

1 ***In vivo imaging of cannabinoid type 2 receptors, functional and structural alterations in***
2 ***mouse model of cerebral ischemia by PET and MRI***

3 Ruiqing Ni,^{1,2} Adrienne Müller Herde,³ Ahmed Haider,³ Claudia Keller,³ Georgios Louloudis,¹
4 Markus Vaas,¹ Roger Schibli,³ Simon M. Ametamey,³ Jan Klohs,¹ Linjing Mu^{3,4*}

5 ¹Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland

6 ²Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland

7 ³Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland

8 ⁴Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland

9

10

11 Corresponding author: Dr. Linjing Mu

12

13 **Author's details**

14 Dr. Linjing Mu

15 Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland

16 Address: ETH Zürich, HCI E 388.1 Vladimir-Prelog-Weg 1-5/10 Zürich 8093

17 Email: linjing.mu@pharma.ethz.ch

18 Phone: +41 44 633 61 96

19

20

21

22 **Abstract**

23 Background and purpose: Brain ischemia is one of the most important pathologies of the central
24 nervous system. Non-invasive molecular imaging methods have the potential to provide critical
25 insights into the temporal dynamics and follow alterations of receptor expression and metabolism
26 in ischemic stroke. The aim of this study was to assess the cannabinoid type 2 receptors (CB₂R)
27 levels in transient middle cerebral artery occlusion (tMCAO) mouse models at subacute stage
28 using positron emission tomography (PET) with our novel tracer [¹⁸F]RoSMA-18-d6, and
29 structural imaging by magnetic resonance imaging (MRI).

30 Methods: Our recently developed CB₂R PET tracer [¹⁸F]RoSMA-18-d6 was used for imaging the
31 neuroinflammation at 24 h after reperfusion in tMCAO mice. The RNA expression levels of
32 CB₂R and other inflammatory markers were analyzed by quantitative real-time polymerase chain
33 reaction using brain tissues from tMCAO (1 h occlusion) and sham-operated mice.
34 [¹⁸F]fluorodeoxyglucose (FDG) was included for evaluation of the cerebral metabolic rate of
35 glucose (CMR_{Glc}). In addition, diffusion-weighted imaging and T₂-weighted imaging were
36 performed for anatomical reference and delineating the lesion in tMCAO mice.

37 Results: mRNA expressions of inflammatory markers *TNF-α*, *Iba1*, *MMP9* and *GFAP*, *CNR2*
38 were increased at 24 h after reperfusion in the ipsilateral compared to contralateral hemisphere of
39 tMCAO mice, while mRNA expression of the neuronal marker *MAP-2* was markedly reduced.
40 Reduced [¹⁸F]FDG uptake was observed in the ischemic striatum of tMCAO mouse brain at 24 h
41 after reperfusion. Although higher activity of [¹⁸F]RoSMA-18-d6 in *ex-vivo* biodistribution
42 studies and higher standard uptake value ratio (SUV_R) were detected in the ischemic ipsilateral

43 compared to contralateral striatum in tMCAO mice, the *in-vivo* specificity of [¹⁸F]RoSMA-18-d6
44 was confirmed only in the CB₂R-rich spleen.

45 Conclusions: This study revealed an increased [¹⁸F]RoSMA-18-d6 measure of CB₂R and a
46 reduced [¹⁸F]FDG measure of CMRglc in ischemic striatum of tMCAO mice at subacute stage.
47 [¹⁸F]RoSMA-18-d6 might be a promising PET tracer for detecting CB₂R alterations in animal
48 models of neuroinflammation without neuronal loss.

49

50 **Key words:** cannabinoid type 2 receptor; [¹⁸F]RoSMA-18-d6; ischemic stroke;
51 neuroinflammation; magnetic resonance imaging; positron emission tomography

52

53 **Introduction**

54 The pathophysiology of ischemic stroke is complex and associated with a myriad of cellular and
55 molecular pathways. The severe reduction in cerebral blood flow (CBF) initiates a cascade of
56 hemodynamic, vascular and inflammatory processes in a time-dependent manner in the supplied
57 brain territory, and subsequent defensive response for repair related to lesion expansion and
58 containment. Irreversible tissue damage occurs in the core of the ischemic area; while neurons in
59 the ischemic penumbra face excitotoxicity, peri-infarct polarizations, inflammation and apoptosis,
60 leading to a secondary tissue damage and expansion of the lesion if reperfusion cannot be
61 restored within an early time frame [2-4]. Neuroinflammation post stroke has been an important
62 therapeutic target. Anti-inflammatory, immunomodulatory treatments and microglia-targeted
63 therapy were evaluated in clinical stroke trials [5-7]. Thus, there is a need for imaging the
64 regional neuroinflammatory pattern for understanding disease mechanism and for therapeutic
65 monitoring.

66 Positron emission tomography (PET) using $[^{18}\text{F}]$ fluorodeoxyglucose ($[^{18}\text{F}]$ FDG) for
67 cerebral metabolic rate of glucose (CMRglc), $[^{15}\text{O}]$ H_2O for perfusion imaging, and diffusion
68 weighted (DW) magnetic resonance imaging (MRI) are valuable tools to support understanding
69 of the pathophysiology in patients with ischemic stroke [3, 8-14]. However, *in vivo* imaging of
70 neuroinflammation and gliosis is challenging [12, 13, 15]. One reason is that the astrocytes and
71 microglia are highly dynamic and heterogeneous in their subtypes, locations and activation status.
72 Additionally, the identification of an ideal target for neuroinflammation imaging is highly
73 demanding. Translocator protein (TSPO) is the most widely used neuroinflammation target for
74 PET imaging. $[^{11}\text{C}]$ PK-11195, the first generation TSPO PET tracer, and several second-
75 generation tracers such as $[^{11}\text{C}]$ DAA1106, $[^{11}\text{C}]$ PBR06, $[^{11}\text{C}]$ PBR28, $[^{11}\text{C}]$ GE180, and

76 [¹⁸F]DPA-713, [¹⁸F]DPA-714 [16-24] have been evaluated in (pre)-clinical studies. So far,
77 imaging neuroinflammation with TSPO PET tracers yielded controversial results in rodents and
78 patients with ischemic stroke [1, 13, 20]. Thus, the development of novel PET probes for
79 visualizing alternative targets in neuroinflammation have received great attention in recent years
80 [25-27].

81 Cannabinoid type 2 receptors (CB₂R) are mainly expressed by immune cells including
82 monocytes and macrophages. In the brain, CB₂Rs are primarily found on microglia and have low
83 expression levels under physiological conditions [2, 4, 28]. Upregulation of brain CB₂R
84 expression is reported under acute inflammation such as ischemic stroke, and related to lesion
85 extension in the penumbra and subsequent functional recovery [29]. Treatment with CB₂R
86 agonists has been shown to be neuroprotective and attenuates macrophage/microglial activation
87 in the mouse models of cerebral ischemia [29, 42-45]. CB₂R is also upregulated in other brain
88 diseases with involvement of inflammation/microglia under chronic inflammation in
89 neurodegenerative diseases such as Alzheimer's disease [30-33] and senescence-accelerated
90 models [34], associated with amyloid- β deposits[28, 35-41].

91 Several structural scaffolds of CB₂R PET tracers have recently been developed [46-50]
92 including pyridine derivatives, oxoquinoline derivatives; thiazole derivatives [51, 52];
93 oxadiazole derivatives [53]; carbazole derivatives [54]; imidazole derivative [55]; and thiophene
94 derivatives [56, 57]. In this study, our newly developed pyridine derivative [¹⁸F]RoSMA-18-d6,
95 which exhibited sub-nanomolar affinity and high selectivity towards CB₂R (Ki: 0.8 nM,
96 CB₂R/CB₁R > 12'000) [58] is selected as the CB₂R PET tracer.

97 The aim of the current study was to evaluate the novel CB₂R tracer [¹⁸F]RoSMA-18-d6 in
98 the transient middle cerebral artery occlusion (tMCAO) mouse models of focal cerebral ischemia

99 [60-66] using microPET. In addition, $[^{18}\text{F}]$ FDG was included for evaluation of the cerebral
100 metabolic rate of glucose (CMRglc). Diffusion-weighted imaging and T_2 - weighted imaging
101 were performed for anatomical reference and for delineating the lesion in tMCAO mice.

102

103 **Methods**

104 **Radiosynthesis**

105 $[^{18}\text{F}]$ RoSMA-18-d6 was synthesized by nucleophilic substitution of the tosylate precursor with
106 $[^{18}\text{F}]$ KF/Kryptofix222 in acetonitrile [58]. The crude product was purified by reverse phase
107 semi-preparative high-performance liquid chromatography and formulated with 5 % ethanol in
108 water for intravenous injection and for biological evaluations. In a typical experiment, a
109 moderate radiochemical yield of ~ 12 % (decay corrected) was achieved with a radiochemical
110 purity > 99 %. The molar activities ranged from 156 to 194 GBq/ μmol at the end of synthesis.
111 The identity of the final product was confirmed by comparison with the HPLC retention time of
112 the non-radioactive reference compound by co-injection. $[^{18}\text{F}]$ FDG was obtained from a routine
113 clinical production from the University Hospital Zurich, Switzerland.

114

115 **Animals**

116 Twenty-four male C57BL/6J mice were obtained from Janvier Labs (Le Genest-Saint-Isle,
117 France). The mice were scanned at 8–10 weeks of age (20–25 g body weight). Mice were
118 randomly allocated to sham-operation (n = 10) or tMCAO (n = 14). Mice underwent MRI,
119 μPET / computed tomography (CT), and 2,3,5-Triphenyltetrazolium chloride (TTC) histology
120 staining for validation 24 h or 48 h after reperfusion. Animals were housed in ventilated cages
121 inside a temperature-controlled room, under a 12-hour dark/light cycle. Pelleted food

122 (3437PXL15, CARGILL) and water were provided *ad-libitum*. Paper tissue and red Tecniplast
123 mouse house® (Tecniplast, Milan, Italy) shelters were placed in cages as environmental
124 enrichments. All experiments were performed in accordance with the Swiss Federal Act on
125 Animal Protection and were approved by the Cantonal Veterinary Office Zurich (permit number:
126 ZH018/14 and ZH264/16).

127

128 Surgeries for tMCAO and sham-operation were performed using standard-operating procedures
129 as described before [67, 68]. Anaesthesia was initiated by using 3 % isoflurane (Abbott, Cham,
130 Switzerland) in a 1:4 oxygen/air mixture, and maintained at 2 %. Before the surgical procedure, a
131 local analgesic (Lidocaine, 0.5 %, 7 mg/kg, Sintectica S.A., Switzerland) was administered
132 subcutaneously (s.c.). Temperature was kept constant at 36.5 ± 0.5 °C with a feedback controlled
133 warming pad system. All surgical procedures were performed in 15-30 min. After surgery,
134 buprenorphine was administered as s.c. injection (Temgesic, 0.1 mg/kg b.w.), and at 4 h after
135 reperfusion and supplied thereafter via drinking water (1 mL/32 mL of drinking water) until 24 h
136 or 48 h. Animals received softened chow in a weighing boat on the cage floor to encourage
137 eating. tMCAO animals were excluded from the study if they met one of the following criteria:
138 Bederson testing was performed 2h post-reperfusion. Bederson score of 0, no reflow after
139 filament removal, and premature death.

140

141 *mRNA isolation, reverse-transcription reaction and real-time polymerase chain reaction*
142 Brain hemispheres of C57BL/6 mouse, tMCAO mice at 24 h and 48 h post reperfusion were
143 used for total mRNA isolation according to the protocols of the Isol-RNA Lysis Reagent (5
144 PRIME, Gaithersburg, USA) and the bead-milling TissueLyser system (Qiagen, Hilden,

145 Germany). QuantiTect® Reverse Transcription Kit (Qiagen, Hilden, Germany) was used to
146 generate cDNA. The primers (Microsynth, Balgach, Switzerland) used for the quantitative
147 polymerase chain reaction (qPCR) are summarized in **Supplementary Table 1**. Quantitation of
148 *CNR2*, *Iba1*, *TNF- α* , *MMP9*, *GFAP* and *MAP-2* mRNA expression was performed with the
149 DyNAamo™ Flash SYBR® Green qPCR Kit (Thermo Scientific, Runcorn, UK) using a 7900 HT
150 Fast Real-Time PCR System (Applied Biosystems, Carlsbad, USA). The amplification signals
151 were detected in real-time, which permitted accurate quantification of the amounts of the initial
152 RNA template during 40 cycles according to the manufacturer's protocol. All reactions were
153 performed in duplicates and in two independent runs. Quantitative analysis was performed using
154 the SDS Software (v2.4) and a previously described $2-\Delta\Delta Ct$ quantification method [69]. The
155 specificity of the PCR products of each run was determined and verified with the SDS
156 dissociation curve analysis feature.

157

158 *In vivo* MRI

159 Data were acquired at 24 h after reperfusion on a 7 T Bruker Pharmascan (Bruker BioSpin
160 GmbH, Germany), equipped with a volume resonator operating in quadrature mode for
161 excitation and a four element phased-array surface coil for signal reception and operated by
162 Paravision 6.0 (Bruker BioSpin) [67, 70-72]. Mice were anesthetized with an initial dose of 4 %
163 isoflurane in oxygen/air (200:800 ml/min) and maintained at 1.5 % isoflurane in oxygen/air
164 (100:400 ml/min). Body temperature was monitored with a rectal temperature probe (MLT415,
165 ADInstruments) and kept at $36.5^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$ using a warm water circuit integrated into the
166 animal support (Bruker BioSpin GmbH, Germany). T_2 -weighted MR images were obtained
167 using a spin echo sequence (TurboRARE) with an echo time 3 ms, repetition time 6 ms, 100

168 averages, slice thickness 1 mm, field-of-view 2.56 cm × 1.28 cm, matrix size 256 × 128, giving
169 an in-plane resolution of 100 $\mu\text{m} \times 100 \mu\text{m}$. For DWI, a four-shot spin echo–echo planar imaging
170 sequence with an echo time = 28 ms, repetition time = 3000 [70, 71] acquired with a field-of-
171 view of 3.3 cm × 2 cm and a matrix size of 128 × 128, resulting in a nominal voxel size of 258
172 $\mu\text{m} \times 156 \mu\text{m}$. Diffusion-encoding was applied in the x-, y-, and z-directions with b-values of
173 100, 200, 400, 600, 800, and 1000 s/mm^2 , respectively, acquisition time 3 min 48 s. The
174 ischemic lesion was determined as an area of significant reduction of the apparent diffusion
175 coefficient (ADC) value compared with the unaffected contralateral side [73]. On T_2 -weighted
176 images, the lesion was determined as an area of hyperintensities compared with the contralateral
177 side.

178

179 *In vivo* microPET studies

180 MicroPET/CT scans were performed at 24 h after reperfusion with a calibrated SuperArgus
181 $\mu\text{PET}/\text{CT}$ scanner (Sedecal, Madrid, Spain) with an axial field-of-view of 4.8 cm and a spatial
182 resolution of 1.6–1.7 mm (full width at half maximum). tMCAO and the sham-operated
183 C57BL/6J mice were anesthetized with ca. 2.5 % isoflurane in oxygen/air (1:1) during tracer
184 injection and the whole scan time period. The formulated radioligand solution ($[^{18}\text{F}]$ FDG: 9.9–11
185 MBq or $[^{18}\text{F}]$ RoSMA-18-d6: 7.2–13 MBq) was administered via tail vein injection, and mice
186 were dynamically scanned for 60 min. For blocking experiments, 1.5 mg/kg GW405833 was
187 dissolved in a vehicle of 2 % Cremophor (v/v), 10 % ethanol (v/v), and 88 % water for injection
188 (v/v) and injected together with $[^{18}\text{F}]$ RoSMA-18-d6. Body temperature was monitored by a
189 rectal probe and kept at 37 °C by a heated air stream (37 °C). The anesthesia depth was measured
190 by the respiratory frequency (SA Instruments, Inc., Stony Brook, USA). μPET acquisitions were

191 combined with CT for anatomical orientation and attenuation correction. The obtained data were
192 reconstructed in user-defined time frames with a voxel size of $0.3875 \times 0.3875 \times 0.775 \text{ mm}^3$ as
193 previously described [74].

194

195 Triphenyltetrazolium chloride (TTC) staining

196 To assess the ischemic lesion severity in the brain of tMCAO mice and to validate the absence of
197 lesion in the sham-operated mice, staining with TTC staining was performed. After
198 measurements mice were euthanized, their brains were removed and 1-mm thick brain slices
199 were obtained with a brain matrix. Slices were incubated in a 2.5 % TTC solution (Sigma-
200 Aldrich, Switzerland) in PBS at 37 °C for 3 min. Photographs of the brain sections were taken.
201 Edema-corrected lesion volumes were quantified as described [75].

202

203 Biodistribution studies in the mouse brain

204 After PET/CT scanning of tMCAO mice at 24 h after reperfusion with [¹⁸F]RoSMA-18-d6,
205 animals were sacrificed at 70 min post injection by decapitation. The spleen and brain regions of
206 ischemic ipsilateral area and contralateral hemisphere were collected for analysis with a gamma
207 counter. The accumulated radioactivities in the different tissues were expressed as percent
208 normalized injected dose per gram of tissue normalized to 20 g body weight of the animals
209 (norm. percentage injected dose per gram tissue (% ID/g tissue)).

210

211 Data analysis and Statistics

212 Images were processed and analyzed using PMOD 4.2 software (PMOD Technologies Ltd.,
213 Zurich, Switzerland). The time–activity curves were deduced from specific volume-of-interest

214 that were defined based on a mouse MRI T₂-weighted image template [76]. Radioactivity is
215 presented as standardized uptake value (SUV) (decay-corrected radioactivity per cm³ divided by
216 the injected dose per gram body weight). [¹⁸F]RoSMA-18-d6 SUVR was calculated by using the
217 midbrain in the corresponding hemisphere as reference brain region. For [¹⁸F]FDG PET, regional
218 SUV was calculated. Two-way ANOVA with Sidak post-hoc analysis was used for comparison
219 between groups (Graphpad Prism 9.0, CA, U.S.A).

220

221 **Results**

222 Increased expression of inflammation makers and neuronal damage after focal cerebral ischemia
223 in tMCAO mice

224 mRNA levels were measured to address the question whether mouse non-ischemic and ischemic
225 hemispheres differ in their expression levels of *CNR2* and other inflammatory genes. *CNR2*
226 mRNA expression was increased to around 1.3 fold after 24 h reperfusion and at 48 h in the
227 ipsilateral comparing to contralateral hemisphere (**Fig. 1a**). Similar 1.5-2.5 fold increases were
228 observed in the mRNA expression of inflammatory markers including *TNF- α* , *Iba1*, *MMP9* and
229 *GFAP* at 24 h and 48 h after reperfusion in the ipsilateral compared to contralateral brain region
230 (**Fig. 1b-e**). *MAP-2* expression has been shown to be a reliable marker of neurons that undergo
231 irreversible cell death [77, 78]. The neuron-specific *MAP-2* expression was markedly reduced in
232 the ipsilateral compared to contralateral hemisphere at 24 h and 48 h after reperfusion (**Fig. 1f**).
233 As similar *CNR2* mRNA expression were observed in 24 h and 48 h, our studies were performed
234 at early time point of 24 h after reperfusion for investigating the functional, structural and
235 molecular changes in the following experiments.

236

237 Reduced cerebral glucose metabolism and structural MRI lesion following tMCAO

238 Reduced [¹⁸F]FDG uptake was observed in the presumed MCA territory of the ipsilateral
239 hemisphere in tMCAO mice, while there was no difference in [¹⁸F]FDG uptake between
240 hemispheres in sham-operated mice (Fig. 2a). SUVs were significantly lower in the ipsilateral in
241 the striatum in tMCAO compared to the contralateral side and compared to the same region in
242 sham-operated mice 1.8 vs 1.4 (Fig. 2b). There were no differences in [¹⁸F]FDG uptake in the
243 cortex and cerebellum between the ipsilateral and contralateral hemisphere in tMCAO mice and
244 sham-operated mice. T₂-weighted MRI and DWI imaging were performed in tMCAO and sham-
245 operated animals at 24 h after reperfusion (Fig. 2c). The lesions in the ipsilateral side in the
246 striatum and cortex were visible as areas of decreased values on the ADC maps calculated from
247 DWI, and as areas of increased intensities on the T₂-weighted MR images at 24 h after
248 reperfusion following 1 h tMCAO (Figs. 2c-d). Ischemic lesions in the tMCAO were also seen
249 *ex vivo* as white areas while viable tissue appeared red in TTC stained brain sections (Fig. 2e).
250 Homogenous deep red color was observed across both hemispheres in sham-operated mice,
251 verifying the absence of any lesion. The hemispheric lesion volumes in tMCAO mice were 42.8
252 \pm 10.2 % (mean \pm standard deviation).

253

254 Increased [¹⁸F]RoSMA-18-d6 retention in the striatum after tMCAO

255 To analyze the distribution of [¹⁸F]RoSMA-18-d6 in tMCAO mice brain, dynamic μ PET/CT
256 scans were performed at 24 h after reperfusion. The standard uptake values (SUVs) of
257 [¹⁸F]RoSMA-18-d6 did not reveal significant difference in various brain regions of tMCAO mice
258 (Supplementary Fig 1). However, we found a reduced uptake at early time frame (1-3 min) and

259 a similar uptake after 7 min in the ipsilateral side compared to that of contralateral side (Fig. 3a).
260 Thus, to exclude the perfusion influence, we averaged the brain signals from 21-61 min and
261 selected the midbrain as the reference region. Higher [¹⁸F]RoSMA-18-d6 SUVR was observed in
262 the ischemic ipsilateral striatum compared to the contralateral striatum (two-way ANOVA with
263 Sidak multiple comparison correction, 0.97 ± 0.02 vs 0.87 ± 0.06 , $p = 0.0274$), but not in other
264 brain regions such as cortex (Fig. 3b, c). The increased signals at ischemic ipsilateral striatum,
265 however, could not be blocked by the selective CB₂R agonist GW405833 (Fig. 3c).

266
267 At the end of the *in vivo* experiments, we dissected the mice to verify the activity accumulation
268 and specificity of [¹⁸F]RoSMA-18-d6 in the spleen and different brain regions with a gamma
269 counter. In line with the results obtained from the averaged SUVRs in the tMCAO mouse brain,
270 the radioactivity in the ipsilateral side was indeed significant higher than that of the contralateral
271 hemisphere (0.037 ± 0.007 vs 0.026 ± 0.003 , $n = 5$ each group), but no blockade effect was seen
272 under blocking conditions (Fig. 4a). As expected, radioactivity in the CB₂R-rich spleen was
273 much higher than the brain and 58 % of the signals was blocked by co-injection of CB₂R specific
274 ligand GW405833, demonstrating specific target engagement of [¹⁸F]RoSMA-18-d6 *in vivo* (Fig.
275 4b).

276

277 Discussion

278 This study assessed the utility of CB₂R PET tracer [¹⁸F]RoSMA-18-d6 for imaging
279 tMCAO mouse at subacute stage, concomitant with decreased CMR_{glc} levels and formation of a
280 structural lesion. Previous PET imaging of stroke animal models led to inconclusive results. In a
281 rat model of photothrombotic stroke at 24 h after surgery, increased [¹¹C]NE40 (CB₂R tracer)

282 uptake and unvaried [¹¹C]PK11195 (TSPO tracer) uptake were reported [79]. In another study,
283 [¹¹C]NE40 uptake did not show any difference in the same rat model of photothrombotic stroke
284 [80]. Moreover, reduced [¹¹C]A836339 (CB₂R tracer) uptake was reported in a focal tMCAO rat
285 model over 1-28 days after occlusion [51]. Possible reasons for these different observations
286 include the time point of assessment, different methods for inducing acute stroke (transient or
287 permanent ischemia) resulting in variations of ischemic severity and levels of inflammatory-cell
288 expression [43].

289 CB₂R has negligible expression in the mouse brain and is mainly expressed in the spleen
290 under physiological conditions [30, 36, 60-65, 81]. Under neuroinflammatory conditions, CB₂R
291 is upregulated in activated microglial cells. In this study, we used quantitative real-time
292 polymerase chain reaction to measure gene expression levels of *CNR2*, *TNF- α* , *Iba1*, *MMP9*,
293 *GFAP* and *MAP-2* at 24 h and 48 h. All tested inflammatory markers displayed increased mRNA
294 levels in the ipsilateral brain hemisphere, in agreement with the reported findings in tMCAO
295 mouse model [29, 45, 82, 83]. In line with the increased *CNR2* gene expression levels,
296 significantly higher [¹⁸F]RoSMA-18-d6 SUVR (standard uptake value ratio) was observed in
297 striatum at ipsilateral vs contralateral under baseline conditions in our PET studies. The 50 %
298 reduction of the neuronal marker *MAP-2* indicated neuronal damage.

299 The dynamic μ PET scan using [¹⁸F]RoSMA-18-d6 indicated a reduced perfusion in the
300 lesion brain regions at the first time frame of 1-3 minutes. This is probably due to the changes of
301 microvascular response (no-reflow phenomenon) and the reduction in neuronal activity. Taking
302 the midbrain as the reference region, the ratios of SUV averaged from 21-61 min revealed
303 increased [¹⁸F]RoSMA-18-d6 SUVR in the ipsilateral ischemic striatum compared to that of the
304 contralateral side. Our *ex vivo* bio-distribution studies confirmed the difference of the

305 radioactivity distribution in the left and right brain hemisphere. The *in vivo* specificity of
306 [¹⁸F]RoSMA-18-d6 towards CB₂R is evidenced by a 58 % reduction in radioactivity in the
307 mouse spleen under blockade conditions in *ex vivo* biodistribution studies. Underlying reasons
308 for the lack of specificity of [¹⁸F]RoSMA-18-d6 in the mouse brain may because 1) the increased
309 tracer availability in the blood induced by blocking the CB₂R peripheral targets in the presence
310 of the blocker GW405833; and 2) the relatively low brain uptake of our CB₂R-selective
311 radioligand [¹⁸F]RoSMA-18-d6 in the mouse brain resulted in undetectable changes of
312 radiosignals under baseline and blockade conditions. Notably, the time-activity curves of
313 [¹⁸F]RoSMA-18-d6 in tMCAO mouse brain showed remarkably higher initial brain uptake under
314 blockade conditions than the baseline in both sides of the mouse brain (**Supplementary Fig 1**),
315 indicating the influence of blocking CB₂R target in the peripheral organs on the availability of
316 radiotracer concentrations in the blood. In our previous studies with Wistar rat, the spleen uptake
317 of [¹⁸F]RoSMA-18-d6 was blocked by nearly 90 % suggesting a high possibility of species
318 difference of [¹⁸F]RoSMA-18-d6 binding [57]. Therefore, we speculate that rat stroke models
319 might be superior to mice models for imaging neuroinflammation with CB₂R PET tracers.

320 We observed that [¹⁸F]FDG measure of CMRglc was reduced in the ischemic areas i.e.
321 ipsilateral striatum of the tMCAO mice at 24 h after reperfusion. The reduced CMRglc was
322 reported in many earlier studies in disease animal models and in stroke patients [84-87], masking
323 CMRglc reduction of neuronal tissue in the brain. At an extended time points of the recovery
324 stage from day 4 - 40, an increased CMRglc level was reported in the ischemic regions due to the
325 increased consumption from inflammatory cells along with microglial activation [88-90].

326 There are several limitations in the current study. 1) As there is no reliable specific CB₂R
327 antibody, we did not include immunohistochemical staining for CB₂R protein distribution in the

328 mouse brain. The qPCR measures of *CNR2* mRNA level provided an alternative readout, but do
329 not provide spatial distribution of cerebral CB₂R expression. 2) Due to the logistic barrier, MRI
330 and μ PET/CT scans were performed with different cohorts of animals. Nevertheless, standard
331 operating procedures for the surgery were used. 3) Our *in vivo* data with tMCAO mice were
332 collected at 24 h after surgery, longitudinal imaging of tMCAO mice with [¹⁸F]RoSMA-18-d6
333 along with structural and functional readout will provide further insight into the spatial-temporal
334 dynamics of CB₂R expression in the brain.

335

336 **Conclusion**

337 Our newly developed CB₂R PET tracer [¹⁸F]RoSMA-18-d6 revealed limited utility to image
338 neuroinflammation in the ischemic ipsilateral of the tMCAO mice at 24 h after reperfusion.
339 Although lesion regions in tMCAO mouse brain could be followed by the ratios of averaged
340 SUVs from 21-61 with midbrain as the reference region, the in-vivo specificity of [¹⁸F]RoSMA-
341 18-d6 was confirmed only in the CB2R-rich spleen. Different neuroinflammatory animal models
342 which has comparable neuronal numbers in the lesion regions are recommended for evaluation
343 of CB₂R in further PET imaging studies.

344

345 **Appendix**

346 **Acknowledgements**

347 The authors acknowledge Yingfang He, Annette Krämer at Center for Radiopharmaceutical
348 Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich; Dr Mark Augath, at
349 the Institute for Biomedical Engineering, ETH Zurich & University of Zurich for technical
350 assistance.

351

352 **Funding**

353 JK received funding from the Swiss National Science Foundation (320030_179277), in the
354 framework of ERA-NET NEURON (32NE30_173678/1), the Synapsis Foundation, the Olga
355 Mayenfisch Stiftung, and the Vontobel foundation. RN received funding from Forschungskredit,
356 Synapsis foundation career development award (2017 CDA-03).

357

358 **Abbreviations**

359 ADC: Apparent diffusion coefficient; CB₂R: Cannabinoid type 2 receptors; CBF: Cerebral blood
360 flow; CMRglc: Cerebral metabolic rate of glucose; CT: computed tomography; DW: Diffusion
361 weighted; FDG: fluorodeoxyglucose; % ID/g tissue: Injected dose per gram tissue; MRI:
362 Magnetic resonance imaging; PET: Positron emission tomography; SUV: Standardized uptake
363 value; SUVR: Standard uptake value ratio; tMCAO: transient middle cerebral artery occlusion;
364 TSPO: Translocator protein; TTC: Triphenyltetrazolium chloride.

365

366 **Availability of data and materials**

367 The data used and analyzed in the current study are available from the corresponding authors
368 upon request.

369

370 **Ethics approval and consent to participate**

371 All experiments were performed in accordance with the Swiss Federal Act on Animal Protection
372 and were approved by the Cantonal Veterinary Office Zurich (permit number: ZH018/14 and
373 ZH264/16).

374

375 **Competing interests**

376 The authors declare no conflicts of interest.

377

378 **Consent for publication**

379 Not applicable.

380

381 **Authors' contribution**

382 RN, JK, LM, SMA designed the study; RN, KC, AH, AMH, GL, LM performed the experiment,
383 RN, LM performed data analysis, RN, JK, LM wrote the initial manuscript. All authors read and
384 approved the final manuscript.

385 **References**

- 386 1. Kreisl WC, Kim MJ, Coughlin JM, Henter ID, Owen DR, Innis RB: **PET imaging of**
387 **neuroinflammation in neurological disorders.** *Lancet Neurol* 2020, **19**:940-950.
- 388 2. Astrup J: **Energy-requiring cell functions in the ischemic brain. Their critical supply**
389 **and possible inhibition in protective therapy.** *J Neurosurg* 1982, **56**:482-497.
- 390 3. Heiss W-D: **Ischemic Penumbra: Evidence From Functional Imaging in Man.**
391 *Journal of Cerebral Blood Flow & Metabolism* 2000, **20**:1276-1293.
- 392 4. Dirnagl U, Iadecola C, Moskowitz MA: **Pathobiology of ischaemic stroke: an**
393 **integrated view.** *Trends Neurosci* 1999, **22**:391-397.
- 394 5. Dabrowska S, Andrzejewska A, Lukomska B, Janowski M: **Neuroinflammation as a**
395 **target for treatment of stroke using mesenchymal stem cells and extracellular**
396 **vesicles.** *Journal of Neuroinflammation* 2019, **16**:178.
- 397 6. Anrather J, Iadecola C: **Inflammation and Stroke: An Overview.** *Neurotherapeutics*
398 2016, **13**:661-670.
- 399 7. Lambertsen KL, Finsen B, Clausen BH: **Post-stroke inflammation—target or tool for**
400 **therapy?** *Acta Neuropathol* 2019, **137**:693-714.
- 401 8. Evans NR, Tarkin JM, Buscombe JR, Markus HS, Rudd JHF, Warburton EA: **PET**
402 **imaging of the neurovascular interface in cerebrovascular disease.** *Nature Reviews*
403 *Neurology* 2017, **13**:676-688.
- 404 9. Marchal G, Rioux P, Petit-Tabou MC, Derlon JM, Baron JC, Serrati C, Viader F, de la
405 Sayette V, Le Doze F, Lochon P, et al: **PET imaging of cerebral perfusion and oxygen**
406 **consumption in acute ischaemic stroke: relation to outcome.** *The Lancet* 1993,
407 **341**:925-927.
- 408 10. Muir KW, Buchan A, von Kummer R, Rother J, Baron J-C: **Imaging of acute stroke.**
409 *The Lancet Neurology* 2006, **5**:755-768.
- 410 11. Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER: **Astrocyte**
411 **Biomarkers in Alzheimer's Disease.** *Trends Mol Med* 2019, **25**:77-95.
- 412 12. Jain P, Chaney AM, Carlson ML, Jackson IM, Rao A, James ML: **Neuroinflammation**
413 **PET Imaging: Current Opinion and Future Directions.** *Journal of Nuclear Medicine*
414 2020, **61**:1107-1112.
- 415 13. Zinnhardt B, Wiesmann M, Honold L, Barca C, Schafers M, Kiliaan AJ, Jacobs AH: **In**
416 **vivo imaging biomarkers of neuroinflammation in the development and assessment**
417 **of stroke therapies - towards clinical translation.** *Theranostics* 2018, **8**:2603-2620.
- 418 14. Martín A, Macé E, Boisgard R, Montaldo G, Thézé B, Tanter M, Tavitian B: **Imaging of**
419 **Perfusion, Angiogenesis, and Tissue Elasticity after Stroke.** *Journal of Cerebral*
420 *Blood Flow & Metabolism* 2012, **32**:1496-1507.
- 421 15. Venneti S, Lopresti BJ, Wiley CA: **Molecular imaging of microglia/macrophages in**
422 **the brain.** *Glia* 2013, **61**:10-23.
- 423 16. Thiel A, Heiss WD: **Imaging of microglia activation in stroke.** *Stroke* 2011, **42**:507-
424 512.
- 425 17. Boutin H, Murray K, Pradillo J, Maroy R, Smigova A, Gerhard A, Jones PA, Trigg W: **18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a**
426 **preclinical model of stroke.** *Eur J Nucl Med Mol Imag* 2015, **42**:503-511.

428 18. Lartey FM, Ahn GO, Shen B, Cord K-T, Smith T, Chua JY, Rosenblum S, Liu H, James
429 ML, Chernikova S, et al: **PET Imaging of Stroke-Induced Neuroinflammation in**
430 **Mice Using [18F]PBR06.** *Molecular Imaging and Biology* 2014, **16**:109-117.

431 19. Tóth M, Little P, Arnberg F, Häggkvist J, Mulder J, Halldin C, Gulyás B, Holmin S:
432 **Acute neuroinflammation in a clinically relevant focal cortical ischemic stroke**
433 **model in rat: longitudinal positron emission tomography and immunofluorescent**
434 **tracking.** *Brain Structure and Function* 2016, **221**:1279-1290.

435 20. Chaney A, Cropper HC, Johnson EM, Lechtenberg KJ, Peterson TC, Stevens MY,
436 Buckwalter MS, James ML: **11C-DPA-713 versus 18F-GE-180: A preclinical**
437 **comparison of TSPO-PET tracers to visualize acute and chronic neuroinflammation**
438 **in a mouse model of ischemic stroke.** *Journal of Nuclear Medicine*
439 2018:jnumed.118.209155.

440 21. Martín A, Boisgard R, Thézé B, Van Camp N, Kuhnast B, Damont A, Kassiou M, Dollé
441 F, Tavitian B: **Evaluation of the PBR/TSPO Radioligand [18F]DPA-714 in a Rat**
442 **Model of Focal Cerebral Ischemia.** *Journal of Cerebral Blood Flow & Metabolism*
443 2009, **30**:230-241.

444 22. Thiel A, Radlinska BA, Paquette C, Sidel M, Soucy J-P, Schirrmacher R, Minuk J: **The**
445 **Temporal Dynamics of Poststroke Neuroinflammation: A Longitudinal Diffusion**
446 **Tensor Imaging-Guided PET Study with ¹¹C-PK11195 in Acute Subcortical Stroke.**
447 *Journal of Nuclear Medicine* 2010, **51**:1404-1412.

448 23. Zinnhardt B, Viel T, Wachsmuth L, Vrachimis A, Wagner S, Breyholz H-J, Faust A,
449 Hermann S, Kopka K, Faber C, et al: **Multimodal Imaging Reveals Temporal and**
450 **Spatial Microglia and Matrix Metalloproteinase Activity after Experimental Stroke.**
451 *Journal of Cerebral Blood Flow & Metabolism* 2015, **35**:1711-1721.

452 24. Ishikawa A, Tokunaga M, Maeda J, Minamihisamatsu T, Shimojo M, Takuwa H, Ono M,
453 Ni R, Hirano S, Kuwabara S, et al: **In Vivo Visualization of Tau Accumulation,**
454 **Microglial Activation, and Brain Atrophy in a Mouse Model of Tauopathy rTg4510.**
455 *J Alzheimers Dis* 2018, **61**:1037-1052.

456 25. Razansky D, Klohs J, Ni R: **Multi-scale optoacoustic molecular imaging of brain**
457 **diseases.** *Eur J Nucl Med Mol Imaging* 2021.

458 26. Ling X, Zhang S, Shao P, Li W, Yang L, Ding Y, Xu C, Stella N, Bai M: **A novel near-**
459 **infrared fluorescence imaging probe that preferentially binds to cannabinoid**
460 **receptors CB2R over CB1R.** *Biomaterials* 2015, **57**:169-178.

461 27. Sarott RC, Westphal MV, Pfaff P, Korn C, Sykes DA, Gazzi T, Brennecke B, Atz K,
462 Weise M, Mostinski Y, et al: **Development of High-Specificity Fluorescent Probes to**
463 **Enable Cannabinoid Type 2 Receptor Studies in Living Cells.** *Journal of the*
464 *American Chemical Society* 2020, **142**:16953-16964.

465 28. Stempel AV, Stumpf A, Zhang HY, Ozdogan T, Pannasch U, Theis AK, Otte DM,
466 Wojtalla A, Racz I, Ponomarenko A, et al: **Cannabinoid Type 2 Receptors Mediate a**
467 **Cell Type-Specific Plasticity in the Hippocampus.** *Neuron* 2016, **90**:795-809.

468 29. Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, Garcia-Gutierrez MS, Vivancos J,
469 Nombela F, Torres M, Burguete MC, Manzanares J, Lizasoain I, Moro MA:
470 **Cannabinoid type 2 receptor activation downregulates stroke-induced classic and**
471 **alternative brain macrophage/microglial activation concomitant to neuroprotection.**
472 *Stroke* 2012, **43**:211-219.

473 30. López A, Aparicio N, Pazos MR, Grande MT, Barreda-Manso MA, Benito-Cuesta I,
474 Vázquez C, Amores M, Ruiz-Pérez G, García-García E, et al: **Cannabinoid CB2**
475 **receptors in the mouse brain: relevance for Alzheimer's disease.** *Journal of*
476 *Neuroinflammation* 2018, **15**:158.

477 31. Rodriguez-Vieitez E, Ni R, Gulyas B, Toth M, Hagkvist J, Halldin C, Voytenko L,
478 Marutle A, Nordberg A: **Astrocytosis precedes amyloid plaque deposition in**
479 **Alzheimer APPswe transgenic mouse brain: a correlative positron emission**
480 **tomography and in vitro imaging study.** *Eur J Nucl Med Mol Imaging* 2015, **42**:1119-
481 1132

482 32. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs
483 AH, Wyss-Coray T, Vitorica J, Ransohoff RM, et al: **Neuroinflammation in**
484 **Alzheimer's disease.** *Lancet Neurol* 2015, **14**:388-405.

485 33. Rapic S, Backes H, Viel T, Kummer MP, Monfared P, Neumaier B, Vollmar S, Hoehn M,
486 Van der Linden A, Heneka MT, Jacobs AH: **Imaging microglial activation and glucose**
487 **consumption in a mouse model of Alzheimer's disease.** *Neurobiol Aging* 2013, **34**:351-
488 354.

489 34. Yamagishi S, Iga Y, Nakamura M, Takizawa C, Fukumoto D, Kakiuchi T, Nishiyama S,
490 Ohba H, Tsukada H, Sato K, Ouchi Y: **Upregulation of cannabinoid receptor type 2,**
491 **but not TSPO, in senescence-accelerated neuroinflammation in mice: a positron**
492 **emission tomography study.** *Journal of Neuroinflammation* 2019, **16**:208.

493 35. Di Marzo V, Stella N, Zimmer A: **Endocannabinoid signalling and the deteriorating**
494 **brain.** *Nat Rev Neurosci* 2015, **16**:30-42.

495 36. Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N,
496 Makriyannis A, Piomelli D, Davison JS, et al: **Identification and functional**
497 **characterization of brainstem cannabinoid CB2 receptors.** *Science* 2005, **310**:329-
498 332.

499 37. Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH, Li J, Gardner EL:
500 **Brain cannabinoid CB(2) receptors modulate cocaine's actions in mice.** *Nat Neurosci*
501 2011, **14**:1160-1166.

502 38. Benito C, Tolón RM, Pazos MR: **Cannabinoid CB2 receptors in human brain**
503 **inflammation.** *Br J Pharmacol* 2008, **153**.

504 39. Koppel J, Vingtdeux V, Marambaud P, D'Abromo C, Jimenez H, Stauber M, Friedman R,
505 Davies P: **CB2 Receptor Deficiency Increases Amyloid Pathology and Alters Tau**
506 **Processing in a Transgenic Mouse Model of Alzheimer's Disease.** 2014.

507 40. Aso E, Ferrer I: **CB2 Cannabinoid Receptor As Potential Target against Alzheimer's**
508 **Disease.** *Frontiers in Neuroscience* 2016, **10**.

509 41. Parbo P, Ismail R, Hansen KV, Amidi A, Marup FH, Gottrup H, Braendgaard H,
510 Eriksson BO, Eskildsen SF, Lund TE, et al: **Brain inflammation accompanies amyloid**
511 **in the majority of mild cognitive impairment cases due to Alzheimer's disease.** *Brain*
512 2017, **140**:2002-2011.

513 42. Ronca RD, Myers AM, Ganea D, Tuma RF, Walker EA, Ward SJ: **A selective**
514 **cannabinoid CB2 agonist attenuates damage and improves memory retention**
515 **following stroke in mice.** *Life Sci* 2015, **138**:72-77.

516 43. Bravo-Ferrer I, Cuartero MI, Zarruk JG, Pradillo JM, Hurtado O, Romera VG, Diaz-
517 Alonso J, Garcia-Segura JM, Guzman M, Lizasoain I, et al: **Cannabinoid Type-2**

518 **Receptor Drives Neurogenesis and Improves Functional Outcome After Stroke.**
519 *Stroke* 2017, **48**:204-212.

520 44. Zhang M, Martin BR, Adler MW, Razdan RK, Jallo JI, Tuma RF: **Cannabinoid CB(2)**
521 **receptor activation decreases cerebral infarction in a mouse focal**
522 **ischemia/reperfusion model.** *J Cereb Blood Flow Metab* 2007, **27**:1387-1396.

523 45. Yu SJ, Reiner D, Shen H, Wu KJ, Liu QR, Wang Y: **Time-Dependent Protection of**
524 **CB2 Receptor Agonist in Stroke.** *PLoS One* 2015, **10**:e0132487.

525 46. Spinelli F, Capparelli E, Abate C, Colabufo NA, Contino M: **Perspectives of**
526 **Cannabinoid Type 2 Receptor (CB2R) Ligands in Neurodegenerative Disorders:**
527 **Structure-Affinity Relationship (SAfiR) and Structure-Activity Relationship (SAR)**
528 **Studies.** *J Med Chem* 2017.

529 47. Ni R, Mu L, Ametamey S: **Positron emission tomography of type 2 cannabinoid**
530 **receptors for detecting inflammation in the central nervous system.** *Acta Pharmacol*
531 *Sin* 2019, **40**:351-357.

532 48. Spinelli F, Mu L, Ametamey SM: **Radioligands for positron emission tomography**
533 **imaging of cannabinoid type 2 receptor.** *J Labelled Comp Radiopharm* 2018, **61**:299-
534 308.

535 49. Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H,
536 **Fowler CJ, et al: Positron Emission Tomography Imaging of the Endocannabinoid**
537 **System: Opportunities and Challenges in Radiotracer Development.** *Journal of*
538 *Medicinal Chemistry* 2021, **64**:123-149.

539 50. Varlow C, Boileau I, Wey HY, Liang SH, Vasdev N: **Classics in Neuroimaging:**
540 **Imaging the Endocannabinoid Pathway with PET.** *ACS Chem Neurosci* 2020,
541 **11**:1855-1862.

542 51. Pottier G, Gomez-Vallejo V, Padro D, Boisgard R, Dolle F, Llop J, Winkeler A, Martin
543 **A: PET imaging of cannabinoid type 2 receptors with [11C]A-836339 did not**
544 **evidence changes following neuroinflammation in rats.** *J Cereb Blood Flow Metab*
545 2017, **37**:1163-1178.

546 52. Moldovan R-P, Deuther-Conrad W, Teodoro R, Wang Y, Fischer S, Pomper M, Wong D,
547 Dannals R, Brust P, Horti A: **18F-JHU94620, a high affinity PET radioligand for**
548 **imaging of cannabinoid subtype 2 receptors (CB2R).** *Journal of Nuclear Medicine*
549 2015, **56**:1048-1048.

550 53. Attili B, Celen S, Ahamed M, Koole M, Haute CVD, Vanduffel W, Bormans G:
551 **Preclinical evaluation of [(18) F]MA3: a CB2 receptor agonist radiotracer for PET.**
552 *Br J Pharmacol* 2019, **176**:1481-1491.

553 54. Heimann D, Börgel F, de Vries H, Bachmann K, Rose VE, Frehland B, Schepmann D,
554 Heitman LH, Wünsch B: **Optimization of pharmacokinetic properties by**
555 **modification of a carbazole-based cannabinoid receptor subtype 2 (CB(2)) ligand.**
556 *Eur J Med Chem* 2018, **143**:1436-1447.

557 55. Kallinen A, Boyd R, Lane S, Bhalla R, Mardon K, Stimson DHR, Werry EL, Fulton R,
558 Connor M, Kassiou M: **Synthesis and in vitro evaluation of fluorine-18 benzimidazole**
559 **sulfones as CB2 PET-radioligands.** *Org Biomol Chem* 2019, **17**:5086-5098.

560 56. Haider A, Muller Herde A, Slavik R, Weber M, Mugnaini C, Ligresti A, Schibli R, Mu L,
561 Mensah Ametamey S: **Synthesis and Biological Evaluation of Thiophene-Based**
562 **Cannabinoid Receptor Type 2 Radiotracers for PET Imaging.** *Front Neurosci* 2016,
563 **10**:350.

564 57. CaillÃ F, Cacheux F, Peyronneau M-A, Jaumain E, POTTIER G, Ullmer C, Grether U,
565 Dolle F, Damont A, Kuhnast B: **Biodistribution of [18F] FC0324, a new PET tracer**
566 **targeting CB2 receptors.** *Journal of Nuclear Medicine* 2017, **58**:855-855.

567 58. Haider A, Gobbi L, Kretz J, Ullmer C, Brink A, Honer M, Woltering TJ, Muri D, Iding H,
568 BÃrkler M, et al: **Identification and Preclinical Development of a 2,5,6-Trisubstituted**
569 **Fluorinated Pyridine Derivative as a Radioligand for the Positron Emission**
570 **Tomography Imaging of Cannabinoid Type 2 Receptors.** *Journal of Medicinal*
571 *Chemistry* 2020, **63**:10287-10306.

572 59. Haider A, Kretz J, Gobbi L, Ahmed H, Atz K, BÃrkler M, Bartelmus C, Fingerle J, Guba
573 W, Ullmer C, et al: **Structure-Activity Relationship Studies of Pyridine-Based**
574 **Ligands and Identification of a Fluorinated Derivative for Positron Emission**
575 **Tomography Imaging of Cannabinoid Type 2 Receptors.** *J Med Chem* 2019,
576 **62**:11165-11181.

577 60. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD:
578 **Experimental stroke induces massive, rapid activation of the peripheral immune**
579 **system.** *J Cereb Blood Flow Metab* 2006, **26**:654-665.

580 61. Garbuzova-Davis S, Haller E, Tajiri N, Thomson A, Barretta J, Williams SN, Haim ED,
581 Qin H, Frisina-Deyo A, Abraham JV, et al: **Blood-Spinal Cord Barrier Alterations in**
582 **Subacute and Chronic Stages of a Rat Model of Focal Cerebral Ischemia.** *J*
583 *Neuropathol Exp Neurol* 2016, **75**:673-688.

584 62. Huang B, Xie Q, Lu X, Qian T, Li S, Zhu R, Yu W, Chen G, Chen Z, Xu X, et al: **GlyT1**
585 **Inhibitor NFPS Exerts Neuroprotection via GlyR Alpha1 Subunit in the Rat Model**
586 **of Transient Focal Cerebral Ischaemia and Reperfusion.** *Cell Physiol Biochem* 2016,
587 **38**:1952-1962.

588 63. Dang G, Chen X, Chen Y, Zhao Y, Ouyang F, Zeng J: **Dynamic secondary**
589 **degeneration in the spinal cord and ventral root after a focal cerebral infarction**
590 **among hypertensive rats.** *Sci Rep* 2016, **6**:22655.

591 64. Moisse K, Welch I, Hill T, Volkening K, Strong MJ: **Transient middle cerebral artery**
592 **occlusion induces microglial priming in the lumbar spinal cord: a novel model of**
593 **neuroinflammation.** *J Neuroinflammation* 2008, **5**:29.

594 65. Dang G, Chen X, Zhao Y, Chen Y, Ouyang F, Liang J, Guo Y, Zeng J: **Alterations in**
595 **the spinal cord and ventral root after cerebral infarction in non-human primates.**
596 *Restor Neurol Neurosci* 2018, **36**:729-740.

597 66. Saleh A, Schroeter M, Jonkmanns C, Hartung HP, MÃ¶dder U, Jander S: **In vivo MRI of**
598 **brain inflammation in human ischaemic stroke.** *Brain* 2004, **127**:1670-1677.

599 67. Ni R, Vaas M, Ren W, Klohs J: **Non-invasive detection of acute cerebral hypoxia and**
600 **subsequent matrix-metalloproteinase activity in a mouse model of cerebral ischemia**
601 **using multispectral-optoacoustic-tomography.** *Neurophotonics* 2018, **5**:015005.

602 68. Vaas M, Ni R, Rudin M, Kipar A, Klohs J: **Extracerebral Tissue Damage in the**
603 **Intraluminal Filament Mouse Model of Middle Cerebral Artery Occlusion.** *Front*
604 *Neurol* 2017, **8**:85.

605 69. Livak KJ, Schmittgen TD: **Analysis of relative gene expression data using real-time**
606 **quantitative PCR and the 2(-Delta Delta C(T)) Method.** *Methods* 2001, **25**:402-408.

607 70. Ni R, Kindler DR, Waag R, Rouault M, Ravikumar P, Nitsch R, Rudin M, Camici GG,
608 Liberale L, Kulic L, Klohs J: **fMRI Reveals Mitigation of Cerebrovascular**

609 71. **Dysfunction by Bradykinin Receptors 1 and 2 Inhibitor Noscapine in a Mouse**
610 **Model of Cerebral Amyloidosis.** *Front aging neurosci* 2019, **11**:27-27.

611 72. **Ni R, Rudin M, Klohs J: Cortical hypoperfusion and reduced cerebral metabolic rate**
612 **of oxygen in the arcAbeta mouse model of Alzheimer's disease.** *Photoacoustics* 2018,
613 **10**:38-47.

614 73. **Ren W, Skulason H, Schlegel F, Rudin M, Klohs J, Ni R: Automated registration of**
615 **magnetic resonance imaging and optoacoustic tomography data for experimental**
616 **studies.** *Neurophotonics* 2019, **6**:1-10, 10.

617 74. **Vaas M, Deistung A, Reichenbach JR, Keller A, Kipar A, Klohs J: Vascular and Tissue**
618 **Changes of Magnetic Susceptibility in the Mouse Brain After Transient Cerebral**
619 **Ischemia.** *Transl Stroke Res* 2018, **9**:426-435.

620 75. **Krämer SD, Betzel T, Mu L, Haider A, Herde AM, Boninsegni AK, Keller C, Szermerski**
621 **M, Schibli R, Wünsch B, Ametamey SM: Evaluation of (11)C-Me-NB1 as a Potential**
622 **PET Radioligand for Measuring GluN2B-Containing NMDA Receptors, Drug**
623 **Occupancy, and Receptor Cross Talk.** *J Nucl Med* 2018, **59**:698-703.

624 76. **Lin TN, He YY, Wu G, Khan M, Hsu CY: Effect of brain edema on infarct volume in**
625 **a focal cerebral ischemia model in rats.** *Stroke* 1993, **24**:117-121.

626 77. **Ma Y, Hof PR, Grant SC, Blackband SJ, Bennett R, Slates L, McGuigan MD,**
627 **Benveniste H: A three-dimensional digital atlas database of the adult C57BL/6J**
628 **mouse brain by magnetic resonance microscopy.** *Neuroscience* 2005, **135**:1203-1215.

629 78. **Pettigrew LC, Holtz ML, Craddock SD, Minger SL, Hall N, Geddes JW: Microtubular**
630 **proteolysis in focal cerebral ischemia.** *J Cereb Blood Flow Metab* 1996, **16**:1189-1202.

631 79. **Dawson DA, Hallenbeck JM: Acute focal ischemia-induced alterations in MAP2**
632 **immunostaining: description of temporal changes and utilization as a marker for**
633 **volumetric assessment of acute brain injury.** *J Cereb Blood Flow Metab* 1996, **16**:170-
634 174.

635 80. **Hosoya T, Fukumoto D, Kakiuchi T, Nishiyama S, Yamamoto S, Ohba H, Tsukada H,**
636 **Ueki T, Sato K, Ouchi Y: In vivo TSPO and cannabinoid receptor type 2 availability**
637 **early in post-stroke neuroinflammation in rats: a positron emission tomography**
638 **study.** *J Neuroinflammation* 2017, **14**:69.

639 81. **Vandepitte C, Casteels C, Struys T, Koole M, van Veghel D, Evens N, Gerits A,**
640 **Dresselaers T, Lambrechts I, Himmelreich U, et al: Small-animal PET imaging of the**
641 **type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model.** *Eur J*
642 ***Nucl Med Mol Imag*** 2012, **39**:1796-1806.

643 82. **Jordan CJ, Xi Z-X: Progress in brain cannabinoid CB(2) receptor research: From**
644 **genes to behavior.** *Neurosci Biobehav Rev* 2019, **98**:208-220.

645 83. **Fernández-López D, Faustino J, Derugin N, Wendland M, Lizasoain I, Moro MA, Vexler**
646 **ZS: Reduced infarct size and accumulation of microglia in rats treated with WIN**
647 **55,212-2 after neonatal stroke.** *Neuroscience* 2012, **207**:307-315.

648 84. **Zhang M, Martin BR, Adler MW, Razdan RK, Ganea D, Tuma RF: Modulation of the**
649 **balance between cannabinoid CB(1) and CB(2) receptor activation during cerebral**
650 **ischemic/reperfusion injury.** *Neuroscience* 2008, **152**:753-760.

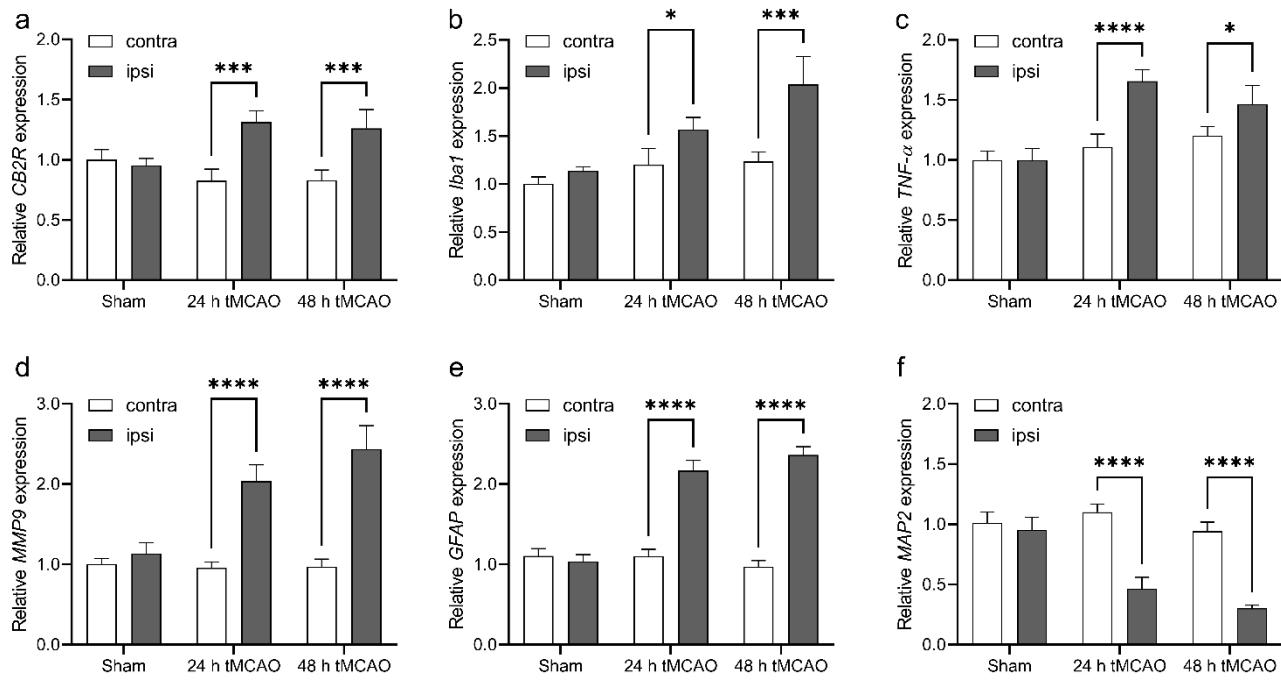
651 85. **Yuan H, Frank Jonathan E, Hong Y, An H, Eldeniz C, Nie J, Bunevicius A, Shen D, Lin**
652 **W: Spatiotemporal Uptake Characteristics of [18]F-2-Fluoro-2-Deoxy-d-Glucose in**
653 **a Rat Middle Cerebral Artery Occlusion Model.** *Stroke* 2013, **44**:2292-2299.

654 85. Walberer M, Backes H, Rueger MA, Neumaier B, Endepols H, Hoehn M, Fink GR,
655 Schroeter M, Graf R: **Potential of early [(18)F]-2-fluoro-2-deoxy-D-glucose positron**
656 **emission tomography for identifying hypoperfusion and predicting fate of tissue in a**
657 **rat embolic stroke model.** *Stroke* 2012, **43**:193-198.

658 86. Jin T, Mehren H, Wang P, Kim S-G: **Chemical exchange-sensitive spin-lock MRI of**
659 **glucose analog 3-O-methyl- d -glucose in normal and ischemic brain.** *Journal of*
660 *Cerebral Blood Flow & Metabolism* 2017, **38**:0271678X1770741.

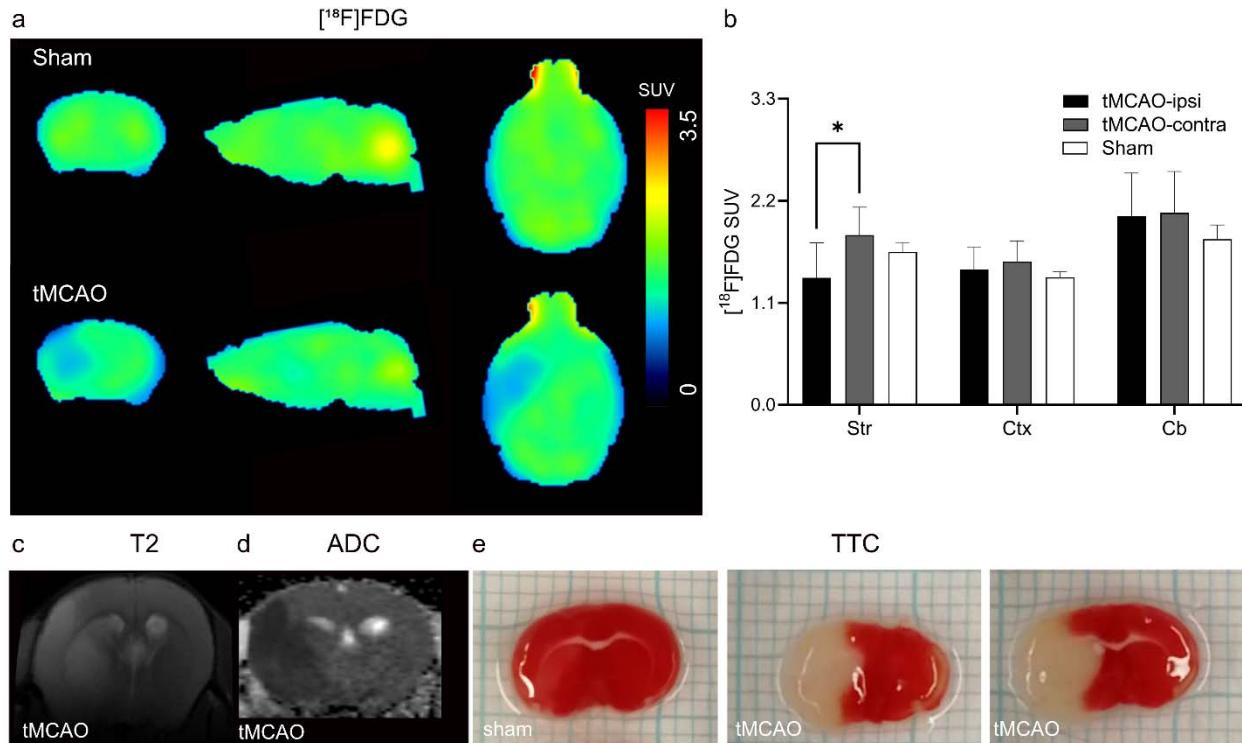
661 87. Liu N-W, Ke C-C, Zhao Y, Chen Y-A, Chan K-C, Tan D, Lee J-S, Chen Y-Y, Hsu TW,
662 Hsieh Y-J, et al: **Evolutional Characterization of Photochemically Induced Stroke in**
663 **Rats: a Multimodality Imaging and Molecular Biological Study.** *Translational Stroke*
664 *Research* 2017, **8**.

665 88. Backes H, Walberer M, Ladwig A, Rueger MA, Neumaier B, Endepols H, Hoehn M,
666 Fink GR, Schroeter M, Graf R: **Glucose consumption of inflammatory cells masks**
667 **metabolic deficits in the brain.** *Neuroimage* 2016, **128**:54-62.

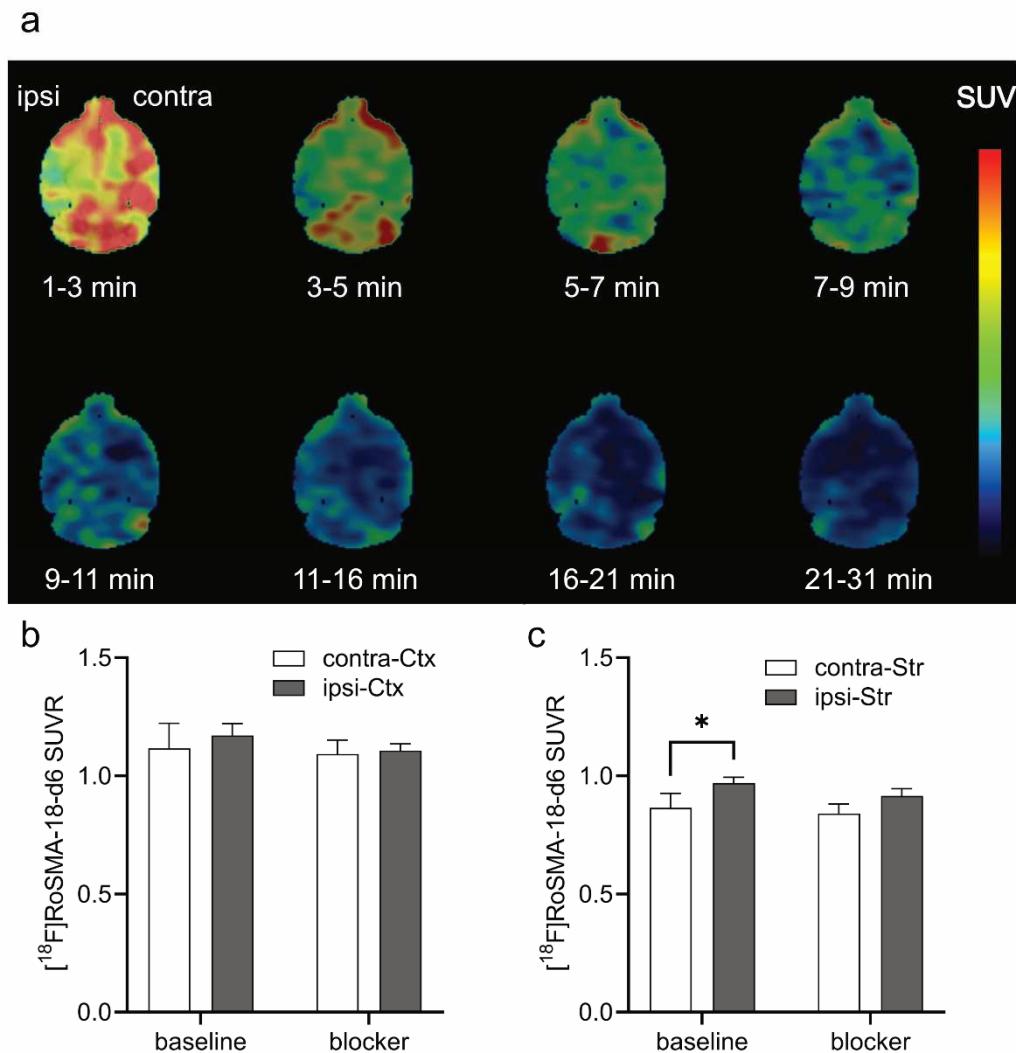

668 89. Sobrado M, Delgado M, Fernández-Valle E, García-García L, Torres M, Sánchez-Prieto J,
669 Vivancos J, Manzanares R, Moro MA, Pozo MA, Lizasoain I: **Longitudinal studies of**
670 **ischemic penumbra by using 18F-FDG PET and MRI techniques in permanent and**
671 **transient focal cerebral ischemia in rats.** *NeuroImage* 2011, **57**:45-54.

672 90. Yuan H, Frank JE, Hong Y, An H, Eldeniz C, Nie J, Bunevicius A, Shen D, Lin W:
673 **Spatiotemporal uptake characteristics of [18]F-2-fluoro-2-deoxy-D-glucose in a rat**
674 **middle cerebral artery occlusion model.** *Stroke* 2013, **44**:2292-2299.

675

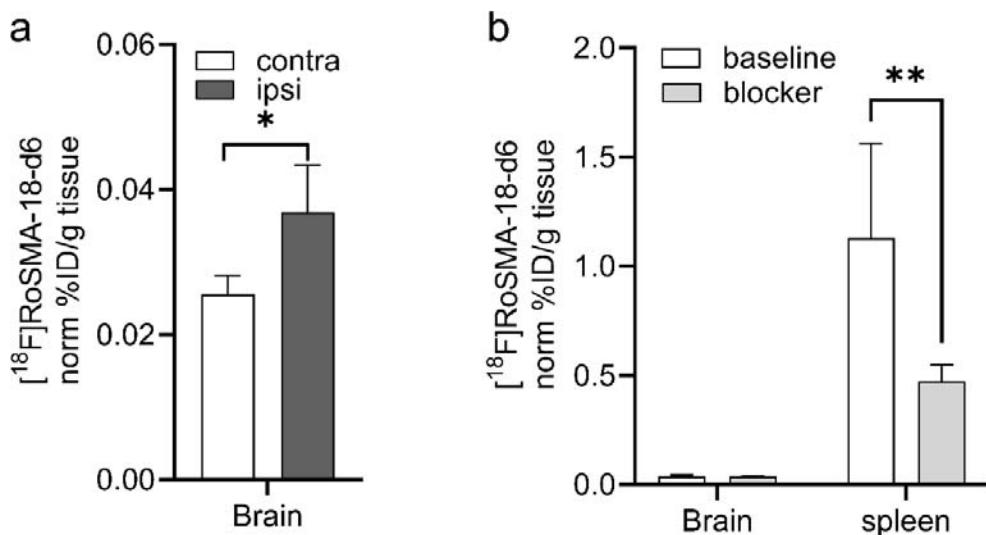

676

677 **Figures**



678
679 **Fig 1.** Relative mRNA levels of inflammatory markers and neuronal damage in sham-operated
680 and tMCAO mouse brain in contra-and ipsilateral brain hemisphere at 24 h and 48 h after
681 reperfusion. (a) *CNR2*, (b) *Iba1*, (c) *TNF- α* , (d) *MMP9*, (e) *GFAP* and (f) *MAP-2*. Values
682 represent mean \pm standard deviation. Expression levels were quantified by qPCR relative to β -
683 actin.

684


686 **Fig 2.** *In vivo* MRI and $[^{18}\text{F}]\text{FDG}$ PET in tMCAO mouse brain. (a) Representative PET images
687 of coronal, sagittal and horizontal mouse brain sections after intravenous injection of $[^{18}\text{F}]\text{FDG}$
688 in sham-operated and tMCAO mice. The radiosignals were averaged from 21-61 min; (b)
689 $[^{18}\text{F}]\text{FDG}$ accumulation (SUV) at different mouse brain regions (Str: striatum; Ctx: cortex; Cb:
690 cerebellum) in sham and tMCAO mice. Significantly reduced $[^{18}\text{F}]\text{FDG}$ accumulation was
691 observed in the ipsilateral striatum compared to contralateral side in tMCAO mice; (c-e) *In vivo*
692 T₂-weighted image, ADC map and *ex vivo* TTC stained brain sections, indicating the delineation
693 in tMCAO mice. TTC: 2,3,5-triphenyltetrazolium chloride; ADC: apparent diffusion coefficient;
694 SUV: standard uptake value.

696

697 **Fig 3.** *In vivo* microPET imaging of tMCAO mouse brain using $[^{18}\text{F}]\text{RoSMA-18-d6}$. (a)
698 Representative PET images of horizontal mouse brain sections at different time frames after
699 intravenous injection of $[^{18}\text{F}]\text{RoSMA-18-d6}$; SUV: 0-0.5; (b, c) Ratios of $[^{18}\text{F}]\text{RoSMA-18-d6}$
700 uptake under baseline and blockade conditions in cortex and striatum. Significantly higher
701 $[^{18}\text{F}]\text{RoSMA-18-d6}$ standard uptake value ratio (SUVR) was observed in the ischemic ipsilateral
702 striatum under baseline conditions, but not in the ipsilateral cortex. Midbrain was used as
703 reference brain region for SUVR calculation.

704

705

706 **Fig 4.** *Ex-vivo* biodistribution of $[^{18}\text{F}]\text{RoSMA-18-d6}$ in the brain and spleen of tMCAO mouse.

707 Animals (n=4) were sacrificed at 70 min post-injection, the spleen and brain regions were
708 dissected and analyzed with a gamma counter. **(a)** Higher $[^{18}\text{F}]\text{RoSMA-18-d6}$ binding (norm%
709 ID/g tissue) was detected in the ipsilateral vs contralateral hemisphere under baseline conditions.
710 **(b)** In the spleen about 58 % of the $[^{18}\text{F}]\text{RoSMA-18-d6}$ binding (norm% ID/g tissue) was
711 blocked. No significant blocking was observed in the brain. Data are presented as the mean of
712 the percentage of injected dose per gram tissue normalized to 20 g body weight; mean \pm standard
713 deviation. % ID/g: percentage injected dose per gram.

714

715

716

717

718

719 **Additional files:**

720 Additional file 1: Supplementary Figure 1. Time activity curves of [¹⁸F]RoSMA-18-d6 *in vivo*
721 microPET imaging of tMCAO mouse brain. **(a-d)** In the cortex, striatum, cerebellum and
722 midbrain under baseline and blockade conditions. No difference in [¹⁸F]RoSMA-18-d6 SUV was
723 observed in different brain regions at ipsilateral vs contralateral side under baseline or blockade
724 conditions. Data represent mean \pm standard deviation.

725

726 Additional file 2: Supplementary Table 1. Primers used for the quantitative polymerase chain
727 reaction assay on mouse brain tissue

728