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Abstract (247 words)

Objective. Transcriptomic-based subtyping, Consensus Molecular Subtyping (CMS) and CRC
Intrinsic Subtyping (CRIS), identify a patient subpopulation with mesenchymal traits (CMS4/CRIS-B)
and poorer outcome. Here, we investigated the relationship between prevalence of Fusobacterium
nucleatum (Fn) and Fusobacteriales, CMS/CRIS subtyping, cell type composition, immune infiltrates
and host contexture to refine patients stratification and identify druggable context-specific
vulnerabilities.

Design. We coupled cell culture experiments with characterization of Fn/Fusobacteriales prevalence
and host biology/microenviroment in tumours from 2 independent CRC patient cohorts (Taxonomy:
n=140; TCGA-COAD-READ: n=605).

Results. In vitro, Fn infection induced inflammation via NFkB/TNFa in HCT116 and HT29 cancer cell
lines. In patients, high Fn/Fusobacteriales were found in CMS1, MSI tumours, with infiltration of
macrophages M1, reduced macrophages M2, and high IL6/IL8/ILIP signaling. Analysis of the
Taxonomy cohort suggested that Fn was prognostic for CMS4/CRIS-B patients, despite having lower
Fn load than CMSI1 patients. In the TCGA-COAD-READ cohort, we likewise identified a differential
association between Fusobacteriales relative abundance and outcome when stratifying patients in
mesenchymal (either CMS4 and/or CRIS-B) vs. non-mesenchymal (neither CMS4 nor CRIS-B).
Patients with mesenchymal tumours and high Fusobacteriales had approximately 2-fold higher risk of
worse outcome. These associations were null in non-mesenchymal patients. Modelling the 3-way
association between Fusobacteriales prevalence, molecular subtyping, and host contexture with logistic
models with an interaction term disentangled the pathogen/host-signaling relationship and identified
aberrations (including EMT/WNT/NOTCH) as candidate targets.

Conclusion. This study identifies CMS4/CRIS-B patients with high Fn/Fusobacteriales prevalence as

a high-risk subpopulation that may benefit from therapeutics targeting mesenchymal biology.
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Significance of this study

What is already known on this subject?

Fusobacterium nucleatum (Fn), a commensal Gram-negative anaerobe from the Fusobacteriales
order, is an onco-bacterium in CRC as a causal relationship between Frn prevalence and CRC
pathogenesis, progression and treatment response has been reported in vivo.

Broad spectrum antibiotics has proven moderately successful in reducing tumour growth in
preclinical models. However, the use of antibiotics to treat bacterium-positive cases in the clinic is
not a viable option as it may further alter the already dysbiotic gut microbiome of CRC patients and
may also have limited efficacy against Fn which penetrates and embeds deeply within the tumour.
The highly heterogenous CRC patient population can be classified into distinct molecular subtypes
(CMS and CRIS) based on gene expression profiles mirroring the underlying transcriptional
programs. Patients classified as CMS4 and CRIS-B exhibit a mesenchymal phenotype and have

poorer outcome.

What are the new findings?

Fn/Fusobacteriales prevalence is associated with immune involvement (decrease in macrophages
M1 and increase in macrophages M2) and activation of specific signalling programs (inflammation,
DNA damage, WNT, metastasis, proliferation, cell cycle) in the host tumours.

The prevalence of bacteria from the Fusobacteriales order, largely driven by Fn species, play an
active or opportunistic role depending on the underlying host tumour biology and
microenvironment.

Fn and other species of the Fusobacteriales order are enriched in CMS1 (immuno, microsatellite
unstable) patients compared to CMS2-4 cases.

Fn/Fusobacteriales prevalence is associated with worse clinical outcome in patients with

mesenchymal-rich CMS4/CRIS-B tumours, but not in patients with other molecular subtypes.
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How might it impact on clinical practice in the foreseeable future?

FnlFusobacteriales screening and transcriptomic-based molecular subtyping should be considered to
identify patients with mesenchymal-rich tumours and high bacterium prevalence and to inform
disease management.

Fn/Fusobacteriales prevalence may need to be addressed exclusively in patients with mesenchymal-
rich high-stromal infiltrating tumours rather than a blanket-approach to treat all pathogen-positive
patients.

Clinical management of the disease for this subpopulation of high-risk patients with unfavourable
clinical outcome could be attained by administering compounds currently in clinical trials that target
aberrations in the host signaling pathways (NOTCH, WNT, EMT) and tumour microenviroment
(inflammasome, activated T cells, complement system, and macrophage chemotactism and

activation).
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Introduction (395 words)

Colorectal cancer (CRC) has one of the highest morbidities and mortality rates among solid cancers
and its incidence is steadily on the rise accounting for circa 10% of newly diagnosed cancer cases
worldwide [1]. CRC patients with similar macroscopic clinico-pathological characteristics exhibit a
high degree of heterogeneity at the molecular level, which translates into heterogeneous and often sub-
optimal response to treatment. Thus, research has focussed on molecular subtyping strategies based on
single or multi-omics data from the host to categorise patients into subgroups to aid in risk stratification
and disease management. Subtyping strategies such as the Consensus Molecular Subtyping (CMS, [2])
and the Colorectal Cancer Intrinsic Subtyping (CRIS, [3]) classify patients into subgroups with more
homogeneous signaling features based on key transcriptomic programs. Among the four subtypes
identified by the CMS classifier, CMS4 patients have high stroma infiltration along with up-regulated
angiogenesis and Transforming Growth Factor-f (TGFp) signaling and show poorer recurrence-free
and overall survival [2]. Similarly, CRIS-B patients feature mesenchymal traits and also exhibit poorer
outcome compared to patients classified as CRIS-A, CRIS-C-E [3].

Recent research has identified the microbiome as a key player in health and disease, including cancer
[4]. Several research groups, including ours, have shown that Fusobacteriales, largely from
Fusobacterium nucleatum (Fn), are more abundant in tumour tissue compared to matched adjacent
mucosa [5] suggesting a causative role in CRC progression [12]. More advanced, right-sided, MSI
tumours are typically enriched with Fn [9]. Remarkably, anti-microbial treatment has been shown to
reduce tumour burden in mouse xenograft models [10], corroborating the association between Fn-
positive patients and poorer outcome observed in some studies [5]. However, the prognostic value of
Fn prevalence was not observed in other cohort studies (reviewed in [16]). Thus, we hypothesized that
the impact of Fn/Fusobacteriales may differ according to the underlying tumour biology.

In this study, we combined mechanistic in vitro experiments in colon cancer cells with an in-depth
analysis in 2 independent CRC patient cohorts and a systematic multi-omic characterization of cell

signalling and tumour microenvironment in n=745 patients to investigate the interaction between the
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112  dysregulation induced by Fusobacteriales, including Fn, prevalence on the human host and conversely,
113  the characteristics of the host microenvironment that allow pathogens to thrive. Here, we provide
114  evidence that the prognostic value of Fn/Fusobacteriales strongly relates to the molecular subtype of

115  the host tumour and is confined to subtypes showing mesenchymal involvement.
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Results (2253 words)

Fusobacterium nucleatum infection induces inflammation mediated by TNFa and NFxB in CRC
cellular cultures

Due to the presence of Fusobacterium nucleatum (Fn) in CRC tumour tissue [5], a causative role for
this bacterium to exacerbate tumourigenesis has been put forward. Infection of colon cells with Fn has
previously been shown to induce inflammation, activate NF«B signaling and increase expression of the
pro-inflammatory cytokine tumour necrosis factor alpha (TNFa) [18], (Fig. 1A). Hence, we infected
HCT116 and HT29 colon cancer cell lines cultures for 6 hours to assess epithelial cell response to
increasing amounts of Frn (multiplicity of infection, MOI, bacteria-to-cancer-cells 10, 100 and 1000).
We found that NFkB signaling was indeed activated upon infection with Fn in CRC cell lines, as
evidenced through the degradation of IxBa (alpha nuclear factor of kappa light polypeptide gene
enhancer in B cells inhibitor) (Fig. 1B), an increase in NF«B transcriptional activity (Fig. 1C) and, a
marked increase in mRNA expression of the NF«B target gene, TNFa (Fig. 1D). Taken together, these
results confirm that Fn co-culture with human colon cancer epithelial cells promotes a pro-

inflammatory response.

Prevalence of Frn and Fusobacteriales in tumour resections

Next, we sought to investigate the relationship between inflammation in the human host and prevalence
of Fn and Fusobacteriales in tumour resections of CRC patients. We selected an in-house multi-center
stage II-IIT cohort (Taxonomy, n=140, [19], [20]) and the colon (COAD) and rectal (READ) cases of
The Cancer Genome Atlas cohort (TCGA-COAD-READ, n=605 patients, Fig. 2A) to encompass the
heterogeneity of the CRC clinico-pathological characteristics observed in the clinic. Demographic,
clinico-pathological characteristics for the Taxonomy and TCGA-COAD-READ cohorts are
summarised in Suppl. Table 1. We determined Fr abundance by a targeted quantitative real-time

polymerase chain reaction (QPCR) in tumour resections of the Taxonomy cohort where we detected Fn
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in n=101 of 140 (72%) patients (Fig. 2B). The distribution of Fn positivity levels (relative to the human
PGT gene) was heterogeneous and we categorized patients as Fn-high or Fn-low using the 751
percentile as cut-off (Fig. 2B). We estimated Fusobacteriales relative abundance (RA) in the TCGA-
COAD-READ cohort from RNA sequencing data by mapping non-human reads to microbial reference
databases and retaining only high-quality matches (see Methods) with a PathSeq analysis [21], (Fig.
2A). For downstream analyses, we reported the relative abundance (RA) at the order, family, genus and
species taxonomic rank and expressed it as percentage of the total bacterial abundance. We detected
Fusobacteriales (defined as RA over zero, at the order level) in n=558 of 605 (92%) of the TCGA-
COAD-READ patients, (Fig. 2D). Fn was the most abundant species and was detected in 82% of the
TCGA-COAD-READ patients (compared to 72% in the Taxonomy cohort), accounting on average for
approximately 45% of total Fusobacteriales RA and accounting for over 75% of total Fusobacteriales
RA in 16% of cases (Fig. 2C). Analogously to the Taxonomy cohort, we categorized patients as

Fusobacteriales-high or Fusobacteriales-low using the 75" percentile as cut-off.

Higher Fn and Fusobacteriales prevalence correlates with inflammation and immune
involvement

We examined the association between host gene expression profiles of key markers shown to
orchestrate inflammation and either Fn load or Fusobacteriales RA in the Taxonomy and TCGA-
COAD-READ cohorts, respectively. In line with the in vitro experiments (Fig. 1), we detected an
increase in NFKB1 and a trend in TNFa gene expression, recapitulated by transcriptomic-based
signatures for an overall inflammation status (TIS) mediated by the cytolytic and interferon (IFNy)
pathways in the Taxonomy cohort (Fig 2E). When investigating further key inflammation players, we
observed a marked increase in pro-inflammatory interleukins (IL6, IL8, IL10, IL1B, IL13),

cytokines/chemokines (CCL8, CSF1, ICAM1), metallo-proteins (MMP1, MMP3, MMP9), NOS2, the
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inflammasome complex (NLRP3) and COX2 in Fn-high vs. -low Taxonomy patients (Fig. 2E and
Suppl. Fig. 1).

Next, we sought to validate and build upon our findings from the in-house Taxonomy cohort by
analyzing the TCGA-COAD-READ cohort (Fig. 2F). At the transcription level, we confirmed an
exacerbated inflammatory state when comparing Fusobacteriales-high and -low patients mediated by
the NFkB-TNFa axis, IFNy with cytolytic involvement. Fusobacteriales-high patients overexpressed
pro-inflammatory interleukins (IL6, ILS8, IL10, IL1p), cytokines/chemokines (CCL8, ICAM1), metallo-
proteinases (MMP1, MMP3), NOS2 and inflammasome markers (NLRP3), (Fig. 2F).

As inflammation is strongly tied to immune cell migration and activity, we next investigated whether
there was a link between immune cell composition and either Fn load (Taxonomy) or Fusobacteriales
RA (TCGA-COAD-READ). Cell composition was computationally deconvoluted from gene
expression profiles with quanTiseq [23] and MCP-Counter [24], (Fig. 2G-H). Despite observing high
inter-patient heterogeneity in cell composition within the Taxonomy and TCGA-COAD-READ
cohorts, we robustly detected higher immune cell activation and polarization when comparing patients
with high vs. low Fn load (Taxonomy) or Fusobacteriales RA (TCGA-COAD-READ). Patients with
high Fn load (Taxonomy) or Fusobacteriales (TCGA-COAD-READ) showed higher predicted
abundance of regulatory T cells (T regs) coupled with an increase in M1 macrophages and decrease in
M2 macrophages (Fig. 2I). MCP-counter identified a strong positive association between neutrophil
infiltration and either Fn load (Taxonomy) or Fusobacteriales RA (TCGA-COAD-READ), (Fig. 2I).
However, no difference in predicted neutrophils abundance was detected by quanTIseq. Importantly,
no difference in fibroblasts and endothelial cells was observed by Fn/Fusobacteriales in either cohort

by either method (Fig. 2I).
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Multi-omic characterization of the association between Fusobacteriales relative abundance and
human host tumour microenvironment in the TCGA-COAD-READ cohort

We next leverage the rich molecular characterization of the TCGA-COAD-READ cohort to perform a
systematic and unbiased characterization of the association between Fusobacteriales RA and patient
clinical and molecular features to identify human host vulnerabilities that may be conducive for tumour
development (Fig. 3).

We observed higher Fusobacteriales in patients of older age, diagnosed with more advanced disease
stage and tumours located in the colon, particularly in proximal sites, (Fig 3A), corroborating studies
assessing Fn [13]. In contrast, we found no statistically significant differences in Fusobacteriales RA
by sex, body mass index and neither lymphovascular nor perineural invasion (Sup. Fig. 2).

Patients harbouring higher Fusobacteriales showed lower genomic intra-tumour heterogeneity, had
higher silent and non-silent mutational burden and were enriched in microsatellite unstable cases, (Fig
3B). Fusobacteriales-high patients showed an increase in transitions, defined as the exchange of two-
ring purines (A«<>G) or of a one-ring pyrimidines (C<T), coupled with a decrease in transversions, a
substitution of purine for pyrimidine bases (Suppl. Fig. 3A) as evidenced by a decrease in conversion
changes of C>G and T>A, (Suppl. Fig. 3B). We found no difference in prevalence of common
mutations in CRC by Fusobacteriales (high vs. low) except for BRAF (Fig. 3C). BRAF mutations
trended to be more common among Fusobacteriales-high patients, as observed when assessing Fn [13].
A comprehensive screen revealed that mutations in cell cycle (ATM), Hedgehog signaling (MEGFS),
DNA damage/repair (TRIP12, PRKDC), mitotic spindle (ASPM), migration/adhesion (TRIO, GPR98)
were more prevalent in Fusobacteriales-high patients, (Fig. 3D, Suppl. Table 2).

Next, we set out to investigate the relationship between copy number alterations (CNAs) and
Fusobacteriales presence in the TCGA-COAD-READ cohort (Fig. 3E-G). We determined recurrent
CNAs amplifications and deletions across the whole cohort by applying the GISTIC algorithm [26]
(Sup. Figs. 4-5 and Suppl. Table 3). Fusobacteriales-high cases showed lower chromosomal

instability with a lower fraction of the genome affected by recurrent CNAs, in line with their MSI
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unstable status. Next, we identified CNA amplifications (in red) or deletions (in blue) whose frequency
of occurrence differed when comparing Fusobacteriales-high vs. -low patients and thus may be
specifically associated with the bacterium presence (Fig. 3F). CNAs more frequently (>15%) observed
in Fusobacteriales-high vs. low cases included deletions in 8p23.2 (tumour suppressor CSMD1 and
LOC100287015); 18g21.1 (MIR4743 and RNA binding by CTIF) and 18923 which impacts the
regulation of interleukin-6 and chemokine secretion, cell-cell adhesion and host of viral transcription,
as determined by enrichment analyses carried out with EnrichR, (Fig. 3G).

We then focused on the transcriptional level and we combined enrichment analyses with pathway-
activity signatures to compare cellular processes by Fusobacteriales RA (Fig. 3H-L). Transcriptional
profiles differed by mTORC1 and Myc signalling, cell cycle (G2-M checkpoint), mitotic spindle,
epithelial-to-mesenchymal transition, TGFf and interleukin-1 regulation of extracellular matrix, matrix
remodelling including focal adhesion, cytoskeleton and contractile actin filament bundle, mitochondrial
translational elongation/termination and protein complex assembly and stromal estimates (Fig. 3H-I,
Sup. Fig. 6 and Sup. Table 4). We corroborated these findings by comparing the activation of
signalling pathways estimated by gene set signatures identified in the literature (see Methods) in
Fusobacteriales-high vs. low patients. Indeed, Fusobacteriales presence was positively associated with
proliferation, WNT, metastasis (Fig. 3L) and DNA damage.

Next, we sought to investigate whether the findings at the genomic and transcriptional level were also
observed in protein profiles determined by Reverse Phase Protein Array (RPPA). We found a
differential expression by Fusobacteriales RA for proteins involved in microenvironment composition
(Claudin7), cell cycle (Cyclinel), apoptosis (cleaved Caspase7), proliferation (DLV3), Hippo pathway
(Yap), DNA damage (Chkl, ATM), receptor and MAP kinases and PI3K signalling, (Fig. 3M-O, Sup.

Fig. 7 and Sup. Table 5).
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Fn and Fusobacteriales prevalence differs by transcriptomic-based molecular subtype

The systematic screen above pinpointed host aberrations by Fusobacteriales prevalence that are
hallmarked by transcripomic-based molecular subtypes. Hence, we classified patients in the study by
CMS [2] and CRIS [3] subtyping. We observed higher Fn load (Taxonomy, Fig. 4A) and
Fusobacteriales RA (TCGA-COAD-READ, Fig. 4C) in CMS1 tumours, corroborating the interplay
between pathogen prevalence and host immunity. Moreover, we observed higher Fn load in CRIS-B
tumours (Fig. 4B) and Fusobacteriales RA in CRIS-A cases (Fig. 4D) of the Taxonomy and TCGA-
COAD-READ cohorts, respectively. At the family rank, Fusobacteriaceae were more abundant than
Leptotrichiaceae accounting for 77% and 23% of total Fusobacteriales RA and ~2% and ~<1% of the
total bacteria RA, respectively. In line with the findings at the order level, we observed an increase in
Fn, the most abundant Fusobacterium species, in CMS1 and CRIS-A cases (Fig. 4E-F). In line with
the findings at the order level, we observed an approximately 3-fold increase when comparing patients
classified as CMS1 vs. the rest (Fig 4E). Fn, the most abundant Fusobacterium species, was enriched
in CMS1 and CRIS-A cases (Fig. 4E-F). Next, we examined whether the positive association between
inflammation and immune involvement by Fn/Fusobacteriales presence could be ascribed to the host
CMSI1 milieu or whether there was an additional pathogen-induced component. When restricting the
analysis to CMSI1 cases, we observed higher expression of pro-inflammatory markers in
Fusobacteriales-high patients of the TCGA-COAD-READ cohort. We detected no association between
pathogen prevalence and expression of anti-inflammatory markers or inflammation signatures in
neither CRC cohorts (Fig. 4G-H). Taken together these results suggest that Fn/Fusobacteriales may

play an active role in mediating inflammation in the host.

Patients with high Frn/Fusobacteriales have worse outcome in CMS4/CRIS-B
Next, we sought to investigate whether bacterium presence correlated with patient clinical outcome

assessed by overall- (OS), disease-specific- (DSS) and disease-free- (DFS) survival endpoints (Fig. 5

and Suppl. Figs. 8-10).
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We found no statistically significant differences in neither cohort when comparing survival curves from
patients grouped by either Fn load or Fusobacteriales RA (Fig. 5A, E, I and Suppl. Figs. 8-10). We
hypothesized that Fn/Fusobacteriales may result in poorer outcome in a subtype-dependent context.
Indeed, we identified a differential association between Fusobacteriales RA and clinical outcome of
the TCGA-COAD-READ cohort in mesenchymal (either CMS4 and/or CRIS-B) vs. non-mesenchymal
(neither CMS4 nor CRIS-B) tumours, (Fig. 5G, H, K, L and Sup. Figs. 8-10). Fusobacteriales-high
mesenchymal patients had approximately 2-fold higher risk of worse outcome while these associations
were null in non-mesenchymal patients (Fig. SG, H, K, L and Sup. Figs. 8-10).

Although numbers in the Taxonomy cohort are limited, when restricting the analysis to CMS4 and/or
CRIS-B cases, we observed a trend whereby Fn-high patients had shorter OS than those with low Fn
load. Again, no difference in survival curves by Frn load was observed in non-mesenchymal Taxonomy
patients (Fig. SC-D).

Exploratory analyses examining the association between clinical outcome and pathogen prevalence at
taxonomic ranks of increasing resolution (order, family, genus and species) in the TCGA-COAD-
READ cohort by fitting Cox regression models on the whole unselected population and in
mesenchymal vs. non-mesenchymal settings revealed that the prognostic impact stems primarily from,
but is not limited to, species, including Fn, from the Fusobacterium genus from the Fusobacteriaceae

family (Fig. SM and Sup. Fig. 10).

Putative mechanisms underlying selective Fusobacteriales virulence in mesenchymal tumours

We examined the host signaling pathways and microenvironment to identify alterations that may be
mediated by and/or exacerbated by Fusobacteriales (i.e. interact) and, thus, may promote virulence
and, ultimately, result in an unfavorable clinical outcome. To disentangle the 3-way association
between Fusobacteriales RA, gene/signature, and molecular subtyping, we fitted 2 distinct logistic

regression models for each feature of interest in the TCGA-COAD-READ cohort. The selection of
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features was hypothesis-driven and included key host signaling pathways and immuno-modulators
(Fig. 6A).

Fig. 6A reports adjusted P-values from the 2 models capturing the association between Fusobacteriales
RA (high vs. low) and either each gene/signature (model 1: Fusobacteriales ~ gene/signature, x-axis)
or the interaction between each gene/signature with the molecular subtype (model 2: Fusobacteriales ~
gene/signature:molecular subtype, y-axis). The top right half quadrant (darker gray shaded area)
identifies a set of genes/signatures whose expression patterns differ by molecular subtype (statistically
significant interaction p-value in model 2) and thus may be mediating the pathogenic impact of
Fusobacteriales and were prioritized for downstream analyses (Fig. 6B).

NOTCH, EMT, TIS score, IL6, CSF1 are among the genes/signatures identified by model 2 in Fig. 6A
whose expression profiles track with molecular subtyping and may represent druggable vulnerabilities
in patients with mesenchymal tumours and high Fn/Fusobacteriales prevalence and ameliorate clinical

outcome (Fig. 6B).
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Discussion (952 words)

Fusobacteriales, predominantly Fn, have been associated [5] with pathogenesis, progression and
treatment response in CRC. We coupled mechanistic studies in cell cultures with hypothesis-driven and
unbiased screening in clinically-relevant and ’omics-rich CRC cohorts to examine the cross-talk
between pathogen-host and pathogen-tumour microenvironment. We demonstrated relationships
between Fn/Fusobacteriales prevalence with host immune, signaling activation and transcriptomic-
based molecular subtypes. Our findings suggest that host-pathogen interactions can define patient sub-
populations where Fn/Fusobacteriales play an active or opportunistic role depending on the underlying
host tumour biology and microenvironment and identify putative druggable and clinically-actionable
vulnerabilities.

We observed higher Fn/Fusobacteriales prevalence in CMSI1 patients, corroborating findings by
Purcell [28]. Interestingly, we found that higher pathogen prevalence did not correlate with poorer
disease outcome. In contrast, Fn/Fusobacteriales virulence was exacerbated in CMS4/CRIS-B patients,
suggesting that pathogen persistence may need addressing exclusively in mesenchymal-rich high-
stromal infiltrating tumours and arguing against a blanket-approach to treat all pathogen positive
patients. Treatment with wide spectrum antibiotics reduces the growth of Frn-positive tumours in vivo
[10]. However, the use of antibiotics to treat Frn-positive CRC tumours may be limited as Fn penetrate
deeply within tumour, immune and endothelial cells where they internalize with endosomes and
lysosomes [29], adapt [30] and persist [10]. In addition, long-term use of antibiotics can cause
dysbiosis.

Given that “it takes two to tango”, namely a high pathogen prevalence and a conducive host milieu, we
further examined this interdependence to identify druggable aberrations in the host signaling pathways
and microenvironment. We identified putative targets related to (pro-)inflammation, inflammasome,
activated T cells, complement system, metallo-proteins and macrophage chemotaxis and activation.
Fusobacteriales induce a constitutively activated NF-kB-TNFa-IL6 state which results in activation of

metallo proteins and inflammatory cytokines (CSF1-3) which mediate macrophage differentiation,
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inhibit cytotoxic immune cells and promote proliferation of myeloid-derived-suppressor (MDSC) cells.
Indeed, we observed an increase in inflammation and macrophages M1 and decrease in macrophages
M2 in patients with higher Fn/Fusobacteriales prevalence. We envisage that therapeutic options, such
as NLRP3/AIM?2 inflammasome suppression [31], IL1p blockade [32], TNFa [33] or IL6 inhibition
[34], that have been approved for treatment of chronic inflammation and cytokines storm syndrome in
multiple cancers, rheumatoid arthritis and COVID-19 may ameliorate the immunosuppressive
microenvironment induced by Fn/Fusobacteriales.

Importantly, these targets are involved in not only promoting an immunosuppressive microenvironment
by recruiting tissue-associated macrophages (TAMs) and MDSCs, but also in orchestrating invasion,
angiogenesis, epithelial-to-mesenchymal transition and, ultimately, metastasis. The pro-metastatic role
of Fn/Fusobacteriales is further corroborated by findings in the literature linking higher pathogen
prevalence in more-advanced disease stage and metastasis in clinical specimens [5] and higher
metastatic burden in mice inoculated with Fn [35].

Cancer cells with an EMT phenotype secrete cytokines such as IL10 and TGFp that can further
promote an immunosuppressive microenvironment. Additionally, secretion of IL6 and IL8 from stroma
cells can further foster an EMT phenotype, activate primary fibroblasts (carcinoma-associated
fibroblast, CAFs) which, in turn, may promote angiogenesis and invasion [36]. Taken together, these
aberrations may result in a self-reinforcing mechanism that confers on cancer cells the ability to
migrate, invade the extracellular matrix, extravasate and seed metastasis. Indeed, when comparing the
transcriptomic profiles by Fusobacteriales RA in the TCGA-COAD-READ cohort, we identified
dysregulation affecting cell architecture involving apical surface dynamics and Aurora A kinase
signaling, which regulate cMyc, DNA repair, cell motility/migration and induce EMT transition via -
catenin and TGFp leading to metastasis and resistance to treatment in multiple cancer types [37]. Small
molecule inhibitors against aurora A have shown encouraging results in preclinical studies and clinical
trials in CRC [38] and other cancers [39]. Cytoskeleton shape, filopodium protrusions and alterations in

cell adhesion and structure are hallmark of extracellular matrix invasion. EMT key effectors, SNAIL
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and ZEBI, alter apical surface dynamics by inhibiting scaffolding proteins and by inducing expression
of matrix metalloproteins (MMP3, MMPY), resulting in loosened tight-junctions, altered cell polarity
and increased plasticity which, in turn, enable cell invasion [40]. Dysregulations in MMPs expression
may aid cancer cells that have reached the bloodstream to extravasate to distant tissues [41] by priming
the vascular endothelium via upregulation of VEGF-A [42] and by increasing permeability via COX2
upregulation [43]. Our analyses in the TCGA-COAD-READ cohort identified higher expression of
VEGF as well as an angiogenesis signature and COX2 in patients with higher Fusobacteriales RA.
MMPs treatment with a new generation of selective and highly penetrative inhibitors [44] is being
trialed in gastrointestinal cancers [45] and Mehta reported lower Fusobacteriales RA in subjects treated
with Aspirin, a COX2 inhibitor [46].

Green [47] demonstrated that MAPK?7 is a master regulator of MMP9 and promotes the formation of
metastasis. Indeed, we observed a dysregulation in MAPK signaling at the protein level when
comparing Fusobacteriales-high vs. -low patients of the TCGA-COAD-READ cohort. MAPK7
induces EMT transition, cell migration and regulates TAMs polarization in a metallo proteins-
dependent manner [47], rendering it an appealing upstream therapeutic target. IL6 orchestrates MAPK-
STAT3 signaling which in turn regulates the dynamic transition between 2 CAFs sub-populations,
EMT-CAFs and proliferation-CAFs [48], rendering the IL6-TGFB-EMT-CAFs cross-talk a valid
therapeutic target. While targeting directly EMT via NOTCH or WNT has shown limited success in the
clinic [49], microenvironment remodeling to reverse immunosuppression by inhibiting CXCL12 [50]
or promoting T-cell infiltration [51] or function via engineered oncolytic adenovirus [52], has shown
has shown promising results in reducing metastasis formation [53]. Additionally, we observed a
positive correlation between gene expression of IL8, CXCL8, CXCR1 and CXCLI10 and
Fnl/Fusobacteriales prevalence, corroborating findings from Casasanta assessing Fn in HCT116 CRC
cells [54].

In conclusion, our analyses have identified a patient sub-population that has an unfavorable clinical

outcome when their tumours exhibit mesenchymal traits and are highly positive with
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Fn/Fusobacteriales and pinpointed clinically-actionable host-specific vulnerabilities that suggest new

treatments for these patients that extend beyond broad spectrum antibiotics.
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Materials and Methods (30 words)
Detailed methods for the in vitro cell culture experiments and the study design, cohorts description and

analysis steps are provided in the online supplementary materials and methods.

Patient and public involvement statement
Patients or the public were not involved in the design, recruitment, conduct, reporting and

dissemination of this research.

Data availability

Processing and analysis code along with pathogen prevalence with corresponding clinical and
molecular datasets for the Taxonomy and TCGA-COAD-READ cohorts included in this study will be
made publicly available and archived upon publication at Zenodo (https://10.5281/zenodo.4019142).
Pathogen prevalence will include Fusobacterium nucleatum load and Fusobacteriales relative
abundance (along with higher resolution estimates at genus, family and species taxonomic rank) for the

Taxonomy and TCGA-COAD-READ cohorts, respectively.
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Figures

Figure 1.
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Fn infection induces inflammation mediated by TN Fa and NFkB in HCT116 and HT29 CRC cell
lines.

A. Schematic representation of the experimental setup to investigate how Frn may trigger inflammation
via TNFa and NF«B signalling pathways.

B. Western blot analysis of IkBa and B-actin in HT29 and HCT116 cell cultures following infection
with Fn (MOI bacteria-to-cancer-cells 10, 100 and 1000).

C. NF«B transcriptional activity assay in HCT116 cells 6h following infection with Frn (MOI bacteria-
to-cancer-cells 100 and 1000).

D. TNFa mRNA expression relative to B-tubulin in HT29 cells 6h following infection with Fn (MOI
bacteria-to-cancer-cells 100 and 1000).

Panels B-D show representative results from duplicate experiments.
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Fn/Fusobacteriales prevalence is associated with inflammation and immunosuppression in CRC
patients of the Taxonomy and TCGA-COAD-READ CRC cohorts.

A. Schematic representation of the cohorts included in the study and methods to estimate Fn load and
Fusobacteriales (order) relative abundance in the Taxonomy and TCGA-COAD-READ cohorts,
respectively.

B-D. Per-patient (waterfall plot, 1, left) and distribution (violin plot with overlaid data-points, 2, right)
of bacterium prevalence in tumour resections of the Taxonomy (n=140, B) and TCGA-COAD-READ
(n=605, D). In B-D 1, patients are sorted in ascending order by prevalence of either Fn (Taxonomy
cohort, B) or Fusobacteriales at the order taxonomic rank (TCGA-COAD-READ cohort, D). Cut-off of
75™ percentile used for patients’ stratification in downstream analysis is also indicated (black dotted
line). Corresponding per-patient fraction of Fn species to total Fusobacteriales order relative
abundance detected for the TCGA-COAD-READ cohort is shown in C.

E-F. Violin plots grouped by prevalence of either Frn (Taxonomy cohort, E) or Fusobacteriales at the
order taxonomic rank (TCGA-COAD-READ cohort, F) depicting the expression distribution of key
genes or signatures involved in inflammation and immuno-suppression. Median and lower (25") and
upper (75'™) percentiles are indicated by white solid or dashed lines, respectively.

G-H. Stacked bar plots indicating cell type composition per-patient estimated from gene expression by
quanTIseq in tumours with low vs. high prevalence of either Fn (Taxonomy cohort, G) or
Fusobacteriales at the order taxonomic rank (TCGA-COAD-cohort, H). Cell type composition is
shown sorted in ascending order of tumour and stromal content (1 and 3) and aggregated (by mean, 2
across the low- and high- subgroups).

I. Distribution of specific tumour/stroma and immune cell types determined as indicated by either
quanTIseq or MCPcounter grouped by either Fn (Taxonomy cohort) or Fusobacteriales at the order
taxonomic rank (TCGA-COAD-READ cohort). Median and lower (25™) and upper (75" percentiles

are indicated by white solid or dashed lines, respectively.
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Multi-omic characterization of the association between Fusobacteriales relative abundance and
human host tumour microenvironment in the TCGA-COAD-READ cohort.

A-B. Association between Fusobacteriales at the order taxonomic rank binned into high vs. low (cut-
off 75" percentile) and clinico-pathological (A) and mutational (B) characteristics of the human host.
C-D. Comparison of frequency of occurrence of mutations selected a priori (C) or identified by an
unbiased scan (D) in Fusobacteriales-high vs -low patients. Colorbar indicates number of detected
aberrations among frame shift deletions and insertions, in frame deletions and insertions, missense and
nonsense mutations and splice sites. P-values were computed with %> independence tests and adjusted
for multiple comparisons (Benjamini-Hochberg false discovery rate).

E-G. Heatmap (E) displaying copy number alterations grouped by Fusobacteriales-high (in orange)
and -low (in green) relative abundance. Waterfall plot (F) displaying differences in recurrent copy
number aberrations detected in patients with low- vs. high Fusobacteriales. Top panel in F reports
percentage of patients affected by recurrent copy number aberrations. Distribution of top 3 deletions
whose frequency of occurrence differs between Fusobacteriales-high and -low patients (G). Red and
blue shading indicates amplification and deletions, respectively.

H-L. Heatmap (H) displaying expression of genes differentially expressed when comparing
Fusobacteriales-high vs. low patients and corresponding pathway enrichment analysis (I). Expression
distribution grouped by Fusobacteriales RA for selected gene expression signatures is shown in L.
M-O. Heatmap (M) displaying expression of proteins differentially expressed when comparing
Fusobacteriales-high vs. low patients and corresponding pathway enrichment analysis (N). Expression
distribution grouped by Fusobacteriales RA for key proteins is shown in O.

In violin plots, the median and lower (25™) and upper (75" percentiles are indicated by white solid or
dashed lines, respectively.

Orange and green annotation bars denote patients with high vs. low Fusobacteriales relative abundance
(75™ percentile cut-off).

(Unadjusted) P-values in L and O were determined by Kruskal-Wallis H-test for independent samples.
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Prevalence of Fn/Fusobacteriales by transcriptomic-based molecular subtypes of the host.

A-D. Boxplot with overlaid dot plots displaying the dependency by CMS (A, C) and CRIS (B, D)
molecular subtyping by prevalence of either Frn (Taxonomy cohort, A-B) or Fusobacteriales at the
order taxonomic rank (TCGA-COAD-READ cohort, C-D).

E-F. Relative abundance (to total bacterial kingdom) of Fusobacteriales reported at increasing
resolution of taxonomic rank (family, genus and species) by CMS (E) and CRIS (F) subtypes
(aggregated by mean).

G-H Distribution of key (pro-)/(anti-)inflammatory genes grouped by either Fn (Taxonomy cohort, G)
or Fusobacteriales at the order taxonomic rank (TCGA-COAD-READ cohort, H) restricted to CMS1
patients. Median and lower (25") and upper (75") percentiles are indicated by white solid or dashed
lines, respectively. (Unadjusted) P-values were determined by Kruskal-Wallis H-test for independent

samples.
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High Fn/Fusobacteriales prevalence is associated with negative clinical outcome in patients with
mesenchymal-like tumours.

A-L. Kaplan-Meier estimates comparing survival curves in patients of the Taxonomy (OS, A-D) and
TCGA-COAD-READ (DSS and DFS, E-L) cohorts. Patients across the whole cohort were grouped by
prevalence (high vs. low based on 75" percentile cut-off) in A, E, I or mesenchymal status (CMS4
and/or CRIS-B vs. remaining cases) in B, F, J. Patients were grouped by prevalence and further
stratified by mesenchymal status in C-D, G-H, K-L. Prevalence refers to either Fn load or
Fusobacteriales RA at the order level for the Taxonomy and TCGA-COAD-READ cohorts,
respectively.

M. Cox regression models fitted on bacterium RA reported at the order, family, genus and species
taxonomic ranks. For each taxonomic rank, patients were classified as low or high prevalence using the
corresponding 75" percentile RA abundance as cut-off. Univariate Cox regression models were fitted
when evaluating association between pathogen prevalence (high vs. low; reference low) at each
taxonomic rank and either DSS or DFS in the whole unselected patient population (left panel). Cox
regression models with an interaction term between pathogen prevalence (high vs. low; reference low)
and mesenchymal status (mesenchymal, i.e. either CMS4 and/or CRIS-B, vs. non-mesenchymal, 1. e.
neither CMS4 nor CRIS-B) at each taxonomic rank and either DSS or DFS were fitted to evaluate

differential impact of bacterium on clinical outcome by tumour biology (right panels).
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512  Exploration of mechanism underlying differential impact of Fusobacteriales in mesenchymal
513  vs. non-mesenchymal tumours.
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514  A. Scatterplot depicting P-values derived by assessing with logistic regression models the relationship
515 between genes/signatures associated with Fusobacteriales RA in univariate analysis (model 1, x axis)
516  or the interaction with mesenchymal status (model 2, y axis).

517  B. Breakdown of association including direction, effect size, in the unselected patients’ population and
518  within mesenchymal vs. non-mesenchymal cases. Only gene/signatures with significant interaction
519  between Fusobacteriales RA and the gene/signature interaction with the molecular subtype (model 2)
520 in the TCGA-COAD-READ cohort are included. Associations for both the TCGA-COAD-READ
521  (Fusobacteriales RA) and Taxonomy (Fn load) cohorts are shown. Statistically significant associations
522  are represented with circle markers whereas non-significant associations are indicated by squared

523  markers.
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