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Abstract

Background and purpose: Brain ischemia is one ehtlost important pathologies of the central
nervous system. Non-invasive molecular imaging oeghhave the potential to provide critical
insights into the temporal dynamics and follow r@tens of receptor expression and metabolism
in ischemic stroke. The aim of this study was teeas the cannabinoid type 2 receptors,f)B
levels in transient middle cerebral artery occlaosftMCAO) mouse models at subacute stage
using positron emission tomography (PET) with owvel tracer {*FJRoSMA-18-d6, and

structural imaging by magnetic resonance imaging M

Methods: Our recently developed EBPET tracer'fF]JRoSMA-18-d6 was used for imaging the
neuroinflammation at 24 h after reperfusion in tMCAnice. The RNA expression levels of
CB:R and other inflammatory markers were analyzeduantjtative real-time polymerase chain
reaction using brain tissues from tMCAO (1 h ocdoy and sham-operated mice.
[*®F]fluorodeoxyglucose (FDG) was included for evailbmtof the cerebral metabolic rate of
glucose (CMRglc). In addition, diffusion-weightechaging and 7-weighted imaging were

performed for anatomical reference and delineatiedesion in tMCAO mice.

Results: mMRNA expressions of inflammatory markexé=-¢, Ibal, MMP9 and GFAP, CNR2
were increased at 24 h after reperfusion in thiéaiiesal compared to contralateral hemisphere of
tMCAO mice, while mRNA expression of the neuronarker MAP-2 was markedly reduced.
Reduced fF]JFDG uptake was observed in the ischemic striatfitViCAO mouse brain at 24 h
after reperfusion. Although higher activity of*f]JRoSMA-18-d6 inex-vivo biodistribution

studies and higher standard uptake value ratio (SUMere detected in the ischemic ipsilateral
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compared to contralateral striatum in tMCAO midein-vivo specificity of [°FJRoSMA-18-d6

was confirmed only in the GR-rich spleen.

Conclusions: This study revealed an increaség]RoSMA-18-d6 measure of GR and a
reduced ’FJFDG measure of CMRglc in ischemic striatum of tMT mice at subacute stage.
[*®FlROSMA-18-d6 might be a promising PET tracer fetetting CBR alterations in animal

models of neuroinflammation without neuronal loss.

Key words. cannabinoid type 2 receptor; ®®fJRoSMA-18-d6; ischemic stroke;

neuroinflammation; magnetic resonance imaging;tpmsiemission tomography
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I ntroduction

The pathophysiology of ischemic stroke is compled associated with a myriad of cellular and
molecular pathways. The severe reduction in cerddomad flow (CBF) initiates a cascade of
hemodynamic, vascular and inflammatory processestime-dependent manner in the supplied
brain territory, and subsequent defensive respdmiseepair related to lesion expansion and
containment. Irreversible tissue damage occurkearcore of the ischemic area; while neurons in
the ischemic penumbra face excitotoxicity, peranot polarizations, inflammation and apoptosis,
leading to a secondary tissue damage and expawo$idime lesion if reperfusion cannot be
restored within an early time frame [2-4]. Neurtamimation post stroke has been an important
therapeutic target. Anti-inflammatory, immunomodaig treatments and microglia-targeted
therapy were evaluated in clinical stroke trials7]5 Thus, there is a need for imaging the
regional neuroinflammatory pattern for understagdiisease mechanism and for therapeutic

monitoring.

Positron emission tomography (PET) usin§F[fluorodeoxyglucose fF]JFDG) for
cerebral metabolic rate of glucose (CMRgICFOJH,O for perfusion imaging, and diffusion
weighted (DW) magnetic resonance imaging (MRI) akiable tools to support understanding
of the pathophysiology in patients with ischemioke [3, 8-14]. Howeverin vivo imaging of
neuroinflammation and gliosis is challenging [13, 15]. One reason is that the astrocytes and
microglia are highly dynamic and heterogeneous$ir tsubtypes, locations and activation status.
Additionally, the identification of an ideal targébr neuroinflammation imaging is highly
demanding. Translocator protein (TSPO) is the magely used neuroinflammation target for
PET imaging. 'C]PK-11195, the first generation TSPO PET tracew] aeveral second-

generation tracers such as$'JJDAA1106, [''C]PBRO6, f'C]PBR28, {'C]JGE180, and
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[‘°FIDPA-713, [F]DPA-714 [16-24] have been evaluated in (pre)ickh studies. So far,
imaging neuroinflammation with TSPO PET tracerddgd controversial results in rodents and
patients with ischemic stroke [1, 13, 20]. Thusg thevelopment of novel PET probes for
visualizing alternative targets in neuroinflamroathave received great attention in recent years

[25-27].

Cannabinoid type 2 receptors (88 are mainly expressed by immune cells including
monocytes and macrophages. In the brainsRSBare primarily found on microglia and have low
expression levels under physiological conditions 42 28]. Upregulation of brain GR
expression is reported under acute inflammatiom siscischemic stroke, and related to lesion
extension in the penumbra and subsequent functiewdvery [29]. Treatment with GR
agonists has been shown to be neuroprotective ttenbiates macrophage/microglial activation
in the mouse models of cerebral ischemia [29, 42-@B,R is also upregulated in other brain
diseases with involvement of inflammation/microgliander chronic inflammation in
neurodegenerative diseases such as Alzheimersas#isg80-33] and senescence-accelerated

models [34], associated with amylddddeposits[28, 35-41].

Several structural scaffolds of B PET tracers have recently been developed [46-50]
including pyridine derivatives, oxoquinoline detivas; thiazole derivatives [51, 52];
oxadiazole derivatives [53]; carbazole derivatiff#y; imidazole derivative [55]; and thiophene
derivatives [56, 57]. In this study, our newly dieped pyridine derivative'{FJRoSMA-18-ds,
which exhibited sub-nanomolar affinity and high esgéivity towards CB2R (Ki: 0.8 nM,
CB2R/CBI1R > 12°000) [58] is selected as the;RBPET tracer.

The aim of the current study was to evaluate thehBB;R tracer {’F]JRoSMA-18-d6 in

the transient middle cerebral artery occlusion (M0 mouse models of focal cerebral ischemia
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[60-66] using microPET. In addition, *¥F]JFDG was included for evaluation of the cerebral
metabolic rate of glucose (CMRgic). Diffusion-weigti imaging and JF weighted imaging

were performed for anatomical reference and fandating the lesion in tMCAO mice.

Methods

Radiosynthesis

[*®FIRoSMA-18-d6 was synthesized by nucleophilic sitison of the tosylate precursor with

[®F]KF/Kryptofix222 in acetonitrile [58]. The cruderqruct was purified by reverse phase
semi-preparative high-performance liquid chromaapyy and formulated with 5 % ethanol in
water for intravenous injection and for biologicavaluations. In a typical experiment, a
moderate radiochemical yield of ~ 12 % (decay ated) was achieved with a radiochemical
purity > 99 %. The molar activities ranged from 166194 GBgimol at the end of synthesis.

The identity of the final product was confirmed dxymparison with the HPLC retention time of
the non-radioactive reference compound by co-iftiec{**F]FDG was obtained from a routine

clinical production from the University Hospital @ch, Switzerland.

Animals

Twenty-four male C57BL/6J mice were obtained froanver Labs (Le Genest-Saint-Isle,
France). The mice were scanned at 8-10 weeks of(2@25 g body weight). Mice were
randomly allocated to sham-operation (n = 10) oCAD (n = 14). Mice underwent MRI,
MPET/ computed tomography (CT), and 2,3,5-Triphenyltetliam chloride (TTC) histology
staining for validation 24 h or 48 h after reperfus Animals were housed in ventilated cages

inside a temperature-controlled room, under a l&-hdark/light cycle. Pelleted food
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(3437PXL15, CARGILL) and water were providad-libitum. Paper tissue and red Tecniplast
mouse house® (Tecniplast, Milan, ltaly) sheltersrenvg@laced in cages as environmental
enrichments. All experiments were performed in adaoce with the Swiss Federal Act on
Animal Protection and were approved by the Cantdetérinary Office Zurich (permit number:

ZH018/14 and ZH264/16).

Surgeries for tMCAO and sham-operation were peréafmsing standard-operating procedures
as described before [67, 68]. Anaesthesia wasiediby using 3 % isoflurane (Abbott, Cham,
Switzerland) in a 1:4 oxygen/air mixture, and maiméd at 2 %. Before the surgical procedure, a
local analgesic (Lidocaine, 0.5 %, 7 mg/kg, SintectS.A., Switzerland) was administered
subcutaneously (s.c.). Temperature was kept carast@®6.5 + 0.5 °C with a feedback controlled
warming pad system. All surgical procedures werdopmed in 15-30 min. After surgery,
buprenorphine was administered as s.c. injecti@m@esic, 0.1 mg/kg b.w.), and at 4 h after
reperfusion and supplied thereafter via drinkingenv&l mL/32 mL of drinking water) until 24 h
or 48 h. Animals received softened chow in a weighboat on the cage floor to encourage
eating. tMCAO animals were excluded from the stiiditey met one of the following criteria:
Bederson testing was performed 2h post-reperfuddmderson score of 0, no reflow after

filament removal, and premature death.

mMRNA isolation, reverse-transcription reaction and real-time polymerase chain reaction
Brain hemispheres of C57BL/6 mouse, tMCAO mice 4th2and 48 h post reperfusion were
used for total MRNA isolation according to the pomtls of the Isol-RNA Lysis Reagent (5

PRIME, Gaithersburg, USA) and the bead-milling Ugdsyser system (Qiagen, Hilden,
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Germany). QuantiTect® Reverse Transcription Kita@gn, Hilden, Germany) was used to
generate cDNA. The primers (Microsynth, Balgach,it&vland) used for the quantitative
polymerase chain reaction (QPCR) are summariz&ijpplementary Table 1. Quantitation of
CNR2, Ibal, TNF-o, MMP9, GFAP and MAP-2 mRNA expression was performed with the
DyNAmMo™ Flash SYBR® Green gPCR Kit (Thermo ScieatiRuncorn, UK) using a 7900 HT
Fast Real-Time PCR System (Applied Biosystems,9bad, USA). The amplification signals
were detected in real-time, which permitted aceurptantification of the amounts of the initial
RNA template during 40 cycles according to the niacturer's protocol. All reactions were
performed in duplicates and in two independent.r@gntitative analysis was performed using
the SDS Software (v2.4) and a previously describetACt quantification method [69]. The
specificity of the PCR products of each run waseeined and verified with the SDS

dissociation curve analysis feature.

In vivo MRI

Data were acquired at 24 h after reperfusion on & Bruker Pharmascan (Bruker BioSpin
GmbH, Germany), equipped with a volume resonatoeraipyg in quadrature mode for
excitation and a four element phased-array surtadefor signal reception and operated by
Paravision 6.0 (Bruker BioSpin) [67, 70-72]. Micene anesthetized with an initial dose of 4 %
isoflurane in oxygen/air (200:800 ml/min) and mained at 1.5 % isoflurane in oxygen/air
(100:400 mil/min). Body temperature was monitorethve rectal temperature probe (MLT415,
ADInstruments) and kept at 36.5 °C £ 0.5 °C usinggaam water circuit integrated into the
animal support (Bruker BioSpin GmbH, Germany)-weighted MR images were obtained

using a spin echo sequence (TurboRARE) with an ¢ich® 3 ms, repetition time 6 ms, 100
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averages, slice thickness 1 mm, field-of-view 2Z&6x 1.28 cm, matrix size 256 x 128, giving
an in-plane resolution of 1Qdm x 100um. For DWI, a four-shot spin echo—echo planar imggi
sequence with an echo time = 28 ms, repetition tn8900 [70, 71] acquired with a field-of-
view of 3.3 cm x 2 cm and a matrix size of 128 8,2sulting in a nominal voxel size of 258
um x 156um. Diffusion-encoding was applied in the x-, y-dandirections with b-values of
100, 200, 400, 600, 800, and 1000 sfnmespectively, acquisition time 3 min 48 s. The
ischemic lesion was determined as an area of sgnif reduction of the apparent diffusion
coefficient (ADC) value compared with the unaffecwontralateral side [73]. On,-veighted
images, the lesion was determined as an area efinygnsities compared with the contralateral

side.

In vivo microPET studies

MicroPET/CT scans were performed at 24 h after fap®n with a calibrated SuperArgus
MPET/CT scanner (Sedecal, Madrid, Spain) with aal deld-of-view of 4.8 cm and a spatial
resolution of 1.6-1.7 mm (full width at half maximy tMCAO and the sham-operated
C57BL/6J mice were anesthetized with ca. 2.5 %lusafie in oxygen/air (1:1) during tracer
injection and the whole scan time period. The fdeted radioligand solution ‘fF]JFDG: 9.9-11
MBq or ["*FJRoSMA-18-d6: 7.2-13 MBq) was administered vid tsin injection, and mice
were dynamically scanned for 60 min. For blockinpeximents, 1.5 mg/kg GW405833 was
dissolved in a vehicle of 2 % Cremophor (v/v), 1G#bsanol (v/v), and 88 % water for injection
(viv) and injected together with'®FJRoOSMA-18-d6. Body temperature was monitored by a
rectal probe and kept at 37 °C by a heated aiast @7 °C). The anesthesia depth was measured

by the respiratory frequency (SA Instruments, I&tgny Brook, USA). uUPET acquisitions were
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combined with CT for anatomical orientation anckmttation correction. The obtained data were
reconstructed in user-defined time frames with xelsize of 0.3875 x 0.3875 x 0.775 mas

previously described [74].

Triphenyltetrazolium chloride (TTC) staining

To assess the ischemic lesion severity in the oM CAO mice and to validate the absence of
lesion in the sham-operated mice, staining with TB@ining was performed. After
measurements mice were euthanized, their braine venoved and 1-mm thick brain slices
were obtained with a brain matrix. Slices were bated in a 2.5 % TTC solution (Sigma-
Aldrich, Switzerland) in PBS at 37 °C for 3 min.d@bgraphs of the brain sections were taken.

Edema-corrected lesion volumes were quantifiedeasribed [75].

Biodistribution studies in the mouse brain

After PET/CT scanning of tMCAO mice at 24 h afteperfusion with fFJRoSMA-18-d6,
animals were sacrificed at 70 min post injectiordiegapitation. The spleen and brain regions of
ischemic ipsilateral area and contralateral hengisplwvere collected for analysis with a gamma
counter. The accumulated radioactivities in thded#nt tissues were expressed as percent
normalized injected dose per gram of tissue nomedlito 20 g body weight of the animals

(norm. percentage injected dose per gram tissu®/(gaissue)).

Data analysis and Statistics
Images were processed and analyzed using PMODodt&ase (PMOD Technologies Ltd.,

Zurich, Switzerland). The time-activity curves wateduced from specific volume-of-interest

10
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that were defined based on a mouse MRWe&ighted image template [76]. Radioactivity is
presented as standardized uptake value (SUV) (emagcted radioactivity per chaivided by
the injected dose per gram body weighffFJRoSMA-18-d6 SUVR was calculated by using the
midbrain in the corresponding hemisphere as reterénain region. For{F]JFDG PET, regional
SUV was calculated. Two-way ANOVA with Sidak postehanalysis was used for comparison

between groups (Graphpad Prism 9.0, CA, U.S.A).

Results

Increased expression of inflammation makers andomali damage after focal cerebral ischemia

in tMCAO mice

MRNA levels were measured to address the quest@ather mouse non-ischemic and ischemic
hemispheres differ in their expression levelsGNR2 and other inflammatory gene€NR2
MRNA expression was increased to around 1.3 fdier &4 h reperfusion and at 48 h in the
ipsilateral comparing to contralateral hemisphéig.(1a). Similar 1.5-2.5 fold increases were
observed in the mRNA expression of inflammatory kaes includingTNF-¢, 1bal, MMP9 and
GFAP at 24 h and 48 h after reperfusion in the ipsidteompared to contralateral brain region
(Fig. 1b-e). MAP-2 expression has been shown to be a reliable mafkeeuwons that undergo
irreversible cell death [77, 78]. The neuron-spedAP-2 expression was markedly reduced in
the ipsilateral compared to contralateral hemispla&r24 h and 48 h after reperfusiéing( 1f).

As similarCNR2 mRNA expression were observed in 24 h and 48 hstolies were performed
at early time point of 24 h after reperfusion fowvestigating the functional, structural and

molecular changes in the following experiments.

11
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Reduced cerebral glucose metabolism and strudiRalesion following tMCAO

Reduced PFJFDG uptake was observed in the presumed MCAtsoeyriof the ipsilateral
hemisphere in tMCAO mice, while there was no défere in f*FJFDG uptake between
hemispheres in sham-operated mi€ig(2a). SUVs were significantly lower in the ipsilateral
the striatum in tMCAO compared to the contralateside and compared to the same region in
sham-operated mice 1.8 vs 1Hd. 2b). There were no differences itff]FDG uptake in the
cortex and cerebellum between the ipsilateral amdralateral hemisphere in tMCAO mice and
sham-operated micep-Tveighted MRI and DWI imaging were performed in tiG and sham-
operated animals at 24 h after reperfusibig.(2c). The lesions in the ipsilateral side in the
striatum and cortex were visible as areas of deeckaalues on the ADC maps calculated from
DWI, and as areas of increased intensities on theelghted MR images at 24 h after
reperfusion following 1 h tMCAOHigs. 2c-d). Ischemic lesions in the tMCAO were also seen
ex vivo as white areas while viable tissue appeared réldl{D stained brain sectiors(). 2e).
Homogenous deep red color was observed acrosshaotiispheres in sham-operated mice,
verifying the absence of any lesion. The hemisghesion volumes in tMCAQO mice were 42.8

+ 10.2 % (mean + standard deviation).

Increased fFJRoOSMA-18-d6 retention in the striatum after tMCAO

To analyze the distribution of¥F]JROSMA-18-d6 in tMCAO mice brain, dynamic pPET/CT
scans were performed at 24 h after reperfusion. Jtamdard uptake values (SUVS) of
[*®FIRoSMA-18-d6 did not reveal significant differenicevarious brain regions of tMCAO mice

(Supplementary Fig 1). However, we found a reduced uptake at early frax@e (1-3 min) and

12
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a similar uptake after 7 min in the ipsilateralesmbmpared to that of contralateral side (Fig. 3a).
Thus, to exclude the perfusion influence, we avedathe brain signals from 21-61 min and
selected the midbrain as the reference region.eHiffFiRoSMA-18-d6 SUVR was observed in
the ischemic ipsilateral striatum compared to thetm@lateral striatum (two-way ANOVA with
Sidak multiple comparison correction, 0.97+ 0.020M87 + 0.06, p = 0.0274), but not in other
brain regions such as cortexig. 3b, c). The increased signals at ischemic ipsilateratsim,

however, could not be blocked by the selectiveRCBgonist GW05833 Fig. 3c).

At the end of then vivo experiments, we dissected the mice to verify tttevidy accumulation
and specificity of FJRoSMA-18-d6 in the spleen and different brain regiavith a gamma
counter. In line with the results obtained from #weraged SUVRs in the tMCAO mouse brain,
the radioactivity in the ipsilateral side was indesggnificant higher than that of the contralateral
hemisphere (0.037 + 0.007 vs 0.026 = 0.003, n ach group), but no blockade effect was seen
under blocking conditionsF{g. 4a). As expected, radioactivity in the gmB-rich spleen was
much higher than the brain and 58 % of the sigwals blocked by co-injection of GBR specific
ligand GW405833, demonstrating specific target gegeent of {*F]JRoSMA-18-d6in vivo (Fig.

4b).

Discussion

This study assessed the utility of EBPET tracer fFJRoSMA-18-d6 for imaging
tMCAO mouse at subacute stage, concomitant withedsed CMRglc levels and formation of a
structural lesion. Previous PET imaging of strokareal models led to inconclusive results. In a

rat model of photothrombotic stroke at 24 h aftergery, increased"{CINE40 (CBR tracer)
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uptake and unvaried’C]PK11195 (TSPO tracer) uptake were reported [fORnother study,
[Y'C]NE40 uptake did not show any difference in theeaat model of photothrombotic stroke
[80]. Moreover, reduced{C]A836339 (CBR tracer) uptake was reported in a focal tMCAO rat
model over 1-28 days after occlusion [51]. Possiel@sons for these different observations
include the time point of assessment, differenthoes for inducing acute stroke (transient or
permanent ischemia) resulting in variations of ésolt severity and levels of inflammatory-cell
expression [43].

CB:R has negligible expression in the mouse brainisungainly expressed in the spleen
under physiological conditions [30, 36, 60-65, 83hder neuroinflammatory conditions, ¢HB
is upregulated in activated microglial cells. Inisthstudy, we used quantitative real-time
polymerase chain reaction to measure gene expnetsrels of CNR2, TNF-¢, Ibal, MMP9,
GFAP andMAP-2 at 24 h and 48 h. All tested inflammatory markaspldyed increased mRNA
levels in the ipsilateral brain hemisphere, in agrent with the reported findings in tMCAO
mouse model [29, 45, 82, 83]. In line with the gasedCNR2 gene expression levels,
significantly higher 1*FJRoSMA-18-d6 SUVR (standard uptake value ratio)s vadserved in
striatum at ipsilateral vs contralateral under baseconditions in our PET studies. The 50 %
reduction of the neuronal markeéAP-2 indicated neuronal damage.

The dynamic pPET scan usingJRoSMA-18-d6 indicated a reduced perfusion in the
lesion brain regions at the first time frame of iaButes. This is probably due to the changes of
microvascular response (no-reflow phenomenon) haddduction in neuronal activity. Taking
the midbrain as the reference region, the ratioSWOV averaged from 21-61 min revealed
increased fF]JROSMA-18-d6 SUVR in the ipsilateral ischemic atm compared to that of the

contralateral side. Ouex vivo bio-distribution studies confirmed the differencé the
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radioactivity distribution in the left and right &n hemisphere. Théen vivo specificity of
[*®FlRoSMA-18-d6 towards CRR is evidenced by a 58 % reduction in radioactivitythe
mouse spleen under blockade conditiongxvivo biodistribution studies. Underlying reasons
for the lack of specificity of fF]JRoSMA-18-d6 in the mouse brain may because 1jntreased
tracer availability in the blood induced by blookithe CBR peripheral targets in the presence
of the blocker GW405833; and 2) the relatively Idrain uptake of our CHR-selective
radioligand {°FJRoSMA-18-d6 in the mouse brain resulted in unciedsle changes of
radiosignals under baseline and blockade conditidtstably, the time-activity curves of
[**F]ROSMA-18-d6 in tMCAO mouse brain showed remariatigher initial brain uptake under
blockade conditions than the baseline in both saléhe mouse brainSgpplementary Fig 1),
indicating the influence of blocking GR target in the peripheral organs on the availgbdf
radiotracer concentrations in the blood. In ounjnes studies with Wistar rat, the spleen uptake
of [*®*F]JRoSMA-18-d6 was blocked by nearly 90 % suggestingigh possibility of species
difference of f°FJRoSMA-18-d6 binding [57]. Therefore, we speculéitat rat stroke models

might be superior to mice models for imaging nenftammation with CBR PET tracers.

We observed that{FJFDG measure of CMRglc was reduced in the ischeamg@s i.e.
ipsilateral striatum of the tMCAO mice at 24 h afteperfusion. The reduced CMRglc was
reported in many earlier studies in disease anmumalels and in stroke patients [84-87], masking
CMRglc reduction of neuronal tissue in the brainaft extended time points of the recovery
stage from day 4 - 40, an increased CMRglc level rgported in the ischemic regions due to the
increased consumption from inflammatory cells alamity microglial activation [88-90].

There are several limitations in the current stdgdyAs there is no reliable specific ¢

antibody, we did not include immunohistochemicairghg for CBR protein distribution in the
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mouse brain. The gPCR measure€NR2 mRNA level provided an alternative readout, but do
not provide spatial distribution of cerebral £Bexpression. 2) Due to the logistic barrier, MRI
and PPET/CT scans were performed with differentodshof animals. Nevertheless, standard
operating procedures for the surgery were used)in vivo data with tMCAO mice were
collected at 24 h after surgery, longitudinal inmegbf tMCAO mice with fPF]RoSMA-18-d6
along with structural and functional readout wilbpide further insight into the spatial-temporal

dynamics of CBR expression in the brain.

Conclusion

Our newly developed GBR PET tracer fF]JRoSMA-18-d6 revealed limited utility to image
neuroinflammation in the ischemic ipsilateral o& ttMCAO mice at 24 h after reperfusion.
Although lesion regions in tMCAO mouse brain coblel followed by the ratios of averaged
SUVs from 21-61 with midbrain as the referenceargthe in-vivo specificity of' fF]JRoSMA-
18-d6 was confirmed only in the CB2R-rich spleeiffddent neuroinflammatory animal models
which has comparable neuronal numbers in the legigions are recommended for evaluation

of CB;R in further PET imaging studies.
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Fig 1. Relative mRNA levels of inflammatory markers amelironal damage in sham-operated
and tMCAO mouse brain in contra-and ipsilateralirodaemisphere at 24 h and 48 h after
reperfusion. (a)CNR2, (b) Ibal, (c) TNF-¢, (d) MMP9, (e) GFAP and (f) MAP-2 . Values
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Fig 2. In vivo MRI and {%F]FDG PET in tMCAO mouse braina) Representative PET images
of coronal, sagittal and horizontal mouse brairtises after intravenous injection offfJFDG

in sham-operated and tMCAO mice. The radiosignatésewaveraged from 21-61 minb)(
[*®F]FDG accumulation (SUV) at different mouse braggions (Str: striatum; Ctx: cortex; Cb:
cerebellum) in sham and tMCAO mice. Significantduced {*F]JFDG accumulation was
observed in the ipsilateral striatum compared ttradateral side in tMCAO miceg{e) In vivo
T,-weighted image, ADC map ams vivo TTC stained brain sections, indicating the delilnea
in tMCAO mice. TTC: 2,3,5-triphenyltetrazolium chide; ADC: apparent diffusion coefficient;

SUV: standard uptake value.
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697 Fig 3. In vivo microPET imaging of tMCAO mouse brain usinfFfJRoSMA-18-d6. &)
698 Representative PET images of horizontal mouse lsaations at different time frames after
699 intravenous injection of'fFJRoSMA-18-d6; SUV: 0-0.5;H| c) Ratios of {*FJRoSMA-18-d6
700 uptake under baseline and blockade conditions mexoand striatum. Significantly higher
701 [**F]JRoSMA-18-d6 standard uptake value ratio (SUVR} whserved in the ischemic ipsilateral
702 striatum under baseline conditions, but not in ibsilateral cortex. Midbrain was used as

703  reference brain region for SUVR calculation.
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Fig 4. Ex-vivo biodistribution of {*F]RoSMA-18-d6 in the brain and spleen of tMCAO meus
Animals (n=4) were sacrificed at 70 min post-injgat the spleen and brain regions were
dissected and analyzed with a gamma courggrHigher [°FJRoSMA-18-d6 binding (norm%
ID/g tissue) was detected in the ipsilateral vstaateral hemisphere under baseline conditions.
(b) In the spleen about 58 % of th®H]JROSMA-18-d6 binding (norm% ID/g tissue) was
blocked. No significant blocking was observed ie tirain. Data are presented as the mean of
the percentage of injected dose per gram tissunaimed to 20 g body weight; mean + standard

deviation. % ID/g: percentage injected dose pemgra
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719  Additional files:

720  Additional file 1: Supplementary Figure 1. Timeisity curves of [®F]JRoOSMA-18-d6in vivo

721 microPET imaging of tMCAO mouse braina-d) In the cortex, striatum, cerebellum and
722 midbrain under baseline and blockade conditionsdifference in {*FJRoSMA-18-d6 SUV was
723 observed in different brain regions at ipsilateralcontralateral side under baseline or blockade

724  conditions. Data represent mean * standard demiatio
725

726 Additional file 2: Supplementary Table 1. Primesed for the quantitative polymerase chain

727  reaction assay on mouse brain tissue
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