared its generalisation performance with that of the dual
489 interactive hippocampal-cortical model. In terms of overall accuracy, although generative RL replay
490 appeared to lag briefly behind generative replay at the beginning of training, both approaches
491 performed similarly, with a mixed between-within ANOVA revealing no difference between the two
492  conditions in terms of generalisation performance (F(1,15) = 0.15, p = 0.704), nor was an interaction
493 effect observed between day and condition (Fos22) = 1.28, p = 0.153, Fig 3B). Fig 3C plots the
494  difference between the two conditions across learning. However, the reinforcement learning network
495  which simulated the hippocampal replay systematically selected categories which were originally
496 relatively weakly learned more often (R? = 0.24, F1, 95y = 31.15, p < 0.001, Fig 3D), which resulted in
497  their selective improvement (R? = 0.18, F(1, 95 = 21.15, p < 0.001). However, this came at a cost, with
498 originally well-learned categories being replayed less often and a drop in their generalisation accuracy.
499  We present the idea that such a reinforcement learning process may underlie the “rebalancing” of
500 experience in the brain, and that replay may therefore help to compensate for the fact that some
501 categories are more difficult to learn than others.

502
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504  Fig 3. Replay as a reinforcement learning process simulates the brain’s tendency to consolidate
505  weaker knowledge. (A) Replay in a model which approximates the visual system is controlled by a
506 reinforcement learning (RL) network which aims to assume the role of the hippocampus. The RL
507 network selects one of 10 categories to replay through the visual system and receives a reward
508 based on the improved performance, learning through trial and error which categories to replay. (B)
509 Overall generalisation performance on new category exemplars was similar for both generative
510 replay and generative replay controlled by a reinforcement learning network. Generalisation
511 performance represents mean accuracy (+/- S.E.M) on test images across 10 models which each
512 learned 10 new categories. (C) The difference between generative replay and generative RL replay
513 performance for each day. (D) The RL network learns to replay categories which were originally more
514  difficult for the model of the visual system, and improves their accuracy. This effectively
515  “rebalanced” memory such that category knowledge was more evenly distributed, and offers a
516  candidate mechanism as to how the brain chooses weakly learned information for replay. Plotted
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517  values represent the 100 categories across 10 models. A proportion of the generalisation
518 performance values are overlapping.

519
520 4. Discussion

521  We simulated the consolidation of category knowledge in a large-scale neural network model which
522 approximates functional aspects of the human ventral visual system, by replaying prototypical
523 representations thought to be formed and initiated by the hippocampus. The notion that replay of
524  visual experiences might be generative in nature has been suggested by limited-capacity models which
525 have been trained on low-resolution photographic images (van de Ven et al. 2020). However, our
526 results using a model of the visual brain whose representations has compared favourably with actual
527 brain data, represent more persuasive evidence that humans are unlikely to replay experiences
528  verbatim during rest and sleep to improve category knowledge, and might be more likely to replay
529 novel, imagined instances instead. In addition, the large number (117,000) of high-resolution complex
530 naturalistic images we used for training in this experiment more closely reflected real-world learning
531 and facilitated the extraction of gist-like features. While empirical evidence exists that humans replay
532 novel sequences of stimuli (Liu et al. 2019), our work suggests that the brain might go further and uses
533 learned features of objects to construct entirely fictive experiences to replay. We speculate that this
534  creative process is particularly important for the consolidation of category knowledge as opposed to
535 the replay of episodic memory (Deuker et al. 2013; Schapiro et al. 2018; Zhang et al. 2018), because
536 of the requirement to abstract prototypical features and use these to generalise to new examples of
537 a category. We propose that generative replay confers additional advantages such as constituting less
538 of a burden on memory resources, as not all experiences need to be remembered. Further, our replay
539 representations were highly effective in consolidating category knowledge despite being down-
540 sampled, and these compressed, low-resolution samples would reduce storage requirements further.
541 Perhaps the simulation that most favourably supported the hypothesis that category replay in the

542 brain likely adopts this compressed, prototypical format is that it aided generalisation to a similar
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543 degree as the exact veridical replay of experience in boosting generalisation performance. Therefore,
544  the main advantage to generative replay over veridical replay is that it represents a feasible, efficient
545 solution to memory consolidation without compromising effectiveness. In addition, generative replay
546 can add to events which have been experienced. Our findings therefore encourage a
547 reconceptualization of the nature of consolidation-related replay in humans, that it is not only
548  generative, but also low resolution or “blurry”, as is the case with internally generated imagery in
549  humans (Giusberti et al. 1992; Lee et al. 2012). In fact, the kind of replay we propose here may be the
550  driving force behind the transformation of memory into a more schematic, generalised form which
551 preserves regularities across experiences while allowing unique elements of experience to fade (Love
552 and Medin 1998; Winocur and Moscovitch 2011; Sweegers and Talamini 2014). The challenge for
553  future empirical studies in humans to confirm our hypothesis, will be to decode prototypical replay
554 representations during rest and sleep. In addition, future modelling and empirical work should address
555  the sequential nature of learning and replay, as life experience does not consist of still snapshots of
556 experience, such as those used in these experiments. Prior modelling work has shown that a video
557  game-playing agent can improve its performance by learning inside its own generated environment
558 (Ha and Schmidhuber 2018), which is more akin to an unfolding dream during sleep, and may provide
559 inspiration for modelling the generative replay of video-like events to support category learning.

560 Simulating replay in a human-like network also allowed us to answer a question not currently
561 tractable in neuroimaging studies: where in the visual stream is replay functionally relevant to
562 consolidation? In a prior simulation of replay in a neural network, van de Ven et al. (2020)
563 demonstrated generative replay could attenuate forgetting when performed after the final
564  convolutional layer, but its effectiveness was not compared to earlier layers, and the network
565 employed, consisting of five convolutional layers, had not been compared with the human visual
566 system. Deeper networks, such as the one used here, consisting of 23 layers in total, organised into
567 five blocks of convolutional layers, not only extract useful category features from naturalistic images,

568 but representations in network layers have demonstrated a degree of representational
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569 correspondence with specific brain regions along the ventral visual stream (Khaligh-Razavi and
570 Kriegeskorte 2014; Gli¢li and van Gerven 2015; Devereux et al. 2018), albeit not capturing all
571 observable variance (Xu and Vaziri-Pashkam 2021). In keeping with our observation that low-
572 resolution, coarse, schematic replay was effective in helping the network to generalise, we found the
573 most effective location for replay to be in the most advanced layers of the network, layers which are
574 less granular in their representations. This region shares some functional similarities with the lateral
575 occipital cortex in humans, a region which represents more complex, high-level features (Guglid and
576  van Gerven 2015). In contrast, generative replay from the earliest layers corresponding to early visual
577 cortex was less effective. These layers are sensitive to low-level visual features such as contrast, edges
578 and colour, therefore generating samples from these layers will yield rudimentary-level category-
579  specific information, which are of limited utility for replay and generalisation. High-level
580 representations on the other hand, may contain more unique combinations and abstractions of these
581 lower-level features. We also found replay from the penultimate layer was more effective than the
582 final layer, suggesting the optimal replay location represents a balance between the presence of
583 sufficiently complex category information and the number of downstream neuronal weights available
584  to be updated based on replaying these features. These findings may encourage a re-evaluation of the
585  functional relevance of replay in early visual cortices in both animals and humans, and generate
586  specific hypotheses for potential perturbation studies to investigate the effects of disruptive
587  stimulation at different stages of the ventral stream during offline consolidation.

588 Our simulations also revealed a phenomenon never before tested in humans, that the
589 effectiveness of replay depends on the stage of learning. We acquire factual information about the
590  world sporadically over time across contexts, for example we may encounter a new species at a zoo
591 one day, and subsequently see the same animal on a wildlife documentary, and so on. Ultimately the
592 consolidation of semantic information in the neocortex can take up to years to complete (Manns et
593 al. 2003). However, our simulations suggest that replay may be most beneficial during the initial

594  encounters with a novel category, when we are still working out its identifiable features and have not
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595 yet learned to generalise perfectly to unseen instances. It is therefore possible humans replay a
596 category less and less with increasing familiarity, and there is some support for this idea in the animal
597 literature (Giri et al. 2019). We speculate that if this is the case, the enhanced effectiveness for recent
598 memories may have an adaptive function, allowing us to generalise quickly with limited information.
599 In fact, our simulations showed that after a single learning episode, replay can compensate
600  substantially for an absence of subsequent experience. Our results provide novel hypotheses for
601 human experiments, testing for an interaction between the stage of category learning and the extent
602 of replay. The fact that replay early in the learning process was more effective provides further support
603  for our proposal that vague, imprecise replay events are useful for generalisation, as the networks
604 imaginary representations at that stage would be an imperfect approximation of the category in
605  question. We acknowledge there may be a “ceiling effect”, whereby later in training there is no further
606 room for improvement, however we would posit that over the human lifespan, we are operating in
607  the non-converged portion of the learning curve that we display here.

608 Our results also represent the first mechanistic account of how the brain selects weakly-
609 learned information for replay and consolidation (Kuriyama et al. 2004; Drosopoulos et al. 2007,
610 McDevitt et al. 2015; Schapiro et al. 2018). The hippocampus triggers replay events in the neocortex
611 (Zzhang et al. 2018), with a loop of information back and forth between the two brain areas (Rothschild
612 et al. 2017), although the content of this neural dialogue is not known. Our simulations suggest that
613  the hippocampus may learn the optimal categories to replay based on feedback from the neocortex.
614  Our results showed that such a process resulted in the “rebalancing” of experience in an artificial
615 neural network, where generalisation performance was improved for weakly learned items, and
616 attenuated for items which were strongly learned. A reorganisation of knowledge of this kind has been
617 observed in electrophysiological investigations in rodents, where the neural representations of novel
618 environments are strengthened through reactivation at the peak of the theta cycle, while those
619 corresponding to familiar environments are weakened through replay during the trough (Poe et al.

620  2000). This more even distribution of knowledge could be adaptive in both ensuring adequate
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621 recognition performance across all categories and forming a more general foundation on top of which
622  future conceptual knowledge can be built. There have been recent theoretical and empirical
623 demonstrations of how items get selected for replay within a reinforcement learning framework, such
624  as the “tagging” of items that elicit a large prediction error during the learning phase (Momennejad
625 et al. 2018), and the replay of events that are more likely to be encountered in future and which lead
626  tothe highest reward (Mattar and Daw 2018; Liu et al. 2021). However, these accounts do not explain
627  why even in the absence of such prediction errors, or without knowing the likelihood of future events,
628 knowledge which has been weakly-learned during waking periods is consistently targeted for replay
629 and consolidation during sleep (Kuriyama et al. 2004; Drosopoulos et al. 2007; McDevitt et al. 2015;
630  Schapiro et al. 2018). Our interactive networks suggest that offline reinforcement learning could
631 account for the selection of weakly-learned knowledge during the replay process itself, and future
632 experiments could assess whether our models choose the same categories for replay as humans when
633  trained on the same stimuli.

634 In summary, our simulations provide supportive evidence that category replay in humans is a
635  generative process and make the prediction that it is functionally relevant at advanced stages of the
636  ventral stream. We have generated hypotheses about when during learning replay is likely to be
637  effective and offer a novel account of replay as a learning process in and of itself between the
638 hippocampus and neocortex. We hope these findings encourage a closer dialogue between theoretical
639 models and empirical experiments. These findings also add credence to the emerging perspective that
640  deep learning networks are powerful tools which are becoming increasingly well-positioned to resolve
641 challenging neuroscientific questions (Richards et al. 2019).
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Supplementary Fig 1. Samples of real and generated activations from different
layers in the network, displayed as greyscale images. The first filters where
information was visible is displayed.
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827  Supplementary table 1: List of ImageNet classes by model

Model 1 n12360108 begonia

n02822579 bedstead bedframe

n02427724 waterbuck

n03098688 control room

n02944075 camisole

n01603600 waxwing

n03196598 digital display alphanumeric display

n02848216 blade

n07712856 tortilla chip

n03592669 jalousie

Model 2 n11853356 Christmas cactus Schlumbergera buckleyi Schlumbergera baridgesii
n04177820 settle settee

n03904183 pedestrian crossing zebra crossing

n04355511 sundress

n03487444 hand lotion

n12899752 angel's trumpet Brugmansia suaveolens Datura suaveolens

n12655869 raspberry raspberry bush
n12948053 common European dogwood red dogwood blood-twig pedwood Cornus
sanguinea

n02869737 bongo bongo drum

n02415253 Dall sheep Dall's sheep white sheep Ovis montana dalli
Model 3 n03375575 foil

n03082807 compressor

n03262932 easy chair lounge chair overstuffed chair

n02047614 puffin

n03317788 faience

n09475044 wasp's nest wasps' nest hornet's nest hornets' nest
n11784497 jack-in-the-pulpit Indian turnip wake-robin Arisaema triphyllum Arisaema
atrorubens

n03941231 pinata

n02813399 bay window bow window

n04544325 wainscoting wainscotting

Model 4 n03993053 potty seat potty chair

n04082886 reticle reticule graticule

n03421324 garter belt suspender belt

n03766044 miller milling machine

n03505504 headscarf

n12384839 love-in-a-mist running pop wild water lemon Passiflora foetida
n03619793 kitbag kit bag

n07600696 candied apple candy apple taffy apple caramel apple toffee apple
n02068974 dolphin

n03237992 dressing gown robe-de-chambre lounging robe

Model 5 n02918964 bumper car Dodgem

n02392824 white rhinoceros Ceratotherium simum Diceros simus
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n01806364 blue peafowl Pavo cristatus
n02956699 capitol

n04290079 spun yarn

n08596076 littoral litoral littoral zone sands
n02887970 bracelet bangle

n10635788 sphinx

n07901457 muscat muscatel muscadel muscadelle

n07870167 lasagna lasagne

Model 6 n04324387 stockroom stock room

n04591517 wind turbine

n02988486 CD-R compact disc recordable CD-WO compact disc write-once
n04568069 weathervane weather vane vane wind vane

n04514241 uplift

n03207835 dishtowel dish towel tea towel

n13206817 maidenhair maidenhair fern

n03307792 external drive

n12666965 cape jasmine cape jessamine Gardenia jasminoides Gardenia augusta
n12950126 valerian

Model 7 n03986355 portfolio

n11848479 night-blooming cereus

n04439712 tinfoil tin foil

n03160740 damask

n01612122 sparrow hawk American kestrel kestrel Falco sparverius
n09206896 arroyo

n12392549 stinging nettle Urtica dioica

n02343772 gerbil gerbille

n07875436 risotto Italian rice

n02060133 fulmar fulmar petrel Fulmarus glacialis

Model 8 n03655072 legging leging leg covering
n10738111 unicyclist

n09270735 dune sand dune
n03409393 gable gable end gable wall
n02331046 rat

n03452267 gramophone acoustic gramophone
n10105733 forward

n07911677 cocktail

n03797182 muffler

n01563128 warbler

Model 9 n04197110 shipwreck

n10470779 priest

n02769290 backhoe

n03478756 hall

n04519153 valve

n04289027 sprinkler

n02782778 ballpark park
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n03558404 ice skate

n04138261 satin

n02700064 alternator

Model 10 | n03524150 hockey stick

n03716966 mandolin

n02962200 carburetor carburettor
n03237340 dresser

n04004210 printed circuit
n02917377 bullhorn loud hailer loud-hailer
n07879953 tempura

n04087826 ribbing

n02404432 longhorn Texas longhorn
n07830593 hot sauce
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847  Supplementary table 2: Conceptually similar classes (plants)

Model 1 (1) n12360108 begonia
Model 2 (1) n11853356 Christmas cactus Schlumbergera buckleyi Schlumbergera baridgesii

Model 2 (6) n12899752 angel's trumpet Brugmansia suaveolens Datura suaveolens
n12948053 common European dogwood red dogwood blood-twig pedwood Cornus
Model 2 (8) sanguinea

Model 4 (6) n12384839 love-in-a-mist running pop wild water lemon Passiflora foetida
Model 6 (7) n13206817 maidenhair maidenhair fern

Model 6 (9) n12666965 cape jasmine cape jessamine Gardenia jasminoides Gardenia augusta
Model 6 (10) | n12950126 valerian

Model 7 (2) n11848479 night-blooming cereus

Model 7 (7) n12392549 stinging nettle Urtica dioica

848
849

37


https://doi.org/10.1101/2021.05.25.445587
http://creativecommons.org/licenses/by-nc-nd/4.0/

