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Abstract Causal mutations and their frequency in nature are well-characterized for herbicide12

resistance. However, we still lack understanding of the extent of parallelism in the mutational13

origin of target-site resistance (TSR), the role of standing variation and gene flow in the spread of14

TSR variants, and allelic interactions that mediate their selective advantage. We addressed these15

questions with genomic data from 18 agricultural populations of Amaranthus tuberculatus, which16

we show to have undergone a massive expansion over the past century, with a contemporary17

effective population size estimate of 8x107. We found nine TSR variants, three of which were18

common—showing extreme parallelism in mutational origin and an important role of gene flow19

in their geographic spread. The number of repeated origins varied across TSR loci and generally20

showed stronger signals of selection on de novomutations, but with considerable evidence for21

selection on standing variation. Allele ages at TSR loci varied from ~10-250 years old, greatly22

pre-dating the advent of herbicides. The evolutionary history of TSR has also been shaped by23

both intra- and inter-locus allelic interactions. We found evidence of haplotype competition24

between two TSR mutations, their successes in part modulated by either adaptive introgression25

of, or epistasis with, genome-wide resistance alleles. Together, this work reveals a remarkable26

example of spatial parallel evolution—the ability of independent mutations to spread due to27

selection contingent on not only the time, place, and background on which they arise but the28

haplotypes they encounter.29

30

Introduction31

The evolution of resistance in agricultural pest populations occurs rapidly and repeatedly in re-32

sponse to herbicide and pesticide applications. Reports of herbicide resistance across agricultural33

landscapes have been steadily growing, threatening crop productivity and greatly raising costs for34

agricultural production (Peterson et al., 2018). These reports put a lower limit on the estimated35

number of unique resistance cases—of over 500 across the globe—based on just the occurrence of36

resistance to different herbicidemode-of-actions across different species (Heap, 2014) and barring37

the probably minor role of interspecific hybridization. For acetolactate synthase (ALS) inhibiting38

herbicides alone, over 160 species have evolved resistance since the first report of resistance in39

1986, which was only five years after their initial introduction (Comai and Stalker, 1986;Whitcomb,40

1999; Heap, 2014). These numbers are likely a vast underestimate of the repeatability of herbicide41
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resistance evolution. For ALS herbicides, for example, non-synonymous substitutions at 8 distinct42

codons confer resistance (Tranel and Wright, 2002), with multiple independent causal mutations43

often occurring in the samepopulation (Heap, 2014; Kreiner et al., 2018). In addition to repeated re-44

sistance evolution through distinct causal resistance loci, it is likely that for a single locus, resistance45

mutations have arisen repeatedly within a species (Kreiner et al., 2019). While these observations46

suggest herbicide resistance may be among the most extreme cases of contemporary parallel evo-47

lution, it still remains unclear how often resistance is spread across the range through gene flow48

versus repeated independent origins.49

Population genomic approaches can greatly help to understand the origin and spread of her-50

bicide resistance. Genomic methods have tested for differences in population structure among51

resistant and susceptible agricultural populations (Küpper et al., 2018), reconstructed complex ge-52

nomic regions associatedwith resistance (Molin et al., 2017), and investigated patterns of selection53

on and the extent of convergence between loci conferring non-target site resistance (Van Etten54

et al., 2019; Kreiner et al., 2020). But even for validated resistance mutations that occur within55

the gene whose product is targeted by the herbicide (target-site resistance, TSR mutations), inves-56

tigations of their recent evolutionary history are sparse (but see Flood et al. (2016); Kreiner et al.57

(2019)). With large-effect mutations identified as being causal for conferring target-site resistance58

to nine herbicides at 19 loci across many species (Murphy and Tranel, 2019), the field is ripe for the59

application of population genomic techniques for resolving the evolutionary history of herbicide60

resistance in weed populations.61

In contrast to most of the selective sweep literature coming from within-host studies of drug62

resistance in HIV (e.g. Pennings et al. (2014); Feder et al. (2016))—where sweeps occur in a closed-63

system, often starting from a single founding viral lineage and evolving within individual patients64

—evolutionary patterns of resistance to herbicides across a relevant agricultural landscape are by65

nomeans expected to be as tidy (but see Feder et al. (2017, 2019) for spatial structure in HIV evolu-66

tion). Weedy agricultural populations themselves, or at least genotype compositions, may be tran-67

sient in space and time due to widespread gene flow by pollen and seed dispersal, and changing68

selection regimes through rotations of both focal crops and herbicide applications and mixtures69

(Naylor, 2003; Holst et al., 2007; Neve et al., 2009). Consequently, persistent agricultural weed70

populations likely comprise a collection of resistant haplotypes that have arisen and dispersed71

across the landscape. Recently, population genomic evidence supported this prediction for a sub-72

set of newly problematic glyphosate-resistant agricultural populations of Amaranthus tuberculatus73

in Ontario, Canada, where both genome-wide and fine-scale genomic signatures in and around an74

EPSPS gene amplification (conferring resistance to glyphosate herbicides) shows similarity tomany75

distinct populations in the Midwestern US (Kreiner et al., 2019), suggesting long-distance dispersal76

as contributing to the spread of glyphosate resistance. In a metapopulation context, problematic77

weeds are likely to have large effective population sizes (N
e
) as a result of large census population78

sizes, widespread distributions, considerable seedbanks (Hedrick, 1995; Vitalis et al., 2004), and79

occasionally outcrossing mating systems, offering more independent backgrounds on which new80

mutations arise (Kreiner et al., 2018). Thus, large, outcrossing weed populations such as agricul-81

tural Amaranthus tuberculatus populations may be characterized by both multiple origins of TSR82

mutations and haplotype sharing among a network of populations across the landscape.83

The evolution of resistance to a given herbicide in a network of interconnected populations84

should be well described by amodel of spatial parallel mutation (Ralph and Coop, 2010), where the85

spread of new adaptive mutations across the range depends on the mutation rate, the extent of86

gene flow among subpopulations, and the density of adaptive haplotypes already present in those87

subpopulations. How independent mutations interact upon meeting will depend on the extent88

of their intra- and inter-locus interactions (Ralph and Coop, 2010), and in the case of resistance,89

their relative cost and benefits in the absence and presence of herbicides (Vila-Aiub et al., 2009;90

Baucom, 2019).91

Here we investigate repeatability in the evolutionary histories of characterized target-site resis-92
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tance mutations for acetolactate synthase (ALS) inhibiting and protoporphyrinogen oxidase (PPO)93

inhibiting herbicides in a widespread agricultural weed, Amaranthus tuberculatus. We infer the94

number of TSR mutational origins across populations, examining the signals left behind by both95

mutation and recombination. Specifically, we implement ancestral recombination graph (ARG)96

based methods that offer a powerful approach for inference of selective history by providing near-97

complete information on relatedness among haplotypes (Rasmussen et al., 2014), and coupled98

with tree-sequenced based estimates of (N
e
) through time, allow for powerful hypothesis testing99

about the role of standing variation versus new mutation in local adaptation. ARGs have seen100

limited implementation outside of human systems for examining patterns of local adaptation but101

recently have been used to infer the evolutionary processes that govern islands of differentiation102

across birds (Hejase et al., 2020).103

In addition to inferring the number of mutational origins, we characterize evidence of selec-104

tion on new mutations versus standing genetic variation on each origin directly by quantifying105

heterogeneity in their allelic ages based on contemporary N
e
estimates, implementing two tree-106

based methods that tests for a consistent or a recent shift in selection throughout a mutation’s107

history, and inferring selection coefficients through time. We find considerable heterogeneity in108

whether independently arisen TSR variants are associated with pronounced signals of selection,109

some of which may be mediated by intra- and inter-locus allelic interactions. We thus also exam-110

ine these interactions directly, in order to assess the extent that extreme selection from herbicides111

on TSRmutations has led to observable evidence of genome-wide adaptive introgression or epista-112

sis, as well as competition among resistant haplotypes. Our detailed population genomic analysis113

of the repeatability of target-site herbicide resistance evolution advances our understanding of114

rapid adaptation of multicellular organisms to an extreme selective pressure.115

Results116

Types of Target-site Mutations117

We examined eight ALS, three PPO, and one photosystem II protein D1 (psbA) loci for substitu-118

tions known to confer TSR to 3 distinct classes of herbicides in Amaranthus tuberculatus and used119

whole-genome information to determine signatures of selection and demographic patterns in 19120

agricultural populations in the Midwestern USA and Southwestern Ontario, Canada. Across 152 in-121

dividuals, we found nine types of known TSR mutations to two classes of herbicides for which the122

causal alleles have been verified (Table 1). These nine mutations include one mutation conferring123

resistance to PPO inhibiting herbicides, and eight distinct ALS resistance mutations. We previously124

characterized two types of glyphosate resistance (SNP and gene amplification) in these samples125

(Kreiner et al., 2019), so we focus here primarily on PPO and ALS TSR mutations.126

The nine unique PPO and ALS target-site resistant mutations occur at seven distinct amino acid127

positions, with two positions segregating for multiallelic resistance: two non-synonymous changes128

at codons 197 and 653 in the ALS gene. Six out of nine variants are rare (<5 instances found),129

in contrast to the common Trp-574-Leu and Ser-653-Asn nonsynonymous substitutions, and one130

variant of the ΔGly210 deletion (Table 1). Notably, the most common resistance mutational variant131

(referring to identity-by-state), Trp-574-Leu, is found in 53% of agricultural individuals, the second132

most common, Ser-653-Asn, in 32% of individuals (Table 1). Between these two most frequent133

ALS mutations alone, 74% of individuals sampled here segregate for resistance to ALS-inhibiting134

herbicides. Accounting for rare ALS resistance mutations only increases this percentage to 75%,135

since these rare SNPs are almost exclusively found stacked on other resistant backgrounds.136

At a regional scale (within Essex County, Walpole Island, and the Midwestern USA), multiple137

causal changes segregate within each region for ALS resistance. At the population level, 5/8 popu-138

lations within the Midwest, 5/5 populations in Essex County, and 4/6 populations in Walpole har-139

bour multiple causal ALS mutations (Table 1). Thus, just at the level of resistance variant types, we140

observe convergent evolution of resistance to ALS herbicides at national, regional, and population141
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Table 1. Number (and frequency) of resistant individuals and alleles for loci causal to PPO and ALS herbicides globally, and within each

agricultural region.

PPO ALS

ΔGly210 Trp-574-

Leu

Ser-653-

Asn

Ser-653-

Thr

Gly-654-

Phe

Pro-197-

Leu

Pro-197-

His

Ala-122-

Ser

Asp-376-

Glu

Global Indiv. 22 (0.145) 80 (0.526) 48 (0.316) 2 (0.013) 1 (0.007) 1 (0.007) 1 (0.007) 2 (0.013) 3 (0.020)

Global Allele 25 (0.082) 106 (0.349) 59 (0.194) 2 (0.007) 1(0.003) 1 (0.003) 1 (0.003) 2 (0.007) 3 (0.010)

Walpole Allele 0 12 (0.162) 12 (0.162) 1 (0.013) 0 0 0 0 0

Essex Allele 1 (0.013) 23 (0.288) 35 (0.438) 0 1 (0.013) 0 1(0.013) 2 (0.025) 3 (0.038)

Midwest Allele 24 (0.16) 71 (0.47) 12 (0.08) 0 0 1 (0.007) 0 0 0

scales.142

Regional Selective Sweep Signals143

To learn how and how often the individual variants might have arisen, we first visualized selec-144

tive sweep patterns at PPO and ALS genes—two genes that happen to occur 250 bps apart—and145

especially with respect to the common Trp-574-Leu, Ser-653-Asn, ΔGly210 loci. In particular, we146

assayed the extent to which strong, recent selection from herbicides at these genes has led to147

reductions in diversity, and increases in haplotype homozygosity and linkage in the neighbouring148

genomic region. Corresponding selective sweep signals appear to be highly heterogeneous across149

geographic regions and across TSR mutations (Figure 1). The most pronounced selective sweep150

signal at the regional level is for the ALS Ser-653-Asn locus, in our large collection of nearby pop-151

ulations from Essex county. These resistant haplotypes show a dramatic excess of homozygosity152

over susceptible haplotypes for nearly 10 Mb (XPEHH, Figure 1 top-left). The breadth of the impact153

of selection on local chromosome-wide LD is worth noting—this extended sweep signal is even154

larger than what was seen for an EPSPS-related gene amplification whose selective sweep in re-155

sponse to glyphosate herbicides spanned 6.5 Mb in Walpole populations (Kreiner et al., 2019). In156

comparison to homozygosity in Essex, Ser-653-Asn haplotypes in Essex show amore muted signal157

in LD withmissense SNPs (r2) and pairwise diversity for a shorter ~6Mb (Figure 1, topmiddle/right).158

As a quick aside, we used missense SNPs as we expected them to be less influenced by population159

structure and admixture (Good, 2020) compared to synonymous SNPs, but present the correlation160

between genome-wide LD with synonymous and missense SNPs in Sup Figure 3.161

Outside of Essex, and when excluding Ser-653-Asn, selective sweep signals are much subtler162

in Walpole and especially in Midwest, the latter in part likely driven by lower regional allele fre-163

quencies and our broader population sampling (Table 1). For the other common ALS TSR allele,164

LD between Trp-574-Leu and surrounding missense mutations remains elevated for ~6 Mb over165

the chromosome-wide background in both Essex andWalpole (r=0.0630 and r=0.0461 respectively,166

compared to 0.0300 in Midwest) (Figure 1), but haplotypes associated with Trp-574-Leu show little167

reduction in diversity and homozygosity, except for the latter in Walpole. The PPO ΔGly210 is only168

found at considerable frequencies in the Midwest, but regional sweep signals based on homozy-169

gosity, diversity, and LD are absent with respect to presence absence for the deletion.170

Despite inconsistent sweep signals, the mutations we describe here are extremely likely to171

have experienced selection over their history, but varying over space and time. We know from172

previous functional validation that these mutations are causal for resistance to ALS or PPO inhibit-173

ing herbicides [in Amaranthus tuberculatus for the PPO deletion, as well as ALS Trp-574-Leu, and174

both Ser-653-Asn and Ser-653-Thr substitutions (Matthew J. Foes et al., 1998; Shoup et al., 2003;175

Patzoldt and Tranel, 2007), and in other congeners for the remaining mutations (McNaughton176

et al., 2001; Whaley et al., 2004; Nakka et al., 2017; Singh et al., 2018)]. ALS inhibiting herbicides177
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Figure 1. Sweep-scan summary statistics by geographic region. Left) Difference in integrated haplotype homozygosities (XPEHH) between

haplotypes carrying the focal TSR mutation and susceptible haplotypes. Middle) Difference in mean pairwise diversity between haplotypes

carrying the focal TSR mutation and susceptible haplotypes. Right) r2 of other missense mutations with focal TSR mutation. In all columns,

dashed vertical lines denote PPO (left) and ALS (right) genes, their close proximity of 250 kb apparent here.

were among the most popular mode-of-action for weed control in crops beginning in the 1980s178

(Brown, 1990) and are widely used in both corn and soy production systems, although their preva-179

lence decreased in the 1990s as resistance became common and with the widespread adoption of180

glyphosate-resistant crops. When at its peak in the late 1990s, PPO herbicides represented 10% of181

annual applications in the USA; by 2006 its national application rate had dropped to 1%. However,182

following widespread resistance to glyphosate, there was a resurgence in use of PPO inhibitors183

both for soil-residual and postemergence control of A. tuberculatus, particularly in soybean (USDA-184

NASS, 2012; Dayan et al., 2018). To better understand the evolutionary processes that govern the185

spread of resistance within and among populations, we next characterized the number of inde-186

pendent origins for each high-frequency TSR variant and attempted to identify genomic causes187

and consequences of their distinct selective histories.188

Inferring the genealogical history of TSR mutations189

The patterns of similarity among phased haplotypes (including 1 kb upstream and downstream of190

both the ALS and PPO genes) across resistant individuals illustrates that repeated origins may be191

the rule rather than the exception for common resistance alleles (Sup Figure 1; ALS Trp-574-Leu192

and Ser-653-Asn, PPO ΔGly210); all three common resistance types show multiple clusters of re-193

sistant haplotypes spread across their two respective gene trees. Nevertheless, very few origins194

(defined by identity-by-descent) are specific to a given geographic region, and fewer still population-195

specific, especially for origins of ALS Trp-574-Leu. The absence of geography-specific origins in196

resistance types highlights the potential importance of gene flow in the spread of resistance muta-197

tions across populations. A gene tree based on raw pairwise differences between haplotypes, as198

illustrated here, sets an upper limit on the number of independent origins for eachmutation—from199

this plot alone, one could infer four origins of the ALS Ser-653-Asn type, at least eight of the Trp-574-200

Leu type, and three of the PPO ΔGly210 type. However, recombination events will break apart the201

association between a new resistance mutation and its original haplotypic background, potentially202
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inflating the number of independent resistance clusters mapping across the tree.203

Because recombination causes ancestral haplotypes to decay in size as they are passed down204

through time, linked sites may not necessarily have identical genealogies. Nearby sites may vary in205

the time to their most recent common ancestor, and thus inferring the full genealogical history of206

two or more genomes requires inference of the coalescent history of recombinational units across207

the genome. Ancestral recombination graphs (ARGs) generalize the inference of coalescent history208

along a recombining unit, allowing for more accurate inferences of demographic and selective209

history (Hudson, 1983; Griffiths and Marjoram, 1996, 1997).210

We inferred the ARG for 20,000 SNPs encompassing both ALS and PPO genes (a ~1 and ~10211

kb gene respectively, 250 kb apart from one another) using the program ARGweaver (Rasmussen212

et al., 2014; Hubisz and Siepel, 2020). We then used arg-summarize to extract the tree correspond-213

ing to each focal TSR locus that maximizes the likelihood of our data given the model across 500214

MCMC samples after burn-in (Sup Figure 2). For all three common TSR variants, ALS Trp-574-Leu,215

ALS Ser-653-Asn, and the PPO ΔGly210 deletion, we found evidence for multiple independent mu-216

tation events producing the same variant. In every one of the 500 MCMC samples of the ARG,217

trees at each of the three focal TSR loci were consistent with a finite sites model, driven by mul-218

tiple mutational origins being the most parsimonious explanation for haplotype clustering across219

the tree and across iterations of the ARG algorithm (Figure 2A). Our data suggest that the most220

common resistance mutation, ALS Trp-574-Leu, arose six times independently, PPO ΔGly210 three221

times, and ALS Ser-653-Asn twice (Figure 2A; ignoring singletons and polytomies at the base of the222

tree). It is worth noting that, as expected, these numbers are smaller than what was inferred from223

the pairwise distance gene tree approach, especially for the ALS Trp-574-Leu and ALS Ser-653-Asn224

variants, suggesting that some of the ALS TSR mutations are old enough that recombination has225

played a role in further segmenting their founding haplotypes.226

When haplotypes belonging to distinct mutational origins are mapped across populations (Fig-227

ure 2B), it is clear that, despite the many independent mutational origins, gene flow has also228

played a major role in the spread of resistance across the landscape. Only two mutational origins229

are population-specific—Trp-574-Leu #2 and PPO ΔGly210 #11—both representing the lowest fre-230

quency origins for a given TSR locus. In contrast, haplotypes from the three most common origins231

of TSR to ALS herbicides—Trp-574-Leu #1 and #3, and Ser-653-Asn #7 (corresponding to 39, 25,232

and 47 haplotypes, respectively)—can be mapped to 10, 10, and 12 populations. While each of233

these three common mutational origins can be found in both the Midwest US and Ontario, there234

is clear stratification in terms of how common these alleles are across these two regions, as would235

be expected from an initially localized origin. Both ALS574 mutations are found at much higher236

frequencies in Midwestern populations (89% and 64% of haplotypes being found in the Midwest),237

whereas the ALS653 #7 mutation is near exclusive to Ontario populations (96% found in either238

Essex or Walpole), except for two resistant haplotypes found in Missouri. Only one mutational ori-239

gin is fully unique to Ontario populations, ALS574 #5, whereas ALS574 #2 and #6, as well as PPO240

ΔGly210 #9 and #11 are unique to the Midwest. With the expectation that the geographic distri-241

bution and frequency of these 11 distinct mutational origins should in part reflect both their age242

and the strength of selection they have experienced over their history, we next used tree-based243

approaches for exploring the extent of heterogeneity in selective signals and allelic ages.244

We initially performed a tree-based test of non-neutral allele frequency change over twodistinct245

timescales to approximate scenarios of selection on standing variation versus de novo mutation.246

These tests focus on characterizing signals of selection across either a very recent proportion of the247

tree or over the entire time since the mutation first arose. This approach avoids explicit estimates248

of the absolute age of mutations, since those depend heavily on accurate N
e
estimates through249

time. We approached these tests of selection one unique mutational origin at a time, excluding all250

other resistant lineages from the tree, such that our estimates of the probability of selection for251

a given mutational origin is relative to coalescent events of susceptible lineages. Selection should252

lead to high-fitness lineages disproportionally giving rise to offspring in the next generation. As253
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Figure 2. Repeated independent origins of three target-site resistance variants across the range and likelihood of selection under new mutation

versus standing variation. A) Trees corresponding to ARGs estimated at focal TSR loci. Numbers around trees identify clusters of resistant

haplotypes consistent with an independent origin. The presence of an asterisk at each origin number implies significant evidence of selection

since the mutation arose de novo at p < 0.05 against the null distribution. B) Map of mutational origins inferred from trees extracted from ARGs

at the focal TSR loci. Mutational origins are by and large shared across populations, although regions show clear differences in the frequency of

each mutation. C) p-values (-log10) of tree-based tests of selection on each mutational origin of TSR under two alternative models of selection;

selection on a mutation since its origin (approximating selection occurring de novomutations) versus selection occurring only recently

(approximating selection on standing genetic variation). The horizontal dashed line denotes the p-value cutoff of α=0.05.
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such, to test for the scenario of consistent selection over the entire course of an independentmuta-254

tional event’s history, we evaluated whether there was evidence of a particularly extreme increase255

in the frequency of that mutation since it first arose, beyond the neutral expectation (testing the256

scenario of selection on a de novomutation). To test the scenario of selection on an independent257

mutation that had been standing before the onset of selection, we similarly evaluated evidence258

of an extreme increase in the frequency of a given mutational origin, but over a timescale that259

samples just its most recent history (0.02% of our tree). Those mutations that showed evidence of260

a selection over the more recent timescale but not since their origins represent candidates for se-261

lection on standing variation. Specifically, we implemented the tree-based statistic based on order262

of coalescent events as proposed in (Speidel et al., 2019), in addition to a modified version of this263

statistic that evaluates the probability of selection onmore recent timescales (Methods, Tree-based264

tests for selection).265

Under the scenario of selection since the origin of the mutation, four out of 11 mutational266

origins we tested were significant after a 5% false discovery rate (FDR) correction (Figure 2C). Since267

it arose, the Ontario high frequency ALS653 #7 variant showed the strongest signature of selection268

across all origins and all TSR loci (p-value= 5.58e-06), followed by three Midwestern high frequency269

mutations: ALS574 #1 variant (p-value= 9.81e-06; 90% found in the Midwest), ALS574 #2 variant (p-270

value= 8.85e-04; 100% found in the Midwest) and ALS574 #3 variant (p-value=0.00565; 64% found271

in the Midwest). In contrast to other origins at the same loci showing some of the most extreme272

evidence for selection since their origin, ALS653 #8 and ALS574 #4, #5, and #6 variants lacked such273

a signal. Furthermore, no PPOmutation showed evidence of consistent selection since they arose.274

In contrast, a test for selection over the most recent 0.02% of the tree showed that only two275

out of 10 variants that originated before this period had significant evidence of selection over this276

recent timescale, after FDR correction (Figure 2C). Both of these showed much stronger evidence277

for recent selection, one of which (ALS653 #7) also had significant evidence for selection occur-278

ring since the mutation arose—implying that while it is a strong candidate for selection on a de279

novo mutation that it has also experienced particularly strong recent selection. We were unable280

to test one variant, ALS563 #2, for this scenario as it predated our recent timescale threshold, but281

with significant evidence of selection since it arose it clearly displays signals of particularly recent282

selection.283

Ne through time, age of TSR alleles, and selection coefficients284

A more direct assessment of the role of resistance adaptation from standing genetic variation or285

new mutation comes from estimates of allele age relative to the onset of the selection pressure,286

which depends greatly on the accuracy of N
e
estimates over the relevant evolutionary timescale.287

Namely, for herbicide resistance evolution, we posit that the relevantN
e
is most likely theN

e
over288

the last half-century or less, corresponding with the introduction of agronomic pesticide regimes.289

While we had previously used δaδi (Gutenkunst et al., 2009) to infer species-wide effective popula-290

tion size (whereN
e
~500,000; Kreiner et al. (2019)), herewe used Relate to infer effective population291

size through time from genome-wide tree sequence data (Speidel et al., 2019, 2021). HistoricalN
e

292

between 100 and 1,000,000 years ago appears to have stayed relatively consistent, with a harmonic293

mean of 63,000 (SE = 7,000). Our samples show evidence for massive recent population expan-294

sion over the last 100 years, with the contemporary geometric mean N
e
estimate 3 to 4 orders of295

magnitude higher than the historical N
e
(Figure 3A). Over the timescale of ALS herbicide use ( 40296

years), the geometric mean N
e
estimate is 80,000,000.297

Basedonour contemporaryN
e
estimates relevant to the timescale of herbicide use, we rescaled298

allelic ages for distinct mutational origins across our ARG-inferred trees, accounting for variation299

across MCMC ARG samples. On average across the last 200 converged MCMC samples (Sup Figure300

2) and according to haplotype groupings from the most likely ARG, we found remarkable differ-301

ences in the estimated age of resistance mutations with respect to both distinct origins of the302

same mutation and across the three different TSR loci (Figure 3B). Estimates of the origin of the303
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Figure 3. Contemporary population expansion and corresponding ages of TSR variants. A) Relate-inferred

effective population size through time, illustrating a remarkable population expansion occurring over the last

100 years. The bold line indicates results from genome-wide SNPs, whereas thinner lines represent results

from chromosome-by-chromosome analyses, with the shaded area showing the bounds of the variance in

the chromosome-by-chromosome data. B) Allele age inferred from the geometric mean effective population

size estimate over the timescale of contemporary herbicide use (< 50 years ago, GM[Ne] = 83,294,700).

Horizontal dashed lines for ALS574 and ALS653, and PPO ΔGly210 represent the approximate onset of ALS

and PPO herbicide use, respectively.

PPO ΔGly210 deletion are the most recent and least variable compared to ALS574 and ALS653 vari-304

ants (mean PPO ΔGly210 age = 24 years [SE=9.9]; ALS653 = 61 [SE=35]; ALS574 = 88 [SE=37]). The305

youngermutational ages of PPO ΔGly210 variants and earlier butmore stagnated use of PPO herbi-306

cides may imply that these mutations have experience longer periods of negative selection and/or307

that these resistance-conferring deletions are more deleterious compared to the more common308

ALS574 and ALS653 variants—consistent with the lack of net positive selection detected for PPO309

ΔGly210 mutations.310

For the origin with the strongest evidence of selection, we additionally estimated the associated311

selection coefficient through an approximate full-likelihood test based on coalescent rates from312

the tree sequence, which explicitly takes into account changing effective population sizes through313

time (Stern et al., 2019). Over the last 30 years, the ALS653 #7 origin is consistent with an s =314

0.026 (LR = 6.80, �2 = 13.56, p-value=2.3e-4) within Ontario (corresponding to an allele frequency315

= 0.29). If we constrain this test to just the last 10 years, this estimate increases substantially to316

s = 0.072, consistent with evidence from the tree-based tests over two timescales for particularly317

recent selection on this origin. The magnitude of this fitness advantage conferred from a single318

locus implicates herbicides as a powerful force for shaping genome-wide diversity throughout the319

species range, especially when considering the role of not only temporally, but also spatially varying320

selection along with rotating crop and herbicide use, and ecological and environmental variation321

(e.g. imprecise herbicide applications, variation in germination time) that may prevent a portion of322

individuals in a population from being exposed to applied herbicides.323

These summaries based on mutational similarity and shared evolutionary history have uncov-324

ered evidence of an extremely strong selective event over timescalesmore recent than the origin of325

the ALS653mutation in Ontario. We have also characterized the spread of numerous independent326

origins of ALS574 mutations across agricultural regions, including variants that have been around327

for nearly 250 years to ones that have arisen only in the last decade. However, once spreading328

adaptive alleles come into contact, their path to fixation depends on the extent of their epistatic in-329

teractions (Ralph and Coop, 2010), selective interference, and direct benefits and pleiotropic costs.330
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Figure 4. Signals of intra- and inter-chromosomal allelic interactions with target-site resistance mutations. A) Repulsion disequilibrium between

two ALS target-site-resistance mutations and bi-allelic missense SNPs surrounding them on scaffold 11 in Essex. Each point shows mean signed

LD in non-overlapping 10 kb windows. B) Distribution of mean signed LD of ALS TSR resistance mutations (ALS 574 or 653) with 1 Mb

(non-scaffold 11) windows in Essex. 2nd percentile indicated by dashed vertical lines. C) Distribution of p-values from top 2% of genome-wide

windows with most extreme LD with ALS TSR mutations, based on windowed permutations of individual-genotype assignment 1000x. D)

Significant enrichment of GO terms for genes mapping to the 13, 1 Mb windows that show significant LD with ALS TSR mutations in Essex.

Therefore, differences in the signatures of selection based on both sweep scans and ARGs may331

reflect not just direct selection, but interactions among TSR mutations and with sites across the332

genome specific to the ancestry of local populations.333

Haplotype competition and inter-locus interactions of TSR mutations334

While single individuals appear to harbour both commonALS574 andALS653mutations, haplotype-335

level analyses indicate that no single haplotype harbours both mutations depiste their high fre-336

quencies (Sup Figure 1), suggesting that no recombination has occurred between these two sites337

and hence possible clonal interference/haplotype competition among ALS resistance haplotypes.338

Alternatively, recombinant genotypes creating double mutants could have strong epistatic fitness339

costs, leading to their selective removal. Correspondingly, in Essex, patterns of signed linkage dise-340

quilibrium (LD) of bi-allelicmissense SNPswith the focal ALS574mutation (n=19) tend to be positive,341

while LD of the bi-allelic missense SNPs with the focal ALS653 mutation (n=34) tend to be negative342

for a stretch of more than 10 Mb. Contrasting positive and negative r values for focal mutations343

and flanking variants, indicating linkage to alternative flanking variants, are an indication that two344

mutations arose on different backgrounds and that they are in repulsion. Although an excess of345

LD (i.e., r) is expected around a selected site for a typical hard sweep, there is no expectation for346

repulsion of beneficial variants with minor alleles across large stretches of a chromosome unless347

other evolutionary forces are acting as recombination should rapidly break down long-range as-348

sociations. At its simplest, this finding is consistent with competition between herbicide resistant349

haplotypes in Essex (Figure 4A).350

While selective interference between two TSR mutations at distinct loci appears to be an im-351

portant force in the evolution of herbicide resistant weed populations, the selective advantage352

of a given TSR haplotype may depend on other modifier loci across the genome. In particular,353
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we might expect that individuals that have withstood many generations of herbicide applications,354

for example due to large-effect TSR mutations, may have also accumulated compensatory and355

tolerance-conferring mutations across the genome as well as mutations that reduce fitness costs356

in the absence of herbicide exposure (stacking of resistance alleles; Preston (2003); ffrench Con-357

stant et al. (2004); Petit et al. (2010); Busi et al. (2013); Kreiner et al. (2020)). Considering that358

haplotype competition seems to have manifested itself in patterns of signed LD (i.e. repulsion)359

within the ALS containing chromosome, we posited that physically unlinked modifiers of TSR re-360

sulting from either adaptive introgression or epistasis would be reflected by strong linkage with361

focal TSR loci.362

Within Essex individuals, we calculated mean signed LD between bi-allelic missense SNPs and363

focal ALS574 or ALS653 mutations in 1 Mb non-overlapping windows to identify such putative in-364

teractions. We took the upper 1% and lower 1% of windows with particularly extreme signed LD365

with either TSRmutation, and performed a permutation test in which we randomized TSR allele as-366

signment among individuals 1,000 times to test whether observed LD was more extreme than we367

might expect given the genomic structure associated with that focal window. Compared to the null368

expectation, the 1 Mb window with the strongest ALS TSR association showed a significant excess369

of positive inter-chromosomal signed LD with ALS574 (1-tailed p < 0.0001, r = +0.068) but negative370

of signed LD with respect to the ALS653 mutation (r = -0.132), consistent with repulsion between371

TSR alleles. Upon further inspection, this 1 Mb region is directly centered on a cytochrome P450372

gene, CYP82D47, that has been implicated in conferring non-target site resistance in Ipomoea pur-373

purea (Leslie and Baucom, 2014). Of the top and bottom 1% at both ends of the distribution of374

signed LD with these two ALS TSR mutations (24/1156 genome-wide 1 Mb windows) (Figure 4B),375

13 had p-values consistent with significantly extreme LD after FDR correction with α=0.05 (Figure376

4C). These 13 windows corresponded to 348 A. tuberculatus genes, 120 of which had Arabidopsis377

thaliana orthologs. These 120 genes were enriched for six GO biological processes belonging to378

two unique hierarchical categories after FDR correction, four of which were enriched even after379

Bonferroni correction: cellular amine and amino acid metabolic process, programmed cell death,380

and plant-type hypersensitive response (Figure 4D).381

ALS-inhibiting herbicides disrupt biosynthesis of branched amino-acids, and a rapid response382

after exposure leads to amino-acid remobilization through enhanced protein degradation (au-383

tophagy) and reduced synthesis (Trenkamp et al., 2009; Orcaray et al., 2011; Zulet et al., 2013;384

Zhao et al., 2018). That we see enrichment for multiple terms related to amino-acid metabolism385

and cell death (programmed cell death and plant hypersensitive response) suggests that together386

these genes may act to compensate for homeostatic disturbances caused by ALS exposure on the387

background of large-effect TSR mutations. Two particularly interesting examples from our set of388

genes with strong inter-chromosome LD with ALS TSR mutations are GCN2 (general control non-389

repressible 2) and KIN10 (SNF1 kinase homolog 10). Both proteins have been previously identified390

as playing key regulatory roles in response to herbicides, with GCN2 directly involved in homeo-391

static tolerance to ALS and glyphosate herbicides through regulating autophagy and amino acid392

signalling (Faus et al., 2015; Zhao et al., 2018). Similarly, KIN10, a key positive regulator of au-393

tophagy in A. thaliana, is activated in response to photosystem II herbicides (Fujiki et al., 2001;394

Chen et al., 2017).395

Discussion396

The application of herbicides in agricultural weed management has led to one of the best-studied397

examples of parallel evolution in the wild, with TSR mutations to ALS-inhibiting herbicides identi-398

fied in more than 150 species (Heap, 2014). Here, we have studied the evolution of TSR mutations399

at two genes, ALS and PPO, from a genome-wide perspective across a large fraction of the range400

of one of the most problematic weeds in the US, A. tuberculatus. We found rampant evidence for401

both independent origins and gene flow, competition among resistant haplotypes, and interac-402

tion of large-effect TSR mutations with physically unlinked alleles with resistance-linked functions.403
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These results paint a picture of the rise, spread, and fate of adaptive alleles in the face of extreme404

selection. Below we discuss these results in the context of past studies on parallel evolution and405

mutation-limited adaptation, the costs and benefits of TSR mutations and their implications for se-406

lection, and the potential role of genome-wide allelic interactions in adaptation across the range.407

We detected strong evidence for parallel evolution to herbicides within A. tuberculatus agricul-408

tural weed populations at multiple levels. Target-site mutations conferring resistance to PPO and409

ALS herbicides occur at seven distinct codons, and with nine distinct variants, three of which are410

common and themselves show evidence of having arisen repeatedly more than 10 times across411

our sampled populations (Table 1, Figure 2). From a mutation-limited view of adaptation, the ex-412

tent of parallelism in TSR that we observe here seems particularly extreme. However, we estimate413

that given the North American Amaranthus estimate of Θ = 4Ne� = 0.041 for neutral sites (Kreiner414

et al., 2019), a new TSR mutation at any of the eight adaptive ALS mutations should arise at a rate415

of 2Ne—every six generations (i.e. 0.041/2 x 8 known TSR loci = 0.164 TSR mutations per genera-416

tion; see also Charlesworth (2009); Karasov et al. (2010)). This rate is likely to be an underestimate417

given the contemporary population size should determine the mutational supply for rapid adap-418

tation and under models of evolutionary rescue, which itself may be closer to census size than419

long-term estimates ofNe from neutral polymorphism (Karasov et al., 2010; Bell, 2013;Neve et al.,420

2014; Kreiner et al., 2018). Indeed, if we modify this value to reflect the contemporary estimate of421

Ne over the last 50 years (~8x10
8) and assumean A. thalianamutation rate of 7x10-9 (Ossowski et al.,422

2010;Weng et al., 2019), our Θ becomes > 1 and a newmutation at any TSR codon should arise ev-423

ery generation—consistent with the remarkably parallel mutational origins we describe here. Thus,424

parallelism in herbicide resistance adaptation in Amaranthus tuberculatus appears to be on par with425

prokaryotic adaptation and pesticide resistance adaptation in Drosophila melanogaster where pop-426

ulation sizes on the order of Θ ~1 facilitates adaptation to occur rapidly, without being limited by427

mutational input at single sites (Karasov et al., 2010).428

In the context of such extreme recurrent evolution, we still find an important role of gene flow429

in the spread of herbicide resistance across the range. Not only do agricultural regions and popu-430

lations within them harbour multiple origins of TSR, but distinct recombinational units harbouring431

thesemutational origins alsomap tomany populations (Figure 2B). In part, widespreadmovement432

of A. tuberculatus and TSR variants across the North American range is likely to reflect the massive433

recent expansion we see here (Figure 3A)—population size increasing by four orders of magnitude434

over the last 100 years. This expansion also corresponds well with A. tuberculatus’s contemporary435

agricultural association, suggesting that agronomic regimes are likely to have in large part facili-436

tated the success of this weed species. Thus, both extreme mutational parallelism and a complex437

network of haplotype sharing, via gene flow and colonization, characterize the distribution of her-438

bicide resistance across our sampled agricultural populations.439

The role of selection on standing genetic variation in the rapid evolution of polygenic herbicide440

resistance has been recognized in both artificially selected and field evolved populations (Neve441

and Powles, 2005; Busi and Powles, 2009; Busi et al., 2012). Detrimental effects of TSR resistance442

mutations as a result of pleiotropic tradeoffs and fluctuating ecological selective pressures (Lenor-443

mand et al., 2018) have led to the question of whether such costs could be leveraged to prevent the444

persistence of resistance mutations (Vila-Aiub, 2019). We rescaled TSR allelic age estimates by the445

geometric meanNe estimate over the last 50 years and found that a substantial subset of TSR mu-446

tational origins predated the onset of herbicide usage (Figure 3B). While these allele age estimates447

provide some of the strongest evidence for herbicide resistance adaptation from standing genetic448

variation to date, they only provide a first approximation given the difficulty of accounting for the449

monumental population expansion this species shows during tree rescaling. To account for this450

uncertainty, we additionally implemented a tree-based statistic that uses the order of coalescent451

events to infer evidence of selection since the origin of the allele (consistent with selection on a de452

novo mutation) versus selection over more recent timescales, which should be robust to popula-453

tion size misspecification. This test shows evidence of selection particularly on recent timescales454
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for two mutational origins (one each for ALS574 and ALS653) (Figure 2C), with one origin showing455

evidence only on recent timescales, consistent with selection on standing variation. Together with456

allele ages that predate the onset of herbicides, this implies that costs of resistance mutations are457

not ubiquitous, as TSR mutations can persist over longer timescales even if they are not initially458

favoured in the environment in which they arise.459

Nonetheless, evidence for selection on de novo origins of resistance and allele age estimates460

that are younger than the onset of herbicide use tends to be more frequent than evidence for461

selection on standing genetic variation, suggesting that the success of TSR mutations is in large462

part determined by the selective regime at the time at which they arise. An exception to this is463

apparent in the near Ontario-specific ALS653 variant. While we estimate that this mutation has464

on average experienced an s=0.026 over the last 30 years, surely facilitating the persistence of465

this mutation, a change in environment—possibly the recent colonization of agricultural fields in466

Ontario, Canada—has led to its dramatic increase in frequency and relative fitness, with an s = 0.072467

over the last decade.468

Since TSR mutations can provide different ranges of protective effects in response to increas-469

ing herbicide dosage (e.g. Marshall et al. (2010); Massa et al. (2011); Panozzo et al. (2013)), TSR470

mutations should differ in their benefits under a specific crop-herbicide regime. For example, in471

corn and soy production systems, PPOs were typically used only in soy, whereas ALS herbicides472

were heavily used in both crops (Tranel and Wright, 2002; Salas et al., 2016). Thus with typical ro-473

tations, PPO selection would occur only every other year, consistent with the absence of evidence474

for consistent selection on PPO TSR mutations. Furthermore, while ALS574 mutations tend to con-475

fer high levels of resistance broadly across ALS herbicides, ALS653 mutations confer resistance476

to fewer types of ALS-inhibiting herbicides that are also used more commonly in soy (Patzoldt477

and Tranel, 2007). This may contribute to the relatively lower global frequency of ALS653 com-478

pared to ALS574 or even suggest that the lack of rotation of both focal crops and the type of ALS479

herbicide led to the strong selection on the Ontario-specific ALS653 origin. Beyond locus-specific480

differences, our coalescent-based inference of the probability of selection on independent origins481

of the same variant underscores the heterogeneity in the success of a given resistance variant.482

Both common ALS types, Trp-574-Leu and Ser-653-Asn, show considerable variance in evidence483

for selection among independent origins (Figure 2C, 3B)—undoubtedly, driven by spatially varying484

selection, demographic events, competition with other pre-existing TSRmutations, and variable ex-485

tents to which epistatic compensatory and/or tolerance conferring mutations have accumulated486

on their genomic backgrounds.487

The outcome of parallel adaptation in a continuous species range has been thoroughly de-488

scribed in (Ralph and Coop, 2010). When the geographic spread of an adaptive mutation is migra-489

tion limited, partial sweeps for parallel adaptivemutational origins that occur in distinct geographic490

regions will be common. However, as “waves of advance” of these distinct mutational origins ex-491

pand, eventually coming into contact—as long as their selective advantage is similar, and barring492

epistasis between them—one beneficial allele is likely to exclude the other, with beneficial haplo-493

types competing along the way (Ralph and Coop, 2010). Given our evidence for highly parallel TSR494

adaptation across the range, along with widespread gene flow, we expect that this scenario fits the495

evolution of resistance particularly well. When beneficial alleles originate on distinct backgrounds496

associated with different population histories, patterns of adaptation within a population may re-497

semble soft selective sweeps (Ralph and Coop, 2010). While soft-selective sweeps via gene flow498

appears to be a predominant pattern resulting from TSR resistance evolution, remarkably, we also499

find evidence of a subsequent process in such a model of parallel geographic origins, resulting500

from interactions among spreading TSR mutations.501

Our evidence for intra-locus allelic interactions between two common TSR mutations, ALS 574502

and ALS653 is in the form of a lack of recombinant double-resistant haplotypes and repulsion503

disequilibrium between two common resistance haplotypes (Figure 4A)—reflecting either haplo-504

type competition, negative epistasis, or selective interference (Hill and Robertson, 1966; Gerrish505
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and Lenski, 1998; de Visser and Rozen, 2005; Williams and Pennings, 2020). Populations in Essex,506

homogeneous for A. tuberculatus var. rudis ancestry (Kreiner et al., 2019), for which we have par-507

ticularly fine-scale sampling, is the strongest example of this phenomenon in our data set. Likely,508

the mutational origin of ALS653 almost exclusive to Essex, came in on a foreign haplotype (from509

an unsampled population) and was swept to high frequency, competing with the selective advan-510

tage of ALS574. This interpretation is supported by the younger inferred age of ALS653 than the511

average age of ALS574 found in Essex, and additionally that rare (minor) missense mutations have512

yet to accumulate on the background of ALS653 (i.e., are in negative LD).513

That we find evidence of haplotype competition (the simplest interpretation) is especially no-514

table given the obligately outcrossing, wind-pollinated breeding system of A. tuberculatus (Costea515

et al., 2005). Empirical examples of a similar process, selective interference, in the literature are typ-516

ically constrained to asexually reproducing organisms (in the form of clonal interference) such as517

Escherichia coli (Hegreness et al., 2006;Barrick et al., 2009) andMycobacterium tuberculosis (Eldholm518

et al., 2014; Sun et al., 2012), as the lack of recombination amongst distinct beneficial lineages leads519

to easily observable selective interference at the level of the entire genome. Nonetheless, selective520

interference between resistance mutations has also been illustrated in Human Immunodeficiency521

Virus (HIV), which undergoes recombination at appreciable rates (Williams and Pennings, 2020),522

in the sexually reproducing Drosophila melanogaster (Castellano et al., 2015). On one hand, given523

the LD-based population recombination rate estimate of of Θ = 4Ner = 0.0805 scaffold-wide and524

0.0575 in a region of 100 kb on either side of ALS, it is remarkable that we recover no recombinant525

double ALS resistantmutant as this localΘ implies 3.7 new recombination events per generation in526

the distance between these twomutants (256 bp x (0.057/4)). Given the local frequencies of ALS574527

and ALS653 resistance haplotype in Essex (0.29 x 0.44), 1 of these recombination events should528

generate a double resistant mutant every other generation. On the other hand, recombination is529

known to be localized to promoter regions, suggesting that these calculations may considerably530

overestimate intragenic levels of recombination (Good, 2020). To our knowledge, this is one of the531

first empirical examples of haplotype competition between beneficial mutations in wild plant pop-532

ulations. Themechanistic underpinnings of this haplotypic competition remains unresolved: there533

could be temporally fluctuating selection for one TSR allele or another (which is known to convey534

differential levels of protection to different chemical classes of ALS herbicides (Patzoldt and Tranel,535

2007), negative epistasis between ALS574 and ALS653 that reduces their relative fitness advantage536

when found on the same background, or simply no fitness increase by stacking both alleles.537

While we find that intra-chromosomal interactions have substantially impeded the selective tra-538

jectory of individual TSR alleles, we were also interested in the extent to which inter-chromosomal539

interactions may have facilitated herbicide resistance evolution. We find evidence that selection540

on Essex haplotypes containing ALS TSR mutations have likely been mediated by such interactions541

(Figure 4B-D). We find particularly extreme signed LD between TSR mutations and alleles on dif-542

ferent chromosomes. LD between resistance alleles has been interpreted as epistatic selection,543

especially given the magnitude of selection from herbicides (Gupta et al., 2021), but LD between544

alleles that are not physically linked may also result from recent adaptive introgression. Recurrent545

gene-flow between resistant individuals is likely to result in genome-wide resistance alleles accu-546

mulating on the same background, with the shared population history of these resistance alleles547

overtime creating-cross chromosomal associations that could be interpreted as epistasis.548

Alleles in windows on different chromosomes with the strongest evidence of interaction with549

ALS TSR mutations function in biological processes related to known organismal responses to550

ALS herbicides—compensating for reduced amino acid production via protein degradation and551

increased metabolism. These alleles may thus provide additional levels of tolerance on the large-552

effect TSR background, or may compensate for potential costs of these resistance mutations as553

has been seen for antibiotic resistance (Craig MacLean et al., 2010). Costs of the Trp-574-Leu mu-554

tation have been found in congeners of A. tuberculatus in terms of growth rate (Tardif et al., 2006),555

although there did not appear to be costs of Pro-653-Arg in A. thaliana (Roux et al., 2004), implying556
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that either of these fitness modifying mechanisms could be involved in the interactions we found557

here.558

In conclusion, adaptation to herbicides and well-characterized target-site resistance mutations559

provide a powerful system for characterizing rapid and repeated evolution in wild plant popula-560

tions, aswell as the consequences of extreme selection on genome-wide patterns of diversity. Stud-561

ies of resistance evolution have highlighted howextreme selection canmodify life-history and plant562

mating systems (Kuester et al., 2017; Van Etten et al., 2020) and vice versa (Kreiner et al., 2018), as563

well as the role of small- versus large-effect mutations (or monogenic versus polygenic adaptation)564

(Kreiner et al. (2020); reviewed in Powles and Yu (2010); Délye (2013)), costs of adaptation under565

fluctuating environments (Vila-Aiub et al., 2009; Vila-Aiub, 2019), and mutational repeatability (e.g.566

Menchari et al. (2006); Heap (2014)) (see Baucom (2019)). The work here contributes to this litera-567

ture by characterizing extreme repeatability in origins of TSR resistance across a broad collection568

of agricultural populations as well as important causes—such as massive population growth over569

contemporary timescales that facilitates adaptation from readily available mutations—as well as570

consequences such parallelism. Namely, how selection varies considerably on identical mutations571

with distinct origins, in part as a result of differences in the timescale over which they have per-572

sisted, and in part resulting from inhibiting and facilitating allelic interactions within and across573

chromosomes. With increasing incidence of resistance and characterization of novel resistance574

alleles, population genomic approaches can continue to provide important insights into rapid evo-575

lutionary processes and factors that limit them, the importance of gene flow versus repeated ori-576

gins in the spread of resistance across the range, and the timescale of evolution to contemporary577

environments.578

Methods579

Amaranthus tuberculatus sequence data580

Sequencing and resequencing data were from a published study (Kreiner et al., 2019). Whole-581

genome Illumina sequencing data are available at European Nucleotide Archive (ENA), while the582

reference genome and its annotation are available on CoGe (reference ID = 54057). The analyses583

in this paper focus on herbicide resistance in 158 agricultural samples, collected from 8 fields with584

high A. tuberculatus densities across Missouri and Illinois in the Midwest United States (collected585

2010), and from newly infested counties in Ontario, Canada, Walpole Island and Essex County (col-586

lected 2016). The 8 Midwestern populations had been surveyed for resistance to glyphosate her-587

bicides in prior years (Chatham et al., 2015). 10 additional samples collected from natural popula-588

tions in Ontario, Canada are also included, but only for tree-based inference. These samples have589

been recently analyzed with respect to the evolutionary origins of amplification of the glyphosate-590

targeted gene, 5-enolpyruvylshikimate-3-phosphate (Kreiner et al., 2019), as well as the polygenic591

architecture of glyphosate resistance (Kreiner et al., 2020).592

SNP Calling & Phasing Genotypes593

Filtered VCFs were from Kreiner et al. (2019) for all analyses. Briefly, freebayes-called SNPs were594

filtered based on missing data (>80% present), repeat content, allelic bias (>0.25 and <0.75), read595

paired status, and mapping quality (> Q30). Six individuals were removed due to excess missing596

data, leaving 152 agricultural and 10 natural samples for further analyses.597

Known TSR mutations were assayed for presence/absence in our set of 162 A. tuberculatus598

individuals. At the time, thatmeant checking for knownTSRmutations at 8 ALS amino acids (codons599

122, 197, 205, 376, 377, 574, 653, 654), 3 PPO amino acids (Rousonelos et al., 2012;Giacomini et al.,600

2017; Varanasi et al., 2018), 1 PsbA (conferring resistance to photosystem II inhibitors) amino acid601

(Lu et al., 2019), and 3 EPSPS amino acids (Perotti et al., 2019). Briefly, to assay these mutations602

in our samples, we referred to the literature on previously verified TSR mutations in the genus603

Amaranthus, extracting the sequence surrounding a given focal TSR mutation, and BLAST (Altschul604
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et al., 1990) searched our reference genome to locate its position.605

SHAPEIT2 (Delaneau et al., 2013), using joint inference from read-backed and population level606

information, was used to phase genotypes into haplotypes. Since phasing is very sensitive to data607

quality, we also applied a more stringent threshold of no more than 10% missing data for each608

SNP. SHAPEIT2 also requires a genetic map; with no genetic recombination map for A. tuberculatus609

yet available, we used LDhat to infer recombination rates across the genome in our samples (as in610

Kreiner et al. (2019)). Specifically, we used the interval function to estimate variable recombination611

rates within each of the 16 chromosomes of the pseudoassembly, using a precomputed lookup ta-612

ble for a θ of 0.01 for 192 chromosomes. We then converted rho estimates to genetic distance613

based recombination rates (100/4NeR; Ne = 500,000), and used a monotonic spline to extrapolate614

genetic distance to each SNP in our VCF. We provided SHAPEIT an effective population size esti-615

mate of 500,000, inferred from previous demographic modelling in δaδi (Kreiner et al., 2019). As616

SHAPEIT only allows for biallelic SNPs, in order to retain the PPO210 deletion in phased output,617

we modified the alternate allele (a three base pair deletion) at the start position of the PPO210618

codon to instead represent a simple SNP. This site otherwise retained the exact same genotype619

calls, allele frequencies, and other metadata.620

Tree inference621

Bootstrapped gene treeswere inferred based on haplotypeswithin focal target-site genes (ALS and622

PPO), and 1 kb on either side around them. Using the phased data around these genes, we first623

converted each phased haplotype to FASTA format and then running clustal-ω2 across all samples,624

once for each gene, with 1,000 bootstraps. We then plotted mutational status for each focal TSR625

mutation (ALS574, ALS653, and PPO210) for each tip of both gene trees (Sup Figure 1).626

We ran ARGweaver (Rasmussen et al., 2014; Hubisz and Siepel, 2020) on a region of 20,000627

SNPs centered between the ALS and PPO genes on Scaffold 11. We used the settings -N (effective628

population size) 500,000 -r (recombination rate) 7e-9 -m (mutation rate) 1.8e-8 –ntimes (estimated629

timepoints) 50 –maxtime (max coalescent time) 100e3 -c (bp compression rate) 1 -n (MCMC sam-630

ples) 500. We used an effective population size of 500,000, based on the best fitting demographic631

model previously inferred from this dataset with dadi (Kreiner et al., 2019). We then extracted the632

mostly likely ARG sample from the MCMC chain (sample 490/500), and the local trees correspond-633

ing to each of our three focal TSR mutations using arg-summarise. The arg-summarize function of634

ARGweaver was used to estimate the mean and 95% confidence intervals of the age of each muta-635

tional origin (based on clusters inferred from the most likely trees in the previous step) across the636

last 200 MCMC samples of the ARG. Since by default, arg-summarise –allele-age will infer the age637

of only the oldest allele under a scenario of multiple origins, we subsetted the dataset one muta-638

tional origin at a time (including all susceptible haplotypes) to obtain age estimates for all origins.639

For allele age estimates and coalescent tree-based tests of selection (see below), we only retained640

resistant haplotypes for a given focal mutation along with 20 haplotypes from natural populations641

that carry no TSR mutation (avoiding including multiple origins and inflating allele age, as well as642

the effects of linked selection from nearby resistance alleles on tree topology).643

Coalescent tree-based tests for selection644

RELATE (Speidel et al., 2019, 2021), a scalablemethod for estimating tree-sequence across large ge-645

nomic datasets, implements a tree-based test for detecting positive selection (Griffiths and Tavaré,646

1998; Speidel et al., 2019). Under the standard coalescent model (i.e. assuming selective neutrality647

of mutations), the number of descendants in a particular lineage is exchangeable. Thus, one can648

compute the probability of some observed skew in the number of descendants using the hyper-649

geometric distribution (Griffiths and Tavaré, 1998; Speidel et al., 2019). This approach gives us a650

p-value for this skew under the null (i.e., no selection). Since this statistic is simply based on order651

of coalescents, rather than branch lengths, it should be robust to misspecified (Ne) used to infer652

our ARG (Speidel et al., 2019). Since RELATE assumes an infinite sites model and thus is unsuit-653
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able for testing hypotheses about multiple origins, we performed our own implementation of this654

method for trees outputted from ARGweaver (Rasmussen et al., 2014).655

Briefly, the statistic works as follows. Let fN be the number of carriers of our focal mutation656

in the current day, N be the total present day sample size, and kS be the number of susceptible657

lineages present when the mutation increases in count from 1 to 2. We sum each individual prob-658

ability that a mutation spreads to at least a given frequency, from fN to N − kS + 2.659

pR,denovo =

N−kS+2
∑

f=fN

(f − 1)
(

N−f−1

kS−3

)

(

N−1

kS−1

)
(1)

The null hypothesis, that allele frequency change occurred under drift, is rejected when this660

one-sided p-value is sufficiently small (i.e. p < 0.05), implying selection has governed the spread of661

this mutation since it first arose.662

We also modified this statistic to test for selection on more recent timescales, and thus the663

scenario of adaptation from standing genetic variation. Here, we need to define kR, the number of664

resistant lineages at some time (t) before the present day, in addition to kS (t).665

pR,sgv =

N−kS+2
∑

f=fN

(

f−1

kR(t)−1

)(

N−f−1

kS (t)−1

)

(

N−1

kR(t)+kS (t)−1

)
(2)

The null hypothesis that the frequency change (between the current day and some time in the666

past more recent than when themutation first arose (t)) happened under random drift (and hence667

no selective pressures) is rejected if this p-value is sufficiently small.668

Ne estimation through time and selection coefficients669

We used RELATE 1.1.6 (Speidel et al., 2021) to estimate tree sequence from distinct recombina-670

tional units across the genome from our phased dataset. RELATE requires polarized ancestral671

allele calls, such that alternate alleles represent the derived state. To do so, we performed a mul-672

tiple alignment of our A. tuberculatus genome to A. palmeri (Montgomery et al., 2020) using lastz673

(Harris, 2007), retained the best orthologous chain from the alignment, and extracted variant sites.674

Wemodified the A. tuberculatus reference genome with the derived allele states from our multiple675

alignment, using thismodified reference to polarize allele calls. On each chromosome, we then ran676

RelateParallel.sh –mode All, using the output from all chromosomes to first estimatemutation rate677

(RelateMutationRate –mode Avg). We then reestimated branch lengths with this updatedmutation678

rate (ReEstimateBranchLengths), and lastly estimated population size through time (EstimatePopu-679

lationSize.sh). Population sizes were estimated from 0 years ago to 10,000,000 years ago, in epoch680

timesteps of 100.25 years, to obtain particularly fine-scale estimates in the recent past.681

We estimated selection coefficients using (Stern et al., 2019) for the origin with the strongest682

signatures of selection, ALS653 #7. Similar to our tree-based estimates of selection, we subsetted683

each tree to include just resistant haplotypes of our focal mutational origin and a reference set of684

20 haplotypes susceptible for all three common TSR alleles. After subsetting, we re-estimated685

branch lengths and sampled branches corresponding to the locus of interest. Finally, we per-686

formed Bayesian inference of the selection coefficient of our mutational origin, accounting for687

changing population sizes through time as estimated in RELATE. For these tests, we used the On-688

tario allele frequency (0.29) for the -popFreq parameter, and ran the analysis twice, once for epoch689

0-30, and once for 0-10.690

Selection Scans & LD-based analyses691

The phased data used as input for ARGweaver was also used to extract selective sweep summary692

statistics in selscan (Szpiech and Hernandez, 2014). In selscan, we estimated both XPEHH (Sabeti693
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et al., 2007), in this case, the difference in the integrated extended haplotype homozygosity be-694

tween resistant and susceptible haplotypes, and mean pairwise difference estimates. For both of695

these statistics, we provided LD-based recombination maps, inferred from LDhat, as described696

above. Because some individuals in Essex always carried at least one resistant ALS haplotype697

through eithermutations at ALS574 or ALS653, to compare patterns of selection associatedwith re-698

sistance and susceptibility, these statistics were calculated at the haplotype, rather than individual699

level.700

We used plink (v1.90b3.46) (Purcell et al., 2007) to calculate both r2 between each focal TSR701

mutations and missense mutations on the same chromosome, and to estimate signed LD (r) both702

between TSR mutations, and with all other bi-allelic missense SNPs across the genome. We per-703

formed these calculations with respect to a given TSR mutation by using the –ld-snp options to704

specify a focal mutation. To visualize patterns of signed LD between TSR mutations and other mis-705

sense SNPs, we split the genome into non-overlapping 10 kb windows and calculated the average706

LD among all SNPs in each window. All LD calculations were polarized by rarity (e.g. minor alleles707

segregating on the same haplotypes were regarded as being in positive LD). In Essex, despite be-708

ing considerably common, both ALS 574 and ALS 653 had a frequency less than 50%, so LD values709

between all missense alleles, and both these focal TSR mutations are directly comparable.710

To test whether the top 2% of 1 Mb windows of missense SNPs with particularly low or high711

signed LD with ALS TSR mutations (either ALS653 or ALS574) was significantly different from the712

null expectation, we used a permutation approach whereby we randomly shuffled the assignment713

of the focal ALS TSR mutation between all individuals and calculated mean LD (with respect to the714

permuted TSR mutations) in the window of interest. We then repeated this permutation 1,000715

times to generate a null distribution for comparison to the real average signed LD value of each716

region. This permutation test explicitly evaluates whether a TSRmutation andmissensemutations717

in a focal window are more likely to be found together in the specific set of individuals containing718

the focal TSRmutation than any other set of individuals of the same size. Thus, this test is robust to719

variance in missing data. The proportion of permuted observations with a mean absolute signed720

LD exceeding the observed signed LD was taken as the two-tailed p-value for each windowed test.721

Lastly, we found the intersect of these windows with the closest gene according to our genome722

annotation, and found their A. thaliana orthologs (Emms and Kelly, 2015). We used the set of A.723

thaliana orthologs found across all 13 significantly enriched 1 Mb windows (after a 5% FDR correc-724

tion) in a Gene Ontology (GO) Enrichment analysis for biological processes.725
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Supplementary Material964

Sup Table 1. Tree-based coalescent test for selection under two scenarios; selection on de novo origins (since

the mutation first arose) and selection over recent timescales (consistent with selection on a standing genetic

variant). All bolded significant p-values remain significant after a 5% FDR correction.

TSR position Mutational Origin # Selection de novo, p-value Selection on SGV, p-value

ALS574 1 9.81E-06 0.2449

ALS574 2 0.000885252 -

ALS574 3 0.005650493 0.9800

ALS574 4 0.1401669 0.0013

ALS574 5 0.6623966 0.3289

ALS574 6 0.6397279 0.3668

ALS653 7 5.58E-06 2.67E-14

ALS653 8 0.7168271 0.0765

PPO210 9 0.5886909 0.5470

PPO210 10 0.2841429 0.2703

PPO210 11 0.5886909 0.7124
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Sup Figure 1. Bootstrapped gene trees of ALS (3 kb) and PPO (10 kb) (CDS +1 kb on either side) alongside TSR mutations across all 162

individuals. Coloured grids indicate a haplotype harbouring a focal resistance SNP, with the SNP legend inserted within the grid (ALS574

mutations in green, ALS653 mutations in purple, PPO210 deletions in pink). Multiple origins are apparent for all resistance mutations.
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Sup Figure 2. Ancestral recombination graph likelihood by MCMC iteration in ARGweaver for a 20,000 SNP

region centered around ALS and PPO. Red dot highlights the ARG that maximizes the likelihood of the model

fit to our data, with which tree-based inferences were conducted. All iterations after 300 were used for

estimating the mean and 95% confidence intervals of allelic ages of mutational origins.
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Sup Figure 3. Correlation of signed LD (r) between two target site resistance mutations, and synonymous or

missense mutations across the genome. Each point represents the mean r between all synonymous or

missense mutations and an ALS mutation in a non-overlapping 1 Mb window.
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