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RNA sequencing of skeletal muscle from young and old mice were compared to
physical function status obtained by performing a comprehensive functional
assessment battery of tests. Between adulthood (6-months) and older age (28-
months), 6707 genes were differentially expressed with 253 of these genes being
significantly associated with physical function. Specific age-related changes to the
skeletal muscle transcriptome are associated with a decline in physical function.
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Summary:

One inevitable consequence of aging is the gradual deterioration of physical function and exercise
capacity, driven in part by the adverse effect of age on muscle tissue. Our primary purpose was
to determine the relationship between patterns of gene expression in skeletal muscle and this
loss of physical function. We hypothesized that some genes changing expression with age would
correlate with functional decline, or conversely with preservation of function. Male C57BL/6 mice
(6-months old, 6m, 24-months, 24m, and 28+-months, 28m; all n=8) were tested for physical
ability using a comprehensive functional assessment battery (CFAB). CFAB is a composite
scoring system comprised of five functional tests: rotarod (overall motor function), grip strength
(fore-limb strength), inverted cling (4-limb strength/endurance), voluntary wheel running (activity
rate/volitional exercise), and treadmill (endurance). We then extracted total RNA from the tibialis
anterior muscle, analyzed with Next Generation Sequencing RNAseq to determine differential
gene expression during aging, and compared these changes to physical function. Aging resulted
in gene expression differences >|1.0| log2 fold change (multiple comparison adjusted p<0.05)
in 219 genes in the 24m and in 6587 genes in the 28m. Linear regression with CFAB determined
253 differentially expressed genes strongly associated (R>0.70) with functional status in the 28m,
and 22 genes in the 24m. We conclude that specific age-related transcriptomic changes are
associated with declines in physical function, providing mechanistic clues. Future work will
establish the underlying cellular mechanisms and the physiological relevance of these genes to

age-related loss of physical function.
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Introduction:

Aging results in the onset of the decline of physical function accompanied or predicated by loss
of skeletal muscle mass and strength (sarcopenia). This loss of physical function and muscle
health leads to reduced ability to perform activities of daily living, a lower quality of life,
development of disability, eventual loss of independence, and increased mortality (Aversa, 2019;
Tsekoura 2017; Billet, 2020). Sarcopenia and frailty (inability to maintain homeostasis) are linked
in that most frail individuals are also sarcopenic. While we still do not know the exact etiology of
sarcopenia, we do know that it is likely a multifactorial disease with a host of potential causes
such as: disuse atrophy, neuromotor deficits including denervation, reduction in muscle quality
(fat and fibrotic intrusion), alterations to key proteins and cell signaling, mitochondrial deficits, and
many others (Pratt, 2020; Deschenes, 2011; Thompson, 2009; Coen, 2019, Narici, 2010).
Understanding the molecular mechanisms leading to the age-associated skeletal muscle function
will enable us to develop mitigation strategies for functional decline. In this study, our primary goal
was to determine how changes in muscle gene expression during aging are related to physical
function and exercise capacity. Our long-term goal is to utilize this novel data set to design

experiments focused on identifying the underlying cellular mechanisms of sarcopenia.

To accomplish our goal, we used our Comprehensive Functional Assessment Battery (CFAB), a
composite scoring system comprised of five different tests (rotarod, grip test, inverted cling,
voluntary wheel running, treadmill), to measure physical function in 6-month-old (6m), 24-month-
old (24m), and 28+month-old (28m) C57BL/6 mice (Graber, 2020). We then used Next Generation
Sequencing (NGS) RNAseq to determine gene expression in the tibialis anterior (TA) muscles of
these mice. By using linear regression of genes that changed expression in aging with physical
function we were able determine the associations and note numerous genes in muscle that may

play a critical role in declining physical ability.
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We found thousands of genes with differential expression between 6m and 28m of age, versus
only a couple hundred between the 6m and the 24m. Likewise, there were hundreds of genes
changing expression with age that were strongly associated with CFAB in 28m, but far fewer in
24m. This discrepancy highlights potential acceleration of biological aging over those four
months, that is also manifested in many indicators of physical function and muscle health (Graber
2015; Graber, 2020). GOrilla (Gene Ontology enRIichment analysis and visualizAtion tool) and
GSEA (Gene Set Enrichment Analysis) were used to determine a number of highly enriched gene
ontologies, which included cation transporters, and calcium transporters in particular (Eden, 2009;
Subramanian, 2005). Overall, this novel data set establishes an initial framework for
understanding how aging alters skeletal muscle gene expression and identification of specific
muscle genes linked to the gradual, inevitable, progressive loss of physical function associated

with sarcopenia.
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Results:

CFAB:

The mice from this study demonstrated overall declining physical function with age, as measured
with the CFAB component tests of rotarod, grip strength meter, inverted cling, treadmill, and
voluntary wheel running (see Figure 1). The CFAB score was significantly different between
groups (p<0.05). The mice in this study were randomly chosen from the larger cohort in our
previously published work, refer to that work for a more complete discussion of the methods and

results of the functional testing across the three age groups (Graber, 2020).

NGS RNAseq: (See the full raw dataset on GEO at GSE152133)

28-month-old mice compared to 6-month-old mice:

We determined that, overall, 6587 genes significantly changed (adj. p<0.05) with age in the 28m
versus the 6m. By expanding to include genes changing with p<0.05, there were 6707 genes,
with 3153 downregulated (614, log2fc<-1; adj. p<0.05) and 3554 upregulated (615 with log2fc=1;
adj. p<0.05). The top 50 gene expression changes between 6m and 28m are shown in a heatmap
in Figure 2 and a volcano plot showing separation of the gene sets in Figure 3. In Table 1 we list
the top 20 genes upregulated with age, and in Table 2 the top 20 downregulated Genes, see
Table S1a for all genes log2fcz| 1| and adj. p<0.05. In Figure 4A, the 2D principal component
analysis (PCA) scores plot indicates a separation between 28m and 6m clusters, with no overlap.
This result was confirmed by using the supervised multivariate analysis based on a partial least
squares-discriminate analysis (PLS-DA) (component 1, 6m, was 14% and component 2, 28m,

was 56%).

Analyzing the RNAseq data with GSEA, we note that 1049 genes remained of those that fell under
the cut-off (|log2fc|=1, adj. pval<0.05). Using GOrilla to further determine gene set enrichment in
this comparison (using the same genes identified in GSEA), there were 73 gene ontology terms
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enriched (minimum False Discovery Rate g-value, FDR g-val<0.10; 72 terms FDR g-val<0.05)
ranging from a high enrichment of 26.29 to a low of 1.12. In all there were 8 gene sets highly
enriched, E, (E>10, averaging 17.616.0 sd, standard deviation), including: GO:0016907 (G
protein-coupled acetylcholine receptor activity, enrichment, E=26.3) , GO:0098639 (collagen
binding involved in cell-matrix adhesion, E=25.7), GO:0048407 (platelet-derived growth factor
binding, E=21.9), GO:0008046 (axon guidance receptor activity, E=14.3), GO:0035373
(chondroitin sulfate proteoglycan binding, E=14.2), GO:0015464 (acetylcholine receptor activity,
E=13.6), GO:0005021 (vascular endothelial growth factor-activated receptor activity, E=12.9),
and GO:0030020 (extracellular matrix structural constituent conferring tensile strength, E=12.0).
There were 359 genes identified by the intersection of GSEA and GoRilla 6m vs. 28m comparison.

For further details see Figure S1, Table S2a and Table S2b in the Supplement.

24-month-old mice compared to 6-month-old mice:

At 24m compared to 6m, there were fewer changes in gene expression than in the 28m (a total
of 219 genes changed significantly, adj. p<0.05), with 46 genes decreasing expression and 173
increasing. By expanding to include genes changing with adj. p<0.05, there were 234 genes, with
5 downregulated (log2fc,<1; adj. p<0.05) and 184 upregulated (9 downregulated and 137 with
[logfc21]; adj. p<0.05). See Table S1b for all genes log2fcz| 1| and adj. p<0.05. In Figure 4B, the
2D principal component analysis (PCA) scores plot indicates an incomplete separation between
24m and 6m clusters, with evident overlap. This result was confirmed by using the supervised
multivariate analysis based on a partial least squares-discriminate analysis (PLS-DA)

(component 1, 6m, was 23% and component 2, 28m, was 48%).

Analyzing the RNAseq data with GSEA, we note that 127 genes remained of those that fell under
the cut-off (|log2fc|=1, adj. pval<0.05). Using GOrilla to determine gene set enrichment of the
same genes identified in GSEA, there were 19 gene ontology terms enriched (FDR g-val<0.10;
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18 terms FDR g-val<0.05), ranging from a high enrichment of 43.19 to a low of 1.39. In all there
were 3 gene sets highly enriched (E>10, averaging 32.5+11.8 sd), including: GO:0001602
(pancreatic polypeptide receptor activity, E=43.2), GO:0001601 (peptide YY receptor activity,
E=34.55), and (neuropeptide Y receptor activity, E=19.81). There were just three genes identified
by the intersection of GOrilla and GSEA for this 6m vs. 24m comparison. For further details see

Figure S2, Table S2c, and Table S2d in the Supplement.

Regressions and Correlations of CFAB and RNAseq:

We primarily focused our attention on the changes that occurred in the transcriptome between
the adults (6m) and the oldest group (28m). This is because the alterations in the genome were
most extreme at the advanced age (more than 6700 genes changed significantly with age), and
we know from previous work that the most profound changes in function, muscle health, and
contractile ability occur at the older ages in mice (Graber, 2015; Graber, 2013; Graber, 2020).
However, we have presented data including linear regressions from the other conditions for full

comparison purposes. See the data sets in the Online Only Supplement Table S4 for more details.

28-month-old mice compared to 6-month-old mice:

Regression analysis of the 6m with the 28m determined that there were 689 genes with at least
a moderate (R=0.50) correlation with physical ability (CFAB score), and of these 253 were strongly
associated with CFAB (R=0.70). In Table 3 we list the top 20 (by R?) age-regulated genes
associated with physical function. See Table S4a for details of all genes with R>0.70 (regression

p<0.05), log2fcz| 1| and adj. p<0.05.

28-month-old mice vs. 24-month-old mice compared to 6-month-old mice:

When we combined the results (genes that changed with age at least log2fc=1, and adj. p-
val.<0.05) from all 3 groups, regression analysis determined that there were 550 genes with at
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least a moderate (R=0.50) correlation with physical ability (CFAB score), and of these 108 were

strongly associated with CFAB (R=0.70). See Table 4b for details.

24-month-old mice compared to 6-month-old mice:

When examining only the relationship between the results from the 6m and 24m groups,
regression analysis determined that there were 55 genes with at least a moderate (R=0.50)
correlation with physical ability (CFAB score), and of these 22 were strongly associated with

CFAB (R=0.70). See Table S3c for details.
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Discussion:

Physical Function Declines with Aging:

It is well-established that both rodents and humans lose muscle mass and strength as they get
older. Alongside this decline in muscle mass and strength comes a decline in physical function
and exercise capacity (Graber, 2020; Graber, 2013). Reductions in power production and
contractile velocity have been shown to precede loss of strength and mass, indicating that
deterioration other than atrophy contributes to the onset of muscle dysfunction (Graber, 2015;

Made-Wilkinson, 2015).

Various hypothesis have been proposed to explain the mechanisms of both early onset loss of
power and the disconnect between mass retention and strength loss in the context of declining
physical performance. Loss of so-called “muscle quality” is one such theory that can be explained
via numerous mechanistic avenues. During aging, the infiltration of fat, connective tissue and scar
tissue into a muscle can reduce the overall cross-sectional area devoted to contractile units while
altering structural parameters of the tissue, and combined with other macro level alterations such
as tendon stiffening, may reduce power and strength at the whole muscle level (Wu, 2020;
Rahemi, 2015). In addition, at the cellular level, there are many deleterious changes with aging
that can affect contractile velocity, power production and force generation, such as: post-
translation modifications to key contractile proteins that might inhibit or slow down cross-bridge
cycling or limit the number of bound myosin heads at any given moment (such as glycosylation
of actin or myosin heavy chain), a shift in the myosin light chains to slower isoforms, fiber-type
shift to slower less powerful myofiber types and increased hybrid fibers, enhanced denervation of
type 2 motor units with reduced rates of re-innervation, cell signaling abnormalities potentially
resulting from such divergent sources as enhanced global inflammation and reduced hormonal
signaling, autophagy dysregulation resulting in cellular “junk” accumulation including reduced
mitophagy rates leading to a greater number of dysfunction mitochondria leaking enhanced
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protein/DNA/RNA damaging reactive oxygen species (ROS), and many others (Prochiewicz,

2007; Wiedmer, 2021).

In the current study we set out to obtain a transcriptome profile during aging in the mouse which
we could then compare to the decline of physical function with the intention of developing
mechanistic hypotheses based upon this relationship. It was clear from the data that there is a
vast wealth of correlative connections between various mRNA species relative abundance and
the overall state of functional health (measured by CFAB) in our mice. With the vast amount of
data, we relied on Gorilla and GSEA analysis of gene ontology to get some clues as to what the
genes associated the most with functional decline seemed to be telling us about the cellular
process in flux. Calcium handling was one process that seemed to jump out immediately. We also
found evidence of denervation, neuromuscular junction dysfunction, and motor neuron
alterations. In addition, we suspected a priori that mitochondrial changes would be highly relevant,

but the evidence we found for this was less.

Aging and the Transcriptome:

Even though our cut-off point for significant gene expression changes was log2fc=1 (2-fold), that
does not mean that genes below that cut-off do not play a role in age-related functional loss. To
narrow down the more than 6500 genes found to change between adult and older mice, we chose
a standard two-fold change in gene expression as both real change and clinically significant. In
Table 1 of the supplement we list the top 30 mRNAs that increase with age and in Table 2 the
top 30 that decrease with age (from 6-28 months). Note that some of these are also correlated

with declining function, but some are not.
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Transcription Factor Gene Expression with Aging:

A recent study narrowly focused on multi-tissue conserved epigenetic regulation and the
transcriptome (genes within 5000 base-pairs of transcription start sites) used the quadriceps of 6
and 24-month old mice as part of their analysis (Sleiman, 2020). It is interesting to note that while
they only report and investigated a very narrow scope of genes, many of their top genes were not
shown to increase or decrease significantly in our TA transcriptome within our cut-offs (adj. p<0.05
and log2fc=1) at 6 and 24 months—perhaps partly indicating a likely difference between the highly
glycolytic fast twitch TA and the more oxidative quadriceps requiring a nuanced approach to this

type of analysis due to the heterogeneous nature of individual muscles.

However, if we instead compare 6 month old mice TA to 28 month old mice TA , we do see some
evidence of transcriptional regulation alterations similar to Sleiman et al. By widening our scope
to significance at adj. p<0.05 and any log2fc, we see similar results for transcription factors related
to aging such as the SREBF family motifs (SREB1 log2fc -0.61, and SREB2 log2fc -0.67, both
adj. p<0.001) that are known to regulate lipid homeostasis, and Mecp2 (log2fc -0.30, p=0.006)
that represses expression of genes and is a regulator of normal neuron function. We also see
significant age-associated expression changes of members of the Zbt family (log2fc: Zbtb37 -
1.06, Zbtb7c -0.63, Zbtb46 -0.73, Zbtb22 0.25, Zbtb48 0.31, Zbtb33 -0.29, Zbtb10 -0.33, Zbtb5 -
0.30, Zbtb11 -0.22, and Zbt20 0.34), that code for the zinc finger and BTB domain-containing
proteins which are known as transcriptional repressors. For example, ZBTB20 promotes
production of pro-inflammatory cytokines by downstream activation of Toll-like receptors. In
support, we uncovered that Nfkbia (Nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor, alpha) increased expression by log2fc 0.96, and thus could be involved int reducing
NF-kB transcription factor (confirmed significant reduced expression of Nfkb1 is log2fc -0.45).
Therefore, upregulation of ZBTB20 in our older mice would support increased inflammation—one
hallmark of aging and one of the likely mechanisms contributing to muscle atrophy.
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Age-Related Gene Expression Relationship with CFAB:

Using the single CFAB score to represent generalized physical function at the three different ages
we ran linear regression analysis to determine which of the age-associated gene expression
changes correlated at a moderate or strong level. It is important to note that there are differences
between the linear regressions at the various ages. This is not surprising because some of the
genes did not change with age at 24-months but did at 28-months. In addition, gene expression
changes that are potentially associated with physical function over the lifespan (6- to 24- to 28-
months combined) may not be the same as gene expression changes associated with physical
function when comparing only two of the age groups (6 to 24, or 6 to 28 months, for example).
Gene expression at one of the ages may not affect function in the same way as at the other. One
example would be Erc2 (also known as Cast1), a gene that codes for the protein ELKS-Rab6-
interacting protein 2, which has many roles including organization of the cytoskeleton structures
involved in pre-synaptic vesicle release (Ko,2003; Chen, 2011). Erc2 has a log2fc 3.41 between
6 and 24 months, and then log2fc 3.54 between 6 and 28-months. Overall, the linear regression
of Erc2 with CFAB of all three age groups of mice has a Pearson correlation of R=0.78, with only
the 6-month and 24-month R=0.64, and finally with only the 6-month and 28-month R=0.84. Thus,
our hypothesis is that levels of Erc2 mRNA become more critically related to physical function at
advanced ages. Since Erc2 is involved in the organization/fusion of vesicles at the presynaptic
terminal of nerves (presumably vesicles containing acetyl choline in the a-motor neuron in this
case), it makes sense that the older the mouse, likely the more critical the role of Erc2 to

neuromuscular performance might become.

Potential Mechanisms of Functional Age:

Through examination of the genes most affected by aging (see Table 1 and 2), and also those
with the highest correlation with CFAB (See Table 3), we note some common themes related to
the protein function of some of the top gene changes: calcium handling dysregulation (Sin,
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sarcolipin with log2fc 4.33), denervation (Achg log2fc 3.599) and neuromuscular junction
degeneration, and proteolytic process regulation (Ubd, ubiquidin log2fc 4.46). In the next few

sections, we will examine the significance of these changes in more detail.

Denervation and Neuromuscular Junction Degradation:

The acetylcholine receptor (AChR) in skeletal muscle receives acetylcholine diffusing across the
synaptic cleft after being exported via exocytosis from the motor end plate of the innervating motor
neuron when an action potential is propagated (back to that process in a moment). AChR has 5
different subunits: a, B, 8, € and y. The complex consists of 2 a, 2 3, 1 8, and 1 € (in mature
muscle cells) ory (in embryonic or denervated myofibers). Chng (acetylcholine receptor subunit
gamma) is only expressed in mature skeletal muscle after denervation (Ma, 2005)—with the €
subunit returning long after denervation (Adams, 1995). There was a log2fc of 3.599, equivalent
to a 1211% increase, in Chng in 28-month old mice compared to 6-month old mice (R=0.46 with
CFAB); but Chne (epsilon subunit) was increased only log2fc 0.50, indicating an 860% relative
increase of Chng versus Chne that suggests increased flux of denervation (See Table S4 for all
Chng and associated gene expression) in the older animals. Denervated muscle fibers in older
animals trend to be less robustly reinnervated than in younger animals, resulting in eventual
myofiber death and muscle atrophy (Hepple, 2016) Additionally, in older animals a fiber type shift
to a more type 1 slow twitch fiber composition occurs as former type 2 muscle fibers that are
denervated are more often reinnervated with type 1 motor neurons. This combination of switching
to less powerful myofiber type, coupled with an overall loss in the total number of fibers (not to
mention atrophy from other causes) may lead to a reduction in peak power generation in older

muscle (Graber 2015).

Formation of the motor endplate, in particular the clustering of ACHRs is propagated by the
release of agrin by a motor neuron, that binds to the MuSK receptor (and dystroclycan and laminin
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to form a stabile scaffold), causing MuSK to phosphorylate and to downstream activate and recruit
casein kinase 2 (Csnk2), rapsyn (Rapsn), and Dok-7 to form the ACHR clusters. Motor neuron
outgrowth and attachment to myofibers is dependent upon the expression of MuSK and Agrin at
the motor end plate (Dimitropoulou, 2005). Musk and Agrin genes are both downregulated
significantly in older mice ( log2fc -0.627 and -0.390, respectively). Agrin acts to stabilize the
MuSK receptor to the extracellular matrix and the cytoskeleton forming a focal point for ACHR
clustering (Swenarchuk, 2019). Additionally, DOK4 is a peptide involved in neuronal outgrowth
(gene log2fc -0.64) upstream of Rap1 (a g-coupled protein) and the ERK pathway. Interestingly,
Trim9 (log2fc -2.51) is a negative regulator of synaptic vesicle transmission that acts as a ubiquitin
ligase to regulate the SNARE complex formation, and is important for axon guidance.(Berti, 2002;

Plooster, 2017)

Calcium Handling Dysregulation (Implications and Effects):

Increased calcium levels in the sarcoplasm can significantly alter numerous signaling pathways
and mechanisms that rely upon Ca*? as a second messenger. Most obviously the primary
example in skeletal muscle is promotion of contraction induced by the binding of Ca*? to
troponinC, which then causes a conformation shift of the troponin complex that moves
tropomyosin away from the myosin binding site on actin, allowing for cross-bridge cycling.
Normally this process is induced by a calcium influx from the sarcoplasmic reticulum when the
ryanodyne (RYR) receptor is prompted to open by the voltage-gated dihydropyridine receptor
responding to a propagating action potential. Relaxing of the contractile elements is induced when
Ca*2 disassociates from troponinC as the sarcoplasmic endoplasmic reticulum ATPase (SERCA)
pumps Ca*? against the concentration gradient from the sarcoplasm back into the sarcoplasmic

reticulum using ATP.
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Sarcolipin (SIn, increased log2fc 4.33, adj. p=1.1x10%) is one of the regulatory elements of
SERCA, along with phospholamban (PIn, increased log2fc 0.663, adj. p=0.0003), and myoregulin
(Mrn, aka 2310015B20Rik, did not significantly alter), that functions by blocking the pumping
ability of SERCA even while allowing ATPase activity to consume energy and generate heat as a
byproduct (Anderson, 2015). SLN and PLN are additive in effect and can cause super-inhibition
of SERCA pumping activity when expressed in the same cell. Additionally, there are other
midcropeptides newly identified that are involved in muscle regulation of SERCA including
DWOREF (increasing SERCA pumping) and the negative regulators endoregulin and another-
regulin (Anderson, 2017). This increase in expression may have implication as an adaptive
strategy for increasing non-shivering thermogenesis to ward off body temperature dysregulation
in older mammals and/or to improve energy balance in more sedentary individuals (Bal, 2012);
but may well have adverse consequences concerning muscle and physical function. SLN
expression is not only greatly over-expressed in 28-month old mice (log2fc=4.33) but is negatively
correlated (R=-0.55) with CFAB functional scores. One mechanism by which this could occur is
by increasing the time needed to relax muscle fibers between contractions, by delaying
disassociation of Ca*? from troponin due to an increased sarcoplasmic calcium concentration,
which would potentially lead a decrease in power production. Sarcolipin is overexpressed in
Duchenne muscular dystrophy (DMD) patients and DMD transgenic mouse models, and the
knockdown of SLN restores muscle and physical function (Voit, 2017). However, knock-out of
SLN prevents normal hypertrophic and fiber-type shift response to overloading, and increases 2
relaxation rate compared to wild type (Tupling, 2011; Fajardo, 2017). Transgenic mice over-
expressing SLN have been shown to have an increased metabolic rate, V2 relaxation time, while
increasing SLN in rat muscle has been shown to decrease both maximal isometric force and 2

relaxation time, bolstering this theory (Maurya, 2015; Tupling, 2011, Tupling, 2002).
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In addition to dysregulating cross-bridge cycling and force generation, overexpression of SLN and
PLN leading to increased prevalence of cytosolic Ca*?® abundance may stimulate numerous
calcium-dependent signaling pathways. For example, increased levels of sarcoplasmic calcium
can decrease promoter activity for CGRP (calcitonin gene-related peptide), which is alternatively
spliced from the calcitonin gene. CGRP binds to the calcitonin receptor like receptor (CKACRL)
which consists of three different subunits: the receptor component protein (Rcp), the calcitonin
like receptor (Calcl, log2fc-0.34, adj. p=0.006), and the receptor activity-modifying protein 1

(Ramp1). Ramp1 (log2fc 0.53, adj. p=0.01) is involved in angiogenesis and wound healing.

Disuse Atrophy:

As reported by Mahmassani et al. 2019, after a 5-day period of bedrest 61 genes were
differentially expressed (pre-post) in the vastus lateralis of younger adults compared to older, with
51 of these genes changing only in young adults to levels equivalent to older adults at baseline,
suggesting that in some ways that older muscle resembles adult muscle suffering from disuse
atrophy. In our study we determined that of the top 10 genes they touted as being differentially
upregulated in younger mice during bedrest, in our oldest mice Fasn, Ptkfb3, and Rps4x were
significantly expressed differentially from adult mice with log2fc of -0.679, -1.09, and 0.93,
respectively. However, in their top 10 downregulated genes in adult humans after bedrest, only
Nov (-0.545 log2fc ,trend adj p-val=0.067), Apln (0.81 log2fc ,trend adj p-val=0.067), and Myl12a
(1.39 log2fc ,trend adj p-val=4 x107°) were significantly altered in our 28 month old group
compared to the 6-month. Fisher and colleagues (Fisher 2017) used tetrodotoxin administration
as a model of reversible denervation-induced disuse atrophy and demonstrated that there was a
time course dependent relationship for various gene expression changes with four of their top 7
differentially expressed atrophy-related genes also showing significant changes in our 28+month
old mice, further making the claim that older muscle dysfunction may partly be due to chronic
disuse patterns. This presents an intriguing concept for future deliberation to determine which
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elements of acute detraining/disuse could be contributing to long-term disuse atrophy in older
adults and which of these might be ablated by minimal increases in activity rates or other

interventions to preserve function.

Caveats:

First of all, it is well-established that alterations in gene expression are often not equivalent to
alterations in protein expression: in effect, the transcriptome # proteome! Thus, it will be important
to investigate protein abundance of physiologically relevant gene expression changes to
determine the true extent of influence any of these proposed mechanistic components
contributing to declining function, and, furthermore, to establish cellular signaling mechanisms
connecting the numerous potential sequences of events. In addition, this study has a relatively
small n, which makes correlation and linear regression association less reliable. This study only
included male mice, so it will be necessary for future work to investigate whether there are any

sexual dimorphisms in aging gene expression patterns.

Another limitation of the current study is that we only have three age groups to draw conclusions
from, and thus having less accuracy in determining changes over the lifespan. Determining which
changes are early onset will require middle-aged groups (16-20 months), and adding an oldest-
old (e.g. 32+-month old group) would allow us to gain insight into potential mechanisms related

to successful aging of the oldest-old.

Despite these limitations we believe this data set is novel and comprehensive. We have
performed transcriptomics at three different age time points. Furthermore, we have performed a
comprehensive battery of physical function tests at each time point. The combination of
transcriptome data with functional data is novel and will be valuable in establishing the framework
and preliminary data to begin designing mechanistic studies of key genes of interest.
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Future Directions:

Establishing physiological relevance with concurrent changes in protein expression is important
and will help us design mechanistic studies to establish cause and effect for genes/proteins that
induce sarcopenia. We will also seek to determine how interventions can alter the transcriptome
to potentially create a “younger” transcription profile than would be expected by biological age,
and whether this would translate into improvements in functional capacity. Exercise, in its many
forms, is one intervention known to improve function, and comparing the transcriptome of exercise
and control mice over the lifespan would be a valuable way to assess which genes important for
maintaining functional are modulated via exercise, and, conversely, which genes do not change

expression from an exercise treatment.

With the ubiquitous use of the mouse model in aging, mechanistic, and pharmaceutical research,
understanding both parallels and differences in age-associated gene expression with humans is
a necessary future undertaking. A recent comparative study of gene array data of skeletal muscle
in mice and humans revealed 249 homologous overlapping age-related genes (Zhuang, 2019),
but noted 6333 differentially expressed skeletal muscle genes between under 30 year old and
over 65 year old humans—uvery similar to our finding of 6587 in 6-month to 28-month old mice. It
is important to note that, as we have uncovered in this study, the age of the older mice plays a
key role in differential gene expression. According to our data, mice experience a rapid
transcriptomic change between 24 and 28 months of age suggesting that mice at the older age
are experiencing far more age-related changes than younger mice. In the Zhuang and colleagues
study the mice ages from the gene arrays they investigated were not given. Thus, more research
is needed to establish age-associated gene expression changes related to functional decline in

humans and which of these overlap with mice.
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Conclusion:

This current study is a first step in investigating potential novel mechanisms of age-related
functional decline manifested in differential gene expression with aging. More work is needed to
determine the physiological relevance of the many changes uncovered and to determine any
proteomic alterations predicated by the altered gene expression. The data sets we present herein
will help to identify and characterize cellular mechanisms responsible for how age induces a
decline in muscle health and physical function with the potential for uncovering novel therapeutic

targets.
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Experimental Procedures:

Mice:

Three different ages of C57BL/6 male mice were obtained from the National Institutes of Health
National Institute on Aging Charles River Aging Rodent Colony (a subset of mice from the
previously published Graber, et al. 2020 were randomly selected for this study: n=8 for all at 6-
months-old, 24-months-old, and 28+-months-old). The characteristics of the mice are presented
in Table 4. Mice were treated humanely under approved IACUC protocols and were group-

housed at 22 °C with a 12-hour:12-hour light/dark cycle. Food and water was provided ad libitum.

Functional Testing:

We used the protocols described in prior work (Graber, 2020) to measure the physical function
and exercise capacity of the mice using our CFAB composite scoring system. In brief, CFAB
defines function using a composite of 5 well-validated functional tests: rotarod for overall motor
function (Graber, 2013), inverted cling for four-limb strength/endurance (Graber, 2013), voluntary
wheel running as a measure of volition exercise and activity rate (Graber, 2015), grip test to
measure fore-limb strength (Graber, 2018), and treadmill running for aerobic endurance (Graber,
2019). Using adult 6-month-old mice mean as the control reference, the distance in units of
standard deviation (SD, calculated from 6-month-old group) of the score of each individual mouse
for each test from the adult mean (standardized score) was calculated. All five standardized
scores of each individual mouse are then summed to produce the CFAB score of that mouse. A
further brief discussion of the functional measurement in the Online Supplemental Procedures

Section.

Tissue Collection and Handling:
At the completion of the testing protocols the mice were euthanized after non-survival surgery to

collect the hindlimb muscles. The muscles were blotted dry, weighed, and then immediately flash
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frozen in liquid nitrogen. Subsequently the muscles were stored at -80 °C until total RNA

extraction.

Total RNA extraction has been previously described (Graber, 2017). In brief, we used Tri-Reagent
(Molecular Research, #TR118) using the manufacturer’s instructions to extract total RNA from TA
muscle, using the entire TA muscle. We quantified the extraction using a Nanodrop2000
(ThermoScientific), with mean concentration 330.8 + 24.3 ng/ul, 260/280 ratio 1.69 + 0.020,
260/230 ratio 1.98 £ 0.09. RNA integrity was determined using an Agilent Bioanalyzer 2100, mean
RIN was 9.23 = 0.139. Two isolated RNA samples of the 24 total (n=1 each from 6m and 24m
groups) did not meet the standard lower limits for purity and integrity and were not used for

RNAseq.

NGS RNAseq:

RNA samples (n=22 total; n=7 6m, n=7 24m, and n=8 28m) were quantified using a Qubit
fluorometer and qualities were assessed with an Agilent Bioanalyzer. Poly-A+ RNA was enriched
from ~0.5 ug of total RNA and used as a template to generate sequencing libraries using the New
England Biolab NEBNext Ultra RNA Library Prep Kit following the supplier's protocol. Libraries
were pooled and sequenced on an lllumina NextSeq 550 High-output flow cell with the 75 base

pair single-end protocol. Raw NGS data is stored at The Geo record GSE152133.

Data Analysis:

General:

We used SPSS v24 and v25 (IBM) to analyze the statistics. Data reported as means * standard
error, unless otherwise designated. Significance was designated as p<0.05. Linear regression
and Pearson’s Correlation were used to establish relationships between gene expression and
CFAB. Depending upon the comparison we used either ANOVA, or ANCOVA (adjusting for body
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mass). Post-hoc analysis for ANOVA and ANCOVA used least significant differences. RNAseq

data analysis is outlined below.

RNAseq:

The reads in fastq format were aligned to the mouse mm10 genome using the splicing aware
software STAR, version 2.5.4b, using the ENCODE recommended parameters. The genome
index was built with the lllumina iGenomes UCSC mm10 genomic sequence and annotation file,
and reads mapped to genes were quantified with the STAR —quantMode GeneCounts option.
The read counts per gene for each sample were input into the DESeq2 differential expression
program. Following the DESeq2 vignette, differentially expressed genes were called with a
adjusted p-value cut-off of less than 0.05 and a log2 fold-change of +/-1.0. The rlog function in
DESeqg2 was used to generate a table of log2 normalized counts, which was used to generate
the PCA plots and heatmaps. The heatmap program was used to create the heatmap figures.
The principle components analysis determined the gene sets that contributed most to the
variability between the different aged groups and for which genes contributed most to explaining

CFAB variation. See Figure 4.

Further Data Analysis of RNAseq data and CFAB Data:

The Bioinformatics and Analytics Research Collaborative (BARC) at the University of North
Carolina at Chapel Hill performed the following data analysis as consultants to the project:
GSEA (Gene Set Enrichment Analysis) was conducted using R referring to the method explained

in https://stephenturner.github.io/deseg-to-fgsea/ against NGS datasets (Subramanian, 2005).

The reference database used was ‘MousePath_GO_gmt.gmt’ downloaded from http:/ge-
lab.org/gskb/ . Based on the results of GSEA, genes from the NGS datasets with the cutoff
(llog2fc|z1, ad]. pval<0.05) were further filtered. 127 and 1049 genes were left from adult vs. older
comparison and adult vs. elderly comparison respectively.
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Then, GOrilla analysis was rendered on http:/cbl-gorilla.cs.technion.ac.il/ against the same two

datasets as used by GSEA. Enrichment is the over or under representation of differentially
expressed genes in functional categories (the GOs/ gene ontologies). GOs can be thought of as
bins of genes that are part of a pathway. In GOrilla, a statistically significant enrichment score

(all are positive) indicating this pathway is activated (Eden, 2009).

The final step was to intercept the results from both GSEA and GOrilla. The intersection simply
provides high confidence between two approaches for ascribing functional categories to the data.
GSEA and GOrilla try to do similar things but have different methods. GOirilla is the older tool and
more traditionally used and focuses on the significant genes, whereas GSEA considers all of the
genes in an experiment, not only those above an arbitrary cutoff in terms of fold-change or
significance. Moreover, GSEA assesses the significance by permuting the class labels, which

preserves gene-gene correlations and, thus, provides a more accurate null model.
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Figure Legends:

Figure 1 Declining Physical Function with Age m=months, different letters indicate statistical
significance, * = p<0.05, # = 0.05<p<0.10. Each symbol indicates data from an individual mouse
(circles 6m, n=7; triangles 24m, n=7; diamonds 28m, n=8). Statistics are from ANCOVA
adjusted for body mass with Least Significant Differences post hoc testing.

Figure 2 6m vs. 28m Top 50 Z-scores Heatmap The names of the genes are to the right of
each row, and each column = expression data from an individual mouse, 6m = 6 month old and
28m = 28-month old mice, color coded key to fold change z-score in on the right with red the
highest (+3) and dark blue the lowest (-3).

Figure 3 Volcano Plot: 6m vs. 28m. Each dot (red indicates down-regulated gene expression
with age and green indicates upregulated) represents one gene with the log2 fold change on the
x-axis and the adjusted p-value on the y-axis. Dashed lines indicate the cut-offs of adjusted p-
value<0.05 (horizontal line) and log2 fold change >|1| as the two vertical lines. All colored circles
were considered significantly different gene expressions with age. 6m = six-month old mice and
28m = 28-month old mice.

Figure 4 PCA Plots A) 6m vs. 28m, B) 6m vs. 24m Key: 6m = 6 months old, 28m = 28 months
old, PCA = principal components analysis, PC = principle component, and percent variance
indicates how much of the variability between subjects is explained by the components, red dots
= 6m and green dots = 28m.
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Table Legends:

Table 1 Top 30 Upregulated Aging Genes: 6m vs. 28m AKA = also known as, NCIB Gene is
from https://www.ncbi.nlm.nih.gov/gene , MGl = Mouse Genome Informatics from
http://www.informatics.jax.org/marker , log2fc = log base 2 fold change, adj. p = multiple
comparison adjusted p-value

Table 2 Top 30 Downregulated Aging Genes: 6m vs. 28m AKA = also known as, NCIB Gene
is from https://www.ncbi.nlm.nih.gov/gene , MGl = Mouse Genome Informatics from
http://www.informatics.jax.org/marker , log2fc = log base 2 fold change, adj. p = multiple
comparison adjusted p-value

Table 3 Age-Regulated Genes Associated with Physical Function: 6m vs. 28m (R20.80)
AKA = also known as, NCIB Gene is from https://www.ncbi.nlm.nih.gov/gene , MGl = Mouse
Genome Informatics from htip://www.informatics.jax.org/marker , lo2fc = log base 2 fold change,
adj. p = multiple comparison adjusted p-value, R = Pearson correlation from simple linear
regression.

Table 4 Mouse Characteristics Body mass is the weight at tissue collection, Total Muscle is
the combined mass of the mean extensor digitorum longus, tibialis anterior (TA), gastrocnemius,
plantaris and soleus muscle. Statistics are from a simple one-way ANOVA, different letters
equal statistical significance at p<0.05 using a Least Significant Differences post hoc test.
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Table 1 Top 30 Upregulated Aging Genes: 6m vs. 28m

gene_id
Bpifbl
Krt18

Ubd

Sin

Tac4

Sprrla

Syt4

Dntt

Atpl3a4
Hamp?2
1300002K09Rik
4930558C23Rik
Ccl17
1110059M19Rik
Chrng
AA467197
Neil3

Nppb

Erc2

Orm2
C130026121Rik
Oligl

F10

Igfbp2

Gbp1l

Gm7609

Gdf5

Cd5l

Krt8

Cdca5

AKA
LPLUNC1
CK18, Endo B
Diubiquitin,
FAT10
2310045A07Rik
HK-1
SPR1a
Sytlv
Tdt
4631413J11Rik
HEPC2
Stra6l, Rbpr2
Ctxnd2
Scyal7, TARC
Prr32
Achr-3, Acrg
NMES1
C85903
BNP, BNF
CAST, ELKS
Orm-2, Agpl
4930565N07Rik
Bhlhb6
Cf10, Al1947
IBP-2
Gbp2b, Mpal
EG665378
brp, CDMP-1
AIM, Api6
Card2, EndoA
Sororin p35

NCIB Gene MGl
228801 2137431
16668 96692
24108 1344410
66402 1913652
93670 1931130
20753 106660
20983 101759
21673 98659
224079 1924456
66438 2153530
74152 1921402
67654 1914904
20295 1329039
68800 1916050
11449 87895
433470 3034182
234258 2384588
18158 97368
238988 1098749
18406 97444
620078 3612702
50914 1355334
14058 103107
16008 96437
14468 95666
665378 3644536
14563 95688
11801 1334419
16691 96705
67849 1915099

log2fc
4.53
4.49

4.46
433
4.28
3.89
3.85
3.74
3.71
3.68
3.67
3.66
3.65
3.61
3.60
3.59
3.56
3.55
3.54
3.53
3.51
341
3.38
3.30
3.28
3.27
3.26
3.16
3.13
3.08

padj
2.26E-03
1.43E-05

1.38E-04
1.08E-06
2.42E-03
3.38E-03
2.65E-03
8.49E-04
3.68E-03
6.02E-02
1.97E-02
7.45E-03
7.98E-03
1.52E-05
1.78E-04
2.21E-06
3.90E-03
2.93E-03
4.92E-20
9.31E-03
8.89E-03
5.99E-03
7.35E-04
1.30E-02
2.69E-02
2.67E-03
3.01E-11
1.33E-01
1.17E-02
2.52E-02

Type
pc
pc

pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc

Page 28 of 39


https://www.ncbi.nlm.nih.gov/gene/228801
http://www.informatics.jax.org/marker/MGI:2137431
https://www.ncbi.nlm.nih.gov/gene/16668
http://www.informatics.jax.org/marker/MGI:96692
https://www.ncbi.nlm.nih.gov/gene/24108
http://www.informatics.jax.org/marker/MGI:1344410
https://www.ncbi.nlm.nih.gov/gene/66402
http://www.informatics.jax.org/marker/MGI:1913652
https://www.ncbi.nlm.nih.gov/gene/93670
http://www.informatics.jax.org/marker/MGI:1931130
https://www.ncbi.nlm.nih.gov/gene/20753
http://www.informatics.jax.org/marker/MGI:106660
https://www.ncbi.nlm.nih.gov/gene/20983
http://www.informatics.jax.org/marker/MGI:101759
https://www.ncbi.nlm.nih.gov/gene/21673
http://www.informatics.jax.org/marker/MGI:98659
https://www.ncbi.nlm.nih.gov/gene/224079
http://www.informatics.jax.org/marker/MGI:1924456
https://www.ncbi.nlm.nih.gov/gene/66438
http://www.informatics.jax.org/marker/MGI:2153530
https://www.ncbi.nlm.nih.gov/gene/74152
http://www.informatics.jax.org/marker/MGI:1921402
https://www.ncbi.nlm.nih.gov/gene/67654
http://www.informatics.jax.org/marker/MGI:1914904
https://www.ncbi.nlm.nih.gov/gene/20295
http://www.informatics.jax.org/marker/MGI:1329039
https://www.ncbi.nlm.nih.gov/gene/68800
http://www.informatics.jax.org/marker/MGI:1916050
https://www.ncbi.nlm.nih.gov/gene/11449
http://www.informatics.jax.org/marker/MGI:87895
https://www.ncbi.nlm.nih.gov/gene/433470
http://www.informatics.jax.org/marker/MGI:3034182
https://www.ncbi.nlm.nih.gov/gene/234258
http://www.informatics.jax.org/marker/MGI:2384588
https://www.ncbi.nlm.nih.gov/gene/18158
http://www.informatics.jax.org/marker/MGI:97368
https://www.ncbi.nlm.nih.gov/gene/238988
http://www.informatics.jax.org/marker/MGI:1098749
https://www.ncbi.nlm.nih.gov/gene/18406
http://www.informatics.jax.org/marker/MGI:97444
https://www.ncbi.nlm.nih.gov/gene/620078
http://www.informatics.jax.org/marker/MGI:3612702
https://www.ncbi.nlm.nih.gov/gene/50914
http://www.informatics.jax.org/marker/MGI:1355334
https://www.ncbi.nlm.nih.gov/gene/14058
http://www.informatics.jax.org/marker/MGI:103107
https://www.ncbi.nlm.nih.gov/gene/16008
http://www.informatics.jax.org/marker/MGI:96437
https://www.ncbi.nlm.nih.gov/gene/14468
http://www.informatics.jax.org/marker/MGI:95666
https://www.ncbi.nlm.nih.gov/gene/665378
http://www.informatics.jax.org/marker/MGI:3644536
https://www.ncbi.nlm.nih.gov/gene/14563
http://www.informatics.jax.org/marker/MGI:95688
https://www.ncbi.nlm.nih.gov/gene/11801
http://www.informatics.jax.org/marker/MGI:1334419
https://www.ncbi.nlm.nih.gov/gene/16691
http://www.informatics.jax.org/marker/MGI:96705
https://www.ncbi.nlm.nih.gov/gene/67849
http://www.informatics.jax.org/marker/MGI:1915099
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Table 2 Top 30 Downregulated Aging Genes: 6m vs. 28m

gene_id
9130404H23Rik
5330417C22Rik
NIrplc-ps
Oxct2a
1700001K23Rik
Kengl
Gprl65
Fbxo48
1700071M16Rik
1700001022Rik
Prapl
E130008DO0O7Rik
Hrh4
Trim9
Zfp366
Grem2
Rgagl
Duox2
Nos1
4932411E22Rik
Epha3
l1rl2
Nptxr

2700086A05Rik
Gm16982
Nrk

Hist1lh2af
TI2
Igsf9b
Necabl

AKA
Themis3
Elaporl
Nalplc
Scot-t1

AW536275
6530406P05Rik
A630050E13Rik

1700113K14Rik
Upa

H4R
mKIAA0282
DC-SCRIPT
Prdc

Rtl9, Mar9
LNOX2
bNOS, nNOS
Ankfn1, nmf9
Cek4, End3
IL-1Rrp2
NPCD, NPR

Hoxaas3

Nesk
H2ac10, H2a-
22

Al414108
Efcbpl, STIP-1

NCIB
Gene MGl
74556 1921806
229722 1923930
627984 3582962
64059 1891061
69319 1916569
241794 3616086
76206 1923456
319701 2442569
73504 1920754
73598 1923631
22264 893573
545207 3584523
225192 2429635
94090 2137354
238803 2178429
23893 1344367
209540 2685231
214593 3036280
18125 97360
382543 2686021
13837 99612
107527 1913107
73340 1920590
72628 1919878
100036523 4439906
27206 1351326
319173 2448309
24087 1346044
235086 2685354
69352 1916602

log2fc
-4.51
-3.24
-3.11
-3.02
-2.95
-2.78
-2.59
-2.58
-2.56
-2.54
-2.51
-2.51
-2.51
-2.51
-2.48
-2.45
-2.44
-2.44
-2.41
-2.41
-2.38
-2.35
-2.34

-2.31
-2.28
-2.27

-2.26
-2.24
-2.21
-2.20

padj
3.35E-05
1.21E-02
1.56E-02
1.97E-02
3.18E-02
1.21E-02
4.81E-02
2.98E-03
1.55E-05
6.18E-06
4.80E-04
3.02E-03
5.20E-02
4.82E-02
9.45E-06
1.06E-09
4.84E-03
3.50E-02
8.87E-04
5.31E-02
2.15E-07
4.27E-06
2.83E-03

1.53E-04
6.93E-03
3.87E-02

1.09E-02
3.50E-02
3.63E-03
1.95E-03

Type
pc

pc
pseudo
pc
IncRNA
pc

pc

pc
IncRNA
pc

pc
IncRNA
pc

pc

pc

pc

pc

pc

pc

pc

pc

pc

pc
anti-
IncRNA

IncRNA
pc

pc
pc
pc
pc
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https://www.ncbi.nlm.nih.gov/gene/74556
http://www.informatics.jax.org/marker/MGI:1921806
https://www.ncbi.nlm.nih.gov/gene/229722
http://www.informatics.jax.org/marker/MGI:1923930
https://www.ncbi.nlm.nih.gov/gene/627984
http://www.informatics.jax.org/marker/MGI:3582962
https://www.ncbi.nlm.nih.gov/gene/64059
http://www.informatics.jax.org/marker/MGI:1891061
https://www.ncbi.nlm.nih.gov/gene/69319
http://www.informatics.jax.org/marker/MGI:1916569
https://www.ncbi.nlm.nih.gov/gene/241794
http://www.informatics.jax.org/marker/MGI:3616086
https://www.ncbi.nlm.nih.gov/gene/76206
http://www.informatics.jax.org/marker/MGI:1923456
https://www.ncbi.nlm.nih.gov/gene/319701
http://www.informatics.jax.org/marker/MGI:2442569
https://www.ncbi.nlm.nih.gov/gene/73504
http://www.informatics.jax.org/marker/MGI:1920754
https://www.ncbi.nlm.nih.gov/gene/73598
http://www.informatics.jax.org/marker/MGI:1923631
https://www.ncbi.nlm.nih.gov/gene/22264
http://www.informatics.jax.org/marker/MGI:893573
https://www.ncbi.nlm.nih.gov/gene/545207
http://www.informatics.jax.org/marker/MGI:3584523
https://www.ncbi.nlm.nih.gov/gene/225192
http://www.informatics.jax.org/marker/MGI:2429635
https://www.ncbi.nlm.nih.gov/gene/94090
http://www.informatics.jax.org/marker/MGI:2137354
https://www.ncbi.nlm.nih.gov/gene/238803
http://www.informatics.jax.org/marker/MGI:2178429
https://www.ncbi.nlm.nih.gov/gene/23893
http://www.informatics.jax.org/marker/MGI:1344367
https://www.ncbi.nlm.nih.gov/gene/209540
http://www.informatics.jax.org/marker/MGI:2685231
https://www.ncbi.nlm.nih.gov/gene/214593
http://www.informatics.jax.org/marker/MGI:3036280
https://www.ncbi.nlm.nih.gov/gene/18125
http://www.informatics.jax.org/marker/MGI:97360
https://www.ncbi.nlm.nih.gov/gene/382543
http://www.informatics.jax.org/marker/MGI:2686021
https://www.ncbi.nlm.nih.gov/gene/13837
http://www.informatics.jax.org/marker/MGI:99612
https://www.ncbi.nlm.nih.gov/gene/107527
http://www.informatics.jax.org/marker/MGI:1913107
https://www.ncbi.nlm.nih.gov/gene/73340
http://www.informatics.jax.org/marker/MGI:1920590
https://www.ncbi.nlm.nih.gov/gene/72628
http://www.informatics.jax.org/marker/MGI:1919878
https://www.ncbi.nlm.nih.gov/gene/100036523
http://www.informatics.jax.org/marker/MGI:4439906
https://www.ncbi.nlm.nih.gov/gene/27206
http://www.informatics.jax.org/marker/MGI:1351326
https://www.ncbi.nlm.nih.gov/gene/319173
http://www.informatics.jax.org/marker/MGI:2448309
https://www.ncbi.nlm.nih.gov/gene/24087
http://www.informatics.jax.org/marker/MGI:1346044
https://www.ncbi.nlm.nih.gov/gene/235086
http://www.informatics.jax.org/marker/MGI:2685354
https://www.ncbi.nlm.nih.gov/gene/69352
http://www.informatics.jax.org/marker/MGI:1916602
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Table 3 Age-Regulated Genes Associated with Physical Function: 6m vs. 28m (R20.80)

gene_id
Zfp750
Plekhg1
Gabrd

ler3

Cyr61
Dclk3
Lama3
Fam5b
Erc2
Vwa3a
Arntl

Kdr
Tspani8
Zygiia
Pcdhi12
Golga7b
Slc25a36
Mmp15
Lhfpl4
Pogk
Rbm3
1700071M16Rik
Slc38a4
2210403K04Rik
Gm5567
D330050116Rik
Psd3
Btaf1
Tecpr2
Lynx1
Pdeda
ltgal
Zfp382
Dnmt3a
Keng4
Gm14827
DpyslI5
BC051142

AKA
A030007D23Rik
Gmb521
Al853201

cl-3, gly96

Ccen1

Click-l, DcamkI3
Nicein, [a]3
Brinp2

CAST, ELKS
E030013G06Rik
Arnt3, MOP3
Flk1, VEGFR2
2610042G18Rik
BC022150
VE-cad-2
4933417008Rik
C330005L02Rik
MT2-MMP
1190004M23Rik
BASS2
2600016C11Rik

Ata3
Mir22hg
Tmem178b

EFA6D
TAF170
4930573119Rik
SLURP-2
Dpde2

CD49A, Vlai
5930415A09Rik
MmulllA
KV6.3/4

CRAM, Crmp5
NG8, Tesb, TSBP

NCIB
Gene MGI
319530 2442210
213783 2676551
14403 95622
15937 104814
16007 88613
245038 3039580
16774 99909
240843 2443333
238988 1098749
233813 3041229
11865 1096381
16542 96683
241556 1917186
230590 2446208
53601 1855700
71146 1918396
192287 1924909
17388 109320
269788 3057108
71592 1918842
19652 1099460
73504 1920754
69354 1916604
100042498 1914348
434008 3647581
414115 3041222
234353 1918215
107182 2147538
104859 2144865
23936 1345180
18577 99558
109700 96599
233060 3588204
13435 1261827
66733 1913983
100503393 3705192
65254 1929772
407788 3039565

padj
5.63E-06
2.20E-05
3.40E-05
3.78E-05
3.97E-05
4.88E-05
6.47E-05
7.06E-05
9.07E-05
9.24E-05
1.02E-04
1.18E-04
1.28E-04
1.29E-04
1.45E-04
1.49E-04
1.56E-04
1.68E-04
1.75E-04
1.81E-04
1.86E-04
1.99E-04
2.09E-04
2.23E-04
2.29E-04
2.70E-04
2.79E-04
2.79E-04
2.80E-04
2.93E-04
3.01E-04
3.50E-04
3.58E-04
3.67E-04
3.69E-04
3.69E-04
3.79E-04
3.92E-04

R

0.90
0.87
0.86
0.86
0.86
0.85
0.85
0.85
0.84
0.84
0.84
0.83
0.83
0.83
0.83
0.83
0.82
0.82
0.82
0.82
0.82
0.82
0.82
0.81
0.81
0.81
0.81
0.81
0.81
0.81
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80

log2fc
-1.57
-1.14
1.20
1.23
1.21
-1.03
-1.57
-1.25
3.54
-1.18
-1.37
-1.28
-1.12
-1.33
-1.27
1.21
-1.28
-1.07
1.01
-1.14
1.36
-2.56
-1.82
1.36
-1.93
1.45
-1.12
-1.55
-1.08
-1.05
-1.21
-1.21
-1.12
-1.16
-1.33
-1.68
-1.12

2.46

pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc
pc

Type

IncRNA

pC

IncRNA

pcC

IncRNA

pcC
pC
pC
pC
pcC
pcC
pcC
pC
pC

IncRNA

pc
pc
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https://www.ncbi.nlm.nih.gov/gene/319530
http://www.informatics.jax.org/marker/MGI:2442210
https://www.ncbi.nlm.nih.gov/gene/213783
http://www.informatics.jax.org/marker/MGI:2676551
https://www.ncbi.nlm.nih.gov/gene/14403
http://www.informatics.jax.org/marker/MGI:95622
https://www.ncbi.nlm.nih.gov/gene/15937
http://www.informatics.jax.org/marker/MGI:104814
https://www.ncbi.nlm.nih.gov/gene/16007
http://www.informatics.jax.org/marker/MGI:88613
https://www.ncbi.nlm.nih.gov/gene/245038
http://www.informatics.jax.org/marker/MGI:3039580
https://www.ncbi.nlm.nih.gov/gene/16774
http://www.informatics.jax.org/marker/MGI:99909
https://www.ncbi.nlm.nih.gov/gene/240843
http://www.informatics.jax.org/marker/MGI:2443333
https://www.ncbi.nlm.nih.gov/gene/238988
http://www.informatics.jax.org/marker/MGI:1098749
https://www.ncbi.nlm.nih.gov/gene/233813
http://www.informatics.jax.org/marker/MGI:3041229
https://www.ncbi.nlm.nih.gov/gene/11865
http://www.informatics.jax.org/marker/MGI:1096381
https://www.ncbi.nlm.nih.gov/gene/16542
http://www.informatics.jax.org/marker/MGI:96683
https://www.ncbi.nlm.nih.gov/gene/241556
http://www.informatics.jax.org/marker/MGI:1917186
https://www.ncbi.nlm.nih.gov/gene/230590
http://www.informatics.jax.org/marker/MGI:2446208
https://www.ncbi.nlm.nih.gov/gene/53601
http://www.informatics.jax.org/marker/MGI:1855700
https://www.ncbi.nlm.nih.gov/gene/71146
http://www.informatics.jax.org/marker/MGI:1918396
https://www.ncbi.nlm.nih.gov/gene/192287
http://www.informatics.jax.org/marker/MGI:1924909
https://www.ncbi.nlm.nih.gov/gene/17388
http://www.informatics.jax.org/marker/MGI:109320
https://www.ncbi.nlm.nih.gov/gene/269788
http://www.informatics.jax.org/marker/MGI:3057108
https://www.ncbi.nlm.nih.gov/gene/71592
http://www.informatics.jax.org/marker/MGI:1918842
https://www.ncbi.nlm.nih.gov/gene/19652
http://www.informatics.jax.org/marker/MGI:1099460
https://www.ncbi.nlm.nih.gov/gene/73504
http://www.informatics.jax.org/marker/MGI:1920754
https://www.ncbi.nlm.nih.gov/gene/69354
http://www.informatics.jax.org/marker/MGI:1916604
https://www.ncbi.nlm.nih.gov/gene/100042498
http://www.informatics.jax.org/marker/MGI:1914348
https://www.ncbi.nlm.nih.gov/gene/434008
http://www.informatics.jax.org/marker/MGI:3647581
https://www.ncbi.nlm.nih.gov/gene/414115
http://www.informatics.jax.org/marker/MGI:3041222
https://www.ncbi.nlm.nih.gov/gene/234353
http://www.informatics.jax.org/marker/MGI:1918215
https://www.ncbi.nlm.nih.gov/gene/107182
http://www.informatics.jax.org/marker/MGI:2147538
https://www.ncbi.nlm.nih.gov/gene/104859
http://www.informatics.jax.org/marker/MGI:2144865
https://www.ncbi.nlm.nih.gov/gene/23936
http://www.informatics.jax.org/marker/MGI:1345180
https://www.ncbi.nlm.nih.gov/gene/18577
http://www.informatics.jax.org/marker/MGI:99558
https://www.ncbi.nlm.nih.gov/gene/109700
http://www.informatics.jax.org/marker/MGI:96599
https://www.ncbi.nlm.nih.gov/gene/233060
http://www.informatics.jax.org/marker/MGI:3588204
https://www.ncbi.nlm.nih.gov/gene/13435
http://www.informatics.jax.org/marker/MGI:1261827
https://www.ncbi.nlm.nih.gov/gene/66733
http://www.informatics.jax.org/marker/MGI:1913983
https://www.ncbi.nlm.nih.gov/gene/100503393
http://www.informatics.jax.org/marker/MGI:3705192
https://www.ncbi.nlm.nih.gov/gene/65254
http://www.informatics.jax.org/marker/MGI:1929772
https://www.ncbi.nlm.nih.gov/gene/407788
http://www.informatics.jax.org/marker/MGI:3039565
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Table 4 Mouse Characteristics

Body Total
Age n Mass Muscle TA
months g mg mg

6 8 33.04+0.42 286.75+6.97 58.39+1.30
24 8 33.71+0.67 254.52+7.27% 50.14+1.962
28 8 31.0121.05 206.13+5.75° 43.48+0.96°
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Figure 3 Volcano Plot: 6m vs. 28m.
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Figure 4 PCA Plots
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