

1    **Title page**

2    ***Title***

3    Performance of RNA purification kits and blood collection tubes in the Extracellular RNA Quality

4    Control (exRNAQC) study

5

6    ***Authors***

7    **exRNAQC Consortium\***. CONCEPTUALIZATION: Anneleen Decock<sup>1,2</sup>, Olivier De Wever<sup>2,3</sup>, Celine

8    Everaert<sup>1,2</sup>, Hetty Hilde Helsmoortel<sup>1,2</sup>, An Hendrix<sup>2,3</sup>, Pieter Mestdagh<sup>1,2,4</sup>, Annelien Morlion<sup>1,2</sup>, Jo

9    Vandesompele<sup>1,2,4</sup>, Ruben Van Paemel<sup>1,2,5</sup>. DATA CURATION: Francisco Avila Cobos<sup>1,2</sup>, Anneleen

10   Decock, Celine Everaert, Hetty Hilde Helsmoortel, Annelien Morlion, Ruben Van Paemel. FORMAL

11   ANALYSIS: Francisco Avila Cobos, Jilke De Wilde<sup>1,2</sup>, Celine Everaert, Carolina Fierro<sup>4</sup>, Pieter Mestdagh,

12   Annelien Morlion, Jo Vandesompele, Ruben Van Paemel. FUNDING ACQUISITION: Anneleen Decock,

13   Pieter Mestdagh, Jo Vandesompele. INVESTIGATION: Anneleen Decock, Jill Deleu<sup>1,2</sup>, Jilke De Wilde,

14   Bert Dhondt<sup>2,3,6</sup>, Hetty Hilde Helsmoortel, Eva Hulstaert<sup>1,2,7</sup>, Nele Nijs<sup>4</sup>, Justine Nuytens<sup>1,2</sup>, Annouck

15   Philippron<sup>2,8,9</sup>, Kathleen Schoofs<sup>1,2</sup>, Eveline Vanden Eynde<sup>1,2</sup>, Ruben Van Paemel, Kimberly Verniers<sup>1,2</sup>,

16   Nurten Yigit<sup>1,2</sup>. METHODOLOGY: Francisco Avila Cobos, Anneleen Decock, Bert Dhondt, Thibaut

17   D'huyvetter<sup>1,2</sup>, Celine Everaert, Carolina Fierro, Hetty Hilde Helsmoortel, Pieter Mestdagh, Annelien

18   Morlion, Nele Nijs, Annouck Philippron, Thomas Piofczyk<sup>4</sup>, Jo Vandesompele, Ruben Van Paemel.

19   PROJECT ADMINISTRATION: Anneleen Decock. RESOURCES: Jilke De Wilde, Bert Dhondt, Eva Hulstaert,

20   Scott Kuersten<sup>10</sup>, Annouck Philippron, Gary P. Schroth<sup>10</sup>, Ruben Van Paemel. SOFTWARE: Jasper

21   Anckaert<sup>1,2</sup>, Francisco Avila Cobos, Celine Everaert, Annelien Morlion, Ruben Van Paemel.

22   SUPERVISION: Pieter Mestdagh, Jo Vandesompele, Tom Van Maerken<sup>1,2,11</sup>. VISUALIZATION: Francisco

23   Avila Cobos, Anneleen Decock, Celine Everaert, Annelien Morlion, Ruben Van Paemel. WRITING -

24   ORIGINAL DRAFT: Francisco Avila Cobos, Anneleen Decock, Jill Deleu, Celine Everaert, Annelien

25   Morlion, Kathleen Schoofs, Ruben Van Paemel. WRITING - REVIEW & EDITING: Anneleen Decock,

26   Celine Everaert, Annelien Morlion, Jo Vandesompele.

27

28 \*Within the CRediT groups, authors are in alphabetical order. Annelien Morlion and Ruben Van Paemel  
29 took the lead in the analysis of the RNA purification kit and blood collection tube study, respectively.

30

31 ***Affiliations***

32 1 OncoRNALab, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University,  
33 Corneel Heymanslaan 10, Ghent, Belgium

34 2 Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Ghent, Belgium

35 3 Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium

36 4 Biogazelle, Technologiepark 82, Zwijnaarde, Belgium

37 5 Department of Pediatrics, Ghent University Hospital, Ghent, Belgium

38 6 Department of Urology, Ghent University Hospital, Ghent, Belgium

39 7 Department of Dermatology, Ghent University Hospital, Ghent, Belgium

40 8 Lab for Experimental Surgery, Ghent University, Ghent, Belgium

41 9 Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium

42 10 Illumina, San Diego, California, USA

43 11 Department of Laboratory Medicine, AZ Groeninge, Kortrijk, Belgium

44

45 ***Corresponding authors***

46 Pieter Mestdagh (pieter.mestdagh@ugent.be) and Jo Vandesompele (jo.vandesompele@ugent.be)

47 OncoRNALab, Medical Research Building 1, campus UZ Gent , Corneel Heymanslaan 10, Ghent, Belgium

48 Tel +32 9 3326979

49

50 ***Conflict of interest***

51 Carolina Fierro and Nele Nijs are employees, Thomas Piofczyk is a former employee, Pieter Mestdagh  
52 is a consultant, and Jo Vandesompele a co-founder of Biogazelle, a clinical CRO providing human

53 biofluid extracellular RNA sequencing. Gary P. Schroth and Scott Kuersten are employees of Illumina,  
54 providing library preparation and sequencing reagents. Promega, Qiagen and Roche sponsored blood  
55 collection tubes and/or RNA purification kits. Funders did not influence data analysis, interpretation  
56 and manuscript writing.

57

## 58 **Abbreviations**

59 ACD-A: BD Vacutainer Glass ACD Solution A tube; ALC: area left of the curve; Biomatrica: LBgard Blood  
60 Tube; BRISQ: Biospecimen Reporting for Improved Study Quality; bp: base pair; CCF: QIAamp  
61 ccfDNA/RNA Kit; CIRC: Plasma/Serum Circulating and Exosomal RNA Purification Kit/Slurry Format;  
62 citrate: Vacutette Tube 9 ml 9NC Coagulation sodium citrate 3.2%; DNA Streck: Cell-Free DNA BCT;  
63 EDTA: BD Vacutainer Plastic K2EDTA tube; EDTA separator: Vacutette Tube 8 ml K2E K2EDTA Separator;  
64 ERCC: Extracellular RNA Communication Consortium; exRNA: extracellular RNA; FC: fold change; gDNA:  
65 genomic DNA; LP: Library Prep Control; MAP: MagNA Pure 24 Total NA Isolation Kit in combination  
66 with the MagNA Pure instrument; MAX: Maxwell RSC miRNA Plasma and Exosome Kit in combination  
67 with the Maxwell RSC Instrument; MIR: miRNeasy Serum/Plasma Kit; MIRA: miRNeasy Serum/Plasma  
68 Advanced Kit; miRNA: microRNA; MIRV: mirVana PARIS Kit with purification protocol for total RNA;  
69 MIRVE: mirVana PARIS Kit with purification protocol for RNA enriched for small RNAs; mRNA:  
70 messenger RNA; NUC: NucleoSpin miRNA Plasma Kit; PAXgene: PAXgene Blood ccfDNA Tube; RA3: RNA  
71 3' adapter; RA5: RNA 5' adapter; RC: RNA extraction Control; RNA Streck: Cell-Free RNA BCT; Roche:  
72 Cell-Free DNA Collection Tube; serum: BD Vacutainer SST II Advance Tube; SOP: standard operating  
73 procedure;

74

## 75 **Abstract**

76 The use of blood-based extracellular RNA (exRNA) as clinical biomarker requires the implementation  
77 of a validated procedure for sample collection, processing and profiling. So far, no study has  
78 systematically addressed the pre-analytical variables affecting transcriptome analysis of exRNAs. In the

79 exRNAQC study, we evaluated 10 blood collection tubes, 3 time points between blood draw and  
80 downstream processing, and 8 RNA purification methods using the supplier-specified minimum and  
81 maximum biofluid input volumes. The impact of these pre-analytics is assessed by deep transcriptome  
82 profiling of both small and messenger RNA from healthy donors' plasma or serum. Experiments are  
83 conducted in triplicate (for a total of 276 transcriptomes) using 189 synthetic spike-in RNAs as  
84 processing controls. When comparing blood tubes, so-called blood preservation tubes do not stabilize  
85 RNA very well, as is reflected by increasing RNA concentration and number of detected genes over  
86 time, and by compromised reproducibility. We also document large differences in RNA purification kit  
87 performance in terms of sensitivity, reproducibility, and observed transcriptome complexity. Our  
88 results are summarized in 11 performance metrics that enable an informed selection of the most  
89 optimal sample processing workflow for your own experiments. In conclusion, we put forward robust  
90 quality control metrics for exRNA quantification methods with validated standard operating  
91 procedures (SOPs) for processing, representing paramount groundwork for future exRNA-based  
92 precision medicine applications.

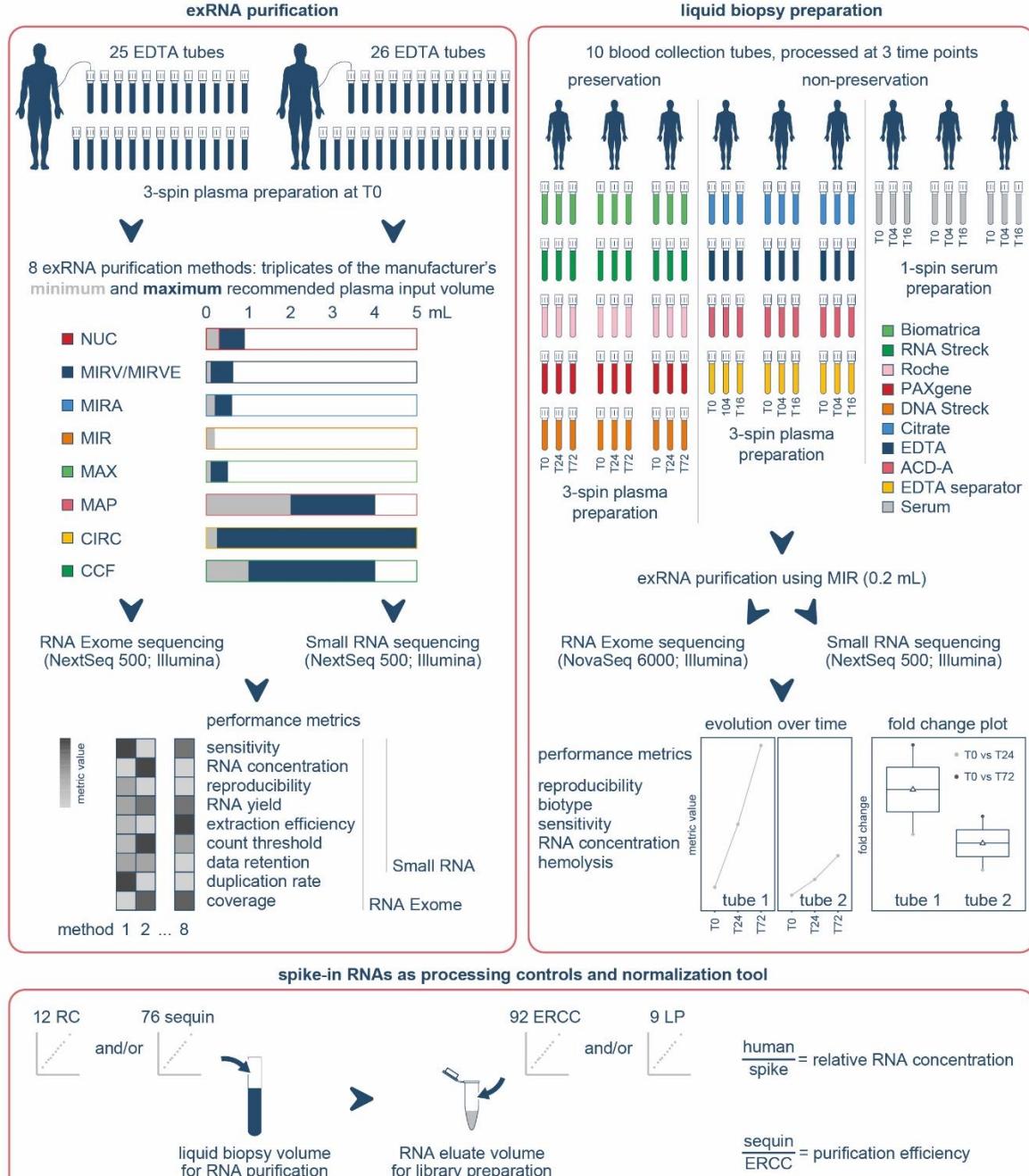
93

#### 94 **Keywords**

95 Extracellular RNA (exRNA), pre-analytical variables, blood collection tube, RNA purification, mRNA  
96 capture sequencing, small RNA sequencing

97

#### 98 **Introduction**


99 Biomarker studies are increasingly focusing on biofluids as an attractive resource of molecules  
100 reflecting human health or disease states. Biopsies from those human body fluids are often referred  
101 to as 'liquid biopsies'. In contrast to tissue biopsies, they have the advantage of being minimally  
102 invasive and are compatible with serial profiling, enabling one to monitor the impact of an intervention  
103 (e.g. treatment, physical exercise) over time.

104 The majority of liquid biopsy biomarker studies focus on cell-free nucleic acids as candidate  
105 biomarkers. While cell-free DNA has been studied intensively and found its way to the clinic for non-  
106 invasive prenatal testing5/10/2021 11:17:00 AM, extracellular RNA (exRNA) is relatively new in the  
107 biomarker field. Nevertheless, biomarker potential has been ascribed to various RNA molecules,  
108 including microRNA (miRNA), messenger RNA (mRNA), long-non-coding RNA and circular RNA in  
109 several diseases such as cancer, autoimmune diseases, diabetes, and cardiovascular diseases<sup>2-6</sup>. The  
110 growing interest in exRNA as a biomarker resource requires the implementation of standardized  
111 methods for sample collection, processing and molecular profiling. Blood serum and plasma are  
112 amongst the most studied liquid biopsies and several pre-analytical variables, including blood  
113 collection tube type, needle type and blood centrifugation speed and duration, are known to influence  
114 exRNA abundance patterns (Supplemental table 1)<sup>7-9</sup>. Nevertheless, those pre-analytical variables are  
115 typically not reported in studies, which makes it hard to replicate findings or directly compare  
116 biomarker studies.

117 Over time, multiple research consortia were developed with the aim to standardize some of these pre-  
118 analytical variables, including the NIH's Extracellular RNA Communication Consortium (ERCC)<sup>10,11</sup>,  
119 SPIDIA/SPIDIA4P<sup>12</sup> and CANCER-ID<sup>13</sup>. The ERCC aims to bundle fundamental scientific discoveries,  
120 protocols, tools and technologies that can be shared with the scientific community, and has developed  
121 standardized procedures for plasma isolation, RNA extraction, sequencing and data analysis<sup>11</sup>.  
122 SPIDIA4P includes different European partners that work together for standardization and  
123 improvements of pre-analytical procedures. They are currently working on an ISO standard for 'venous  
124 whole blood cell free circulating RNA'. Similarly, CANCER-ID is a European consortium that aims to  
125 establish standard protocols for clinical validation (including sample storage, sampling procedures,  
126 isolation methods) of blood-based biomarkers (e.g. microRNA and extracellular vesicles).  
127 While it is well recognized that pre-analytical variables need to be considered when studying exRNA  
128 biomarkers, studies investigating their impact are focused on microRNAs only or are restricted to a  
129 limited number of genes (Supplemental table 1). In the Extracellular RNA Quality Control (exRNAQC)

130 study, we performed an extensive massively parallel sequencing-based analysis of the impact of pre-  
131 analytical variables on both small RNA and mRNA profiles. We systematically evaluated 10 blood  
132 collection tubes, 3 time points between blood draw and downstream processing, and 8 RNA  
133 purification methods using the supplier specified minimum and maximum plasma input volumes. The  
134 impact of these pre-analytical factors is firmly established using deep transcriptome profiling of all  
135 small and messenger RNAs from healthy donors' plasma or serum. Synthetic spike-in RNAs were added  
136 during and after RNA purification and a wide variety of performance metrics were evaluated (Figure  
137 1). To the best of our knowledge, such a comprehensive analysis of pre-analytical variables in the  
138 context of exRNA profiling has not yet been performed.

### exRNAQC phase 1



139

140 Figure 1: Overview of the exRNAQC phase 1 study design. To evaluate the impact of the 8 RNA  
 141 purification methods (left panel), two blood draws from a single individual were performed to  
 142 separately apply mRNA capture (study code: exRNAQC004) and small RNA (study code: exRNAQC011)  
 143 sequencing. Both minimum and maximum recommended plasma input volumes were tested in  
 144 triplicate. To compare RNA purification performance, 9 performance metrics were calculated. To  
 145 evaluate the impact of the 10 blood collection tubes (right panel), 9 individuals were sampled, enabling

146 to test 3 time intervals between blood draw and downstream processing for each of the tubes.  
147 Preservation tubes were processed immediately upon blood collection (T0), after 24 hours (T24) or  
148 after 72 hours (T72). Non-preservation plasma and serum tubes were processed immediately upon  
149 blood collection (T0), after 4 hours (T4) or after 16 hours (T16). Both mRNA capture (study code:  
150 exRNAQC005) and small RNA (study code: exRNAQC013) sequencing were performed, and the data  
151 was analyzed using 5 performance metrics. To control the RNA purification and library preparation  
152 workflows, 189 synthetic spike-in RNA molecules (Sequin and Extracellular RNA Communication  
153 Consortium (ERCC) spike-ins for RNA Exome sequencing, and RNA extraction Control (RC) and Library  
154 Prep Control (LP) spike-ins for Small RNA sequencing) were used, allowing to calculate relative RNA  
155 concentrations and purification efficiency (lower panel). ACD-A: BD Vacutainer Glass ACD Solution A  
156 tube; ALC: area left of the curve; Biomatrica: LBgard Blood Tube; CCF: QIAamp ccfDNA/RNA Kit; CIRC:  
157 Plasma/Serum Circulating and Exosomal RNA Purification Kit/Slurry Format; citrate: Vacutette Tube 9  
158 ml 9NC Coagulation sodium citrate 3.2%; DNA Streck: Cell-Free DNA BCT; EDTA: BD Vacutainer Plastic  
159 K2EDTA tube; EDTA separator: Vacutette Tube 8 ml K2E K2EDTA Separator; MAP: MagNA Pure 24 Total  
160 NA Isolation Kit in combination with the MagNA Pure instrument; MAX: the Maxwell RSC miRNA  
161 Plasma and Exosome Kit in combination with the Maxwell RSC Instrument; MIR: the miRNeasy  
162 Serum/Plasma Kit; MIRA: the miRNeasy Serum/Plasma Advanced Kit; MIRV: the mirVana PARIS Kit with  
163 purification protocol for total RNA; MIRVE: mirVana PARIS Kit with purification protocol for RNA  
164 enriched for small RNAs; NUC: the NucleoSpin miRNA Plasma Kit; PAXgene: PAXgene Blood ccfDNA  
165 Tube; RNA Streck: Cell-Free RNA BCT; Roche: Cell-Free DNA Collection Tube; serum: BD Vacutainer SST  
166 II Advance Tube.

167

## 168 **Results**

### 169 ***RNA purification methods strongly influence miRNA and mRNA abundance profiles***

170 Eight different total RNA purification kits were selected for comparison: miRNeasy Serum/Plasma Kit  
171 (MIR), miRNeasy Serum/Plasma Advanced Kit (MIRA), mirVana PARIS Kit (MIRV), NucleoSpin miRNA

172 Plasma Kit (NUC), QIAamp ccfDNA/RNA Kit (CCF), Plasma/Serum Circulating and Exosomal RNA  
173 Purification Kit/Slurry Format (CIRC), Maxwell RSC miRNA Plasma and Exosome Kit in combination with  
174 the Maxwell RSC Instrument (MAX), and MagNA Pure 24 Total NA Isolation Kit in combination with the  
175 MagNA Pure instrument (MAP). Since most kits allow a range of blood plasma input volumes, we tested  
176 both the minimum and maximum input volume recommended by each supplier. This resulted in 15  
177 unique combinations of kits and input volumes. To evaluate small RNA purification, we added two  
178 additional combinations of the mirVana PARIS Kit by applying an alternative protocol for specific  
179 enrichment of small RNAs (MIRVE), resulting in 17 unique kit-input volume combinations for small RNA  
180 profiling. Blood was collected from one healthy donor and three technical replicates were used for  
181 every kit-volume combination, resulting in 45 and 51 samples that were processed for RNA extraction  
182 and sequencing library preparation for mRNA capture and small RNA, respectively.

183 We first investigated potential DNA contamination in the RNA samples using the strandedness of the  
184 mRNA capture-seq data as a proxy. As we applied a stranded library preparation protocol,  
185 strandedness should be close to 100% in the absence of DNA contamination. Strandedness of data  
186 generated using the MAP kit, however, was considerably lower: only 70-75% and 80-85% of reads  
187 mapped to the correct strand for MAP2 and MAP4 purification, respectively, while this percentage was  
188 above 95% for all other purification methods (Supplemental figure 1c). Moreover, the small RNA-seq  
189 data from the MAP kit contained a much higher fraction of mapped reads that did not overlap  
190 annotated small RNA sequences (35 to 52% of mapped reads for MAP compared to only 1 to 6% for  
191 other purification kits) and more than 80% of these unannotated reads did not overlap with known  
192 exons. Despite DNase treatment, these findings strongly suggest residual DNA contamination in MAP  
193 kit RNA eluates and we therefore excluded this kit from further analyses.

194 To evaluate differences among RNA purification kits, we calculated nine different performance  
195 metrics: detection sensitivity (number of mRNAs or miRNAs detected), RNA concentration, RNA yield,  
196 extraction efficiency, reproducibility based on count threshold, data retention after filtering,  
197 reproducibility based on area left of the curve (ALC), PCR duplication rate, and transcriptome coverage

198 (see Methods for a detailed description of each individual metric; the last two metrics were only  
199 evaluated at the mRNA level).

200 In terms of **sensitivity**, the absolute **number of mRNAs and miRNAs** detected ranged from 989 to  
201 11,322 and from 69 to 171, respectively. While a higher input volume consistently resulted in a higher  
202 number of detected mRNAs or miRNAs for a given kit (Figure 2a & b), this was not always true when  
203 comparing different kits (e.g. MIRA with 600  $\mu$ l (7424 mRNAs on average) versus NUC with 900  $\mu$ l  
204 plasma input (4766 mRNAs on average); Figure 2a).

205 The purification kit resulting in the highest relative mRNA **concentration** (CCF4) had on average a 76  
206 times higher eluate concentration than the kit with the lowest concentration (MIRV0.1) (Figure 2c).

207 For miRNAs, the difference was even larger, with a 238 times higher concentration in CCF4 compared  
208 to MIRVE0.1 (Figure 2d). When excluding MIRVE, which was not tested at mRNA level, the difference  
209 between the kit with the highest and lowest relative miRNA concentration was on average 29-fold. The  
210 **RNA yield** metric represents the relative amount of RNA in the total eluate volume after purification.

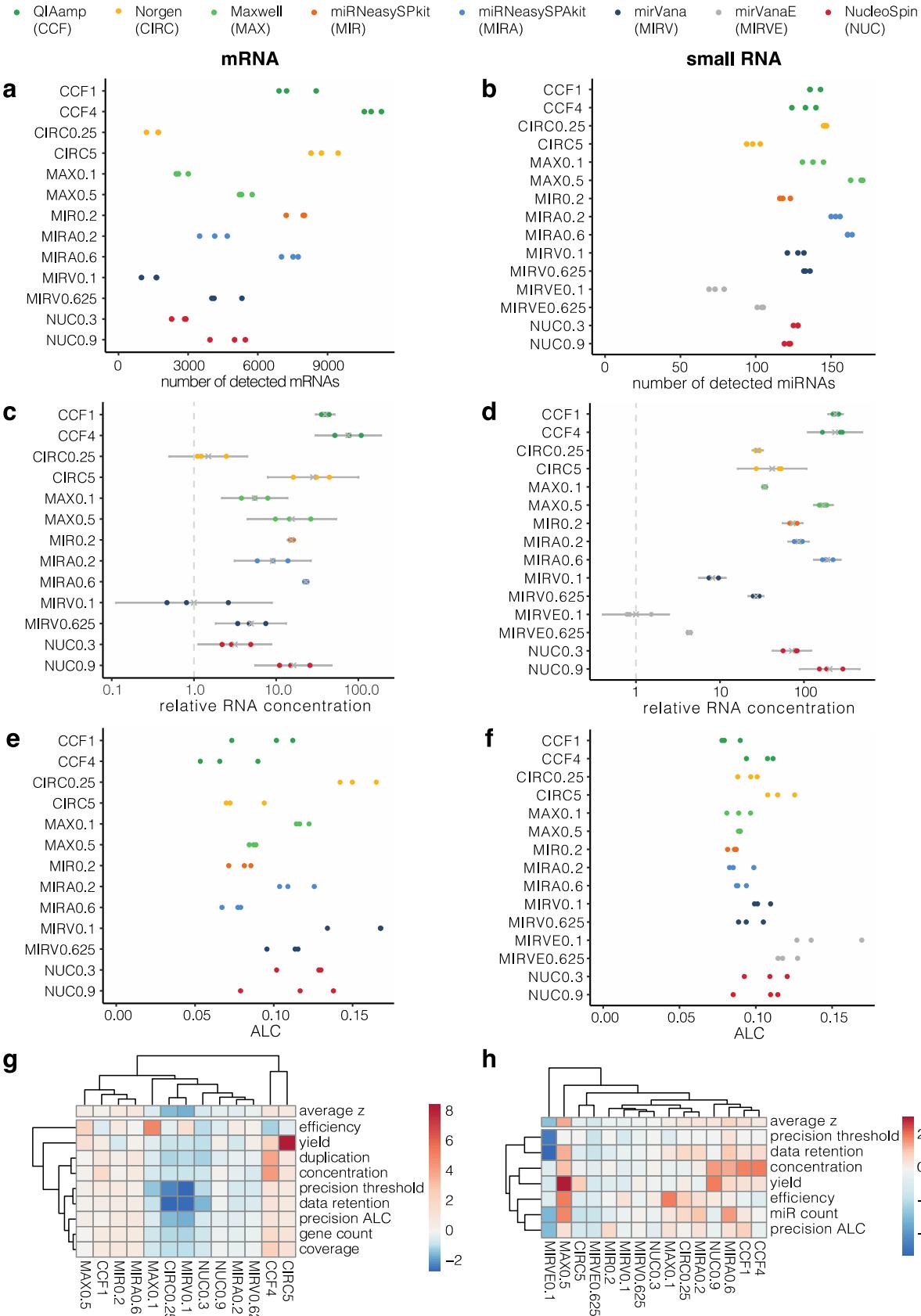
211 For mRNA capture sequencing, there was on average a 30-fold difference in yield between the kit with  
212 the highest yield (CIRC5) compared to the kit with the lowest yield (NUC0.3) (Supplemental figure 2e).

213 For small RNA sequencing, there was on average an 85-fold difference between the kit with the highest  
214 yield (MAX0.5) compared to the kit with the lowest yield (MIRVE0.1) (Supplemental figure 2f). Overall,  
215 yield differences among kits were smaller than concentration differences, as expected given that  
216 differences in eluate volumes (from 14 to 100  $\mu$ l) are canceled out.

217 The **extraction efficiency** metric is a performance metric that, besides RNA yield, also takes into  
218 account differences in input volume for RNA purification. It is a relative measure of how well a certain  
219 kit purifies RNA from the plasma input volume. When looking at the extracellular mRNA transcriptome,  
220 the highest average purification efficiency (MAX0.1) was 10 times higher than the lowest (MIRV0.1)  
221 (Supplemental figure 2g). For small RNAs, the highest average efficiency (MAX0.1) was 25 times higher  
222 than the lowest (MIRV0.625) (Supplemental figure 2h). Note that the extraction efficiency is kit

223 dependent, whereby -expectedly- no differences are observed between the maximum and minimum  
224 input volume for a given kit.

225 For each purification kit, we determined a **count threshold** to filter noisy data based on eliminating  
226 95% of single positive observations between technical replicates. Higher thresholds indicate higher  
227 variability. This threshold varied from 5 to 14 counts at mRNA level for CCF4 and MIRV0.1, respectively,  
228 and from 2 to 16 counts at miRNA level for MIRAO.6 and MIRVE0.1, respectively (Supplemental figure  
229 2a & b; Supplemental table 2). A related metric, **data retention**, represents the fraction of total counts  
230 that are retained after applying the count threshold. For mRNA capture sequencing, data retention  
231 ranged from an average of 93.5% in MIRV0.1 to an average of 99.7% in CCF4 (Supplemental figure 2c).  
232 For small RNA sequencing, data retention ranged from an average of 98.8% in MIRVE0.1 to an average  
233 of 99.8% in MAX0.5 (Supplemental figure 2d).


234 To assess **reproducibility**, we determined the area left of the curve (ALC), a robust metric based on  
235 differences in mRNA or miRNA counts between technical replicates (see Methods and the miRQC  
236 study<sup>14</sup>). The higher the reproducibility, the lower the ALC value. Most kits performed equally well with  
237 respect to miRNA count reproducibility (Figure 2f) with the exception of MIRVE0.1. For mRNA,  
238 CIRC0.25 and MIRV0.1 had a lower reproducibility than the other kits while CCF4 had the best  
239 reproducibility, closely followed by CIRC5 and MIR0.2 (Figure 2e). Within a kit, the maximum input  
240 volume consistently resulted in a better reproducibility compared to the minimum input volume.

241 A low amount of input RNA, as is the case for plasma, typically results in mRNA capture-seq libraries  
242 with a high fraction of PCR duplicates. The average **duplication rate** ranged from 82.2% (CCF4) to 97.3%  
243 (NUC0.3) of mRNA capture sequencing reads (Supplemental figure 1a). Note that even a small  
244 difference in PCR duplication rate can have a high impact on the total number of non-duplicated reads:  
245 with CCF4, on average six times more non-duplicated reads were generated compared to NUC0.3  
246 (Supplemental table 3).

247 Finally, the **transcriptome coverage** metric was used to assess the diversity of mRNA capture  
248 sequencing reads. The MIRV0.1 kit had the lowest average coverage: only 1.8% of the human Ensemble

249 v91 transcriptome was covered by at least one sequencing read. Purification with CCF4 resulted in the  
250 highest average coverage (17.7%, Supplemental figure 1b).

251 A summary plot of all performance metrics after robust z-score transformation is shown in Figure 2g  
252 & h, for mRNA and small RNA level, respectively. For each metric, a higher z-score indicates a better  
253 performance. In general, kit differences are smaller for miRNA than for mRNA (less variability in z-score  
254 and metric values). For mRNA capture sequencing, kits with a higher plasma input volume such as  
255 CIRC5 and CCF4 scored better on most performance metrics. Kits with plasma input volumes below 0.5  
256 ml were in general less performant than other kits, with the exception of MIR0.2. Note, however, that  
257 despite the lower performance scores, MAX0.1 and MIRV0.1 were quite efficient in purifying RNA from  
258 the given 0.1 ml of plasma. Moreover, plasma input volume alone does not completely determine  
259 performance as some kits with a lower plasma input volume still perform better than kits with a higher  
260 input, for example MIR0.6 and CCF1. For small RNAs, we mainly observed low performance in the  
261 smaller input volume kits, but there were exceptions. MAX0.5 and MIR0.6, for example, scored  
262 surprisingly well or even better compared to kits with a much larger plasma input volume such as CIRC5  
263 and CCF4. In contrast to mRNA capture sequencing, more plasma input for a given kit did not always  
264 result in better small RNA sequencing performance (see CIRC5 vs CIRCO.25).



265

266 **Figure 2: Performance of RNA purification kits for mRNA capture sequencing (mRNA) and small RNA**

267 **sequencing (miRNA).** a&b: absolute number of mRNAs and miRNAs, resp., that reach count threshold;

268 c: relative endogenous RNA concentration at mRNA level (ratio of endogenous RNA to ERCC spikes); d:  
269 relative endogenous miRNA concentration (ratio of endogenous miRNA to LP spikes); c&d: values are  
270 log rescaled to the lowest mean of all kits and transformed back to linear space, 95% confidence  
271 interval is shown; e&f: reproducibility between technical replicates based on ALC (smaller ALC  
272 indicates better reproducibility) at mRNA and miRNA level, resp.; g&h: overview of all performance  
273 metrics at mRNA capture and small RNA sequencing level, resp., after transforming the values to  
274 robust z-scores where a higher z-score indicates a better performance, rows and columns of heatmap  
275 are clustered according to complete hierarchical clustering based on Euclidean distance, average z  
276 refers to the mean of robust z-scores for a specific purification kit. Number that follows the  
277 abbreviation of the purification kit is the plasma input volume (in ml).

278

279 ***Blood preservation tubes are not suitable for exRNA analysis***

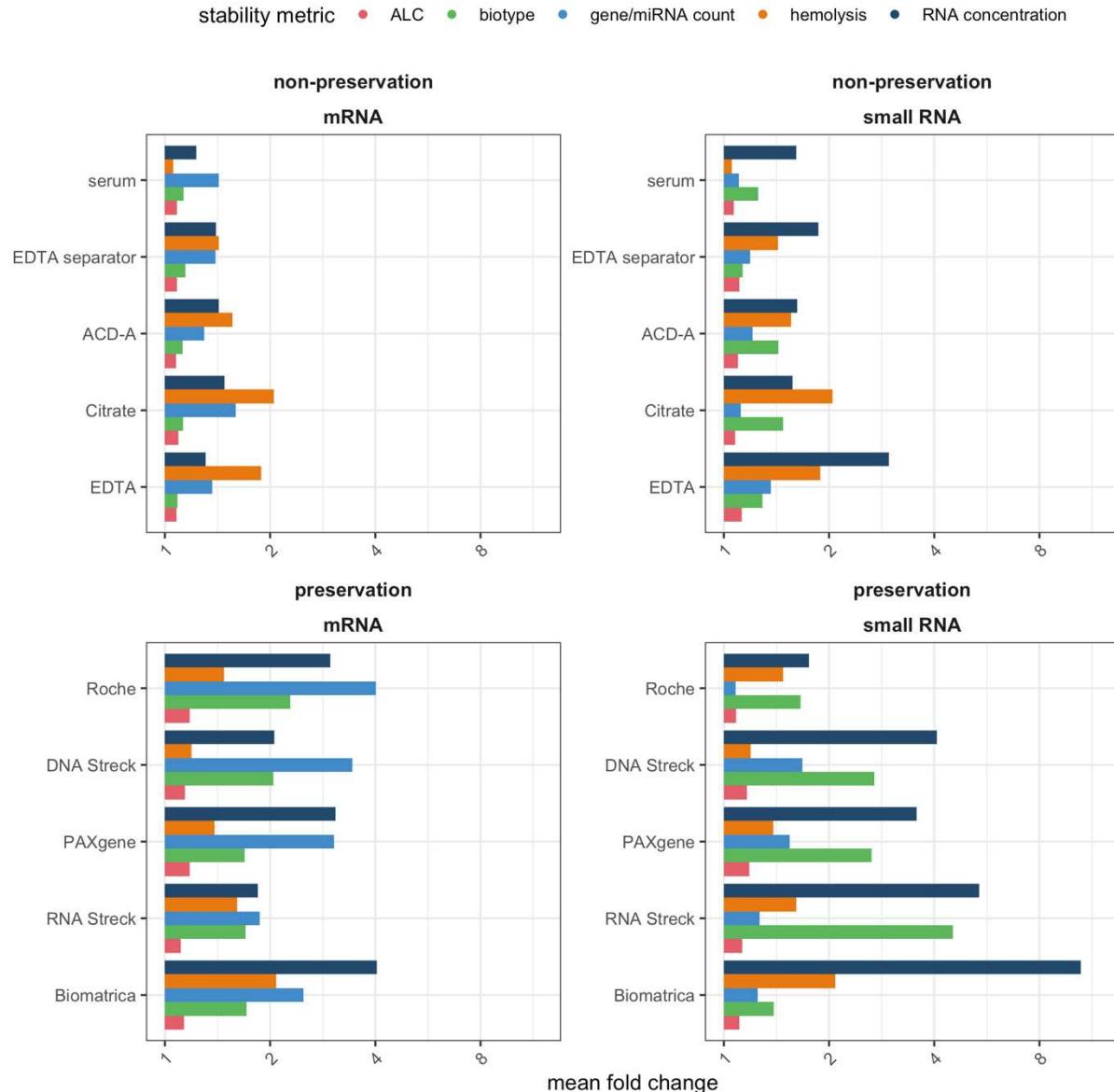
280 Eleven different blood collection tubes were selected, belonging to two categories: tubes that are not  
281 designed to stabilize nucleic acids (which we termed “non-preservation tubes”; n = 6), and so-called  
282 “preservation tubes” (n = 5) that are specifically designed to allow more time between the blood draw  
283 and plasma preparation. The selected non-preservation tubes were the BD Vacutainer Plastic K2EDTA  
284 tube (EDTA), Vacutette Tube 8 ml K2E K2EDTA Separator (EDTA separator), BD Vacutainer Glass ACD  
285 Solution A tube (ACD-A), Vacutette Tube 9 ml 9NC Coagulation sodium citrate 3.2% (citrate), and BD  
286 Vacutainer SST II Advance Tube (serum). The preservation tubes were the Cell-Free RNA BCT (RNA  
287 Streck), Cell-Free DNA BCT (DNA Streck), PAXgene Blood ccfDNA Tube (PAXgene), Cell-Free DNA  
288 Collection Tube (Roche) and LBgard Blood Tube (Biomatrica). For each of the blood collection tubes,  
289 we recruited three healthy volunteers and three time intervals between blood draw and plasma  
290 preparation were chosen: immediately (T0), time point 1 (4 hours for non-preservation tubes, 16 hours  
291 for preservation tubes), and time point 2 (16 hours for non-preservation tubes and 72 hours for  
292 preservation tubes). This resulted in 90 samples that were subsequently processed for RNA extraction,  
293 mRNA capture-seq and small RNA-seq. To evaluate tube stability over time, we calculated 5 different

294 performance metrics: (1) hemolysis, (2) relative RNA concentration, (3) number of mRNA or miRNA  
295 genes detected, (4) fraction of counts mapping on mRNAs or miRNAs, and (5) reproducibility (ALC) (see  
296 Methods for a detailed description of each metric). Stability of each metric over time was evaluated as  
297 a fold change between time point 0 and time point 1 and between time point 0 and time point 2 as  
298 exemplified in Supplemental figure 3. If processing time has no impact on any of the above-described  
299 methods, respective fold changes should be close to one. For each blood tube, the average fold change  
300 of each performance over time is shown in Figure 3.

301 **Hemolysis** was quantified based on absolute absorbance at 414 nm and evaluated by visual inspection  
302 during liquid biopsy preparation. For the non-preservation tubes, hemolysis measurements were  
303 below the generally accepted absorbance threshold of 0.2<sup>15,16</sup> across all donors and time points  
304 (Supplemental figure 4a, Supplemental figure 5a and **Supplemental figure 6**). Oppositely, for all  
305 preservation tubes except the Biomatrica tube, plasma showed to be hemolytic for at least one donor  
306 at T0. At T72, the Biomatrica hemolysis measurements also exceeded the 0.2 threshold. Despite the  
307 low absorbance values, we did observe up to two-fold differences in function of time: mean fold  
308 changes in non-preservation tubes ranged from 1.05 to 2.04, in preservation tubes from 1.19 to 2.08  
309 (Supplemental figure 7a & Supplemental figure 8a).

310 **Relative RNA concentration** in non-preservation tubes remained quite stable over time, with a 1.23 to  
311 1.48 fold increase in mRNA mass and 1.57 to 2.97 fold increase in miRNA mass (Supplemental figure  
312 7b & Supplemental figure 8b). Unexpectedly, RNA concentration was less stable in preservation tubes,  
313 with fold changes of 1.84 to 4.03 and 1.75 to 10.50 for mRNA and small RNA, respectively. While RNA  
314 concentration did not change substantially between time points for the RNA Streck tubes, the relative  
315 RNA concentration at the individual time points for these tubes was substantially lower compared to  
316 the other tubes (on average 4.97-fold lower for mRNA and 10.36-fold lower for small RNA  
317 (Supplemental figure 4b & Supplemental figure 5b)).

318 The **absolute number of mRNAs and miRNAs** in non-preservation tubes remained relatively constant  
319 over time: mean fold changes ranged from 1.29 to 1.59 and from 1.10 to 1.36 at mRNA and small RNA


320 sequencing level, respectively. In preservation tubes, the mean fold change ranged from 1.86 to 4.01  
321 and from 1.08 to 1.67, for mRNA and miRNA, respectively (Supplemental figure 7c & Supplemental  
322 figure 8c). Furthermore, and similar to the RNA concentration, the absolute number of mRNAs and  
323 miRNAs was substantially lower in DNA Streck and RNA Streck tubes compared to the others (mean  
324 number of mRNAs: 385 and 840 for RNA Streck and DNA Streck, respectively; mean number of miRNAs:  
325 60 for RNA Streck) (Supplemental figure 4c & Supplemental figure 5c).

326 **The fraction of total counts mapping to mRNAs and miRNAs** (Supplemental figure 4d & Supplemental  
327 figure 5d) in non-preservation tubes remained fairly constant over time: mean fold changes ranged  
328 from 1.08 to 1.14 and from 1.13 to 1.47, for mRNA and miRNA, respectively. For the preservation  
329 tubes, the mean fold changes were higher: from 1.69 to 2.28 and from 1.38 to 4.52, for mRNA and  
330 miRNA, respectively (Supplemental figure 7e & Supplemental figure 8e).

331 **Reproducibility** remained stable over time for both preservation and non-preservation tubes: mean  
332 fold changes ranged from 1.06 to 1.18 (Supplemental figure 7d & Supplemental figure 8d).

333 As noted above, the relative RNA concentration and number of detected mRNAs or miRNAs were  
334 considerably lower when using the preservation tubes DNA Streck and RNA Streck compared to the  
335 others. We also observed that the fraction of reads mapping to the correct strand was lower for these  
336 tubes compared to other tubes (see strandedness in <https://github.com/OncorNALab/exRNAQC>).  
337 Moreover, library construction for RNA isolated from these two tubes resulted in libraries with an  
338 insufficient library yield for equimolar pooling. Therefore, these tube types seem unfit for blood  
339 plasma-based exRNA analysis at the evaluated time points. In general, the stability of the performance  
340 metrics over time was substantially higher for the non-preservation tubes compared to the  
341 preservation tubes (Figure 3).

342



343

344 **Figure 3.** Summary of mean fold changes (FC) between time point 1 (centrifugation step 4 hours after  
345 blood collection for non-preservation tubes; 24 hours for preservation tubes) and time point 0 vs. time  
346 point 2 (centrifugation step 16 hours after blood collection for non-preservation tubes; 72 hours for  
347 preservation tubes) and time point 0, per tube and per metric, for mRNA capture sequencing (**left**) and  
348 small RNA sequencing (**right**). Ideally, the mean FC of the stability metrics approaches 1, indicating  
349 that there is little change from baseline and the blood collection tube performs well across time.  
350 **Legend:** “gene/miRNA count” represents stability of the absolute number of protein coding genes  
351 (mRNA) or absolute number of miRNAs (small RNA), “RNA concentration” corresponds to the stability  
352 of the relative RNA concentration as determined by number of endogenous reads vs Sequin spike-in

353 RNA (mRNA) or the stability of the relative RNA concentration as determined by number of  
354 endogenous reads vs RC spike-in RNA (small RNA), “hemolysis” corresponds to stability of the  
355 absorbance of light at 414 nm (mRNA and small RNA), “biotype” corresponds to the stability of the  
356 fraction of all counts mapping to mRNAs (i.e. the protein coding fraction) or the stability of the fraction  
357 of all counts mapping to micro RNAs (small RNA), “ALC” corresponds to the area left of the curve, a  
358 reproducibility metric (mRNA and small RNA). Non-preservation tubes are the BD Vacutainer Plastic  
359 K2EDTA tube (EDTA), Vacutette Tube 8 ml K2E K2EDTA Separator (EDTA separator), BD Vacutainer Glass  
360 ACD Solution A tube (ACD-A), Vacutette Tube 9 ml 9NC Coagulation sodium citrate 3.2% (citrate), and  
361 BD Vacutainer SST II Advance Tube (serum). The preservation tubes are the Cell-Free RNA BCT (RNA  
362 Streck), Cell-Free DNA BCT (DNA Streck), PAXgene Blood ccfDNA Tube (PAXgene), Cell-Free DNA  
363 Collection Tube (Roche) and LBgard Blood Tube (Biomatrica). Note that different donors were sampled  
364 and that tubes were processed at different time points for preservation and non-preservation tubes.

365

366 **Discussion**

367 In the extracellular RNA Quality Control (exRNAQC) study, we examined eight RNA purification  
368 methods and ten blood collection tubes as pre-analytical variables affecting exRNA quantification,  
369 using both mRNA as well as small RNA sequencing. Eight kits marketed for RNA purification from serum  
370 or plasma, and 10 blood collection tubes commonly used in the clinic available at study initiation were  
371 selected for investigation. More than 1.4 liter of blood was collected from 11 different healthy donors  
372 in order to conduct all experiments in triplicate, resulting in 276 extracellular transcriptomes. To  
373 control the RNA purification and library preparation workflows, 189 synthetic spike-in RNA molecules  
374 (Sequin and ERCC spike-ins for mRNA sequencing, and RC and LP spike-ins for small RNA sequencing)  
375 were used. We previously demonstrated the importance of using these spike-in RNAs for deep  
376 sequencing-based quantification of exRNA<sup>17,18</sup>, and further confirmed their critical importance in the  
377 current exRNAQC study. Here, spike-in RNAs were used to assess the relative RNA yield and  
378 concentration, and to determine the extraction efficiency of the different RNA purification methods.

379 Importantly, we do not only provide full access to the data and analysis pipelines (European Genome-  
380 phenome Archive (EGA): EGAS00001005263 and ArrayExpress,  
381 <https://github.com/OncorNALab/exRNAQC>), but also supply the research community with consistent  
382 and standardized pre-analytics information to better interpret, compare and reproduce our results. To  
383 this purpose, the transcriptomes are annotated with multiple pre-analytical variables, including the  
384 Biospecimen Reporting for Improved Study Quality (BRISQ) elements<sup>19,20</sup> (Supplemental table 4).  
385 Overall, these aspects make the exRNAQC study not only the largest, but also the most comprehensive  
386 sequencing-based evaluation of pre-analytical factors affecting exRNA analysis so far. Although all  
387 eight tested RNA purification kits are marketed for extraction of exRNA from serum or plasma,  
388 unexpectedly large performance differences were observed for both small RNA and, to a greater  
389 extend, mRNA. With most exRNA kits specifically developed for microRNA quantification, it is not very  
390 surprising that the kit performance at miRNA level is more homogenous than at mRNA level. We clearly  
391 noted that the mRNA purification performance was linked to the biofluid input and eluate volume.  
392 More specifically, a higher biofluid input volume resulted in higher relative mRNA concentrations. This  
393 association did not hold true for microRNA, as exemplified by CCF1 and CCF4. Also, RNA purification  
394 kits with a large eluate volume typically showed a high yield but low relative RNA concentration. For  
395 these kits, condensing the eluate volume prior to library preparation could potentially increase their  
396 overall performance. Kits with a high extraction efficiency did not always result in better RNA  
397 quantification results because of limited input volumes. If these kits would accommodate a larger  
398 plasma input volume (while maintaining their extraction efficiency), their overall performance could  
399 also improve. Note, however, that the efficiency of some kits decreased when using the maximum  
400 input volume compared to the minimum (e.g. CCF). Finally, we want to emphasize the importance of  
401 removing co-purified genomic DNA (gDNA) from the extracted RNA samples before proceeding to  
402 exRNA quantification<sup>21</sup>. We observed high-level gDNA contamination in RNA-eluates produced with  
403 the MAP kit despite applying a commonly used gDNA removal strategy that worked well for the other  
404 RNA kits. This gDNA contamination is most likely due to an incompatibility between the RNA elution

405 buffer and the gDNA removal reagents. Alternative gDNA removal strategies should be used before  
406 applying the MAP RNA extraction kit for exRNA analysis.

407 To evaluate the impact of the blood collection tube on downstream exRNA sequencing, biofluids  
408 (serum and plasma) were prepared at three different time points upon blood collection to assess  
409 potential changes in exRNA content due to blood storage at room temperature. To set a reference,  
410 each tube type was also processed immediately after blood collection. For non-preservation tubes, we  
411 set the processing time points at 4 and 16 hours to mimic same-day processing and next-day  
412 processing, real-life situations often happening in clinics. For preservation tubes that are specifically  
413 marketed to stabilize extracellular nucleic acids for 7 up to 14 days, more extreme time points for  
414 plasma preparation were selected, i.e. 24 and 72 hours upon blood collection. Surprisingly, in terms of  
415 stability over time, preservation tubes performed far worse than non-preservation tubes (including  
416 serum), as reflected in increasing RNA concentrations and number of detected genes over time and by  
417 compromised reproducibility. While preservation tubes were stored at room temperature for longer  
418 duration compared to non-preservation tubes, storage time was still substantially shorter than  
419 advertised for these tubes. In addition, exRNA concentrations were much lower and hemolysis levels  
420 remarkably higher in some of these tubes compared to non-preservation tubes, even at baseline (i.e.  
421 immediate processing upon blood draw). Although hemolysis may induce changes in exRNA content,  
422 the observed instability of the performance metrics over time for these tubes cannot solely be  
423 explained by differences in hemolysis over time. In this context, it is worth mentioning that, between  
424 individuals and across time points, we observed substantial differences in the amount of plasma that  
425 could be prepared from the preservation tubes, an issue that was reported before<sup>22</sup>. This also points  
426 towards performance instability (over time). Based on these findings, we conclude that the studied  
427 preservation tubes are not suitable for exRNA analysis at the examined time intervals. We invite blood  
428 collection tube manufacturers to increase their efforts to develop a plasma or serum tube that  
429 preserves the transcriptome for at least 3 days.

430 We are currently extending the exRNAQC study with a second phase, results of which are not shown  
431 in this paper, in which we aim to assess possible interactions between pre-analytic variables. To this  
432 purpose, three non-preservation blood collection tubes (serum, EDTA and citrate) and two RNA  
433 purification kits were selected for further evaluation. The tube selection was based on the superior  
434 performance of these tubes as well as their widespread availability in the clinic. The kit selection was  
435 based on both sensitivity (number of detected protein coding genes or miRNAs) and reproducibility  
436 (pairwise comparison of gene counts in technical replicates). Plasma input volume was used as an  
437 additional criterium, as we included at least one kit which requires less than one milliliter plasma.  
438 Because of the differences in kit performance on mRNA and miRNA level, the kits that were selected  
439 for each biotype separately are MAX0.5 and MIRAO.6 for small RNA sequencing, and MIR0.2 and CCF2  
440 for mRNA capture sequencing (Supplemental figure 9).

441 In the exRNAQC study phase 1, we demonstrate that the selection of RNA purification method and  
442 blood collection tube substantially impacts mRNA and miRNA quantification by evaluation of 11  
443 performance metrics. Here, 8 commercially available RNA purification methods and 10 blood collection  
444 tubes were studied, but the proposed framework and metrics can also be used to evaluate the  
445 performance of more recently developed RNA purification methods and blood collection tubes. Note  
446 that the metrics solely assess technical performance, and that the impact of the pre-analytics on  
447 biomarker detection was not addressed in this study. In addition, for small RNA sequencing, we only  
448 focused on the analysis of microRNAs. While important, analysis of other types of small RNAs was  
449 beyond the scope of the exRNAQC study. Based on the findings presented here, we highly recommend  
450 a) standardizing sample collection and processing, b) carefully annotating and reporting pre-analytics,  
451 and c) making use of synthetic spike-in RNA molecules for deep sequencing-based analyses of exRNA.  
452 This is crucially important for interpretation and comparison of all exRNA study results, and will  
453 enhance the reproducibility of exRNA research, as a starting point for biofluid based biomarker studies.

454

455 **Materials and methods**

456 ***Donor material and liquid biopsy preparation***

457 Sample collection was approved by the ethics committee of Ghent University Hospital (Belgian  
458 Registration number B670201733701) and written informed consent was obtained from 11 healthy  
459 donors. Venous blood was collected from an elbow vein after disinfection with 2% chlorhexidine in  
460 70% alcohol. In total, 10 different blood collection tubes were used: the BD Vacutainer SST II Advance  
461 Tube (referred to as serum in this study; Becton Dickinson and Company, 366444), BD Vacutainer  
462 Plastic K2EDTA tube (EDTA; Becton Dickinson and Company, 367525), Vacutette Tube 8 ml K2E K2EDTA  
463 Separator (EDTA separator; Greiner Bio-One, 455040), BD Vacutainer Glass ACD Solution A tube (ACD-  
464 A; Becton Dickinson and Company, 366645), Vacutette Tube 9 ml 9NC Coagulation sodium citrate 3.2%  
465 (citrate; Greiner Bio-One, 455322), Cell-Free RNA BCT (RNA Streck; Streck, 230248), Cell-Free DNA BCT  
466 (DNA Streck; Streck, 218996), PAXgene Blood ccfDNA Tube (PAXgene; Qiagen, 768115), Cell-Free DNA  
467 Collection Tube (Roche; Roche, 07785666001), and LBgard Blood Tube (Biomatrica; Biomatrica,  
468 M68021-001). Immediately after blood draw, blood collection tubes were inverted five times and all  
469 tubes were transported to the laboratory for plasma or serum preparation. Tubes were immediately  
470 processed or at 4h, 16h, 24h or 72h upon blood collection. Details on the different blood draws and  
471 plasma/serum preparations are available in the Supplemental Materials and Methods.

472

473 ***RNA isolation and gDNA removal***

474 In total, 8 different exRNA extraction methods, including 6 spin column-based kits and 2 automated  
475 extraction procedures, were used according to the manufacturer's manual: the miRNeasy  
476 Serum/Plasma Kit (abbreviated to MIR in this study; Qiagen, 217184), miRNeasy Serum/Plasma  
477 Advanced Kit (MIRA; Qiagen, 217204), mirVana PARIS Kit (MIRV; Life Technologies, AM1556),  
478 NucleoSpin miRNA Plasma Kit (NUC; Macherey-Nagel, 740981.50), QIAamp ccfDNA/RNA Kit (CCF;  
479 Qiagen, 55184), Plasma/Serum Circulating and Exosomal RNA Purification Kit/Slurry Format (CIRC;  
480 Norgen Biotek Corp., 42800), Maxwell RSC miRNA Plasma and Serum Kit (Promega, AX5740 and

481 AS1680) in combination with the Maxwell RSC Instrument (MAX; Promega, AS4500), and MagNA Pure  
482 24 Total NA Isolation Kit (Roche, 07658036001) in combination with the MagNA Pure 24 instrument  
483 (MAP; Roche, 07290519001). Per 100  $\mu$ l liquid biopsy input volume, 1  $\mu$ l sequin spike-in controls  
484 (Garvan Institute of Medical Research<sup>23</sup>) and/or 1  $\mu$ l RNA extraction Control (RC) spike-ins<sup>24</sup> (IDT) were  
485 added to the lysate for TruSeq RNA Exome Library Prep sequencing and/or TruSeq Small RNA Library  
486 Prep sequencing, respectively (see Supplemental Materials and Methods). To maximally concentrate  
487 the RNA eluate, minimum eluate volumes were used, unless otherwise recommended by the  
488 manufacturer. For evaluation of the different extraction methods, both the minimum and maximum  
489 recommended plasma input volumes were tested in triplicate. Details on the exRNA extraction  
490 methods, and sequin and RC spike-in controls are available in the Supplemental Materials and  
491 Methods.

492 gDNA removal of RNA samples for TruSeq RNA Exome Library Prep sequencing was performed using  
493 HL-dsDNase (ArcticZymes, 70800-202) and Heat & Run 10X Reaction Buffer (ArcticZymes, 66001).  
494 Briefly, 2  $\mu$ l External RNA Control Consortium (ERCC) spike-in controls (ThermoFisher Scientific,  
495 4456740), 1  $\mu$ l HL-dsDNase and 1.4  $\mu$ l reaction buffer were added to 12  $\mu$ l RNA eluate, and incubated  
496 for 10 min at 37 °C, followed by 5 min at 55 °C. To RNA samples used for both TruSeq RNA Exome  
497 Library Prep sequencing and TruSeq Small RNA Library Prep sequencing, also 2  $\mu$ l Library Prep Control  
498 (LP) spike-ins<sup>25</sup> (IDT) were added to the RNA eluate before starting gDNA removal and 1.6  $\mu$ l reaction  
499 buffer was used. RNA samples solely used for TruSeq Small RNA Library Prep sequencing were not  
500 DNase treated. Here, 2  $\mu$ l LP spike-ins were added to 12  $\mu$ l RNA eluate before starting library  
501 preparation. ERCC and LP spike-in control details are available in the Supplemental Materials and  
502 Methods.

503

504 ***TruSeq RNA Exome sequencing***

505 mRNA libraries were prepared starting from 8.5  $\mu$ l RNA eluate using the TruSeq RNA Exome Kit  
506 (Illumina, 20020189, 20020490, 20020492, 20020493, 20020183), according to the manufacturer's

507 protocol with following adaptations: fragmentation of RNA for 2 min at 94 °C, second strand cDNA  
508 synthesis for 30 minutes at 16 °C (with the thermal cycler lid pre-heated at 40 °C), and second PCR  
509 amplification using 14 PCR cycles. Upon the first and second PCR amplification, libraries were validated  
510 on a Fragment Analyzer (Advanced Analytical Technologies), using 1 µl of library. Library  
511 concentrations were determined using Fragment Analyzer software for smear analysis in the 160 to  
512 700 base pair (bp) range. Library quantification was qPCR-based, using the KAPA Library Quantification  
513 Kit (Kapa Biosystems), and/or based on NanoDrop 1000 measurements. Details on library preparation  
514 protocol, library quantification, pooling and sequencing are available in the Supplemental Materials  
515 and Methods and in Hulstaert *et al.*<sup>18</sup>

516

517 ***TruSeq Small RNA Library Prep sequencing***

518 Small RNA libraries were prepared starting from 5 µL RNA eluate using the TruSeq Small RNA Library  
519 Prep Kit (Illumina, RS-200-0012, RS-200-0024, RS-200-0036, RS-200-0048), according to the  
520 manufacturer's protocol with following adaptations: the RNA 3' adapter (RA3) and the RNA 5' adapter  
521 (RA5) were 4-fold diluted with RNase-free water, and the number of PCR cycles was increased to  
522 16<sup>17,26</sup>. Samples were divided across library prep batches according to index availability. For each batch,  
523 3 µl of small RNA library from each sample was pooled prior to automated size selection using the  
524 Pippin prep (Sage Sciences, CDH3050). Size selected libraries were quantified using qPCR, and  
525 sequenced on a MO flow cell (Illumina, NextSeq 500) using loading concentrations ranging from 1.2 to  
526 2.4 pM. Differences in read distribution across samples were subsequently used to re-pool individual  
527 libraries in order to obtain an equimolar pool. After size selection on a Pippin prep and qPCR  
528 quantification, these pools were sequenced on a HO flow cell (Illumina, NextSeq 500, NextSeq 500/550  
529 High Output Kit v2.5, 20024907) using loading concentrations ranging from 1.2 to 3 pM.

530

531 ***Data analysis***

532 The study resulted in four sequencing data sets and the raw, processed and metadata were submitted  
533 to the European Genome-phenome Archive (EGAS00001005263) and ArrayExpress. RNA Exome and  
534 Small RNA sequencing of the RNA purification kit study were identified with study codes exRNAQC004  
535 and exRNAQC011, respectively. RNA Exome and Small RNA sequencing of the blood collection tube  
536 study were identified with study codes exRNAQC005 and exRNAQC013, respectively. A high-level  
537 summary of the sequencing statistics can be found in Supplemental table 3-Supplemental table 7.  
538 Detailed pre-analytics information (for the BRISQ elements<sup>19,20</sup>) can be found in Supplemental table 4.  
539 *Quality control and quantification of TruSeq RNA Exome Library Prep sequencing data*  
540 In case of adapter contamination indicated by FASTQC<sup>27</sup> (v0.11.8), adapters were trimmed with  
541 Cutadapt<sup>28</sup> (v1.18; 3' adapter R1: 'AGATCGGAAGAGCACACGTCTGAATCCAGTCA'; 3' adapter R2  
542 'AGATCGGAAGAGCGTCGTAGGGAAAGAGTGT'). Read pairs with a low a base calling accuracy (< 99%  
543 in at least 80% of the bases in both mates) were discarded. Subsequently, FASTQ files were subsampled  
544 with Seqtk<sup>29</sup> (v1.3) to the lowest number of reads pairs obtained in the experiment (floored to a  
545 million). Since the low amount of input RNA resulted in a high number of duplicates (Supplemental  
546 table 3 and Supplemental table 6), we removed these duplicates using Clumpify<sup>30</sup> dedupe (v38.26) with  
547 the following specifications: paired-end mode, 2 substitutions allowed, kmersize of 31, and 20 passes).  
548 For duplicate removal, only the first 60 bases of both reads were considered to account for the  
549 sequencing quality drop at the end of the reads. Strand-specific transcript-level quantification of the  
550 deduplicated FASTQ files was performed with Kallisto<sup>31</sup> (v0.44.0). For coverage and strandedness  
551 analysis, mapped reads were obtained by STAR<sup>32</sup> (v2.6.0c) using the default parameters (except for --  
552 twopassMode Basic, --outFilterMatchNmin 20 and --outSAMprimaryFlag AllBestScore). For all exons  
553 coverage information was retrieved by the genomeCoverageBed and intersectBed functions of  
554 BEDTools<sup>33</sup> (v2.27.1). Strandedness information was obtained with RSeQC<sup>34</sup> (v2.6.4). The reference  
555 files for all analyses were based on genome build hg38<sup>35</sup> and transcriptome build Ensembl v91<sup>36,37</sup>.  
556 Spike annotations were added to both genome and transcriptome files.

557 *Quality control and quantification of TruSeq Small RNA Library Prep sequencing data*

558 First, adaptor trimming (3' adapter: TGGAATTCTGGGTGCCAAGG) was performed using Cutadapt<sup>28</sup>  
559 (v1.16) with a maximum error rate of 0.15 and discarding reads shorter than 15 bp and those in which  
560 no adaptor was found. Subsequently, low quality reads were filtered out (Q20 in less than 80% of the  
561 bases) by FASTX-Toolkit<sup>38</sup> (v0.0.14). Filtered FASTQ files were subsampled to the minimum number of  
562 reads in the experiment (Supplemental table 5 and Supplemental table 7) using Seqtk<sup>29</sup> (v1.3). Reads  
563 were collapsed with FASTX-Toolkit and LP and RC spike reads (including possible fragments) were  
564 annotated. The non-spike reads were mapped with Bowtie<sup>39</sup> (v1.2.2, with additional parameters -k 10  
565 -n 1 -l 25) considering only perfect matches. Mapped reads were annotated by matching the genomic  
566 coordinates of each read with genomic locations of miRNAs (obtained from miRBase<sup>40-45</sup>, v22) and  
567 other small RNAs (tRNAs obtained from UCSC GRCh38/hg38; snoRNA, snRNA, MT\_tRNA, MT\_rRNA,  
568 rRNA, and miscRNA from Ensembl, v91).

569 *Defining performance metrics*

570 The statistical programming language R<sup>46</sup> (v4.0.3) was used throughout this section and all scripts can  
571 be found at GitHub (<https://github.com/OncorNALab/exRNAQC>). Depending on the study (kit or tube  
572 selection), different metrics were used which are briefly explained below. For each part of the study,  
573 more in-depth descriptions of the metrics and results are also available through GitHub.

574 • *Count threshold (kit & tube study)*

575 In order to distinguish signal from noise we made use of pairwise count comparisons across three  
576 technical replicates for the kit study. We defined a count threshold for each RNA purification method  
577 and biotype in a similar manner as defined in the miRQC study<sup>14</sup>. Specifically, a threshold that reduces  
578 the fraction of single positives in technical replicates by at least 95 % (single positives are cases where  
579 a given gene has a zero value in one replicate and a non-zero value in the other one). This threshold  
580 can be used as a reproducibility metric between technical replicates. For each kit-volume combination,  
581 the median threshold of the three pairwise replicate comparisons was used (Supplemental table 2). As  
582 the tube study did not have technical replicates and RNA purification always happened with the

583 miRNeasy Serum/Plasma Kit, the median thresholds of MIR0.2 (3 counts for small RNAs; 6 counts for  
584 mRNAs) were applied here as well.

585 • *Data retention (kit study)*

586 Data retention is defined as the percentage of gene counts remaining after applying the count  
587 threshold as filter, therefore giving information about the fraction of counts lost by applying the cut-  
588 off.

589 • *Sensitivity or gene count (kit & tube study)*

590 We defined sensitivity as the number of different protein coding genes or miRNAs picked up above the  
591 count threshold.

592 • *Relative RNA concentration (kit & tube study)*

593 The same plasma was used throughout the entire purification kit experiment. By adding equal amounts  
594 of ERCC and LP spikes (for mRNA and small RNA, respectively) after RNA extraction, we were able to  
595 calculate relative endogenous RNA concentrations in the eluate. For instance, in cases of low  
596 endogenous RNA content after RNA purification, relatively more ERCC and LP spikes will be sequenced.  
597 By dividing the total sum of endogenous counts by the sum of ERCC or LP spikes, we could therefore  
598 compare the relative RNA concentrations in the eluate of the different extraction methods.

599 For the tube experiment, we were interested impact of the different tubes on the RNA concentration  
600 in plasma. By adding equal amounts of Sequin and RC spikes (for mRNA and small RNA, respectively)  
601 before RNA extraction, we were able to calculate relative endogenous RNA concentrations in the  
602 plasma. For instance, in cases of low endogenous RNA content before extraction, relatively more  
603 Sequin and RC spikes will be sequenced. By dividing the total sum of endogenous counts by the sum  
604 of Sequin or RC spikes, we could therefore compare the relative RNA concentrations in plasma of the  
605 different tubes.

606 • *Relative RNA yield extraction (kit study)*

607 Multiplying the relative RNA concentration by the eluate volume gives the relative RNA yield in the  
608 total eluate.

609        • *Relative extraction efficiency (kit study)*

610      Correcting the relative RNA yield for the plasma input volume (dividing yield by input volume) gives an  
611      idea of the theoretical RNA extraction efficiency of the method.

612        • *Reproducibility based on area left of the curve (kit & tube study)*

613      As described in the miRQC study<sup>14</sup>, the area left of the cumulative distribution curve (ALC) was  
614      calculated by comparing the actual cumulative distribution curve of log2 fold changes in gene or miRNA  
615      abundance between pairs of replicates to the theoretical cumulative distribution (optimal curve). Less  
616      reproducibility between samples results in more deviations from this optimal curve and therefore  
617      larger ALC-values.

618        • *Duplication rate (kit study)*

619      Duplication rate was obtained by dividing the number of reads after Clumpify duplicate removal (see  
620      methods) by the number of reads after subsampling, therefore giving information about the unique  
621      reads generated after sequencing.

622        • *Coverage (kit study)*

623      Coverage is the percentage of bases from the total transcriptome covered by at least one sequencing  
624      read.

625        • *Hemolysis (tube study)*

626      Hemolysis was measured with Nanodrop (absorbance of light at 414 nm) in plasma across all tubes.

627        • *Fraction mRNAs or miRNAs (tube study)*

628      Fraction of total counts that go to mRNA (RNA Exome data) or miRNAs (small RNA sequencing data).

629

630      *Transform performance metrics into robust z-scores (kit study)*

631      Individual scores for performance metrics were transformed to z-scores in the kit study. As the  
632      standard z-score is sensitive to outliers, we used a robust z-score transformation, based on the median  
633      ( $\mu_{1/2}$ ) and median absolute deviation ( $MAD = median_i(|X_i - median X_{1...n}|)$ ), instead. The general  
634      formula for robust z-score calculation is shown below:

635 
$$\text{robust zscore} = \frac{x - \mu_{1/2}}{s}$$

636 Where s is a scaling factor that depends on the MAD. In case MAD is not zero:  $s = \text{MAD} * 1.4826$ . If

637 MAD equals zero, s approximately equals the standard deviation:  $s = \text{meanAD} * 1.2533$ , with

638  $\text{meanAD} = \text{mean}_i(|X_i - \text{mean } X_{1\dots n}|)$ .<sup>47,48</sup>

639

640 *Accounting for size selection bias (kit study)*

641 For the small RNA library prep, the three technical replicates of each extraction method were divided

642 over three different pools. Next, pippin prep size selection for miRNAs occurred on each pool

643 individually. To account for size selection bias (which resulted in consistently lower sequencing counts

644 in the second pool), we each time down-sampled the miRNA counts of the other two replicates to the

645 sum of miRNA counts of the replicate in the second pool. Down-sampling was based on reservoir

646 sampling - random sampling without replacement (subsample\_miRs.py script on

647 <https://github.com/OncoRNALab/exRNAQC>).

648

649 *Fold change analyses for stability over time assessment (tube study)*

650 In order to evaluate tube stability across time points, we determined several performance metrics per

651 blood collection tube at different time points. We then calculated, for every tube and donor, the fold

652 chance across different time points (each time relative to the base point at T0, so excluding T24-72

653 and T04-16). Given that there are 3 donors and 3 time points per tube, this resulted in six fold change

654 values per tube. An example is shown in Supplemental figure 3.

655

656 **Acknowledgements**

657 This study was in part funded by Ghent University (BOF-GOA), Stand up to Cancer (Kom op tegen

658 Kanker, the Flemish cancer society), Foundation against Cancer, Research Foundation Flanders (FWO)

659 and European Union's Horizon 2020 research and innovation program (grant agreement 826121). C.E.,

660 J.D.W., E.H. and R.V.P. were funded by a predoctoral fellowship grant from the FWO (1S07416N,

661 1S90621N, 1133120N and 11B3718N). F.A.C was supported by a Special Research Fund scholarship  
662 from Ghent University (BOF.DOC.2017.0026.01). A.M. was supported by a Special Research Fund  
663 scholarship from Ghent University (BOF.DOC.2019.0047.01), Stand up to Cancer and a predoctoral  
664 fellowship grant from the FWO (11C1621N). A.D. was supported by a postdoctoral fellowship grant  
665 from the Special Research Fund of Ghent University and the FWO (1224021N).

666

## 667 **References**

- 668 1. Taylor-Phillips, S. *et al.* Accuracy of non-invasive prenatal testing using cell-free DNA for detection of  
669 Down, Edwards and Patau syndromes: a systematic review and meta-analysis. *BMJ Open* **6**, e010002  
670 (2016).
- 671 2. E, S. *et al.* The circulating non-coding RNA landscape for biomarker research: lessons and prospects  
672 from cardiovascular diseases. *Acta Pharmacol. Sin.* **39**, 1085–1099 (2018).
- 673 3. Guay, C. & Regazzi, R. Circulating microRNAs as novel biomarkers for diabetes mellitus. *Nat. Rev.  
674 Endocrinol.* **9**, 513–521 (2013).
- 675 4. Zeng, L., Cui, J., Wu, H. & Lu, Q. The emerging role of circulating microRNAs as biomarkers in  
676 autoimmune diseases. *Autoimmunity* **47**, 419–429 (2014).
- 677 5. Sole, C., Arnaiz, E., Manterola, L., Otaegui, D. & Lawrie, C. H. The circulating transcriptome as a source  
678 of cancer liquid biopsy biomarkers. *Semin. Cancer Biol.* **58**, 100–108 (2019).
- 679 6. Zaporozhchenko, I. A., Ponomaryova, A. A., Rykova, E. Y. & Laktionov, P. P. The potential of circulating  
680 cell-free RNA as a cancer biomarker: challenges and opportunities. *Expert Rev. Mol. Diagn.* **18**, 133–  
681 145 (2018).
- 682 7. Ward Gahlawat, A. *et al.* Evaluation of Storage Tubes for Combined Analysis of Circulating Nucleic Acids  
683 in Liquid Biopsies. *Int. J. Mol. Sci.* **20**, (2019).
- 684 8. Sorber, L. *et al.* Circulating Cell-Free DNA and RNA Analysis as Liquid Biopsy: Optimal Centrifugation  
685 Protocol. *Cancers* **11**, (2019).
- 686 9. Söderström, A. C., Nybo, M., Nielsen, C. & Vinholt, P. J. The effect of centrifugation speed and time on  
687 pre-analytical platelet activation. *Clin. Chem. Lab. Med.* **54**, 1913–1920 (2016).

688 10. Das, S. *et al.* The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge  
689 and Technologies for Extracellular RNA Research. *Cell* **177**, 231–242 (2019).

690 11. Ainsztein, A. M. *et al.* The NIH Extracellular RNA Communication Consortium. *J. Extracell. Vesicles* **4**,  
691 27493 (2015).

692 12. Spidia. <https://www.spidia.eu/>.

693 13. CANCER-ID. CANCER-ID – Innovation in Medicine. <https://www.cancer-id.eu/>.

694 14. Mestdagh, P. *et al.* Evaluation of quantitative miRNA expression platforms in the microRNA quality  
695 control (miRQC) study. *Nat. Methods* **11**, 809–815 (2014).

696 15. Shah, J. S., Soon, P. S. & Marsh, D. J. Comparison of Methodologies to Detect Low Levels of Hemolysis  
697 in Serum for Accurate Assessment of Serum microRNAs. *PLoS One* **11**, e0153200 (2016).

698 16. Kirschner, M. B. *et al.* The Impact of Hemolysis on Cell-Free microRNA Biomarkers. *Front. Genet.* **4**, 94  
699 (2013).

700 17. Hulstaert, E. *et al.* Charting Extracellular Transcriptomes in The Human Biofluid RNA Atlas. *Cell Rep.* **33**,  
701 (2020).

702 18. Hulstaert, E. *et al.* Messenger RNA capture sequencing of extracellular RNA from human biofluids using  
703 a comprehensive set of spike-in controls. *STAR Protoc.* **2**, 100475 (2021).

704 19. Moore, H. M. *et al.* Biospecimen reporting for improved study quality (BRISQ). *J. Proteome Res.* **10**,  
705 3429–3438 (2011).

706 20. Moore, H. M. *et al.* Biospecimen reporting for improved study quality (BRISQ). *Cancer Cytopathol.* **119**,  
707 92–101 (2011).

708 21. Verwilt, J. *et al.* When DNA gets in the way: A cautionary note for DNA contamination in extracellular  
709 RNA-seq studies. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 18934–18936 (2020).

710 22. Sorber, L. *et al.* A Multicenter Study to Assess EGFR Mutational Status in Plasma: Focus on an Optimized  
711 Workflow for Liquid Biopsy in a Clinical Setting. *Cancers* **10**, (2018).

712 23. Deveson, I. W. *et al.* Representing genetic variation with synthetic DNA standards. *Nat. Methods* **13**,  
713 784–791 (2016).

714 24. Locati, M. D. *et al.* Improving small RNA-seq by using a synthetic spike-in set for size-range quality  
715 control together with a set for data normalization. *Nucleic Acids Res.* **43**, e89 (2015).

716 25. Hafner, M. *et al.* RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA  
717 cDNA libraries. *RNA N. Y. N* **17**, 1697–1712 (2011).

718 26. Van Goethem, A. *et al.* Depletion of tRNA-halves enables effective small RNA sequencing of low-input  
719 murine serum samples. *Sci. Rep.* **6**, 37876 (2016).

720 27. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data.  
721 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

722 28. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.  
723 *EMBnet.journal* **17**, 10–12 (2011).

724 29. Li, H. *lh3/seqtk*. (2021).

725 30. BBMap. *SourceForge* <https://sourceforge.net/projects/bbmap/>.

726 31. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification.  
727 *Nat. Biotechnol.* **34**, 525–527 (2016).

728 32. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).

729 33. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.  
730 *Bioinformatics* **26**, 841–842 (2010).

731 34. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. *Bioinformatics* **28**, 2184–  
732 2185 (2012).

733 35. GRCh38 - hg38 - Genome - Assembly - NCBI.  
734 [https://www.ncbi.nlm.nih.gov/assembly/GCF\\_000001405.26/](https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/).

735 36. Yates, A. D. *et al.* Ensembl 2020. *Nucleic Acids Res.* **48**, D682–D688 (2020).

736 37. Ensembl genome browser 91. <http://dec2017.archive.ensembl.org/index.html>.

737 38. FASTX-Toolkit. [http://hannonlab.cshl.edu/fastx\\_toolkit/](http://hannonlab.cshl.edu/fastx_toolkit/).

738 39. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short  
739 DNA sequences to the human genome. *Genome Biol.* **10**, R25 (2009).

740 40. Griffiths-Jones, S. The microRNA Registry. *Nucleic Acids Res.* **32**, D109–D111 (2004).

741 41. Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA  
742 sequences, targets and gene nomenclature. *Nucleic Acids Res.* **34**, D140–D144 (2006).

743 42. Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics.  
744 *Nucleic Acids Res.* **36**, D154–D158 (2008).

745 43. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing  
746 data. *Nucleic Acids Res.* **39**, D152–D157 (2011).

747 44. Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep  
748 sequencing data. *Nucleic Acids Res.* **42**, D68–D73 (2014).

749 45. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function.  
750 *Nucleic Acids Res.* **47**, D155–D162 (2019).

751 46. R: The R Project for Statistical Computing. <https://www.r-project.org/>.

752 47. How to Detect and Handle Outliers (e-book) | ASQ. <https://asq.org/quality-press/display-item?item=E0801>.

753 48. Modified z score.  
754 [www.ibm.com/support/knowledgecenter/ssep7j\\_11.1.0/com.ibm.swg.ba.cognos.ug\\_ca\\_dshb.doc/m  
755 odified\\_z.html \(2014\).](http://www.ibm.com/support/knowledgecenter/ssep7j_11.1.0/com.ibm.swg.ba.cognos.ug_ca_dshb.doc/modif_z.html)

756 49. Van Paemel, R. *et al.* Genome-wide study of the effect of blood collection tubes on the cell-free DNA  
757 methylome. *Epigenetics* 1–11 (2020) doi:10.1080/15592294.2020.1827714.

758

759

760 **Figure legends**

761

762 Within main text.

763

764 **Supplemental table legends**

765

766 **Supplemental table 1. Available literature on the influence of pre-analytics on RNA sequencing data,  
767 including studies on plasma and/or serum.** The pre-analytics from these studies are categorized into

768 different groups: number of blood tubes; hemolysis measured (yes/no); the fluid (serum/plasma or  
769 both); number of centrifugation protocols; number of RNA isolation kits; the RNA type; the gene  
770 expression analysis method; other pre-analytics.

771 **Supplemental table 2. Filter threshold of different RNA purification methods.** Kit: RNA purification  
772 kit abbreviation; mRNA threshold: median threshold that removes 95% of single positive genes  
773 between technical replicates; miRNA threshold: median threshold that removes 95% of single positive  
774 miRNAs between technical replicates. More explanation on these thresholds in methods section  
775 “Count threshold”. NA: Not applicable.

776 **Supplemental table 3. RNA Exome sequencing data statistics of RNA purification kit experiment**  
777 (**exRNAQC004**). UniqueID: RNA identifier; SampleID: combination of kit abbreviation and technical  
778 replicate number; raw\_reads: number of sequenced reads pairs; qcfiltered\_reads: number of read  
779 pairs after quality filtering; post\_subsampling: number of read pairs after subsampling;  
780 post\_deduplication: number of read pairs after Clumpify duplicate removal; duplicate\_prct: % of  
781 duplicates in subsampled reads; kallisto\_prct\_alignment: % of duplicate removed reads that were  
782 pseudoaligned; strandedness\_prct: % of reads on correct strand (stranded protocol).

783 **Supplemental table 4. Pre-analytical variable annotation for all samples included in the exRNAQC**  
784 **study.** In the first tab, the different pre-analytical variables are listed, and for each of them a  
785 description is provided. Note that the pre-analytics are categorized into three groups, i.e. variables  
786 linked to the blood draw (with prefix B\_), biofluid preparation (with prefix L\_) or RNA purification (with  
787 prefix R\_). This tab also includes a description of the BRISQ elements<sup>19,20</sup>. In the following tabs,  
788 annotated samples are listed per experiment (the RNA Exome sequencing of the RNA purification kit  
789 study (exRNAQC004), the RNA Exome sequencing of the blood collection tube study (exRNAQC005),  
790 the Small RNA sequencing of the RNA purification kit study (exRNAQC011), or the Small RNA  
791 sequencing of the blood collection tube study (exRNAQC013)).

792 **Supplemental table 5. Small RNA sequencing data statistics of RNA purification kit experiment**  
793 (**exRNAQC011**). UniqueID: RNA identifier; SampleID: combination of kit abbreviation and technical

794 replicate number; raw\_reads: number of sequenced (single-end) reads; qcfiltered\_reads: number of  
795 reads after quality filtering; post\_subsampling: number of reads after subsampling; aligned\_reads:  
796 number of subsampled reads aligned to reference genome; spike\_reads: number of reads aligned to  
797 spikes; prct\_aligned: % of subsampled reads aligned to reference genome; prct\_aligned\_plus\_spikes:  
798 % of subsampled reads aligned to reference genome or to spikes.

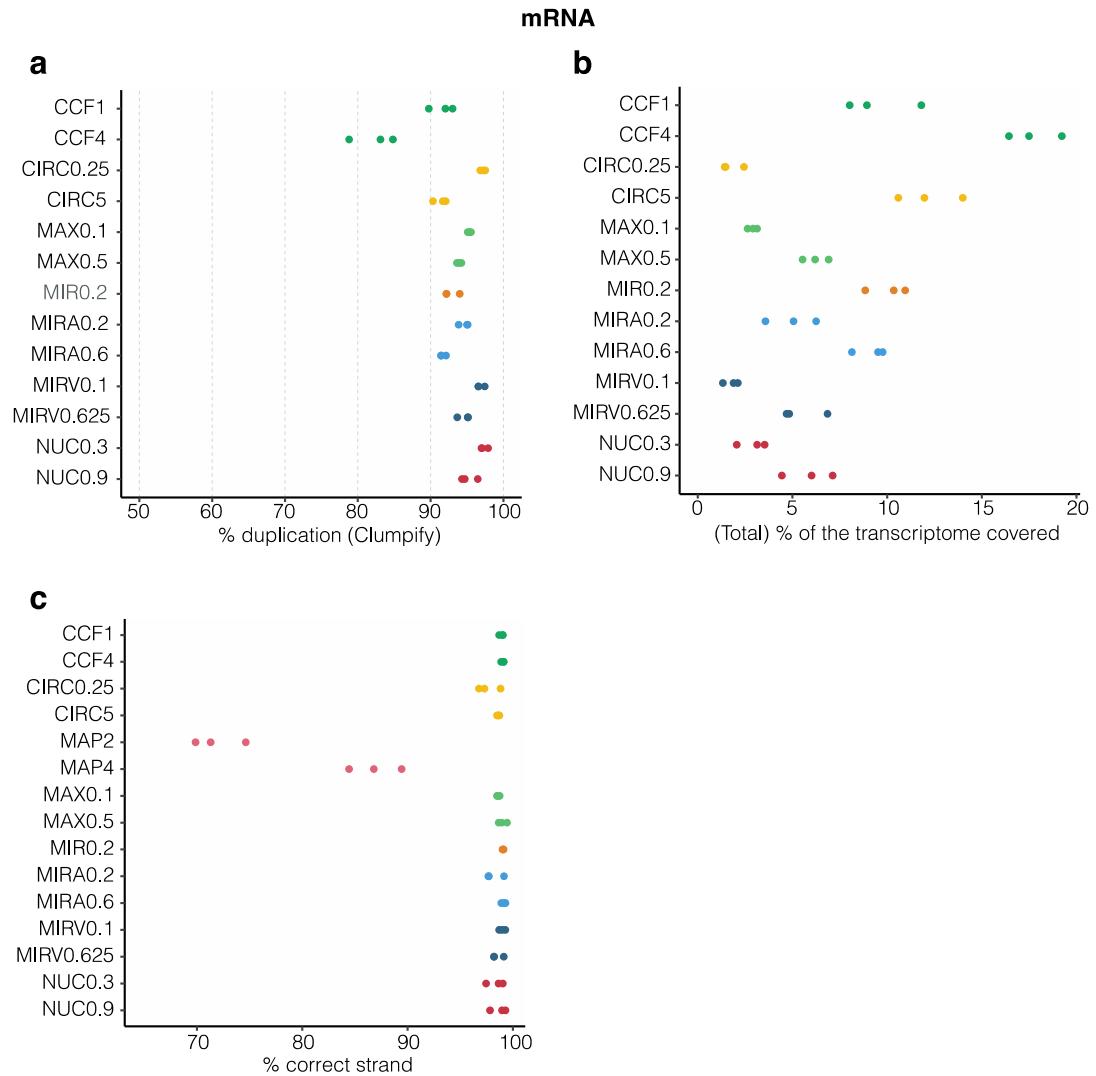
799 **Supplemental table 6. RNA Exome sequencing data statistics of blood collection tube experiment**

800 **(exRNAQC005).** UniqueID: RNA identifier; SampleID: combination of tube abbreviation, donor number  
801 (biological replicate), and time point; raw\_reads: number of sequenced reads pairs; qcfiltered\_reads:  
802 number of read pairs after quality filtering; post\_subsampling: number of read pairs after subsampling;  
803 post\_deduplication: number of read pairs after Clumpify duplicate removal; duplicate\_prct: % of  
804 duplicates in subsampled reads; kallisto\_prct\_alignment: % of duplicate removed reads that were  
805 pseudoaligned; strandedness\_prct: % of reads on correct strand (stranded protocol).

806 **Supplemental table 7. Small RNA sequencing data statistics of blood collection tube experiment**

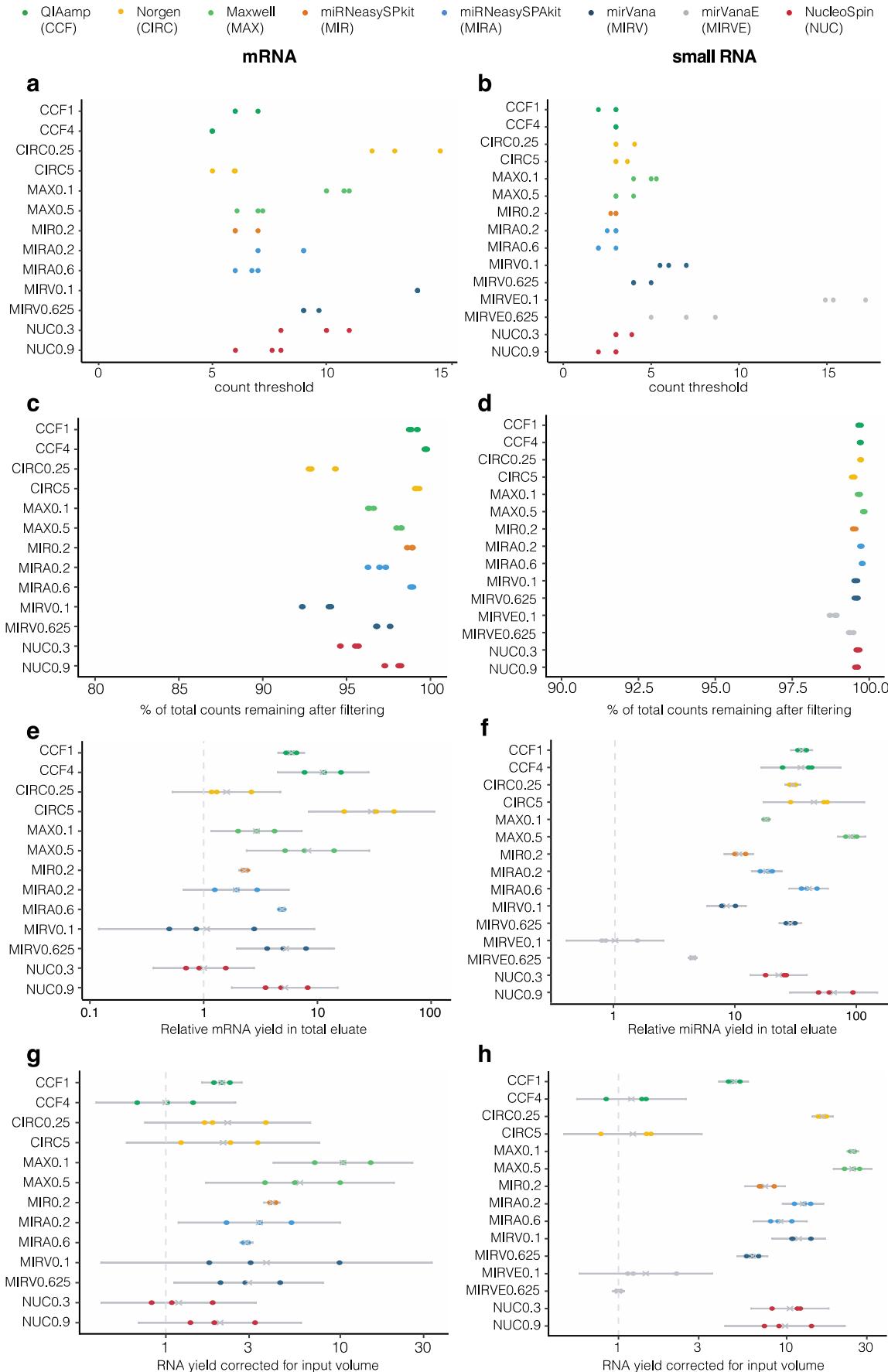
807 **(exRNAQC013).** UniqueID: RNA identifier; SampleID: combination of tube abbreviation, donor number  
808 (biological replicate), and time point; raw\_reads: number of sequenced (single-end) reads;  
809 qcfiltered\_reads: number of reads after quality filtering; post\_subsampling: number of reads after  
810 subsampling; aligned\_reads: number of subsampled reads aligned to reference genome; spike\_reads:  
811 number of reads aligned to spikes; prct\_aligned: % of subsampled reads aligned to reference genome;  
812 prct\_aligned\_plus\_spikes: % of subsampled reads aligned to reference genome or to spikes.

813 **Supplemental table 8. Capture probes for Sequin and External RNA Control Consortium (ERCC) spike-**


814 **in controls.** Oligos to capture the Sequin and ERCC spike-in controls are listed. For each oligo, the  
815 probe\_ID, sequence, GC content (%), melting temperature (Tm in °C), ΔG and binding position in the  
816 Sequin or ERCC spike-in sequence.

817

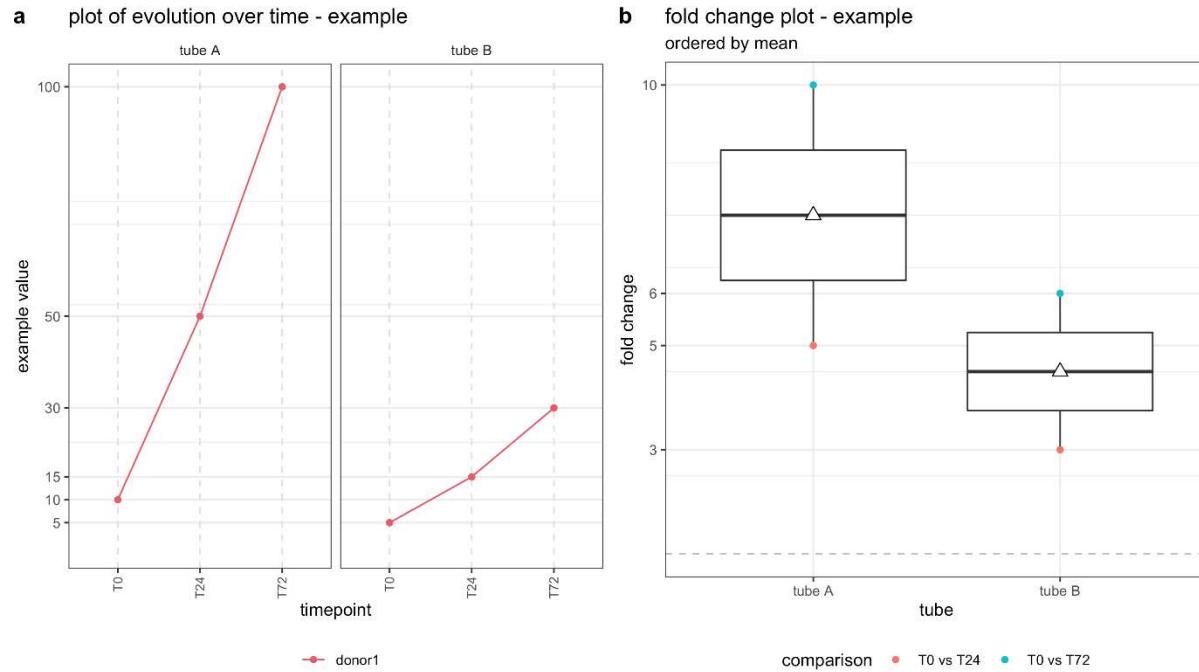
818 **Supplemental figures and legends**


819

● QIAamp (CCF) ● Norgen (CIRC) ● Maxwell (MAX) ● MagNA Pure (MAP) ● miRNeasySPkit (MIR) ● miRNeasySPAkIt (MIRA) ● mirVana (MIRV) ● mirVanaE (MIRVE) ● NucleoSpin (NUC)



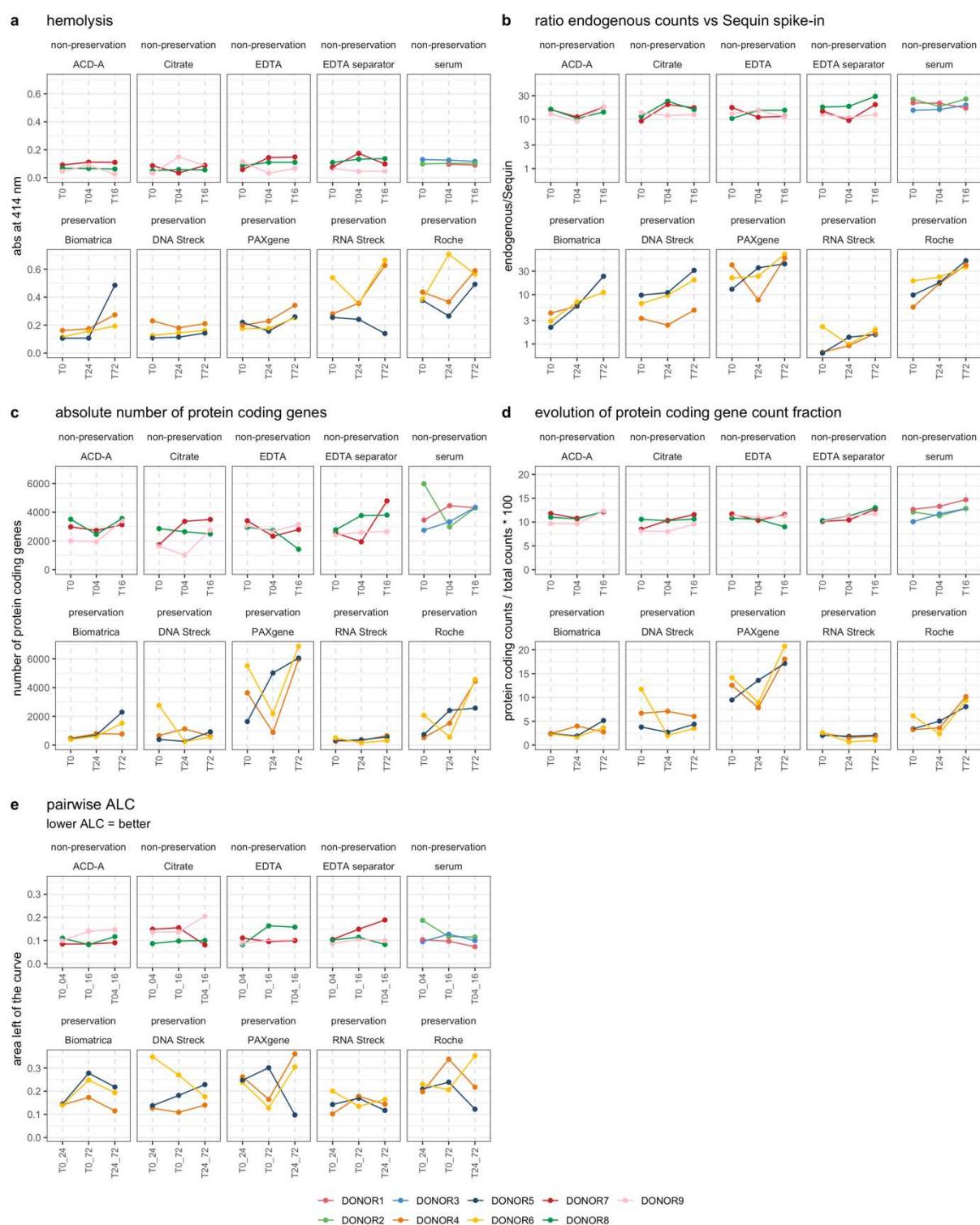
821 **Supplemental figure 1: Performance of RNA purification kits on duplication rate, transcriptome**  
822 **coverage and strandedness at mRNA capture sequencing (mRNA) and small RNA sequencing (small**  
823 **RNA) level.** a: percentage of read duplicates found by Clumpify after subsampling; b: percentage of  
824 bases in the total transcriptome that are covered at least once; c: percentage of reads on correct strand  
825 according to strand-specific protocol; Number that follows the abbreviation of the purification kit is  
826 the plasma input volume (in ml).


827



829 **Supplemental figure 2: Performance of RNA purification kits on filter threshold, data retention, yield,**  
830 **and efficiency at mRNA capture sequencing (mRNA) and small RNA sequencing (small RNA) level.**

831 a&b: count threshold required to eliminate at least 95% of single positive genes or miRNAs, resp.,  
832 between technical replicates; c&d: data retention – % of total counts that are kept after applying count  
833 threshold; e&f: relative mRNA and miRNA yield, resp., obtained by correcting the RNA concentration  
834 for eluate volume, values are log rescaled to the lowest mean of all kits and transformed back to linear  
835 space, 95% confidence interval is shown; g&h: relative mRNA and miRNA extraction efficiency, resp.,  
836 obtained by correcting the RNA yield for input volume, values are log rescaled to the lowest mean of  
837 all kits and transformed back to linear space, 95% confidence interval is shown. Number that follows  
838 the abbreviation of the purification kit is the plasma input volume (in ml).

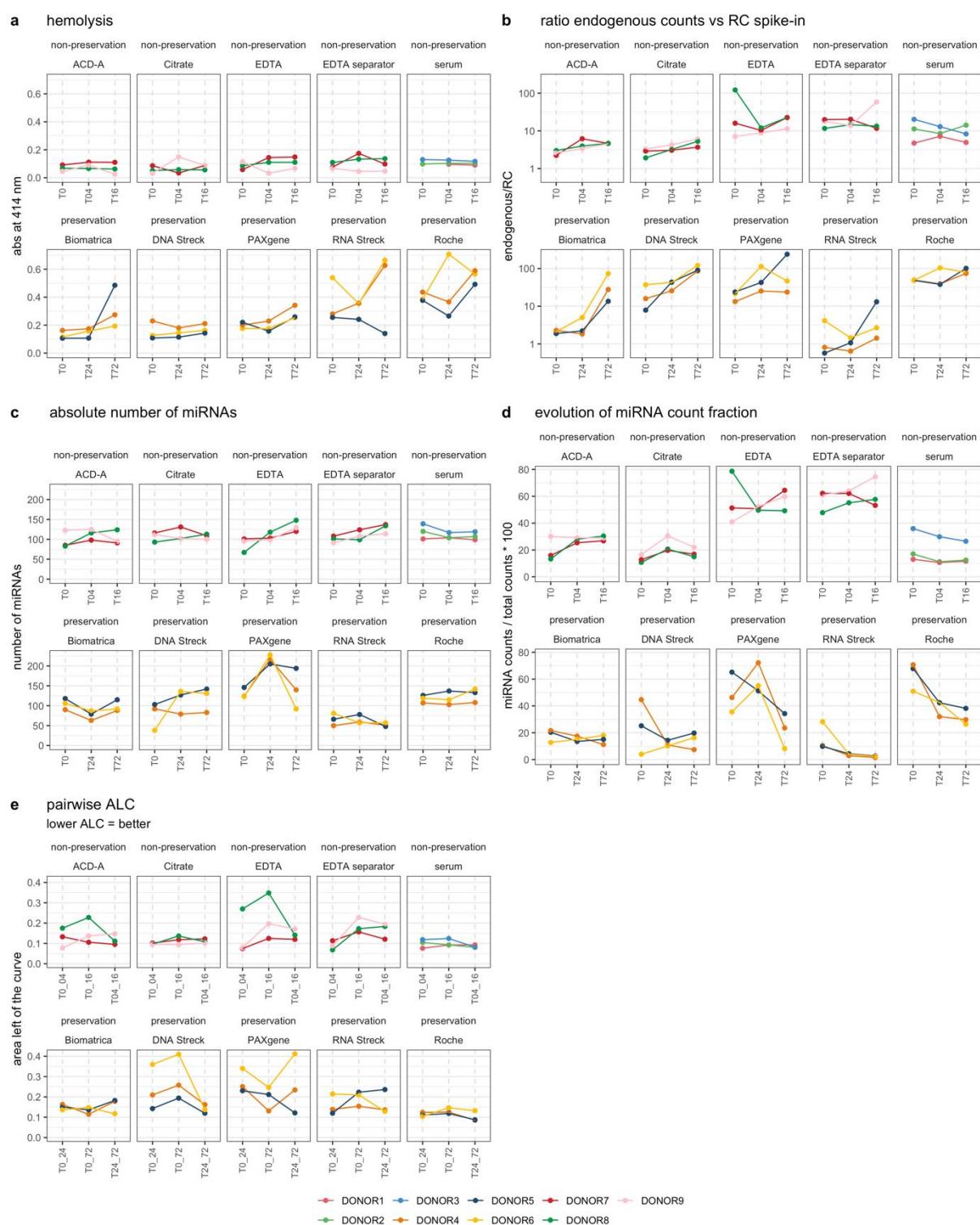

839



840

841 **Supplemental figure 3. Illustrative example of quality control metric evolution over time** for one  
842 donor, two tubes and three time points (a) and corresponding boxplot of the fold changes per tube  
843 (b). T0: plasma prepared immediately after blood draw, T24, T72: plasma prepared 24 hours and 72  
844 hours after blood draw, respectively. The white triangle on the boxplot corresponds to the mean.  
845 Reproduced from Van Paemel *et al.*<sup>49</sup>.

846




847

848 **Supplemental figure 4. Performance metrics of blood tubes over time at mRNA level. a: evolution of**  
 849 **hemolysis in plasma, measured by absorbance at 414 nm with Nanodrop; b: Evolution of relative RNA**  
 850 **concentration calculated based on number of endogenous counts vs Sequin spike-in RNA; c: evolution**  
 851 **the number of the absolute number of protein coding genes; d:evolution of the fraction of counts**

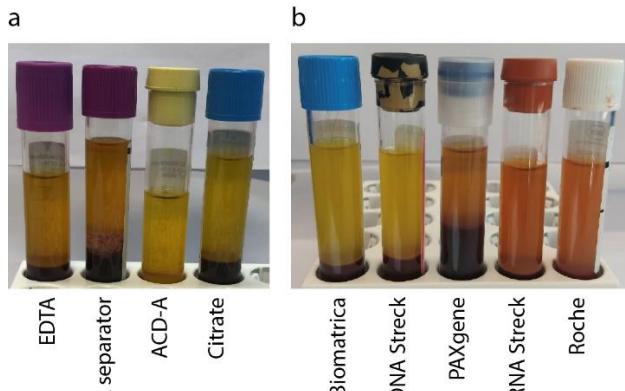
852 mapping to mRNAs vs. all counts; e: evolution of the pairwise area left of the curve, a reproducibility  
853 metric. T0: plasma prepared immediately after blood draw. T04, T16, T24, T72: plasma prepared 4  
854 hours, 16 hours, 24 hours and 72 hours after blood draw, respectively. Note that different donors were  
855 sampled and that tubes were processed at different time points for preservation and non-preservation  
856 tubes.

857



858

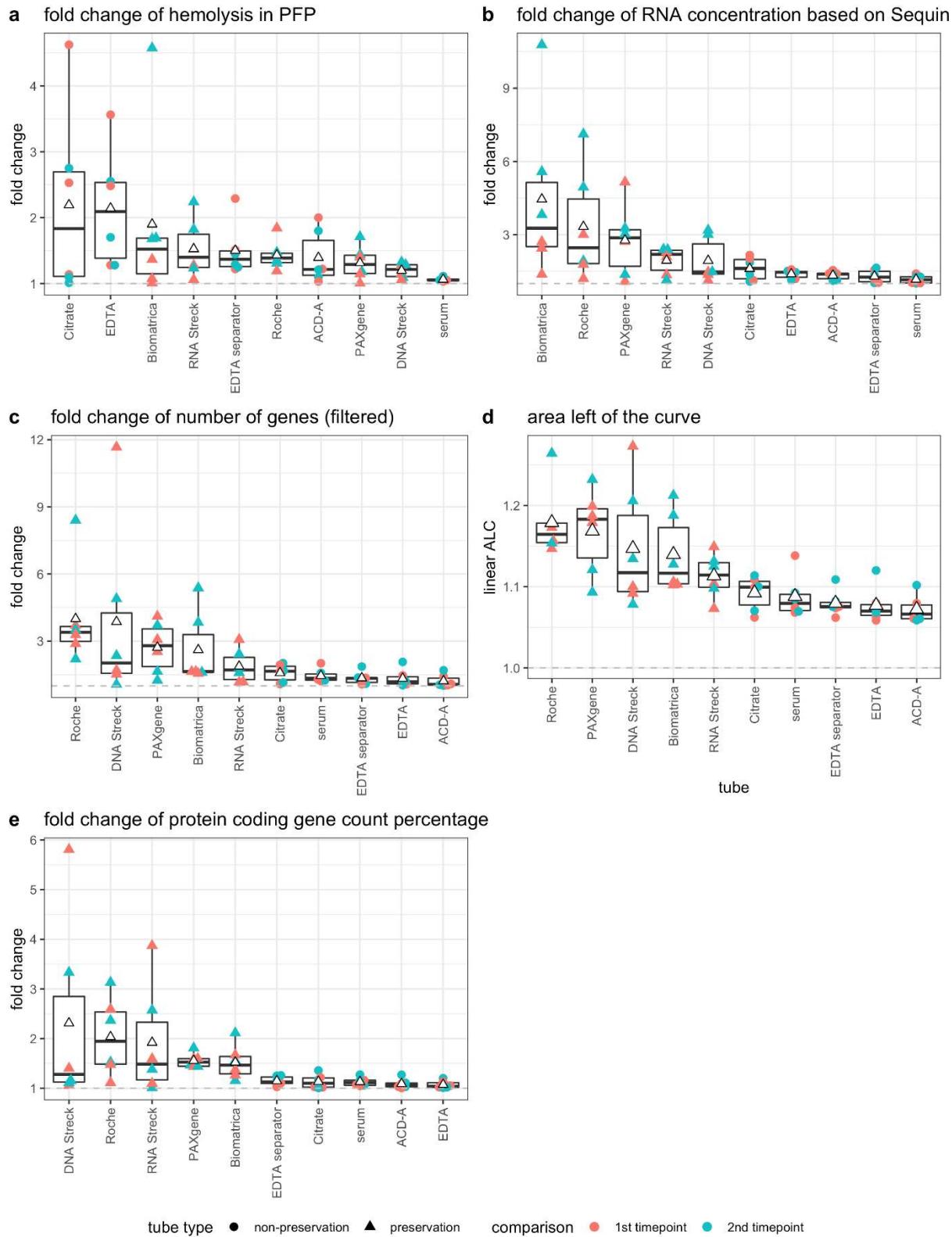
859 **Supplemental figure 5. Performance metrics of blood tubes over time at small RNA level. a: evolution**  
 860 **of hemolysis in plasma, measured by absorbance at 414 nm with Nanodrop; b: evolution of relative**  
 861 **RNA concentration calculated based on number of endogenous counts vs RC spike-in RNA; c: evolution**  
 862 **the number of the absolute number of micro RNAs; d: evolution of the fraction of counts mapping to**


863 micro RNAs vs. all counts; e: evolution of the pairwise area left of the curve, a reproducibility metric.

864 T0: plasma prepared immediately after blood draw. T04, T16, T24, T72: plasma prepared 4 hours, 16

865 hours, 24 hours and 72 hours after blood draw, respectively. Note that different donors were sampled

866 and that tubes were processed at different time points for preservation and non-preservation tubes.


867



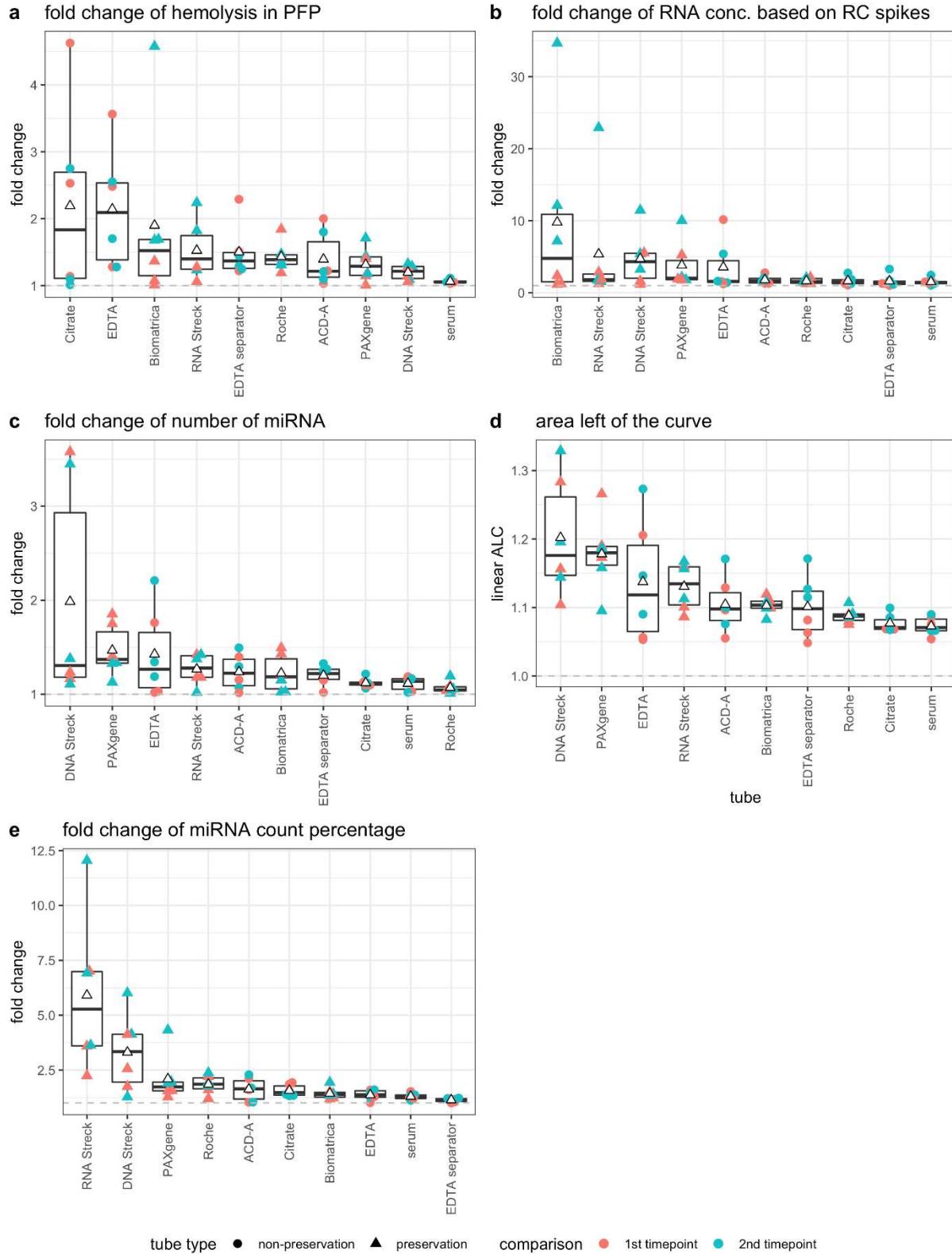
868

869 **Supplemental figure 6. Example of hemolysis in preservation tubes.** (a) Visual inspection of non-  
870 preservation plasma tubes of DONOR7 (Supplemental figure 4a and 5a) and (b) of preservation plasma  
871 tubes of DONOR5 (Supplemental figure 4a and 5a) at time point T0. For DONOR5, plasma from the  
872 PAXgene, RNA Streck and Roche tube showed to be hemolytic, which is in line with the NanoDrop  
873 measurements (Supplemental figure 4a and 5a).

874



875


876 **Supplemental figure 7. Fold changes over time at mRNA level for each blood collection tube metric.**

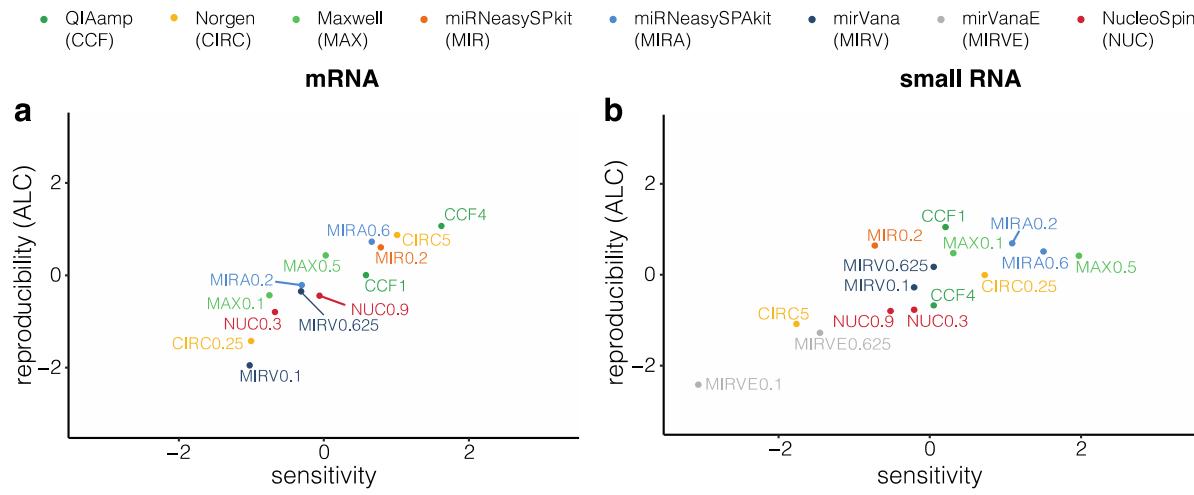
877 a: boxplot of the fold change within each donor across time points, per tube, for hemolysis in platelet-

878 free plasma, as measures by absorbance at 414 nm with Nanodrop; b: boxplot of fold change of relative

879 RNA concentration, based on the ratio of endogenous reads vs Sequin spike-in RNA reads; c: boxplot  
880 of the fold change of the number of genes, after filtering genes with counts fewer than 6 reads; d: area  
881 left of the curve, transformed from log2 to linear scale; e: boxplot of the fold change of the fraction of  
882 the counts mapping to protein coding genes vs. all counts. The white triangle on the boxplot  
883 corresponds to the mean of the fold change. 1<sup>st</sup> time point corresponds to the comparison of T04 vs.  
884 T0 (non-preservation tubes: BD Vacutainer Plastic K2EDTA tube (EDTA), Vacutette Tube 8 ml K2E  
885 K2EDTA Separator (EDTA separator) , BD Vacutainer Glass ACD Solution A tube (ACD-A), Vacutette Tube  
886 9 ml 9NC Coagulation sodium citrate 3.2% (citrate), and BD Vacutainer SST II Advance Tube (serum))  
887 or T24 vs. T0 (preservation tubes: Cell-Free RNA BCT (RNA Streck), Cell-Free DNA BCT (DNA Streck),  
888 PAXgene Blood ccfDNA Tube (PAXgene), Cell-Free DNA Collection Tube (Roche) and LBgard Blood Tube  
889 (Biomatrica)). 2<sup>nd</sup> time point corresponds to the comparison of T16 vs. T0 (non-preservation tubes) or  
890 T72 vs T0 (preservation tubes). T0: plasma prepared immediately after blood draw. T04, T16, T24, T72:  
891 plasma prepared 4 hours, 16 hours, 24 hours and 72 hours after blood draw, respectively. Note that  
892 different donors were sampled and that tubes were processed at different time points for preservation  
893 and non-preservation tubes.

894




895

896 **Supplemental figure 8. Fold changes over time at small RNA level for each blood collection tube**

897 **metric.** a: boxplot of the fold change within each donor across time points, per tube, for hemolysis in  
898 platelet-free plasma, as measures by absorbance at 414 nm with Nanodrop; b: boxplot of fold change

899 of relative RNA concentration, based on the ratio of endogenous reads vs RC spike-in RNA reads; c:  
900 boxplot of the fold change of the number of micro RNAs, after filtering miRNAs with counts fewer than  
901 3 reads; d: area left of the curve, transformed from log2 to linear scale; e: boxplot of the fold change  
902 of the fraction of the counts mapping to micro RNAs vs. all counts. The white triangle on the boxplot  
903 corresponds to the mean of the fold change. 1<sup>st</sup> time point corresponds to the comparison of T04 vs.  
904 T0 (non-preservation tubes: BD Vacutainer Plastic K2EDTA tube (EDTA), Vacutette Tube 8 ml K2E  
905 K2EDTA Separator (EDTA separator) , BD Vacutainer Glass ACD Solution A tube (ACD-A), Vacutette Tube  
906 9 ml 9NC Coagulation sodium citrate 3.2% (citrate), and BD Vacutainer SST II Advance Tube (serum))  
907 or T24 vs. T0 (preservation tubes: Cell-Free RNA BCT (RNA Streck), Cell-Free DNA BCT (DNA Streck),  
908 PAXgene Blood ccfDNA Tube (PAXgene), Cell-Free DNA Collection Tube (Roche) and LBgard Blood Tube  
909 (Biomatrica)). 2<sup>nd</sup> time point corresponds to the comparison of T16 vs. T0 (non-preservation tubes) or  
910 T72 vs T0 (preservation tubes). T0: plasma prepared immediately after blood draw. T04, T16, T24, T72:  
911 plasma prepared 4 hours, 16 hours, 24 hours and 72 hours after blood draw, respectively. Note that  
912 different donors were sampled and that tubes were processed at different time points for preservation  
913 and non-preservation tubes.

914

