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e Auditory thalamus receives extensive projections from cortex that are implicated
in delivering higher-order cortical computations to enhance thalamic responses.

e The present study modeled aging in young rats by using temporally less distinct
stimuli shown to alter the pattern of MGB unit responses from response
adaptation to repetition-enhancement. Enhanced responses to repeating less
temporally distinct modulated stimuli were reversed when inputs from cortex to
auditory thalamus were blocked. Collectively, these data argue that low salience
temporal signals engage cortical processes to enhance coding of weakly
modulated signals in auditory thalamus.

Abstract

Aging and challenging signal-in-noise conditions are known to engage use of cortical
resources to help maintain speech understanding. Extensive corticothalamic projections
are thought to provide attentional, mnemonic and cognitive-related inputs in support of
sensory inferior colliculus (IC) inputs to the medial geniculate body (MGB). Here we
show that a decrease in modulation depth, a temporally less distinct periodic acoustic
signal, leads to a jittered ascending temporal code, changing MGB unit responses from
adapting responses to responses showing repetition-enhancement, posited to aid
identification of important communication and environmental sounds. Young-adult male
Fischer Brown Norway rats, injected with the inhibitory opsin archaerhodopsin T (ArchT)
into the primary auditory cortex (A1), were subsequently studied using optetrodes to
record single-units in MGB. Decreasing the modulation depth of acoustic stimuli
significantly increased repetition-enhancement. Repetition-enhancement was blocked
by optical inactivation of corticothalamic terminals in MGB. These data support a role for
corticothalamic projections in repetition-enhancement, implying that predictive
anticipation could be used to improve neural representation of weakly modulated

sounds.
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Introduction

Speech intelligibility can be maintained in noisy backgrounds and in the aged auditory
system by increased use of linguistic/contextual redundancies engaged to substitute for
sensory deficits (Warren, 1970; Wingfield, 1975; Peelle & Wingfield, 2016; Pichora-
Fuller et al., 2016; Anderson et al., 2020). For young-adults in cluttered acoustic
environments and older individuals affected by age-related hearing loss (presbycusis),
higher-order/cortical resources are brought into play to help disambiguate acoustic
signals (Shinn-Cunningham & Wang, 2008; Davis et al., 2011; Obleser, 2014; Baskent
et al.,, 2016; Vaden et al., 2016; Pichora-Fuller et al., 2017). Peripheral deficits only
partially account for the age-related loss of speech understanding (Humes et al., 2012;
Roque et al., 2019). Sensory declines in aging may be simulated in young participants
by decreasing the temporal distinctiveness of presented acoustic stimuli either by
adding noise or decreasing modulation depth, resulting in a temporally jittered
ascending acoustic code showing decreases in envelope-locked responses (Dubno et
al., 1984; Fitzgibbons & Gordon-Salant, 1994; Pichora-Fuller et al., 2007; Dimitrijevic et
al., 2016; Mamo et al., 2016). Studies in non-human primates and rabbits using
amplitude modulated stimuli have reported an increased neural jitter by decreasing the
modulation depth of amplitude-modulated stimuli (Nelson & Carney, 2007; Malone et
al., 2010). Recent studies support use of increased top-down predictive resources to
help decode challenging sensory stimuli such as in speech-in-noise or less temporally
distinct speech (Pichora-Fuller et al., 2017; Anderson & Karawani, 2020).

Sensory adaptation has been observed in thalamus and cortex, for all sensory
modalities, with declining responses for repeated stimuli (Ulanovsky et al., 2003; Bartlett
& Wang, 2005; Pérez-Gonzalez & Malmierca, 2014). In contrast to sensory adaptation,
repetition-enhancement, perhaps prediction, to a repeating stimulus has been reported
when acoustic signals were less temporally distinct, attended to, expected for statistical
regularities, and/or with stimuli presented at higher rates in challenging conditions (Luce
& Pisoni, 1998; Heinemann et al., 2011; de Gardelle et al., 2013; Muller et al., 2013;
Kommajosyula et al., 2019). The current study was designed to examine the role of
corticothalamic/top-down projections to medial geniculate body (MGB) in mediating
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81 repetition adaptation/enhancement responses to repeating stimuli of different
82  modulation depths.

83  The auditory thalamus is a key subcortical structure suggested to play a critical role in
84  auditory processing. Sensory systems show attention/task/context-dependent changes
85 in thalamic activity, likely reflecting increasingly engaged corticofugal circuits (von
86 Kriegstein et al., 2008; Saalmann & Kastner, 2011; Diaz et al., 2012; Mihai et al., 2019;
87 Tabas & von Kriegstein, 2021). The MGB receives top-down/corticofugal information
88 from extensive descending corticothalamic (CT) projections (Rouiller & Welker, 1991;
89  Winer et al., 2001; He, 2003; Bartlett, 2013; Guo et al., 2017; Parras et al., 2017).
90 These excitatory CT projections originate from cortical layer 5&6 neurons and terminate
91  on the distal dendrites of MGB neurons in all subdivisions, including the lemniscal
92  ventral division and the non-lemniscal dorsal and medial divisions (Bartlett et al., 2000;
93  Winer et al., 2005; Smith et al., 2007). Additionally, MGB receives state and salience-
94 related information from serotonergic/noradrenergic and cholinergic projections
95 (McCormick & Pape, 1990; Sottile et al., 2017; Schofield & Hurley, 2018). MGB neurons
96 show stimulus specific adaptation (SSA) to repeated identical stimuli, which upon
97 presentation of an oddball signal show a significant mismatch signal, thought to code for
98 deviance detection and prediction error (Anderson & Malmierca, 2013; Malmierca et al.,
99  2015; Parras et al., 2017). MGB unit responses show altered tuning and gain changes
100  with manipulation of the auditory cortex/corticofugal influences (Orman & Humphrey,
101 1981; He, 2003; Tang et al., 2012; Malmierca et al., 2015). A recent study by Guo et al.
102  (2017) showed increased detection of acoustic signals involving CT projections, and CT
103  projections have been shown to be involved in the processing of complex auditory
104  stimuli (Ono et al., 2006; Rybalko et al., 2006; Homma et al., 2017). However, little is
105  known about how CT inputs can alter MGB response properties to repeating signals.
106  The aim of the current study is to examine the impact corticothalamic inputs have on the
107  coding of random vs. repeating sinusoidal amplitude-modulated (SAM) stimuli of
108  differing modulation depths.

109  Previous MGB single unit studies found that age- and decreased temporal precision
110 (decreased modulation depth or adding noise to the envelope) of the temporal cue
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111 significantly increased MGB unit preference (discharge-rate) for repeating SAM stimuli
112 (Cai et al., 2016b; Kommajosyula et al., 2019). Repetition-enhancement was absent in
113 single-units recorded from MGB in anesthetized rats, suggesting that anesthesia

114  affected thalamic and cortical responses to abolish repetition enhancement (Cai et al.,
115  2016b). Collectively, these findings suggest that temporally less distinct acoustic cues
116  and variability due to aging engage top-down/corticofugal influences to enhance

117  responses evoked by a repeating, weakened ascending temporal code. The present
118  study examined MGB single unit responses to determine if increased preference for a
119  repeating less temporally distinct SAM stimulus could be reversed by CT blockade in
120  young, awake rats.

121
122  Materials and Methods

123 Male Fischer 344 x Brown Norway (FBN) rats (n = 7), aged 4-6 months old, obtained
124  from the NIA Aging Rodent Resource Colony supplied by Charles River, were

125 individually housed on a reverse 12:12-h light-dark cycle with ad libitum access to food
126 and water. FBN rats have a long life-span and lower tumor load than other commonly
127  used rat aging models. They have been characterized as a rat model of aging (Cai et
128 al.,, 2018), and age-related changes in central auditory structures have been extensively
129  studied (Caspary et al., 2008; Caspary & Llano, 2018; Mafi et al., 2020). Procedures
130  were performed in accordance with guidelines and protocols approved (Ref. No. 41-

131 018-004) by the Southern lllinois University School of Medicine Lab Animal Care and
132 Use Committee.

133 Microinjection

134  Adenoviral vectors (AAV-CAG-ArchT-GFP, AAV serotype 1) with light-activated proton

135  pump and eYFP expressed under the control of a CAG (CMV enhancer, chicken beta-

136  Actin promoter and rabbit beta-Globin splice acceptor site) were obtained from the

137 University of North Carolina Vector Core (Chapel Hill, NC). Young-adult FBN rats were

138  anesthetized initially with ketamine (105 mg/kg)/xylazine (7 mg/kg) and maintained with
139  isoflurane (0.5—-1%) throughout the duration of the surgery. A small hole was drilled into
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140 the skull and dura mater removed. Viral vectors were injected intracranially into left

141 auditory cortex using the Neurostar stereotaxic drill and injection system (stereodrive
142  015.838, injectomate IM28350, stereodrill DR352; Neurostar, Germany). Coordinates of
143  the injection sites were primary auditory cortex (A1) layers 5 and 6 (L5 and L6), entry at
144  22° angle laterally (-8.93, -1.8, 4.37 mm relative to bregma). Animals were allowed to
145  recover for 21 days to allow viral expression to transport to the level of CT terminals in
146  the MGB (Fig. 1A).

147  Acoustic brainstem response (ABR) recording

148  To ensure normal hearing thresholds, prior to optetrode implantation and 14-21 days
149  after microinjection, auditory brainstem responses (ABR) were collected from all rats as
150  previously described (Wang et al., 2009; Cai et al., 2016b).

151  Awake recordings

152 Three days following ABR testing, rats began 6-10 day acclimation training in a modified
153  Experimental Conditioning Unit (ECU; Braintree Scientific, Braintree, MA) with free

154  access to water and food reward (1/4 to 1/2 Froot™ Loop) until they could remain

155  quiet/still for up to 3 hours. Prior to surgical implantation, VersaDrive8 optical tetrode
156  drives (Neuralynx, Bozeman, MT) with an additional drive shaft for optical probe were
157 assembled and loaded similarly to VersaDrive4 previously described (Richardson et al.,
158  2013; Kalappa et al., 2014; Cai et al., 2016b). In a dark sound proof booth, there were
159  no other known distractors to divide the rat’s attention during this passive listening task,
160  with SAM stimuli presented from a speaker located above the rat’'s head. We recorded
161  20-25, 45 minute-sessions from each rat. After isolation of a single-unit, spontaneous
162  activity, rate-level functions, and response maps were collected before collecting unit
163  responses to SAM stimulus set. Of the 80 units studied, 95% were clearly isolated

164  single-units (high signal-in-noise ratio, similar amplitude and shape as single units or
165  sorted using principal component analysis) the remaining 5% of units were from small
166  inseparable unit clusters (2-3) are included since no differences in response properties
167  were observed.

168  All recordings were completed within a 4 week period following implantation recovery.
169  When recordings were complete, rats were anesthetized with ketamine and xylazine as
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170  described above and current pulses (5-10 YA for 5 s, nano Z, Neuralynx, Bozeman, MT)
171  were passed through the tips of each tetrode wire, producing a small electrolytic lesions.
172 Rats were cardiac perfused with phosphate-buffered saline (0.1 M, pH 7.4) followed by
173 4% paraformaldehyde (Sigma, St. Louis, MO), brains were removed, post-fixed for 24 h
174  in 4% paraformaldehyde at 4°C, transferred to 20% sucrose and stored at 4°C until

175  sectioned. To assess the position of recordings, frozen coronal sections (30-35 pm

176  thick) were slide mounted with electrode tracks and lesion sites visible using phase-

177  contrast microscopy. Based on each recording site relative to the final location of the
178  tetrode tip, dimensions of the optetrode placement and MGB anatomy, an approximate
179  location of each recorded unit was derived (Paxinos & Watson, 1998).

180  Electrophysiological recordings and optical stimulation

181  Stimulus paradigms and single unit sorting/recording procedures were the same as for
182  awake rats as in previous studies (Kommajosyula et al., 2019). Briefly, extracellularly
183  recoded single spikes, signal to noise ratio of at least 10:1, and with similar waveform
184  were isolated/threholded with small spike unit clusters sorted using of principal

185 component analysis. Stimulus presentation real-time data display and analysis used

186  ANECS software (Dr. K. Hancock, Blue Hills Scientific, Boston, MA). Acoustic signals
187  were generated using a 16-bit D/A converter (TDT RX6, TDT System IIl, Tucker Davis
188  Technologies, Alachua, FL), and transduced by a Fostex tweeter (model FT17H,

189  Fostex, Middleton, WI) placed 30 cm above animal’s head. The Fostex tweeter was

190 calibrated off-line using a "4 inch microphone (model: 4938; Briel & Kjzer, Naerum,

191  Denmark) placed at the approximate location of the rat's head. ANECS generated

192  calibration tables in dB sound pressure level (SPL) were used to set programmable

193  attenuators (TDT PAS5) to achieve pure-tone levels accurate to within 2 dB SPL for

194 frequencies up to 45 kHz. The TDT generated “sync-pulse” was connected to an LED
195  optical system (200 um, 0.39 NA, Thorlabs Inc., NJ) with LED driver (M565F3, LEDD1B,
196  Thorlabs Inc.). Optical stimuli from LED driver were calibrated prior to experiments

197  using optical power meter (S121C and PM121D, Thorlabs Inc., NJ). Optical stimuli were
198 565 nm wavelength as determined to be the best wavelength for photo-inhibition

199 mediated by ArchT (Han et al., 2011). Optogenetic stimulus parameters were chosen to
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200 allow for simultaneous stimulation of sound and optical stimuli based on previous and
201 our own preliminary studies: 2.56 mw (~20.38 mW/mm?) intensity presented for 20-40
202 ms and at 10 Hz regardless of modulation frequencies (fmod) (Kato et al., 2017; Natan et
203 al., 2017; Bigelow et al., 2019).

204  Experimental design: SAM stimulus paradigms and data acquisition

205  The present study compared the single unit responses in response to three paradigms
206 presented in either a random or repeating paradigm:1) Fully modulated SAM

207  (SAMaio00%), considered the standard clear temporal signal; 2) SAM at 25% modulation
208  depth (SAMa2s%) considered a less temporally distinct signal; 3) SAMazs% with during
209  corticothalamic blockade (+ CT blockade) (Fig.1B & 2). There were only small

210 differences (< 2 dB) in total energy levels between the standard (SAMatoo%) and lower
211  modulation depth SAMazs% stimuli. We will interchangeably use standard (SAMa100%)
212 and less temporally distinct SAM (SAMaz2s%) across the manuscript. The less temporally
213 distinct SAM stimulus was chosen, in part, as a surrogate for aging to reproduce prior
214  results (Cai et al., 2016a; Kommajosyula et al., 2019). Kommajosyula et al. (2019)

215  found that SAMa100% with1.0kHz noise jittering the envelope gave similar results to

216 SAMa2s%. The SAM carrier was generally BBN, but the unit's (characteristic frequency)
217  CF was used as carrier if the unit was more strongly driven by CF-tones. Rate

218  modulation transfer functions (rMTFs) and temporal modulation transfer functions

219  (tMTFs) were collected at 30-35 dB above CF or BBN threshold. SAM stimuli were of
220 450 ms duration, presented at 2/sec with a 4 ms raise-fall; fnods Were stepped between 2
221 and 1024 Hz (Fig. 1B). SAM stimuli were presented as two separate sets:

222 pseudorandomly, from now on referred to as random across trial (interleaved) fmods Or
223 identical repeating/blocks of SAM, with each fmod repeated (10 times) before being

224  stepped to the next fmod in a stepped increasing order (Fig. 1B). To control for order of
225  presentation during repeating trials, we tested fmods stepped in descending steps/reverse
226 order, from 1024 to 2 Hz and found that presentation order (descending or ascending)
227  made no difference on spike count. All reported data for repeating SAM trials were

228 stepped from 2 to 1024 Hz. Spikes were collected over a 500 ms period following

229  stimulus onset, with 10 stimulus repetitions at each envelope frequency. Responses to
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230 CT blockade examined the role of CT MGB projection during SAMazs% stimuli. The
231  effect of CT blockade on coding SAMato0% was collected from a subset of MGB units
232 neurons. Data were collected every day for 3-4 weeks after implantation. Data were
233 recorded only if single-unit responses were repeatable and consistent across multiple
234 trials.

235 Rate-level functions and spontaneous activity (250 epochs of 250 ms each) were

236 recorded in presence and absence of optical blockade. Broadband noise (BBN) (200
237 ms, 4 ms rise-fall, 2/sec) stimuli were stepped in rate-level functions (0 dB to 80 dB) and
238 responses were collected over a 500 ms period. Response maps were used to

239  determine the CF of sorted single units (Cai & Caspary, 2015). Real-time single unit

240  activity was sampled at 100 kHz and archived for off-line analysis.

A AAV1/CAG-ArchT-GFP, 200 nl into the auditory cortex B 100% Modulation depth (SAM ;005

a 2Hz —~nAANINAA— 1 catiz
b 4tz —ewe—e— G 125H2
C 8Hz il h 256H2 B———
d 16H: PP O O O 9 €@ | 512H: —
e 32Hz 440000000000 044 | 10241

k 10 or 20 presentations of each sequence
PRI \S—
Predictable SAM : ‘aaaaaaaaa\abb...cc...dd...ee...f‘f...gg...hh...ii...jj“.

Random SAM : dbghjacfei...fj...ia...dj...ad...bi...ej...hd...ef...ca...
< s
W
100 or 200 trials in total

| 25% Modulation depth (SAM,,s)

Temporally weakly modulated M
stimuli, 16Hz exemplar

10 pm

VGlut 1 Merge

Fig. 1 Targeting corticothalamic projecti and ic stimuli A: Confocal image showing a wide-field and inset of Al GFP-labeled (green) viral injection site and excitatory

corticothalamic (CT) projection expressing the ArchT pump. Insets show MGB neurons (63x) receiving labeled projection terminals (ArchT, green), and labeled with glutamatergic

marker (VGlut1, red) as well as the nuclear marker (DAPI, blue). Merged image depicts colocalization of ArchT with VGlut1. B: Sets of sinusoidally amplitude modulated (SAM) stimuli

used in the present study. Standard (100% modulation depth [SAM,;00s.]) SAM stimuli with either a tone or broadband noise carrier in 500 ms epochs from 2 Hz to 1024 Hz modulation

frequencies [f,,.4] (B, a-j). Stimuli were presented at .4, between 2 Hz to 1024 Hz as either predictable/repeating or random sets (B, k). Exemplar waveforms of temporally weakly
241 modulated/less distinct SAM (25% modulation depth [SAM,;s..]) at 16 Hz f,..4 (B, 1).

242 Immunohistochemistry

243  Free-floating slices were processed in parallel and treated with 0.2% Triton-X for 1 h
244  and incubated for 2 h in blocking solution containing PBS with 0.1% Triton-X, 1.5%

245  normal donkey serum and 3% bovine serum albumin. Sections were transferred to
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246  primary antibody solution containing monoclonal mouse anti-vesicular glutamate

247  transporter 1 (VGlut1) antibody (1:750; Millipore, Burlington, MA) in blocking buffer and
248 incubated overnight at room temperature. After washing in PBS, sections were

249  incubated with secondary antibody as follows: donkey anti-mouse IgG (Alexa Fluor 647,
250  1:150, Jackson ImmunoResearch, West Grove, PA) for 1 h at room temperature. As a
251  negative control, the primary antibody was omitted. Sections were mounted onto slides,
252 cover slipped with VectaShield (Vector Laboratories) and imaged with a Zeiss LSM 800
253  confocal microscope. Injection of Arch T virus into deep layers of auditory cortex led to
254  expression of GFP tagged ArchT within 4 weeks in the CT terminals at the level of

255  medial geniculate body, as shown by colocalization (yellow) (Fig. 1A).

256  Statistical data analysis

257  Data were collected for MGB single units with SAMa100% or SAMa2s% and CT-blockade
258  as between subject variables. Normality assumptions were met and ANOVA was run to
259  determine significance at the p < 0.05 level. Bonferroni corrections were utilized for

260 pairwise comparisons to maintain a type | error level of 5% or less.

261  Responses were analyzed offline. Phase locking ability was evaluated by the standard

262  vector strength (VS) equation: VS = (%) * J(Z cos @i)? + (X sin <pi)2, where n = total

263  number of spikes and ¢i = the phase of observed spike relative to modulation frequency
264  (Goldberg & Brown, 1969; Yin et al., 2011). Statistical significance was assessed using
265 the Rayleigh statistic to account for differences in the number of driven spikes, with

266  Rayleigh statistic values greater than 13.8 considered to be statistically significant

267  (Mardia & Jupp, 2000) (Fig. 2). To compare number of units showing phase locking, a
268  Wilcoxon test was used followed by a Bonferroni correction for multiple comparisons.

269  Rate-level functions determined using spike rate in response to BBN were quantified
270  across intensities and compared between control and CT blockade paradigms using
271 repeated measures ANOVA with Bonferroni correction. Spontaneous activity measured
272 using spike rate across 250 ms epochs in 10 ms bins were compared between control
273 and CT blockade paradigms using repeated measures ANOVA with Bonferroni

274  correction. Preliminary analysis involved differences between order of presentation and

10
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275  across stimulus conditions using total spike counts from 10 trials at 10 different fmods.
276  Differences between orders of presentation were compared across random or repeating
277  presentation of stimuli between SAMa100%, SAMa2s%, and SAMa2s%+CT blockade

278  condition using repeated measures ANOVA followed by post-hoc Bonferroni

279  corrections.

280 Differences between stimulus conditions were compared using a preference ratio (PR)
281 calculated across all fnods (PR = total spikes in repeating trials/total spikes in random
282  trials). A ratio smaller than 0.95 suggests the unit is a random preferring unit; a ratio
283 larger than 1.05 suggest the unit is repetition preferring unit; while a ratio between the
284  range of 0.95 and 1.05 were considered non-selective units (Fig. 3). The rationale for
285 use of 10 % change in firing as a criteria was based on previous studies (Ghitza et al.,
286  2006; Cai & Caspary, 2015; Cai et al., 2016b). Chi-Square test was used to compare

287 the PR across conditions.

288  Modulation transfer functions (MTFs) were determined using spike rate (rMTF)

289 measurements at each fnod tested. The rMTF data were used for further quantitative
290 analyses. A predictable preference index (PPIl) was calculated using the area under the
291  curve (AUC) and the equation: PPl = [(AUCRrer-AUCRaN)/ (AUCRrep+AUCRAN)], modified
292  from the novelty response index (Lumani & Zhang, 2010; Cai et al., 2016b). The area
293  under successive frequency segments of the rMTF curve (AUC) values were based on
294  rMTF curve calculated using GraphPad Prism. The range of PPI values varied between
295 -1to +1: +1 represented a repetition preferring unit response, and -1 represented a

296 random preferring unit response (Figs. 5 and 6). By calculating the AUC for specific fmod
297 ranges, changes between sets of fmod could be compared. Repeated-measures ANOVA
298 followed by post-hoc Tukey correction for multiple comparisons was used to compare
299 PPl values.

300 Trial-to-trial responses to repeating/predictable SAM presentation showed repetition-
301 enhancement at temporally challenging (higher frequency) fmods (fmods 128 Hz-1024 Hz)
302 (Cai et al., 2016b; Kommajosyula et al., 2019). Differences in firing rate trend-line

303 slopes between the three groups (standard SAM were compared using two-tailed
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304 ANCOVA, followed by Friedman test with a post-hoc Wilcoxon test to analyze spike rate
305 differences at each trial (Fig. 7).

306 Repeated measures ANOVA followed by post-hoc Bonferroni corrections were used to
307 test statistical significance. Statistical analysis was performed using GraphPad Prism 6
308 and IBM SPSS version 24. All values are expressed as means + SEM. *p < 0.05, **p <
309 0.01, **p<0.001, **** p<0.0001, were treated as statistical significance level.

310
311 Results

312 Eighty MGB units, responding to sinusoidal amplitude modulation stimuli (SAM) were
313 recorded from the MGB in awake, passively listening, young-adult FBN rats. Consistent
314  with previous studies, MGB single-unit responses to SAM stimuli showed band-pass,
315 low-pass, high-pass, mixed or atypical rMTFs, showing synchronized and

316  asynchronized or mixed responses (Bartlett & Wang, 2007).

317
318 Basic response properties with CT blockade

319  There were no significant changes in spontaneous activity with CT blockade compared
320 to control condition (13.85 +1.27 vs 13.26 £ 1.34, n = 45; p = 0.282). Rate-level

321 functions showed significant decreases in responses across intensities with CT

322  blockade compared to control (Multivariate ANOVA, p = 0.040) with significant

323  differences for comparisons at a couple of intensities (Table 1).
324
325 Decrease in modulation depth decreases envelope-locking of MGB neurons

326  Decreasing modulation depth to SAMa2s% decreased envelope locking of MGB units
327  studied relative to SAMa100% stimuli, as measured using the Rayleigh score across fmods
328 (2-128 Hz) (Fig. 2). A higher percentage of MGB units showed temporal locking

329 (Rayleigh statistic 213.8) to the standard stimuli (SAMai100%) than to the SAMa2se stimuli
330 across fnods tested (Table 2). CT blockade did not alter percentages of envelope-locking

12
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331  responses to less-distinct/SAMazse stimuli across fmods tested. These data show

332 decreased temporal locking in response to SAMazs% stimuli and that temporal locking
333  was relatively independent of top-down modulation. These results are similar to findings
334 showing decreases in temporal locking when adding noise to the SAM periodic

335 envelope (Kommajosyula et al., 2019). Here we focus on rate responses of MGB single-
336 units and the effect of CT projections on MGB single-unit response properties.

fm¢:||‘.|

2Hz 4 Hz 8 Hz 16 Hz 32 Hz 64 Hz 128 Hz

SAM, 100/Random

SAM 1005 / Predictable |

SAM 554, / Random
SAM,,s¢, / Predictable
SAM, 550, /Random + CT
SAM, s, / Predictable + CT

[ o n = 80 neurons
0% 25% 50%

Percentage of neurons showing synchronized responses

Fig. 2 Effects of stimul dulation depth on

each f,.4 (2-128) was used to generate a heat map based on the temporal responses of all 80 MGB units studied. MGB units might lock to a single or multi fms based on the Rayleigh

score. Warmth of color indicates the percentage of neurons (out of 80) showing temporal-locking (Rayleigh statistic > 13.8) to the SAM stimuli. Hot colors (red) indicate a higher

percentage of units showing temporal-locking (e.g SAM,qqs; at 64 Hz fm), whereas cool colors (blue) indicate a lower percentage of units showing temporal locking (e.g. SAM 5., at 16 Hz

fm). Significant differences were observed between SAM, ., and SAM,,.,, regardiess of order of presentation, with and without CT blockade (Wilcoxon test followed by Bonferroni
337 correction, p <0.05).

iporal locking properties of MGB units: To assess the ability of units to temporally follow the SAM stimulus, the Rayleigh score for

338

339  Decreased modulation depth and CT blockade significantly alter MGB unit rate
340 response to random vs. repeating SAM

341  Total spike counts in response to SAM stimuli presented in random or repeating trials
342  were compared across stimulus sets with and without CT blockade (standard SAM at
343  100% depth of modulation [SAMa100%)), less distinct (SAM at 25% depth of modulation
344  [SAMa2s%]), less distinct SAMa2s% + CT blockade) (Fig. 1B and methods for details).

345  Consistent with Kommajosyula et al. (2019), 66% (56 of 80) MGB units preferred

346  randomly presented SAMa1oo% stimuli (Fig. 3A). When modulation depth was reduced to
347  SAMa2s%, there was a significant increase in the percentage of MGB units showing a
348 rate preference for repeating stimuli (18% vs. 49%, X?(4, N = 80) = 88.789, p =

13
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349 2.3812E-18) (Fig. 3A&B). This switch in preference toward repeating less distinct

350  SAMaz2se, was reversed by CT blockade in MGB (49% vs. 19%, X?(4, N = 80) = 84.884,
351 p=1.6054E-17) (Fig. 3B&C). Following termination of CT optical blockade, MGB unit
352  responses returned to showing increased response preference for repeating less

353 distinct/SAMazse (19% vs. 39%, X?(6,N = 80) =106.386, p = 1.1628E-20 , data not

354  shown).

A Distinct Stimuli B Less-distinct Stimuli D 25, .
¢ n = 54 Units
ﬁ °
= ’ :
2 |
2 . -
©
o ]
8 I
c
g 1.5 1 . e ® [ ]
C Less-distinct Stimuli + CT blockade © =
fut . L] - = = Tgee®
o . 0 _—-- o
®_ -7
% e -—3 oe’e . ¢ e ... 00?0000
g e se0e0®e?0%% °
W Predictable; PPR>1.05 © ® % e e % , Seeeet® 0 _ 00—,
° 4 .“h - Rg= -
Non-selective; 0.95< PPR<1.05 @ — Qe sagees ® . ®
- °
[l Random; PPR<0.95 o “30' . ° ®e ., . N
05 {*® o °
- )
L ]
Preference Ratio (PR) = @ Distinct stimuli @ Less-distinct stimuli
total spikes across f,,.,, to predictable/ total 0 @ Less-distinct stimuli + CT blockade
spikes to random presented SAM stimuli. 0 5 10 45 20 25 30 35 40 45 50

Number of single-units

Fig. 3 Random vs. predictable/repetition preference with and without CT blockade. Preference ratios (PR) (total spikes to predictable trials/total spikes to random trials) across all
fross IN response to distinct, less distinct SAM stimuli, less-distinct stimuli with corticothalamic blockade (CT blockade). A: Unit recording from awake rat MGB showed a clear
preference for random distinct SAM,,40¢, Stimuli. B: Responses to predictable (repeating) SAM stimuli increased from 18% (14/80), to 49% (39/80), in response o SAM,;s., across
fross- C: Optical CT blockade reversed the predictable preference of MGB neurons fo 19% (14/80, in response to less SAM..s,, SAM. Significant differences were seen between
SAM 41005 VS. SAM 550, SAM 550, VS. SAM 554 + CT blockade and SAM ;5. + CT blockade vs. SAM o, + recovery (Chi-Square test, p < 0.05). D: PR values plotted on a continuum of
increasing PPl values for each of 54 MGB units showing differential responses to distinct, SAM, ;0. (blue dots) vs. less-distinct, SAM,s., stimuli (red dots) and SAM, s, with CT
blockade (green dots). The green trend line shows that CT blockade dramatically decreased the PR in response to SAM,;s., (red trend-line) approaching the response to SAM ;g5
355 stimuli (blue dots).

356  Ninety percent (72/80) of MGB units changed their PRs toward repeated stimuli in

357  response to the switch in modulation depth/CT blockade (change in PR > 0.1). Seventy-
358 five percent (54/72) of those units shifted their preference from repeated back to

359 random stimuli with CT blockade at SAMa2s%. The PR scores for each of the 54 MGB
360 units were plotted on a continuum of increasing PR score for SAMaioo%, with PR for

361  SAMa2s% (with or without CT blockade) also plotted for each unit (Fig. 3D). PR trend

362 lines show an increase in PR to repeating stimuli when switching from SAMa1o0% to

363  SAMa2s% for most units (Fig. 3D-red line). CT blockade during SAMazse stimuli (green
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trend line) returns the PR or preference for random stimuli, to levels which approximate
but are below responses for SAMatoo%. Reducing SAM modulation depth increased
repetition-enhancement in 54/72 neurons, while CT blockade reversed the switch from
repetition-enhancement to adapting responses (Fig. 3D).
The 18 remaining MGB units of the 72 units did not show a change in PR with a
decrease in SAM temporal distinctiveness (SAMai1oo% to SAMazs%) but showed increase
in PR, or a preference for repeated stimuli when switched to SAMaa2s+ with optical CT
blockade. Eight MGB neurons unresponsive to optical blockade were not included in the
analysis.
A 100% modulation depth
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Fig. 4 Exemplar MGB unit showing differential responses to SAM presentation order, modulation depth and CT blockade: A. a
representative MGB unit showing a higher discharge rate (spikes/sec) to randomly presented SAM,qqs aCross f.s than to
predictable/repeating SAM 05, stimuli in dot raster and rate-modulation transfer functions (rMTFs). B. When modulation depth was
decreased to SAM,,..,, less distinct stimuli, the same MGB unit showed increased/greater responses to a predictable/repeating SAM,
especially at higher fms. C. Optical blockade of CT input resulted in a return to strong random preference even in response to less distinct
stimuli, SAM, 5, in this same exemplar.

15


https://doi.org/10.1101/2021.05.07.443156
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.07.443156; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

374 Changes in response to modulation depth and CT blockade are shown for an exemplar
375  MGB unit (Fig.4). Switching to less-distinct SAMa2s% showed a two-fold increase in

376  responses to repeating trials across a range of modulation frequencies, which was

377 reversed by CT blockade (Fig. 4B&C).

378  Since PR does not differentiate differences across fmods, we calculated the predictable
379  preference index (PPI), a quantitative measure derived from area under the curve

380 (AUC) values across groups of modulation frequencies, PPI = [(AUCrep-AUCRaN)/

381  (AUCRrer+AUCRAN)]. Higher PPI values indicate increased preference for repeating

382 trials, while lower PPI values indicate a preference for randomly presented trials. PPI
383  values were lower for standard stimuli (SAMa1oo0%) across all fnods tested (Fig. 5A).

384  Seventy-nine percent of MGB units (56/71) showed increased PPI value with decreased
385  modulation depth (SAMa2s%), indicating repetition-enhancement. CT blockade during
386  presentation of SAMazs% reversed the notable increase in PPl (repeated measures

387  ANOVA, F(2, 165) = 39.512, p = 2.682E-11, Bonferroni corrected p-values (standard vs.
388 less-salient = 0.000001; SAMa2s% vs. SAMaz2s% + CT blockade = 1.4624E-11; SAMa100%
389  vs. SAMa2s% + CT blockade = 0.019 ) (Fig. 5A). Changes in PPl were determined for
390 sets of increasing fmods across different stimulus groups (Fig. 5B). SAMazs% significantly
391 increased PPl values and these changes were more pronounced at higher fmods. CT

392  blockade significantly decreased PPI values across fmods (Fig. 5B). At fnods between

393 256-1024 Hz, PPI values were significantly decreased by CT blockade even when

394 compared to standard, SAMa1oo% stimuli (Table 3 for repeated measures ANOVA,

395  Bonferroni corrected p-values and comparisons at each fm range) (Fig. 5B).These

396  results suggest that MGB responses to standard, SAMa1o0% stimuli show a degree of CT
397 influences at the higher fmods tested. For 13 single-units, the effects of CT blockade at
398  SAMato00% was tested in resopnses to sequencial/repeating trails with and without CT
399  blockade. There were no significant differences in spike rates (SAMa100% vs. SAMa100% +
400 CT blockade = 17.62615 £ 3.52428 vs. 15.2132 £ 2.9107, p = 0.0529, T-test) and for
401 PPl values between the two conditions across all fmods (SAMa100% vS. SAMat00% + CT

402  blockade =-0.03926 + 0.0393 vs. -0.03136 £ 0.0316, p = 0.8611, T-test). This results
403  supports the hypothesis that additional top-down resources were engaged by temporally
404  less distinct SAM stimuli.
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The 15 MGB units that did not show PPI changes in modulation depth paradoxically
showed significantly increased PPI values with CT blockade, across fmods examined
(Table 4).
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Fig. 5 Predictable preference index (PPI) for MGB unit’s sensitive to stimulus depth of modulation: PPI's were calculated (see text) for MGB responses to random and predictable
trials across all f,,.;, combined and for specific subsets of f, .., A. For all £, combined, MGB units (n = 56) showed significant increases in PPI values (red bar) when switching from
SAM,; 005 f0 less distinct SAM .., stimuli (blue bar). The observed increase in PPl was reversed (green bar) with corticothalamic (CT) blockade. B. PPl values for MGB neurons showed
significantly increased PPls to SAM,,s,, especially at higher f,... with CT blockade reversing these increases. (Data are presented as the mean + SEM; repeated-measures ANOVA
followed by post hoc Tukey's correction were used for analyses (Graphpad). «p <0.05; «=p < 0.01; «==p < 0.001; ====p < 0.0001.

Trial by trial analysis

Based on the PPI results (Fig. 5) suggesting that sensory responses were adapting and
top-down MGB inputs caused repetition-enhancement, we examined trial-by-trial data to
10 successive presentations of SAM stimuli, for the 21 MGB units with the highest PPI
values (> 0.3) at fmods that showed the largest changes (Fig. 7). Group data for repeating
presentations of SAM stimuli (128 Hz and 256 Hz fmod) showed clear adaptation across
trials for SAMa100%, while reducing SAM depth changed the slope to repetition-
enhancement. CT blockade reversed the trial-by-trial repetition-enhancement in
response to repeating SAMazs% stimuli (Fig. 7A&B). Trend line slopes for average spikes
were significantly different across the three conditions for repeating presentation at 128
Hz fmod (F(2,24) = 4.885. p = 0.0166). Differences were significant for individual trials 7,

8, 9 and 10 between less-distinct and less-distinct with CT blockade (Friedman test
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422  followed Wilcoxon test and respective p—values for each trial are mentioned: (trial 7, p =
423 0.0021; trial 8, p=0.0011; trial 9, p =0.0027; trial 10, p = 0.009) (Fig. 7A). Responses
424  to a repeating SAM (fmod 256 Hz) significantly adapted to SAMatoo% stimuli, while

425 increasing responses across trials to SAMazs%, which was reversed by CT blockade

426  (ANCOVA, two-tailed, F(2,24) = 6.527, p = 0.0055). Differences were significant for all
427  trials but trial 2 between SAMazs% to SAMazs% with CT blockade (Friedman test followed
428  Wilcoxon test and respective p —values for each trial are mentioned: (trial 1, p = 0.006;
429 trial 3, p=0.00018; trial 4, p = 0.00046; trial 5, p = 0.0002; trial 6, p =0.0018; trial 7, p =
430 0.0034; trial 8, p =0.0013; trial 9, p =0.0004; trial 10, p =0.038)) (Fig. 7B). The same
431  trends were seen for trial-by-trial spike rate comparisons for fmods 512 and 1024 Hz. The
432  impact of onset responses on trial-by-trial rate data was examined by removing the first
433 50 ms. There were no significant differences in these data with or without inclusion of 50

434  ms onset across the three stimulus conditions (data not shown).

A fmod 128 Hz B fmod 256 Hz Fig. 7 Trial-by-trial response analysis to SAM, gy, to
SAM,,s,, with and without corticothalamic (CT)
blockade. Single-units showing PPI changes larger than
0.3 at high f,,,4s When switch from SAMy g9 t0 SAM, 559,
are included in the trail by trial analysis. Group (n = 21)
trial-by-trial responses to predictable SAM at f,, ., 128Hz
(A) and 256Hz (B). These units show adapting responses
to 10 presentations of repeating salient SAM, 09, Stimuli
(blue dot). Decreasing SAM modulation depth switched the
trial-by-trial responses from adapting to predictable with
spikes increasing with each successive presentation of the
SAM 459 stimulus (red dot). Optical CT blockade reversed
the predictive response (green dot). Trend line slopes were
significantly different for the three conditions for average
spikes to predictable presentation of at f, ., 128 Hz (A,
ANCOVA, two-tailed, p < 0.05). Differences were
significant at individual trial 7, 8, 9 and 10 in between
SAM 555 and SAM, ;54 + CT stimulus conditions (p < 0.05,
Friedman test followed Wilcoxon test) (A). Similarly, Trend

line slopes were significantly different for the three
conditions for average spikes to predictable presentation at
foo 256 Hz (B) (ANCOVA, two-tailed, p < 0.05).
Differences were significantly different at trial 1, 3, 4, 5, 6,
7, 8, 9, and 10 between SAM,,se VS. SAM,o50 With CT
# Trial # Trial blockade. There were significant differences between

n=21 n=21
0

0 1 2 3 4 56 7 8 9 10 012 3 456 7 8 910

Bl Distinct [l Less-distinct [l Less-distinct + CT blockade SAMa 05 nd SAM sy, Stimul at tial 8 and 9 in their firing

rates (B) (p < 0.05, Friedman test followed Wilcoxon test).

435
436
437
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438 MGB subdivisions

439 PPl values across fmods were examined for all 80 units based on their location within the
440 major MGB subdivisions (Fig. 6). PPI values were significantly increased in ventral and
441  dorsal MGB when modulation depth was reduced from SAMa100% to SAMa2s% (Fig.6).
442  Corticothalamic blockade reversed the PPl changes in the dorsal division with a trend
443  toward reversal in the ventral MGB (repeated measures ANOVA F(1.714, 132) = 8.562,
444  p = 0.0006, Bonferroni corrected p-values across all fms in ventral division (SAMa100% to
445  SAMa2s% = 0.0002; SAMa2s% to SAMaz2se% + CT blockade = 0.0859; SAMa100% to SAMa2s9
446  + CT blockade = 0.5902); Bonferroni corrected p-values across all fms in dorsal division
447  (SAMa100% to SAMa2s% = 0.0389; SAMa2s% to SAMazs% + CT blockade = 0.0012;

448  SAMa100% to SAMa2s%+ CT blockade = 0.5146); Fig. 6). None of these changes were
449  significant in the medial division of the MGB (Bonferroni corrected p-values across all
450  fms in medial division (SAMa100% 10 SAMa2s% = 0.1541; SAMaz25% t0 SAMa25%+CT

451  blockade = 0.9971; SAMa100% to SAMa2s% + CT blockade = 0.3117; Fig. 6).

1.01 f - 2~1024 H Fig. 6 MGB region specific changes
mod + £~ z ; . 0
in predictable preference index (PPI)
for unit’s sensitive to stimulus depth
of modulation: PPI's were calculated
(see text) for MGB units located in the
0.5 --------

. *%k three major divisions of the MGB.

L] Responses to random vs. predictable

. o SAM across all f,4. combined with and
2* H without CT blockade. ACross foou..
dorsal (24) and ventral (39), MGB units

showed significant increases in PPI

values (red bar) when switching from

® SAM, 1005 to SAM,;ce,. Corticothalamic
o (CT) blockade reversed this significant

-0.51 . increase for dorsal and ventral MGB

Predictable Preference Index
o

units. These changes were not
observed in the medial division. Data
are presented as the mean : SEM;
n=235 n=24 n= 21 repeated-measures ANOVA followed

Ventral Dorsal Medial by post hoc Tukey's correction were

o . . used for analyses (Graphpad). «p <
Il Distinct [l Less-distinct [l Less-distinct+ CT blockade 0.06; xsp < 0.01: <53 <0,001.

-1.0

452

453  Spike-rate changes with altered SAM modulation depth and CT blockade

454  Across 80 neurons there were significant changes between SAMa100% and SAMaz2s% in

455  total spikes in response to both random and repeated trials of stimuli across fmods,
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456  (Table 5). No significant differences in total spikes between SAMa2s% and SAMa2s% +
457  CT blockade were noted for randomly presented trials (Table 5). For repeating trials

458  across fmods, @ switch from SAMaioo% to SAMa2s% showed no significant differences in
459  total spikes (731.3 £ 46.3 vs. 693.5 + 45.1) (Table 5). However, a significant decrease in
460 total spikes was noted when repeating trials across fmod Were switched from SAMaioo% to
461  SAMa2s% to SAMa2s% + CT blockade (Table 5).

462
463 Discussion

464  Previous studies found that both aging and decreased modulation depth, presumptively
465 reducing the salience/fidelity of the ascending temporal code, increased responses to a
466  repeating modulated signal, suggesting engagement of top-down, cognitive and

467  mnemonic resources (Cai et al., 2016b; Kommajosyula et al., 2019). The present study
468  used optogenetic CT blockade to test whether repetition-enhancement in response to
469 less distinct temporal stimuli was due to the increased involvement of top-down CT

470  resources. In order to maintain speech understanding, older individuals have been

471 shown to increase use of cognitive and memory resources (Bidelman et al., 2019a;

472 Roque et al., 2019). The impact of aging can be simulated in humans and in animal

473  models by decreasing the temporal clarity of the stimulus. Reducing modulation depth
474  of a SAM stimulus changes the rate and synchrony of the up-stream code introducing
475  temporal jitter (Pichora-Fuller et al., 2007; Malone et al., 2010; Dimitrijevic et al., 2016;
476  Mamo et al., 2016). A less temporally distinct ascending acoustic code is thought to

477  engage top-down cognitive resources by generating predictions to support decoding of
478  modulated speech-like signals (Peelle & Wingfield, 2016; Pichora-Fuller et al., 2017;
479  Caspary & Llano, 2018; Recanzone, 2018). Consistent with human and animal studies,
480 the present study finds that weakening periodicity cues by decreasing modulation depth
481  (SAMa1oo% to SAMa2s%) decreased the percentage of neurons showing temporal phase-
482  locking to the SAM envelope(Pichora-Fuller et al., 2007; Malone et al., 2010;

483  Parthasarathy & Bartlett, 2011; Mamo et al., 2016; Kommajosyula et al., 2019;

484 McClaskey et al., 2019). Previously we found that jittering the SAM envelope with a

485  1.0kHZ centered noise produced similar levels of repetition-enhancement to the
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486  SAMazs% used in the present study (Kommajosyula et al., 2019).) CT blockade did not
487  alter temporal locking of units to the SAMazs%. The lack of CT blockade changes on

488  temporal locking contrasts to changes observed in SAM rate coding suggesting that CT
489  projections do not play a significant role in temporal coding using this stimulus paradigm
490 (Bartlett & Wang, 2007; Felix et al., 2018).

491  In response to repeating modulated stimuli, decreasing temporal clarity by decreasing
492  modulation depth changed single unit rate responses from adapting to responses

493  showing repetition-enhancement to the repeating modulated SAM stimulus. The switch
494  to increasing responses to less temporally distinct repeating stimuli was

495  blocked/reversed by optical inhibition of CT projections, thought to provide top-down
496  resources to the MGB (Homma et al., 2017; Parras et al., 2017). A majority of MGB
497  units showed the largest increases in repetition enhancement at higher SAM fmod rates
498 (> 128 Hz).

499
500 Temporal distinction and top-down resource usage

501 The present study used SAMa2s%, as a surrogate for a diminished acoustic cue that is
502  poorly detected and discriminated in the ascending code in human and animal models
503 of aging (Strouse et al., 1998; Nelson & Carney, 2006; Harris & Dubno, 2017). These
504 findings are also consistent with studies modeling aging in young humans with normal
505 hearing and studies of auditory processing of less-distinct stimuli that reveal perceptual
506 deficits due to decrease precision of temporal coding (Shannon et al., 1995; Krishna &
507 Semple, 2000; Pichora-Fuller et al., 2007; Malone et al., 2010; Jorgensen & Dau, 2011;
508 Parthasarathy & Bartlett, 2011; Dimitrijevic et al., 2016; Anderson et al., 2020; Erb et al.,
509  2020).

510 Previous studies suggest that salience is multidimensional, nonlinear and context-

511 dependent (Kayser et al., 2005; Huang & Elhilali, 2017). Based on the context, cortical
512  structures generate predictions of the upcoming sensory stimuli as postulated by

513  predictive coding theory (Mumford, 1992; Koelsch et al., 2019). If the prediction and
514 ascending sensory signals do not match, a prediction error should be generated
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515  (Auksztulewicz & Friston, 2016). Prediction error is a mechanism to strengthen the

516 internal representation of less temporally distinct stimuli which may lead to generation of
517  a better prediction upon the next repetition (Rao & Ballard, 1999). Studies have

518 suggested increased use of predictive coding in order to cope with less-distinct stimuli
519  or aging accompanied by a less temporally distinct signal to noise ratio (Heinemann et
520 al., 2011; Peelle & Wingfield, 2016; Bidelman et al., 2019a; Bidelman et al., 2019b;

521  Presacco et al., 2019; Price et al., 2019; Saderi et al., 2020). Electrophysiological and
522  fMRI studies suggest a role for repetition suppression/adaptation to repeating stimuli in
523  support of image sharpening and perceptual priming (Gross et al., 1967; Dolan et al.,
524 1997; James et al., 2000; Grill-Spector et al., 2006; Naatéanen et al., 2007). The present
525  findings suggest that for a sensory signal whose features are unclear, adaptation would
526  be counterproductive, whereas repetition-enhancement could potentially facilitate

527 identification of the unclear signal and its characteristics.

528 The present findings and two prior studies strongly support the idea of CT-mediated
529 transmission of intracortical signals leading to repetition-enhancement (Cai et al.,

530 2016b; Kommajosyula et al., 2019). Nearly 80% (56/71) of the neurons showed

531 increases in PR, indicating relative increases in unit responses to a repeating stimulus,
532  especially at higher fnods. MGB units showing the largest repetition enhancement effects
533 (PPl > 0.3) showed increases in firing rates with each successive repeating trial of less-
534  distinct stimuli at higher fmoas (Fig. 7). SSA studies using short tone-burst stimuli show
535 significantly less adaptation across trials in awake animals, suggesting that top-down
536 projections may reduce SSA in IC and MGB as suggested in the present study and

537  (Antunes et al., 2010; Richardson et al., 2013; Ayala et al., 2015; Duque & Malmierca,
538 2015; Cai et al., 2016a; Yaron et al., 2020). The increase in discharge rate with

539 repetition is best explained by a buildup in the strength of the top-down/CT-mediated
540 contribution to the MGB response (Fig. 8B). This is supported by significant decreases
541 inthe preference ratios (Figs. 3&5), and trial-by-trial enhancement (Fig. 7) which could
542  be blocked during repeating SAMa2s% stimuli. The level of adaptation seen with CT

543  blockade during less-distinct stimuli was comparable or greater than seen with the

544  SAMato0o% stimuli (Figs. 4&5) suggesting blockade of an some on-going level of top-

545  down resource engagement even during a temporally clear SAMaioo% stimulus. We
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546  suggest that CT blockade reduces the ability to convey cortical estimates of the stimulus
547 to MGB neurons, rendering the MGB neurons less sensitive to mismatch/prediction

548  error. (Fig. 8C).

A CTneuron
Top-down o ‘
T ‘ projection TC risuron Weak Predictions and 1C adaptation
Sy -~ -~ = I T T
/t/.——-—) T Distinct stimulus Repefition 1 Repetition 2 Repetition3  Repetition 4
IC input
CT neuron

Top-down Strong Predictions and repetition enhancement
enhanced TC neuron in efforts to improve stimulus salience
m
e
A 3= O D

Less-distinct stimulus

Ic input Repetition 1 Repetition 2 Repetition 3 Repetition 4

C CTneuron

~ x Top-dowh TC neuron Weak Predictions and IC adaptation
o

¢ blocked >*.—?ﬁ _ Mm Jlu _,U« J

¥
Repetition 1 Repetition 2  Repetition 3 Repetition 4

P v - G i Less-distinct stimulus
- i
TR + CT blockade MGB unit’s Response to Repetition

Fig. 8 Salience based generation of predication errors in auditory thalamus: An upcoming sensory signal from inferior colliculus (IC) at the level of medial geniculate body (MGB) could

interact with a top-down prediction from cortex, and generate prediction error component. The upcoming sensory signals (spikes) generated in response to distinct stimuli, are matched by the

top-down predictions and hence little to less generation of prediction error component upon repetition of the distinct stimuli (A). The spike signals to weakly modulated stimuli fail to match the

predictions, hence generation of prediction error increases upon repetition until the occurrence of a correct prediction based on the new intemal representation formed by feedback from

previous prediction error signals. This phenomenon is observed as an increase in response to each repetition (repefition enhancement) (B). CT blockade with weakly modulated stimuli,
549 leads to blockade of delivery of predictions to MGB, and possibly erroneous prediction error signals and adaptive spike responses (C).

550  Significant changes in PPl were found in the ventral and dorsal MGB divisions, but not
551 the medial subdivision of the MGB (Fig. 4). The absence of significant changes in the

552  medial subdivision reflect the differential inputs, intrinsic properties and/or connectivity
553  patterns of dorsal MGB neurons, such that they receive different and more widespread
554  CT projections (Smith et al., 2007). However, some caution should be exercised in the
555 interpretation of the subdivision findings since recorded neurons were not dye marked

556  and absolute location was only approximated using a template (see methods).

557 In conclusion, we found that less temporally distinct stimuli increased the
558  preference for repeating modulated signals, i.e. emergence of repetition-enhancement,
559  while blockade of CT projections led to reversal of this effect. In traditional predictive

560 coding theory, an error signal between cortical prediction and incoming sensory inputs
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561 generates spiking activity that diminishes as the sensory and prediction templates

562  match, with the mechanisms of this operation not fully understood. The present results
563  are consistent with the idea that a less-distinct acoustic signal leads to the generation of
564 a prediction component similar to what might be seen with phonemic restoration

565 (Bologna et al., 2018; Jaekel et al., 2018). Cortiothalamic feedback to MGB may serve
566  to amplify weak but predictable features in order to generate a more reliable stimulus
567 template for subsequent predictions, leading to improved detection of changes. We

568 suggest that CT blockade led to a decrease in higher order/top-down information

569 received by MGB neurons, leading to a decrease in corticothalamic mediated repetition-
570 enhancement.
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945 Table 1: Rate-level functions under control and CT blockade conditions for 60

946  units
Intensity (dB) Control CT blockade p-value*
(MeantSEM) (Mean+SEM)

0 15.927+1.5 15.493+1.5 0.564
10 15.75+1.7 14.306+1.5 0.152
20 15.195+1.5 13.941+1.5 0.07
30 14.797+1.5 13.997+1.5 0.346
40 16.0396+1.7 13.472+1.4 0.004
50 14.854+1.5 13.920+1.5 0.17
60 15.429+1.5 13.791+1.4 0.031
70 15.462+1.4 15.008+1.5 0.437
80 18.062+1.8 18.182+1.7 0.908

947  Comparisons are made between control (column 2) vs. CT blockade (column 3) in 60
948  neurons; *Column 4 represents the Bonferroni-corrected p-values for comparisons

949  between MGB single-unit responses to control and CT blockade.
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959 Table 2: Bonferroni-corrected p-values for percentage of envelope-locking units

960 with changing sound stimuli modulation depth

fm range (Hz) SAMaioo vs. SAMy2se,* SAMa100VS. SAM 250,
+CT blockade*

Random Repeating | Random Repeating
2 0.037 0.0079 0.037 0.0014
4 0.00082 0.000012 | 0.0071 0.000098
8 0.00016 0.00048 0.00000072 0.00016
16 0.0000072 0.000034 | 0.0000042 0.000058
32 0.000034 0.000012 | 0.000034 0.000034
64 0.0000001 0.0000001 | 0.0000001 0.00000019
128 0.000058 0.00048 0.000058 0.00082

961 *Each row represents the Bonferroni-corrected p-values following the Wilcoxon tests for
962  corresponding fm (in Hz) in the first column of the row. Comparisons are made between
963 salient vs. less-salient (column 2) and salient vs. less-salient+ CT blockade (column 3)

964 in all the of neurons (n=80).
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988

Table 3: Bonferroni-corrected p-values for PPI values of 56 units sensitive to

modulation depth change

fm range (Hz) SAMaioo Vs. SAMa2s vs. SAMa2s%* SAMa100vS. SAMa2s%*
SAMa259%* +CT blockade* +CT blockade*

2~1024 0.000001 1.4624E-11 0.019

2~8 0.194306274 0.002414952 0.238624372
4~16 0.026271845 7.2624E-06 0.081380638
8~32 0.004712185 3.10386E-07 0.071969343
16~64 0.004245266 3.88949E-06 0.213901181
32~128 0.000870169 8.76613E-06 0.533565168
64~256 5.21613E-05 4.47651E-08 0.347311451
128~512 6.14401E-05 7.89532E-10 0.091124673
256~1024 3.8719E-05 4.2874E-11 0.039640353

*Each row represents the Bonferroni-corrected p-values to corresponding fm range (in

Hz) in the first column of the row. Comparisons are made between salient vs. less-

salient (column 2); less-salient vs. less-salient + CT blockade (column 3); and salient vs.

less-salient+ CT blockade (column 4) in the majority of neurons (n=56).
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Table 4: Bonferroni-corrected p-values for PPI values of 15 units insensitive to
modulation depth change
fm range (HZ) SAMmoo VS. SAMAZS VS. SAMAzs%* SAMMOO VS. SAMAZS%*
SAMa2s9.* +CT blockade* +CT blockade*
2~1024 0.823374867 1.48214E-05 0.000142022
2~8 0.774652034 0.992047279 0.840986588
4~16 0.811395141 0.79258215 0.41545121
8~32 0.973549441 0.238930012 0.342751939
16~64 0.946456635 0.018936675 0.044413028
32~128 0.800376342 0.002708837 0.000256347
64~256 0.239459428 0.003792644 5.52114E-06
128~512 0.705864677 0.001001792 4.09608E-05
256~1024 0.997297984 0.000232669 0.000175392

*Each row represents the Bonferroni-corrected p-values to corresponding fm range (in
Hz) in the first column of the row. Comparisons are made between salient vs. less-
salient (column 2); less-salient vs. less-salient + CT blockade (column 3); and salient vs.

less-salient+ CT blockade (column 4) in the minority of neurons (n=15).
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Table 5: An average of total spike count and Bonferroni-corrected p-values

across all neurons to standard and weakly modulated stimuli presented in

random or repeating order.

Total spike count p-value*
Presentation | SAMa1o0% SAMazse SAMpose, + | SAMatoo, | SAMasse, VS. | SAMaiooe VS.
order CT VS. SAMazse, +CT SAMazse, +
blockade SAMazse blockade CT blockade
Random 839.2+54.6 | 675.6+45.1 | 708.6+50.3 | 0.000005 0.549 0.001
Repeating | 731.3+46.3 | 693.5+45.1 | 625.84+50.2 0.618 0.011 0.0024

Each row represents the average total spike count to SAMa100% vs. SAMazs% and the

*Bonferroni-corrected p-values following the repeated measures ANOVA for

comparisons. Comparisons were made between SAMa100% VvS. SAMa2s% , and SAMazs%

vS. SAMa100% vS. SAMa100% VS. SAMa2s% + CT blockade, and SAMai100% VvS. SAMa2se +

CT blockade in all the of neurons (n=80).
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