

1 **Title:** Corticothalamic Projections Deliver Enhanced-Responses to Medial Geniculate
2 Body as a Function of the Temporal Reliability of the Stimulus

3

4 **Authors:** Srinivasa P Kommajosyula¹, Edward L. Bartlett², Rui Cai¹, Lynne Ling¹, and
5 Donald Caspary¹

6 **Affiliations:** ¹Southern Illinois University School of Medicine, Department of
7 Pharmacology, Springfield, IL, 62702

8 ²Department of Biological Sciences and the Weldon School of Biomedical Engineering,
9 Purdue University, West Lafayette, IN, 47907

10 **Corresponding author:**

11 Donald M. Caspary

12 Department of Pharmacology, Southern Illinois University School of Medicine

13 PO Box 19629

14 Springfield, IL 62794-9629

15 dcaspary@siumed.edu

16

17 **Key words:** Auditory thalamus, less distinct modulated stimuli; sensory
18 adaptation, repetition-enhancement

19

20 **Key points:**

21 • Aging has been shown to increase temporal jitter in the ascending acoustic code
22 prompting use of cognitive/attentional mechanisms to help better understand
23 communication-like signals.

24 • Auditory thalamus receives extensive projections from cortex that are implicated
25 in delivering higher-order cortical computations to enhance thalamic responses.
26 • The present study modeled aging in young rats by using temporally less distinct
27 stimuli shown to alter the pattern of MGB unit responses from response
28 adaptation to repetition-enhancement. Enhanced responses to repeating less
29 temporally distinct modulated stimuli were reversed when inputs from cortex to
30 auditory thalamus were blocked. Collectively, these data argue that low salience
31 temporal signals engage cortical processes to enhance coding of weakly
32 modulated signals in auditory thalamus.

33

34 **Abstract**

35 Aging and challenging signal-in-noise conditions are known to engage use of cortical
36 resources to help maintain speech understanding. Extensive corticothalamic projections
37 are thought to provide attentional, mnemonic and cognitive-related inputs in support of
38 sensory inferior colliculus (IC) inputs to the medial geniculate body (MGB). Here we
39 show that a decrease in modulation depth, a temporally less distinct periodic acoustic
40 signal, leads to a jittered ascending temporal code, changing MGB unit responses from
41 adapting responses to responses showing *repetition-enhancement*, posited to aid
42 identification of important communication and environmental sounds. Young-adult male
43 Fischer Brown Norway rats, injected with the inhibitory opsin archaerhodopsin T (ArchT)
44 into the primary auditory cortex (A1), were subsequently studied using optetrodes to
45 record single-units in MGB. Decreasing the modulation depth of acoustic stimuli
46 significantly increased repetition-enhancement. Repetition-enhancement was blocked
47 by optical inactivation of corticothalamic terminals in MGB. These data support a role for
48 corticothalamic projections in repetition-enhancement, implying that predictive
49 anticipation could be used to improve neural representation of weakly modulated
50 sounds.

51 **Introduction**

52 Speech intelligibility can be maintained in noisy backgrounds and in the aged auditory
53 system by increased use of linguistic/contextual redundancies engaged to substitute for
54 sensory deficits (Warren, 1970; Wingfield, 1975; Peelle & Wingfield, 2016; Pichora-
55 Fuller *et al.*, 2016; Anderson *et al.*, 2020). For young-adults in cluttered acoustic
56 environments and older individuals affected by age-related hearing loss (presbycusis),
57 higher-order/cortical resources are brought into play to help disambiguate acoustic
58 signals (Shinn-Cunningham & Wang, 2008; Davis *et al.*, 2011; Obleser, 2014; Başkent
59 *et al.*, 2016; Vaden *et al.*, 2016; Pichora-Fuller *et al.*, 2017). Peripheral deficits only
60 partially account for the age-related loss of speech understanding (Humes *et al.*, 2012;
61 Roque *et al.*, 2019). Sensory declines in aging may be simulated in young participants
62 by decreasing the temporal distinctiveness of presented acoustic stimuli either by
63 adding noise or decreasing modulation depth, resulting in a temporally jittered
64 ascending acoustic code showing decreases in envelope-locked responses (Dubno *et*
65 *al.*, 1984; Fitzgibbons & Gordon-Salant, 1994; Pichora-Fuller *et al.*, 2007; Dimitrijevic *et*
66 *al.*, 2016; Mamo *et al.*, 2016). Studies in non-human primates and rabbits using
67 amplitude modulated stimuli have reported an increased neural jitter by decreasing the
68 modulation depth of amplitude-modulated stimuli (Nelson & Carney, 2007; Malone *et*
69 *al.*, 2010). Recent studies support use of increased top-down predictive resources to
70 help decode challenging sensory stimuli such as in speech-in-noise or less temporally
71 distinct speech (Pichora-Fuller *et al.*, 2017; Anderson & Karawani, 2020).

72 Sensory adaptation has been observed in thalamus and cortex, for all sensory
73 modalities, with declining responses for repeated stimuli (Ulanovsky *et al.*, 2003; Bartlett
74 & Wang, 2005; Pérez-González & Malmierca, 2014). In contrast to sensory adaptation,
75 repetition-enhancement, perhaps prediction, to a repeating stimulus has been reported
76 when acoustic signals were less temporally distinct, attended to, expected for statistical
77 regularities, and/or with stimuli presented at higher rates in challenging conditions (Luce
78 & Pisoni, 1998; Heinemann *et al.*, 2011; de Gardelle *et al.*, 2013; Müller *et al.*, 2013;
79 Kommajosyula *et al.*, 2019). The current study was designed to examine the role of
80 corticothalamic/top-down projections to medial geniculate body (MGB) in mediating

81 repetition adaptation/enhancement responses to repeating stimuli of different
82 modulation depths.

83 The auditory thalamus is a key subcortical structure suggested to play a critical role in
84 auditory processing. Sensory systems show attention/task/context-dependent changes
85 in thalamic activity, likely reflecting increasingly engaged corticofugal circuits (von
86 Kriegstein *et al.*, 2008; Saalmann & Kastner, 2011; Diaz *et al.*, 2012; Mihai *et al.*, 2019;
87 Tabas & von Kriegstein, 2021). The MGB receives top-down/corticofugal information
88 from extensive descending corticothalamic (CT) projections (Rouiller & Welker, 1991;
89 Winer *et al.*, 2001; He, 2003; Bartlett, 2013; Guo *et al.*, 2017; Parras *et al.*, 2017).
90 These excitatory CT projections originate from cortical layer 5&6 neurons and terminate
91 on the distal dendrites of MGB neurons in all subdivisions, including the lemniscal
92 ventral division and the non-lemniscal dorsal and medial divisions (Bartlett *et al.*, 2000;
93 Winer *et al.*, 2005; Smith *et al.*, 2007). Additionally, MGB receives state and salience-
94 related information from serotonergic/noradrenergic and cholinergic projections
95 (McCormick & Pape, 1990; Sottille *et al.*, 2017; Schofield & Hurley, 2018). MGB neurons
96 show stimulus specific adaptation (SSA) to repeated identical stimuli, which upon
97 presentation of an oddball signal show a significant mismatch signal, thought to code for
98 deviance detection and prediction error (Anderson & Malmierca, 2013; Malmierca *et al.*,
99 2015; Parras *et al.*, 2017). MGB unit responses show altered tuning and gain changes
100 with manipulation of the auditory cortex/corticofugal influences (Orman & Humphrey,
101 1981; He, 2003; Tang *et al.*, 2012; Malmierca *et al.*, 2015). A recent study by Guo *et al.*
102 (2017) showed increased detection of acoustic signals involving CT projections, and CT
103 projections have been shown to be involved in the processing of complex auditory
104 stimuli (Ono *et al.*, 2006; Rybalko *et al.*, 2006; Homma *et al.*, 2017). However, little is
105 known about how CT inputs can alter MGB response properties to repeating signals.
106 The aim of the current study is to examine the impact corticothalamic inputs have on the
107 coding of random vs. repeating sinusoidal amplitude-modulated (SAM) stimuli of
108 differing modulation depths.

109 Previous MGB single unit studies found that age- and decreased temporal precision
110 (decreased modulation depth or adding noise to the envelope) of the temporal cue

111 significantly increased MGB unit preference (discharge-rate) for repeating SAM stimuli
112 (Cai *et al.*, 2016b; Kommajosyula *et al.*, 2019). Repetition-enhancement was absent in
113 single-units recorded from MGB in anesthetized rats, suggesting that anesthesia
114 affected thalamic and cortical responses to abolish repetition enhancement (Cai *et al.*,
115 2016b). Collectively, these findings suggest that temporally less distinct acoustic cues
116 and variability due to aging engage top-down/corticothalamic influences to enhance
117 responses evoked by a repeating, weakened ascending temporal code. The present
118 study examined MGB single unit responses to determine if increased preference for a
119 repeating less temporally distinct SAM stimulus could be reversed by CT blockade in
120 young, awake rats.

121

122 **Materials and Methods**

123 Male Fischer 344 x Brown Norway (FBN) rats (n = 7), aged 4-6 months old, obtained
124 from the NIA Aging Rodent Resource Colony supplied by Charles River, were
125 individually housed on a reverse 12:12-h light-dark cycle with *ad libitum* access to food
126 and water. FBN rats have a long life-span and lower tumor load than other commonly
127 used rat aging models. They have been characterized as a rat model of aging (Cai *et*
128 *al.*, 2018), and age-related changes in central auditory structures have been extensively
129 studied (Caspary *et al.*, 2008; Caspary & Llano, 2018; Mafi *et al.*, 2020). Procedures
130 were performed in accordance with guidelines and protocols approved (Ref. No. 41-
131 018-004) by the Southern Illinois University School of Medicine Lab Animal Care and
132 Use Committee.

133 ***Microinjection***

134 Adenoviral vectors (AAV-CAG-ArchT-GFP, AAV serotype 1) with light-activated proton
135 pump and eYFP expressed under the control of a CAG (CMV enhancer, chicken beta-
136 Actin promoter and rabbit beta-Globin splice acceptor site) were obtained from the
137 University of North Carolina Vector Core (Chapel Hill, NC). Young-adult FBN rats were
138 anesthetized initially with ketamine (105 mg/kg)/xylazine (7 mg/kg) and maintained with
139 isoflurane (0.5–1%) throughout the duration of the surgery. A small hole was drilled into

140 the skull and dura mater removed. Viral vectors were injected intracranially into left
141 auditory cortex using the Neurostar stereotaxic drill and injection system (stereodrive
142 015.838, injectomate IM28350, stereodrill DR352; Neurostar, Germany). Coordinates of
143 the injection sites were primary auditory cortex (A1) layers 5 and 6 (L5 and L6), entry at
144 22° angle laterally (-8.93, -1.8, 4.37 mm relative to bregma). Animals were allowed to
145 recover for 21 days to allow viral expression to transport to the level of CT terminals in
146 the MGB (Fig. 1A).

147 ***Acoustic brainstem response (ABR) recording***

148 To ensure normal hearing thresholds, prior to optetrode implantation and 14-21 days
149 after microinjection, auditory brainstem responses (ABR) were collected from all rats as
150 previously described (Wang *et al.*, 2009; Cai *et al.*, 2016b).

151 ***Awake recordings***

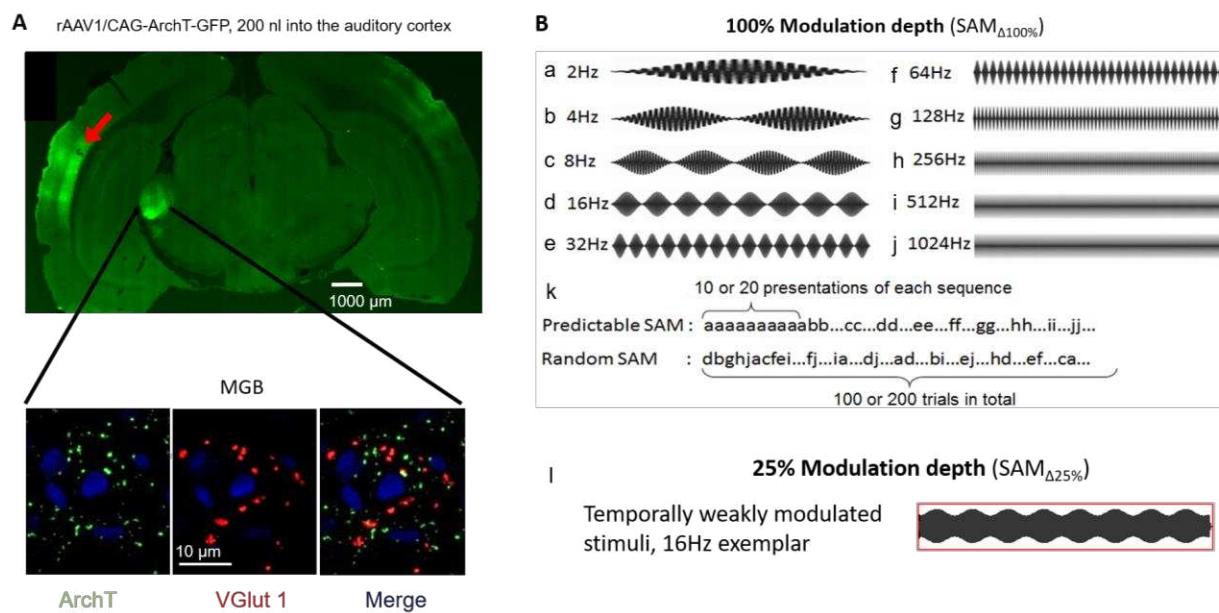
152 Three days following ABR testing, rats began 6-10 day acclimation training in a modified
153 Experimental Conditioning Unit (ECU; Braintree Scientific, Braintree, MA) with free
154 access to water and food reward (1/4 to 1/2 Froot™ Loop) until they could remain
155 quiet/still for up to 3 hours. Prior to surgical implantation, VersaDrive8 optical tetrode
156 drives (Neuralynx, Bozeman, MT) with an additional drive shaft for optical probe were
157 assembled and loaded similarly to VersaDrive4 previously described (Richardson *et al.*,
158 2013; Kalappa *et al.*, 2014; Cai *et al.*, 2016b). In a dark sound proof booth, there were
159 no other known distractors to divide the rat's attention during this passive listening task,
160 with SAM stimuli presented from a speaker located above the rat's head. We recorded
161 20-25, 45 minute-sessions from each rat. After isolation of a single-unit, spontaneous
162 activity, rate-level functions, and response maps were collected before collecting unit
163 responses to SAM stimulus set. Of the 80 units studied, 95% were clearly isolated
164 single-units (high signal-in-noise ratio, similar amplitude and shape as single units or
165 sorted using principal component analysis) the remaining 5% of units were from small
166 inseparable unit clusters (2-3) are included since no differences in response properties
167 were observed.

168 All recordings were completed within a 4 week period following implantation recovery.
169 When recordings were complete, rats were anesthetized with ketamine and xylazine as

170 described above and current pulses (5-10 μ A for 5 s, nano Z, Neuralynx, Bozeman, MT)
171 were passed through the tips of each tetrode wire, producing a small electrolytic lesions.
172 Rats were cardiac perfused with phosphate-buffered saline (0.1 M, pH 7.4) followed by
173 4% paraformaldehyde (Sigma, St. Louis, MO), brains were removed, post-fixed for 24 h
174 in 4% paraformaldehyde at 4°C, transferred to 20% sucrose and stored at 4°C until
175 sectioned. To assess the position of recordings, frozen coronal sections (30–35 μ m
176 thick) were slide mounted with electrode tracks and lesion sites visible using phase-
177 contrast microscopy. Based on each recording site relative to the final location of the
178 tetrode tip, dimensions of the optetrode placement and MGB anatomy, an approximate
179 location of each recorded unit was derived (Paxinos & Watson, 1998).

180 ***Electrophysiological recordings and optical stimulation***

181 Stimulus paradigms and single unit sorting/recording procedures were the same as for
182 awake rats as in previous studies (Kommajosyula *et al.*, 2019). Briefly, extracellularly
183 recoded single spikes, signal to noise ratio of at least 10:1, and with similar waveform
184 were isolated/thresholded with small spike unit clusters sorted using of principal
185 component analysis. Stimulus presentation real-time data display and analysis used
186 ANECS software (Dr. K. Hancock, Blue Hills Scientific, Boston, MA). Acoustic signals
187 were generated using a 16-bit D/A converter (TDT RX6, TDT System III, Tucker Davis
188 Technologies, Alachua, FL), and transduced by a Fostex tweeter (model FT17H,
189 Fostex, Middleton, WI) placed 30 cm above animal's head. The Fostex tweeter was
190 calibrated off-line using a 1/4 inch microphone (model: 4938; Brüel & Kjær, Naerum,
191 Denmark) placed at the approximate location of the rat's head. ANECS generated
192 calibration tables in dB sound pressure level (SPL) were used to set programmable
193 attenuators (TDT PA5) to achieve pure-tone levels accurate to within 2 dB SPL for
194 frequencies up to 45 kHz. The TDT generated “sync-pulse” was connected to an LED
195 optical system (200 μ m, 0.39 NA, Thorlabs Inc., NJ) with LED driver (M565F3, LEDD1B,
196 Thorlabs Inc.). Optical stimuli from LED driver were calibrated prior to experiments
197 using optical power meter (S121C and PM121D, Thorlabs Inc., NJ). Optical stimuli were
198 565 nm wavelength as determined to be the best wavelength for photo-inhibition
199 mediated by ArchT (Han *et al.*, 2011). Optogenetic stimulus parameters were chosen to


200 allow for simultaneous stimulation of sound and optical stimuli based on previous and
201 our own preliminary studies: 2.56 mw (~20.38 mW/mm²) intensity presented for 20-40
202 ms and at 10 Hz regardless of modulation frequencies (f_{mod}) (Kato *et al.*, 2017; Natan *et*
203 *al.*, 2017; Bigelow *et al.*, 2019).

204 ***Experimental design: SAM stimulus paradigms and data acquisition***

205 The present study compared the single unit responses in response to three paradigms
206 presented in either a random or repeating paradigm:1) Fully modulated SAM
207 (SAM_{Δ100%}), considered the standard clear temporal signal; 2) SAM at 25% modulation
208 depth (SAM_{Δ25%}) considered a less temporally distinct signal; 3) SAM_{Δ25%} with during
209 corticothalamic blockade (+ CT blockade) (Fig.1B & 2). There were only small
210 differences (< 2 dB) in total energy levels between the standard (SAM_{Δ100%}) and lower
211 modulation depth SAM_{Δ25%} stimuli. We will interchangeably use standard (SAM_{Δ100%})
212 and less temporally distinct SAM (SAM_{Δ25%}) across the manuscript. The less temporally
213 distinct SAM stimulus was chosen, in part, as a surrogate for aging to reproduce prior
214 results (Cai *et al.*, 2016a; Kommajosyula *et al.*, 2019). Kommajosyula *et al.* (2019)
215 found that SAM_{Δ100%} with 1.0kHz noise jittering the envelope gave similar results to
216 SAM_{Δ25%}. The SAM carrier was generally BBN, but the unit's (characteristic frequency)
217 CF was used as carrier if the unit was more strongly driven by CF-tones. Rate
218 modulation transfer functions (rMTFs) and temporal modulation transfer functions
219 (tMTFs) were collected at 30-35 dB above CF or BBN threshold. SAM stimuli were of
220 450 ms duration, presented at 2/sec with a 4 ms raise-fall; f_{mod} s were stepped between 2
221 and 1024 Hz (Fig. 1B). SAM stimuli were presented as two separate sets:
222 pseudorandomly, from now on referred to as random across trial (interleaved) f_{mod} s or
223 identical repeating(blocks of SAM, with each f_{mod} repeated (10 times) before being
224 stepped to the next f_{mod} in a stepped increasing order (Fig. 1B). To control for order of
225 presentation during repeating trials, we tested f_{mod} s stepped in descending steps/reverse
226 order, from 1024 to 2 Hz and found that presentation order (descending or ascending)
227 made no difference on spike count. All reported data for repeating SAM trials were
228 stepped from 2 to 1024 Hz. Spikes were collected over a 500 ms period following
229 stimulus onset, with 10 stimulus repetitions at each envelope frequency. Responses to

230 CT blockade examined the role of CT MGB projection during $SAM_{\Delta 25\%}$ stimuli. The
231 effect of CT blockade on coding $SAM_{\Delta 100\%}$ was collected from a subset of MGB units
232 neurons. Data were collected every day for 3-4 weeks after implantation. Data were
233 recorded only if single-unit responses were repeatable and consistent across multiple
234 trials.

235 Rate-level functions and spontaneous activity (250 epochs of 250 ms each) were
236 recorded in presence and absence of optical blockade. Broadband noise (BBN) (200
237 ms, 4 ms rise-fall, 2/sec) stimuli were stepped in rate-level functions (0 dB to 80 dB) and
238 responses were collected over a 500 ms period. Response maps were used to
239 determine the CF of sorted single units (Cai & Caspary, 2015). Real-time single unit
240 activity was sampled at 100 kHz and archived for off-line analysis.

Fig. 1 Targeting corticothalamic projections and acoustic stimuli **A:** Confocal image showing a wide-field and inset of AI GFP-labeled (green) viral injection site and excitatory corticothalamic (CT) projection expressing the ArchT pump. Insets show MGB neurons (63x) receiving labeled projection terminals (ArchT, green), and labeled with glutamatergic marker (VGlut1, red) as well as the nuclear marker (DAPI, blue). Merged image depicts colocalization of ArchT with VGlut1. **B:** Sets of sinusoidally amplitude modulated (SAM) stimuli used in the present study. Standard (100% modulation depth [$SAM_{\Delta 100\%}$]) SAM stimuli with either a tone or broadband noise carrier in 500 ms epochs from 2 Hz to 1024 Hz modulation frequencies [f_{mod}] (**B, a-j**). Stimuli were presented at f_{mod} between 2 Hz to 1024 Hz as either predictable/repeating or random sets (**B, k**). Exemplar waveforms of temporally weakly modulated/less distinct SAM (25% modulation depth [$SAM_{\Delta 25\%}$]) at 16 Hz f_{mod} (**B, l**).

241

242 **Immunohistochemistry**

243 Free-floating slices were processed in parallel and treated with 0.2% Triton-X for 1 h
244 and incubated for 2 h in blocking solution containing PBS with 0.1% Triton-X, 1.5%
245 normal donkey serum and 3% bovine serum albumin. Sections were transferred to

246 primary antibody solution containing monoclonal mouse anti-vesicular glutamate
247 transporter 1 (VGlut1) antibody (1:750; Millipore, Burlington, MA) in blocking buffer and
248 incubated overnight at room temperature. After washing in PBS, sections were
249 incubated with secondary antibody as follows: donkey anti-mouse IgG (Alexa Fluor 647,
250 1:150, Jackson ImmunoResearch, West Grove, PA) for 1 h at room temperature. As a
251 negative control, the primary antibody was omitted. Sections were mounted onto slides,
252 cover slipped with VectaShield (Vector Laboratories) and imaged with a Zeiss LSM 800
253 confocal microscope. Injection of Arch T virus into deep layers of auditory cortex led to
254 expression of GFP tagged ArchT within 4 weeks in the CT terminals at the level of
255 medial geniculate body, as shown by colocalization (yellow) (Fig. 1A).

256 **Statistical data analysis**

257 Data were collected for MGB single units with $\text{SAM}_{\Delta 100\%}$ or $\text{SAM}_{\Delta 25\%}$ and CT-blockade
258 as between subject variables. Normality assumptions were met and ANOVA was run to
259 determine significance at the $p < 0.05$ level. Bonferroni corrections were utilized for
260 pairwise comparisons to maintain a type I error level of 5% or less.

261 Responses were analyzed offline. Phase locking ability was evaluated by the standard
262 vector strength (VS) equation: $VS = \left(\frac{1}{n}\right) * \sqrt{(\sum \cos \varphi_i)^2 + (\sum \sin \varphi_i)^2}$, where n = total
263 number of spikes and φ_i = the phase of observed spike relative to modulation frequency
264 (Goldberg & Brown, 1969; Yin *et al.*, 2011). Statistical significance was assessed using
265 the Rayleigh statistic to account for differences in the number of driven spikes, with
266 Rayleigh statistic values greater than 13.8 considered to be statistically significant
267 (Mardia & Jupp, 2000) (Fig. 2). To compare number of units showing phase locking, a
268 Wilcoxon test was used followed by a Bonferroni correction for multiple comparisons.

269 Rate-level functions determined using spike rate in response to BBN were quantified
270 across intensities and compared between control and CT blockade paradigms using
271 repeated measures ANOVA with Bonferroni correction. Spontaneous activity measured
272 using spike rate across 250 ms epochs in 10 ms bins were compared between control
273 and CT blockade paradigms using repeated measures ANOVA with Bonferroni
274 correction. Preliminary analysis involved differences between order of presentation and

275 across stimulus conditions using total spike counts from 10 trials at 10 different f_{mods} .
276 Differences between orders of presentation were compared across random or repeating
277 presentation of stimuli between $\text{SAM}_{\Delta 100\%}$, $\text{SAM}_{\Delta 25\%}$, and $\text{SAM}_{\Delta 25\%+\text{CT}}$ blockade
278 condition using repeated measures ANOVA followed by post-hoc Bonferroni
279 corrections.
280 Differences between stimulus conditions were compared using a preference ratio (PR)
281 calculated across all f_{mods} ($\text{PR} = \text{total spikes in repeating trials}/\text{total spikes in random}$
282 trials). A ratio smaller than 0.95 suggests the unit is a random preferring unit; a ratio
283 larger than 1.05 suggest the unit is repetition preferring unit; while a ratio between the
284 range of 0.95 and 1.05 were considered non-selective units (Fig. 3). The rationale for
285 use of 10 % change in firing as a criteria was based on previous studies (Ghitza *et al.*,
286 2006; Cai & Caspary, 2015; Cai *et al.*, 2016b). Chi-Square test was used to compare
287 the PR across conditions.
288 Modulation transfer functions (MTFs) were determined using spike rate (rMTF)
289 measurements at each f_{mod} tested. The rMTF data were used for further quantitative
290 analyses. A predictable preference index (PPI) was calculated using the area under the
291 curve (AUC) and the equation: $\text{PPI} = [(\text{AUC}_{\text{REP}} - \text{AUC}_{\text{RAN}}) / (\text{AUC}_{\text{REP}} + \text{AUC}_{\text{RAN}})]$, modified
292 from the novelty response index (Lumani & Zhang, 2010; Cai *et al.*, 2016b). The area
293 under successive frequency segments of the rMTF curve (AUC) values were based on
294 rMTF curve calculated using GraphPad Prism. The range of PPI values varied between
295 -1 to +1: +1 represented a repetition preferring unit response, and -1 represented a
296 random preferring unit response (Figs. 5 and 6). By calculating the AUC for specific f_{mod}
297 ranges, changes between sets of f_{mod} could be compared. Repeated-measures ANOVA
298 followed by post-hoc Tukey correction for multiple comparisons was used to compare
299 PPI values.
300 Trial-to-trial responses to repeating/predictable SAM presentation showed repetition-
301 enhancement at temporally challenging (higher frequency) f_{mods} (f_{mods} 128 Hz-1024 Hz)
302 (Cai *et al.*, 2016b; Kommajosyula *et al.*, 2019). Differences in firing rate trend-line
303 slopes between the three groups (standard SAM were compared using two-tailed

304 ANCOVA, followed by Friedman test with a post-hoc Wilcoxon test to analyze spike rate
305 differences at each trial (Fig. 7).

306 Repeated measures ANOVA followed by post-hoc Bonferroni corrections were used to
307 test statistical significance. Statistical analysis was performed using GraphPad Prism 6
308 and IBM SPSS version 24. All values are expressed as means \pm SEM. * p < 0.05, ** p <
309 0.01, *** p < 0.001, **** p < 0.0001, were treated as statistical significance level.

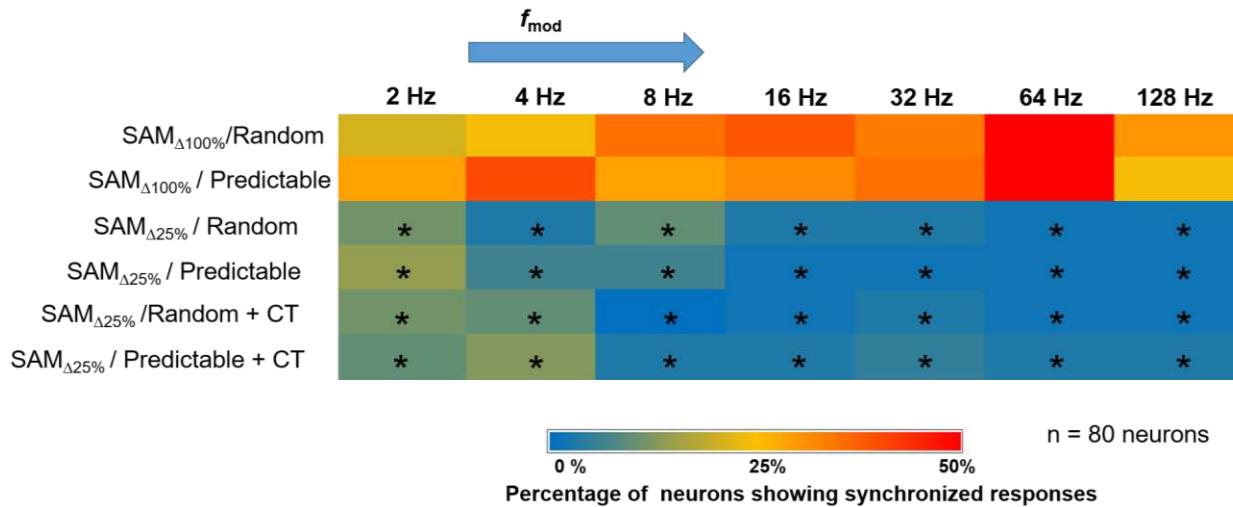
310

311 **Results**

312 Eighty MGB units, responding to sinusoidal amplitude modulation stimuli (SAM) were
313 recorded from the MGB in awake, passively listening, young-adult FBN rats. Consistent
314 with previous studies, MGB single-unit responses to SAM stimuli showed band-pass,
315 low-pass, high-pass, mixed or atypical rMTFs, showing synchronized and
316 asynchronized or mixed responses (Bartlett & Wang, 2007).

317

318 ***Basic response properties with CT blockade***


319 There were no significant changes in spontaneous activity with CT blockade compared
320 to control condition (13.85 ± 1.27 vs 13.26 ± 1.34 , $n = 45$; $p = 0.282$). Rate-level
321 functions showed significant decreases in responses across intensities with CT
322 blockade compared to control (Multivariate ANOVA, $p = 0.040$) with significant
323 differences for comparisons at a couple of intensities (Table 1).

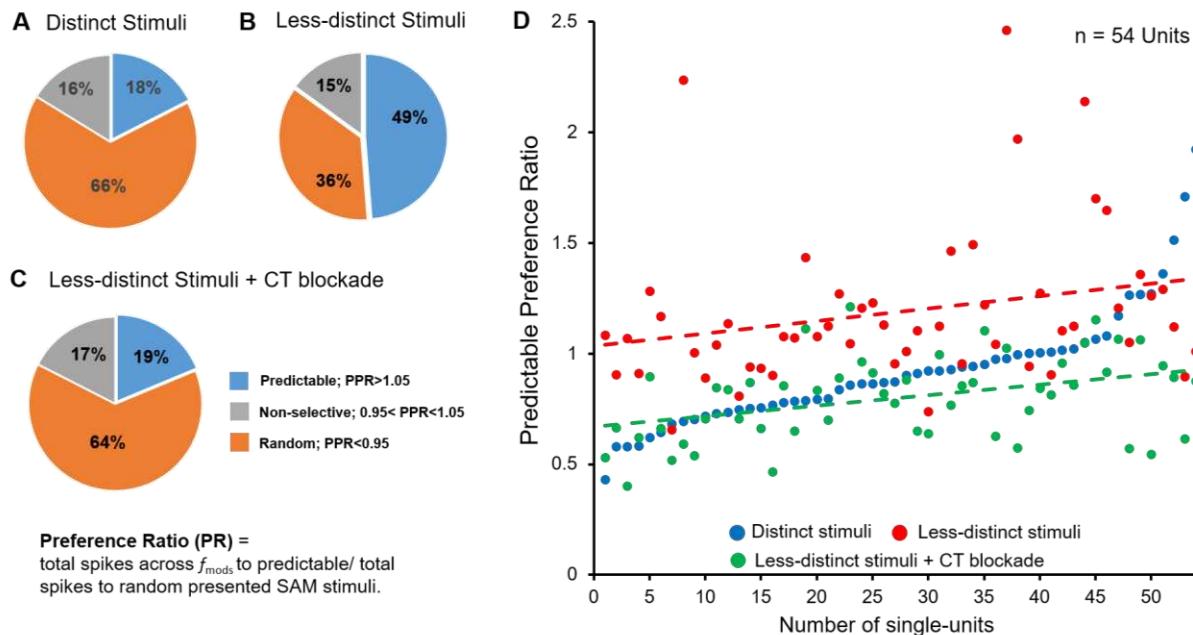
324

325 ***Decrease in modulation depth decreases envelope-locking of MGB neurons***

326 Decreasing modulation depth to $SAM_{\Delta 25\%}$ decreased envelope locking of MGB units
327 studied relative to $SAM_{\Delta 100\%}$ stimuli, as measured using the Rayleigh score across f_{mods}
328 (2-128 Hz) (Fig. 2). A higher percentage of MGB units showed temporal locking
329 (Rayleigh statistic ≥ 13.8) to the standard stimuli ($SAM_{\Delta 100\%}$) than to the $SAM_{\Delta 25\%}$ stimuli
330 across f_{mods} tested (Table 2). CT blockade did not alter percentages of envelope-locking

331 responses to less-distinct/SAM $_{\Delta 25\%}$ stimuli across f_{mod} s tested. These data show
332 decreased temporal locking in response to SAM $_{\Delta 25\%}$ stimuli and that temporal locking
333 was relatively independent of top-down modulation. These results are similar to findings
334 showing decreases in temporal locking when adding noise to the SAM periodic
335 envelope (Kommajosyula *et al.*, 2019). Here we focus on rate responses of MGB single-
336 units and the effect of CT projections on MGB single-unit response properties.

Fig. 2 Effects of stimulus modulation depth on temporal locking properties of MGB units: To assess the ability of units to temporally follow the SAM stimulus, the Rayleigh score for each f_{mod} (2-128) was used to generate a heat map based on the temporal responses of all 80 MGB units studied. MGB units might lock to a single or multi f_{ms} based on the Rayleigh score. Warmth of color indicates the percentage of neurons (out of 80) showing temporal-locking (Rayleigh statistic ≥ 13.8) to the SAM stimuli. Hot colors (red) indicate a higher percentage of units showing temporal-locking (e.g. SAM $_{\Delta 100\%}$ at 64 Hz f_{m}), whereas cool colors (blue) indicate a lower percentage of units showing temporal locking (e.g. SAM $_{\Delta 25\%}$ at 16 Hz f_{m}). Significant differences were observed between SAM $_{\Delta 100\%}$ and SAM $_{\Delta 25\%}$ regardless of order of presentation, with and without CT blockade (Wilcoxon test followed by Bonferroni correction, $p < 0.05$).


337

338

339 **Decreased modulation depth and CT blockade significantly alter MGB unit rate
340 response to random vs. repeating SAM**

341 Total spike counts in response to SAM stimuli presented in random or repeating trials
342 were compared across stimulus sets with and without CT blockade (standard SAM at
343 100% depth of modulation [SAM $_{\Delta 100\%}$]), less distinct (SAM at 25% depth of modulation
344 [SAM $_{\Delta 25\%}$]), less distinct SAM $_{\Delta 25\%}$ + CT blockade) (Fig. 1B and methods for details).
345 Consistent with Kommajosyula *et al.* (2019), 66% (56 of 80) MGB units preferred
346 randomly presented SAM $_{\Delta 100\%}$ stimuli (Fig. 3A). When modulation depth was reduced to
347 SAM $_{\Delta 25\%}$, there was a significant increase in the percentage of MGB units showing a
348 rate preference for repeating stimuli (18% vs. 49%, $\chi^2(4, N = 80) = 88.789$, $p =$

349 2.3812E-18) (Fig. 3A&B). This switch in preference toward repeating less distinct
 350 SAM_{Δ25%} was reversed by CT blockade in MGB (49% vs. 19%, $\chi^2(4, N = 80) = 84.884$,
 351 $p = 1.6054E-17$) (Fig. 3B&C). Following termination of CT optical blockade, MGB unit
 352 responses returned to showing increased response preference for repeating less
 353 distinct/SAM_{Δ25%} (19% vs. 39%, $\chi^2(6, N = 80) = 106.386$, $p = 1.1628E-20$, data not
 354 shown).

Fig. 3 Random vs. predictable/repetition preference with and without CT blockade. Preference ratios (PR) (total spikes to predictable trials/total spikes to random trials) across all f_{mod} in response to distinct, less distinct SAM stimuli, less-distinct stimuli with corticothalamic blockade (CT blockade). **A:** Unit recording from awake rat MGB showed a clear preference for random distinct SAM_{Δ100%} stimuli. **B:** Responses to predictable (repeating) SAM stimuli increased from 18% (14/80), to 49% (39/80), in response to SAM_{Δ25%} across f_{mod} . **C:** Optical CT blockade reversed the predictable preference of MGB neurons to 19% (14/80, in response to less SAM_{Δ25%} SAM. Significant differences were seen between SAM_{Δ100%} vs. SAM_{Δ25%}, SAM_{Δ25%} vs. SAM_{Δ25%} + CT blockade and SAM_{Δ25%} + CT blockade vs. SAM_{Δ25%} + recovery (Chi-Square test, $p < 0.05$). **D:** PR values plotted on a continuum of increasing PPI values for each of 54 MGB units showing differential responses to distinct, SAM_{Δ100%} (blue dots) vs. less-distinct, SAM_{Δ25%} stimuli (red dots) and SAM_{Δ25%} with CT blockade (green dots). The green trend line shows that CT blockade dramatically decreased the PR in response to SAM_{Δ25%} (red trend-line) approaching the response to SAM_{Δ100%} stimuli (blue dots).

355
 356 Ninety percent (72/80) of MGB units changed their PRs toward repeated stimuli in
 357 response to the switch in modulation depth/CT blockade (change in PR > 0.1). Seventy-
 358 five percent (54/72) of those units shifted their preference from repeated back to
 359 random stimuli with CT blockade at SAM_{Δ25%}. The PR scores for each of the 54 MGB
 360 units were plotted on a continuum of increasing PR score for SAM_{Δ100%}, with PR for
 361 SAM_{Δ25%} (with or without CT blockade) also plotted for each unit (Fig. 3D). PR trend
 362 lines show an increase in PR to repeating stimuli when switching from SAM_{Δ100%} to
 363 SAM_{Δ25%} for most units (Fig. 3D-red line). CT blockade during SAM_{Δ25%} stimuli (green

364 trend line) returns the PR or preference for random stimuli, to levels which approximate
365 but are below responses for $\text{SAM}_{\Delta 100\%}$. Reducing SAM modulation depth increased
366 repetition-enhancement in 54/72 neurons, while CT blockade reversed the switch from
367 repetition-enhancement to adapting responses (Fig. 3D).
368 The 18 remaining MGB units of the 72 units did not show a change in PR with a
369 decrease in SAM temporal distinctiveness ($\text{SAM}_{\Delta 100\%}$ to $\text{SAM}_{\Delta 25\%}$) but showed increase
370 in PR, or a preference for repeated stimuli when switched to $\text{SAM}_{\Delta 25\%}$ with optical CT
371 blockade. Eight MGB neurons unresponsive to optical blockade were not included in the
372 analysis.

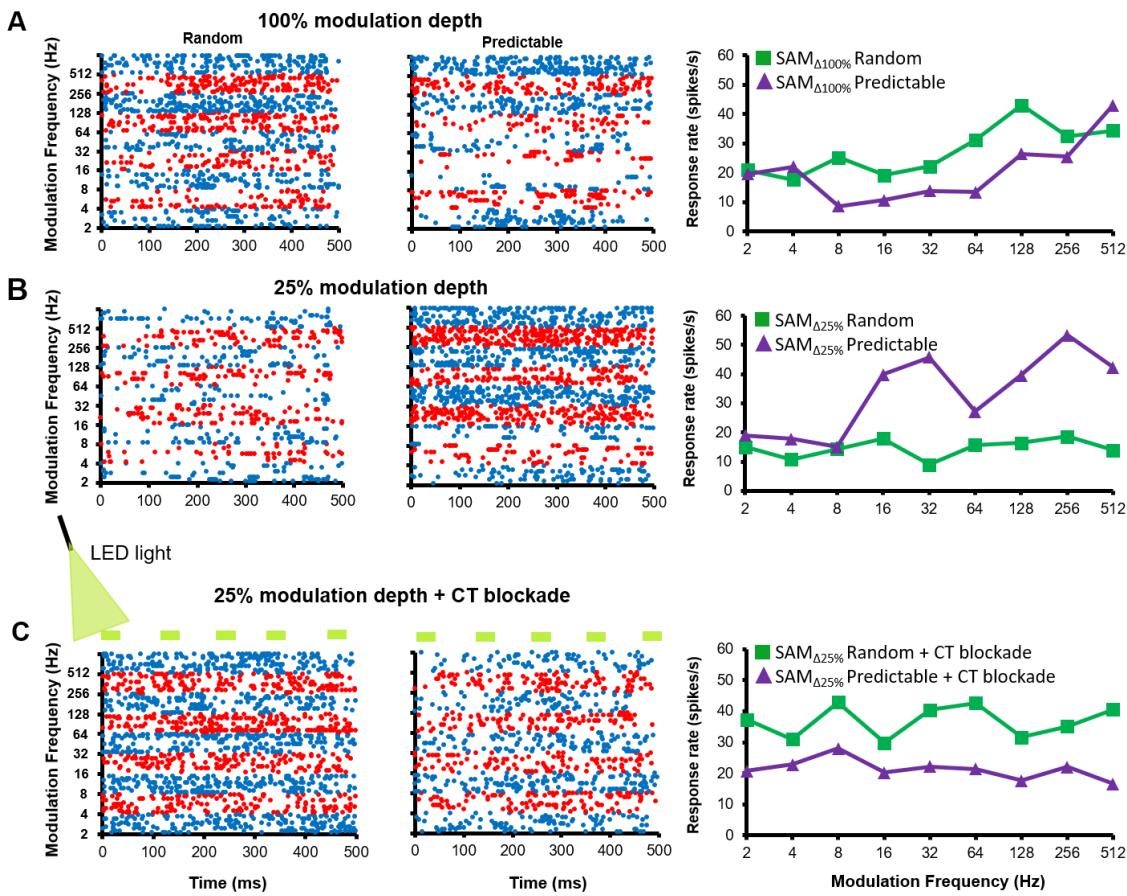


Fig. 4 Exemplar MGB unit showing differential responses to SAM presentation order, modulation depth and CT blockade: A. a representative MGB unit showing a higher discharge rate (spikes/sec) to randomly presented $\text{SAM}_{\Delta 100\%}$ across f_{mod} than to predictable/repeating $\text{SAM}_{\Delta 100\%}$ stimuli in dot raster and rate-modulation transfer functions (rMTFs). B. When modulation depth was decreased to $\text{SAM}_{\Delta 25\%}$, less distinct stimuli, the same MGB unit showed increased/greater responses to a predictable/repeating SAM, especially at higher fms. C. Optical blockade of CT input resulted in a return to strong random preference even in response to less distinct stimuli, $\text{SAM}_{\Delta 25\%}$ in this same exemplar.

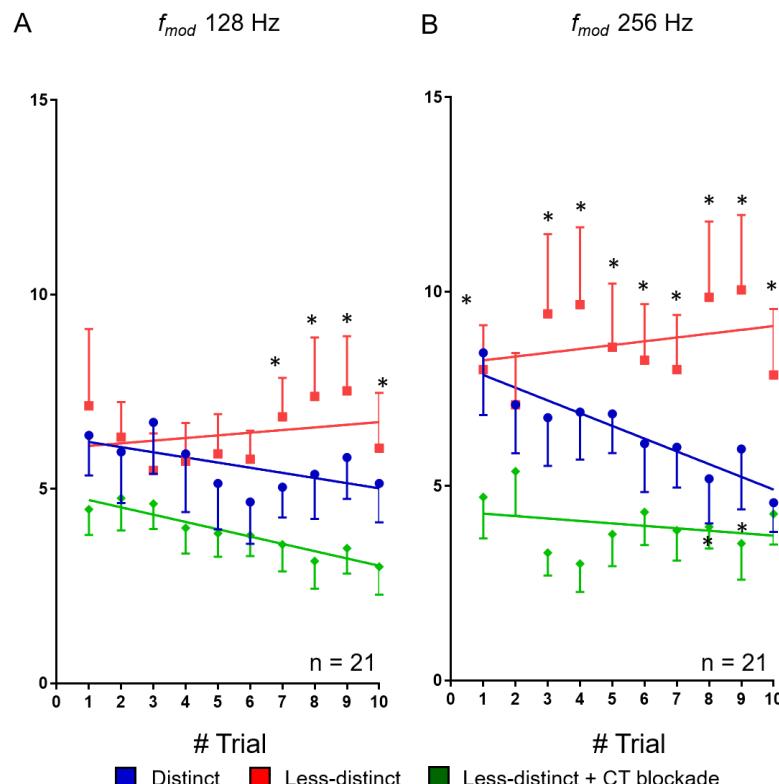
373

374 Changes in response to modulation depth and CT blockade are shown for an exemplar
375 MGB unit (Fig.4). Switching to less-distinct $\text{SAM}_{\Delta 25\%}$ showed a two-fold increase in
376 responses to repeating trials across a range of modulation frequencies, which was
377 reversed by CT blockade (Fig. 4B&C).

378 Since PR does not differentiate differences across f_{mods} , we calculated the predictable
379 preference index (PPI), a quantitative measure derived from area under the curve
380 (AUC) values across groups of modulation frequencies, $\text{PPI} = [(\text{AUC}_{\text{REP}} - \text{AUC}_{\text{RAN}})/$
381 $(\text{AUC}_{\text{REP}} + \text{AUC}_{\text{RAN}})]$. Higher PPI values indicate increased preference for repeating
382 trials, while lower PPI values indicate a preference for randomly presented trials. PPI
383 values were lower for standard stimuli ($\text{SAM}_{\Delta 100\%}$) across all f_{mods} tested (Fig. 5A).
384 Seventy-nine percent of MGB units (56/71) showed increased PPI value with decreased
385 modulation depth ($\text{SAM}_{\Delta 25\%}$), indicating repetition-enhancement. CT blockade during
386 presentation of $\text{SAM}_{\Delta 25\%}$ reversed the notable increase in PPI (repeated measures
387 ANOVA, $F(2, 165) = 39.512, p = 2.682\text{E-}11$, Bonferroni corrected p-values (standard vs.
388 less-salient = 0.000001; $\text{SAM}_{\Delta 25\%}$ vs. $\text{SAM}_{\Delta 25\%} + \text{CT blockade} = 1.4624\text{E-}11$; $\text{SAM}_{\Delta 100\%}$
389 vs. $\text{SAM}_{\Delta 25\%} + \text{CT blockade} = 0.019$) (Fig. 5A). Changes in PPI were determined for
390 sets of increasing f_{mods} across different stimulus groups (Fig. 5B). $\text{SAM}_{\Delta 25\%}$ significantly
391 increased PPI values and these changes were more pronounced at higher f_{mods} . CT
392 blockade significantly decreased PPI values across f_{mods} (Fig. 5B). At f_{mods} between
393 256-1024 Hz, PPI values were significantly decreased by CT blockade even when
394 compared to standard, $\text{SAM}_{\Delta 100\%}$ stimuli (Table 3 for repeated measures ANOVA,
395 Bonferroni corrected p-values and comparisons at each fm range) (Fig. 5B). These
396 results suggest that MGB responses to standard, $\text{SAM}_{\Delta 100\%}$ stimuli show a degree of CT
397 influences at the higher f_{mods} tested. For 13 single-units, the effects of CT blockade at
398 $\text{SAM}_{\Delta 100\%}$ was tested in responses to sequential/repeating trials with and without CT
399 blockade. There were no significant differences in spike rates ($\text{SAM}_{\Delta 100\%}$ vs. $\text{SAM}_{\Delta 100\%} +$
400 CT blockade = 17.62615 ± 3.52428 vs. $15.2132 \pm 2.9107, p = 0.0529$, T-test) and for
401 PPI values between the two conditions across all f_{mods} ($\text{SAM}_{\Delta 100\%}$ vs. $\text{SAM}_{\Delta 100\%} + \text{CT}$
402 blockade = -0.03926 ± 0.0393 vs. $-0.03136 \pm 0.0316, p = 0.8611$, T-test). This results
403 supports the hypothesis that additional top-down resources were engaged by temporally
404 less distinct SAM stimuli.

405 The 15 MGB units that did not show PPI changes in modulation depth paradoxically
406 showed significantly increased PPI values with CT blockade, across f_{mod} examined
407 (Table 4).

Fig. 5 Predictable preference index (PPI) for MGB unit's sensitive to stimulus depth of modulation: PPI's were calculated (see text) for MGB responses to random and predictable trials across all f_{mod} combined and for specific subsets of f_{mod} . **A.** For all f_{mod} , MGB units ($n = 56$) showed significant increases in PPI values (red bar) when switching from SAM $_{\Delta 100\%}$ to less distinct SAM $_{\Delta 25\%}$ stimuli (blue bar). The observed increase in PPI was reversed (green bar) with corticothalamic (CT) blockade. **B.** PPI values for MGB neurons showed significantly increased PPIs to SAM $_{\Delta 25\%}$ especially at higher f_{mod} with CT blockade reversing these increases. (Data are presented as the mean \pm SEM; repeated-measures ANOVA followed by post hoc Tukey's correction were used for analyses (Graphpad). * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; **** $p < 0.0001$.


408

409

410 Trial by trial analysis

411 Based on the PPI results (Fig. 5) suggesting that sensory responses were adapting and
412 top-down MGB inputs caused repetition-enhancement, we examined trial-by-trial data to
413 10 successive presentations of SAM stimuli, for the 21 MGB units with the highest PPI
414 values (> 0.3) at f_{mod} that showed the largest changes (Fig. 7). Group data for repeating
415 presentations of SAM stimuli (128 Hz and 256 Hz f_{mod}) showed clear adaptation across
416 trials for SAM $_{\Delta 100\%}$, while reducing SAM depth changed the slope to repetition-
417 enhancement. CT blockade reversed the trial-by-trial repetition-enhancement in
418 response to repeating SAM $_{\Delta 25\%}$ stimuli (Fig. 7A&B). Trend line slopes for average spikes
419 were significantly different across the three conditions for repeating presentation at 128
420 Hz f_{mod} ($F(2,24) = 4.885$, $p = 0.0166$). Differences were significant for individual trials 7,
421 8, 9 and 10 between less-distinct and less-distinct with CT blockade (Friedman test

422 followed Wilcoxon test and respective p -values for each trial are mentioned: (trial 7, $p =$
 423 0.0021; trial 8, $p = 0.0011$; trial 9, $p = 0.0027$; trial 10, $p = 0.009$) (Fig. 7A). Responses
 424 to a repeating SAM (f_{mod} 256 Hz) significantly adapted to $\text{SAM}_{\Delta 100\%}$ stimuli, while
 425 increasing responses across trials to $\text{SAM}_{\Delta 25\%}$, which was reversed by CT blockade
 426 (ANCOVA, two-tailed, $F(2,24) = 6.527$, $p = 0.0055$). Differences were significant for all
 427 trials but trial 2 between $\text{SAM}_{\Delta 25\%}$ to $\text{SAM}_{\Delta 25\%}$ with CT blockade (Friedman test followed
 428 Wilcoxon test and respective p -values for each trial are mentioned: (trial 1, $p = 0.006$;
 429 trial 3, $p = 0.00018$; trial 4, $p = 0.00046$; trial 5, $p = 0.0002$; trial 6, $p = 0.0018$; trial 7, $p =$
 430 0.0034; trial 8, $p = 0.0013$; trial 9, $p = 0.0004$; trial 10, $p = 0.038$) (Fig. 7B). The same
 431 trends were seen for trial-by-trial spike rate comparisons for f_{mod} s 512 and 1024 Hz. The
 432 impact of onset responses on trial-by-trial rate data was examined by removing the first
 433 50 ms. There were no significant differences in these data with or without inclusion of 50
 434 ms onset across the three stimulus conditions (data not shown).

Fig. 7 Trial-by-trial response analysis to $\text{SAM}_{\Delta 100\%}$ to $\text{SAM}_{\Delta 25\%}$ with and without corticothalamic (CT) blockade. Single-units showing PPI changes larger than 0.3 at high f_{mod} when switch from $\text{SAM}_{\Delta 100\%}$ to $\text{SAM}_{\Delta 25\%}$ are included in the trial by trial analysis. Group ($n = 21$) trial-by-trial responses to predictable SAM at f_{mod} 128Hz (A) and 256Hz (B). These units show adapting responses to 10 presentations of repeating salient $\text{SAM}_{\Delta 100\%}$ stimuli (blue dot). Decreasing SAM modulation depth switched the trial-by-trial responses from adapting to predictable with spikes increasing with each successive presentation of the $\text{SAM}_{\Delta 25\%}$ stimulus (red dot). Optical CT blockade reversed the predictive response (green dot). Trend line slopes were significantly different for the three conditions for average spikes to predictable presentation of at f_{mod} 128 Hz (A, ANCOVA, two-tailed, $p < 0.05$). Differences were significant at individual trial 7, 8, 9 and 10 in between $\text{SAM}_{\Delta 25\%}$ and $\text{SAM}_{\Delta 25\%}$ + CT stimulus conditions ($p < 0.05$, Friedman test followed Wilcoxon test) (A). Similarly, Trend line slopes were significantly different for the three conditions for average spikes to predictable presentation at f_{mod} 256 Hz (B) (ANCOVA, two-tailed, $p < 0.05$). Differences were significantly different at trial 1, 3, 4, 5, 6, 7, 8, 9, and 10 between $\text{SAM}_{\Delta 25\%}$ vs. $\text{SAM}_{\Delta 25\%}$ with CT blockade. There were significant differences between $\text{SAM}_{\Delta 100\%}$ and $\text{SAM}_{\Delta 25\%}$ stimuli at trial 8 and 9 in their firing rates (B) ($p < 0.05$, Friedman test followed Wilcoxon test).

435

436

437

438 **MGB subdivisions**

439 PPI values across f_{mod} s were examined for all 80 units based on their location within the
 440 major MGB subdivisions (Fig. 6). PPI values were significantly increased in ventral and
 441 dorsal MGB when modulation depth was reduced from $\text{SAM}_{\Delta 100\%}$ to $\text{SAM}_{\Delta 25\%}$ (Fig.6).
 442 Corticothalamic blockade reversed the PPI changes in the dorsal division with a trend
 443 toward reversal in the ventral MGB (repeated measures ANOVA $F(1.714, 132) = 8.562$,
 444 $p = 0.0006$, Bonferroni corrected p-values across all f_{ms} in ventral division ($\text{SAM}_{\Delta 100\%}$ to
 445 $\text{SAM}_{\Delta 25\%} = 0.0002$; $\text{SAM}_{\Delta 25\%}$ to $\text{SAM}_{\Delta 25\%} + \text{CT blockade} = 0.0859$; $\text{SAM}_{\Delta 100\%}$ to $\text{SAM}_{\Delta 25\%}$
 446 + CT blockade = 0.5902); Bonferroni corrected p-values across all f_{ms} in dorsal division
 447 ($\text{SAM}_{\Delta 100\%}$ to $\text{SAM}_{\Delta 25\%} = 0.0389$; $\text{SAM}_{\Delta 25\%}$ to $\text{SAM}_{\Delta 25\%} + \text{CT blockade} = 0.0012$;
 448 $\text{SAM}_{\Delta 100\%}$ to $\text{SAM}_{\Delta 25\%} + \text{CT blockade} = 0.5146$); Fig. 6). None of these changes were
 449 significant in the medial division of the MGB (Bonferroni corrected p-values across all
 450 f_{ms} in medial division ($\text{SAM}_{\Delta 100\%}$ to $\text{SAM}_{\Delta 25\%} = 0.1541$; $\text{SAM}_{\Delta 25\%}$ to $\text{SAM}_{\Delta 25\%} + \text{CT}$
 451 blockade = 0.9971; $\text{SAM}_{\Delta 100\%}$ to $\text{SAM}_{\Delta 25\%} + \text{CT blockade} = 0.3117$; Fig. 6).

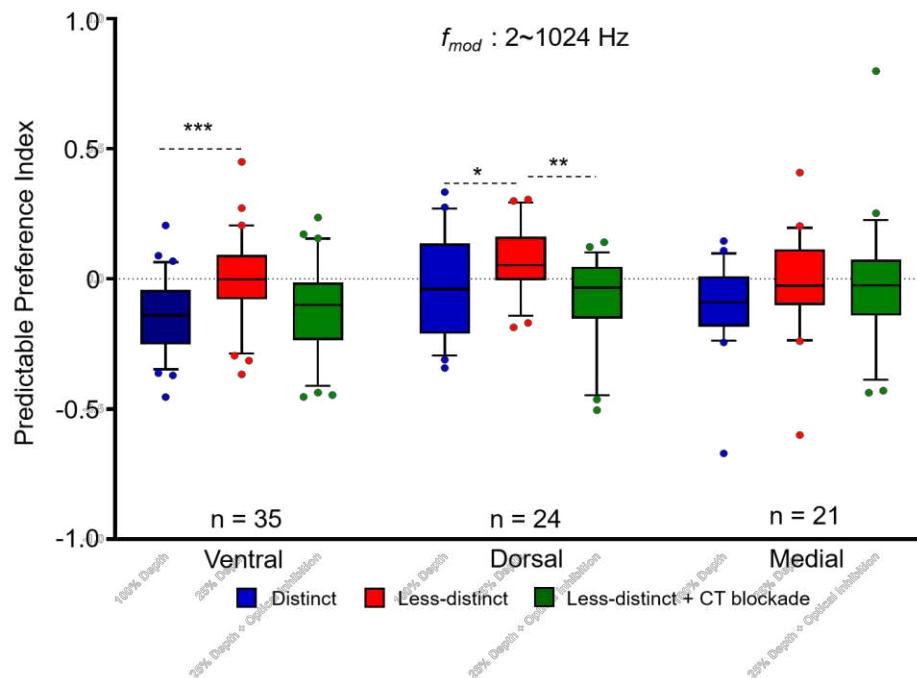


Fig. 6 *MGB region specific changes in predictable preference index (PPI) for unit's sensitive to stimulus depth of modulation: PPI's were calculated (see text) for MGB units located in the three major divisions of the MGB. Responses to random vs. predictable SAM across all f_{mod} s combined with and without CT blockade. Across f_{mod} s, dorsal (24) and ventral (39), MGB units showed significant increases in PPI values (red bar) when switching from $\text{SAM}_{\Delta 100\%}$ to $\text{SAM}_{\Delta 25\%}$. Corticothalamic (CT) blockade reversed this significant increase for dorsal and ventral MGB units. These changes were not observed in the medial division. Data are presented as the mean \pm SEM; repeated-measures ANOVA followed by *post hoc* Tukey's correction were used for analyses (Graphpad). * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.*

452

453 **Spike-rate changes with altered SAM modulation depth and CT blockade**

454 Across 80 neurons there were significant changes between $\text{SAM}_{\Delta 100\%}$ and $\text{SAM}_{\Delta 25\%}$ in
 455 total spikes in response to both random and repeated trials of stimuli across f_{mod} ,

456 (Table 5). No significant differences in total spikes between $SAM_{\Delta 25\%}$ and $SAM_{\Delta 25\%} +$
457 CT blockade were noted for randomly presented trials (Table 5). For repeating trials
458 across f_{mod} , a switch from $SAM_{\Delta 100\%}$ to $SAM_{\Delta 25\%}$ showed no significant differences in
459 total spikes (731.3 ± 46.3 vs. 693.5 ± 45.1) (Table 5). However, a significant decrease in
460 total spikes was noted when repeating trials across f_{mod} were switched from $SAM_{\Delta 100\%}$ to
461 $SAM_{\Delta 25\%}$ to $SAM_{\Delta 25\%} +$ CT blockade (Table 5).

462

463 **Discussion**

464 Previous studies found that both aging and decreased modulation depth, presumptively
465 reducing the salience/fidelity of the ascending temporal code, increased responses to a
466 repeating modulated signal, suggesting engagement of top-down, cognitive and
467 mnemonic resources (Cai *et al.*, 2016b; Kommajosyula *et al.*, 2019). The present study
468 used optogenetic CT blockade to test whether repetition-enhancement in response to
469 less distinct temporal stimuli was due to the increased involvement of top-down CT
470 resources. In order to maintain speech understanding, older individuals have been
471 shown to increase use of cognitive and memory resources (Bidelman *et al.*, 2019a;
472 Roque *et al.*, 2019). The impact of aging can be simulated in humans and in animal
473 models by decreasing the temporal clarity of the stimulus. Reducing modulation depth
474 of a SAM stimulus changes the rate and synchrony of the up-stream code introducing
475 temporal jitter (Pichora-Fuller *et al.*, 2007; Malone *et al.*, 2010; Dimitrijevic *et al.*, 2016;
476 Mamo *et al.*, 2016). A less temporally distinct ascending acoustic code is thought to
477 engage top-down cognitive resources by generating predictions to support decoding of
478 modulated speech-like signals (Peelle & Wingfield, 2016; Pichora-Fuller *et al.*, 2017;
479 Caspary & Llano, 2018; Recanzone, 2018). Consistent with human and animal studies,
480 the present study finds that weakening periodicity cues by decreasing modulation depth
481 ($SAM_{\Delta 100\%}$ to $SAM_{\Delta 25\%}$) decreased the percentage of neurons showing temporal phase-
482 locking to the SAM envelope (Pichora-Fuller *et al.*, 2007; Malone *et al.*, 2010;
483 Parthasarathy & Bartlett, 2011; Mamo *et al.*, 2016; Kommajosyula *et al.*, 2019;
484 McClaskey *et al.*, 2019). Previously we found that jittering the SAM envelope with a
485 1.0kHz centered noise produced similar levels of repetition-enhancement to the

486 SAM_{Δ25%} used in the present study (Kommajosyula *et al.*, 2019).) CT blockade did not
487 alter temporal locking of units to the SAM_{Δ25%}. The lack of CT blockade changes on
488 temporal locking contrasts to changes observed in SAM rate coding suggesting that CT
489 projections do not play a significant role in temporal coding using this stimulus paradigm
490 (Bartlett & Wang, 2007; Felix *et al.*, 2018).

491 In response to repeating modulated stimuli, decreasing temporal clarity by decreasing
492 modulation depth changed single unit rate responses from adapting to responses
493 showing repetition-enhancement to the repeating modulated SAM stimulus. The switch
494 to increasing responses to less temporally distinct repeating stimuli was
495 blocked/reversed by optical inhibition of CT projections, thought to provide top-down
496 resources to the MGB (Homma *et al.*, 2017; Parras *et al.*, 2017). A majority of MGB
497 units showed the largest increases in repetition enhancement at higher SAM f_{mod} rates
498 (> 128 Hz).

499

500 ***Temporal distinction and top-down resource usage***

501 The present study used SAM_{Δ25%}, as a surrogate for a diminished acoustic cue that is
502 poorly detected and discriminated in the ascending code in human and animal models
503 of aging (Strouse *et al.*, 1998; Nelson & Carney, 2006; Harris & Dubno, 2017). These
504 findings are also consistent with studies modeling aging in young humans with normal
505 hearing and studies of auditory processing of less-distinct stimuli that reveal perceptual
506 deficits due to decrease precision of temporal coding (Shannon *et al.*, 1995; Krishna &
507 Semple, 2000; Pichora-Fuller *et al.*, 2007; Malone *et al.*, 2010; Jorgensen & Dau, 2011;
508 Parthasarathy & Bartlett, 2011; Dimitrijevic *et al.*, 2016; Anderson *et al.*, 2020; Erb *et al.*,
509 2020).

510 Previous studies suggest that salience is multidimensional, nonlinear and context-
511 dependent (Kayser *et al.*, 2005; Huang & Elhilali, 2017). Based on the context, cortical
512 structures generate predictions of the upcoming sensory stimuli as postulated by
513 predictive coding theory (Mumford, 1992; Koelsch *et al.*, 2019). If the prediction and
514 ascending sensory signals do not match, a prediction error should be generated

515 (Auksztulewicz & Friston, 2016). Prediction error is a mechanism to strengthen the
516 internal representation of less temporally distinct stimuli which may lead to generation of
517 a better prediction upon the next repetition (Rao & Ballard, 1999). Studies have
518 suggested increased use of predictive coding in order to cope with less-distinct stimuli
519 or aging accompanied by a less temporally distinct signal to noise ratio (Heinemann *et*
520 *al.*, 2011; Peelle & Wingfield, 2016; Bidelman *et al.*, 2019a; Bidelman *et al.*, 2019b;
521 Presacco *et al.*, 2019; Price *et al.*, 2019; Saderi *et al.*, 2020). Electrophysiological and
522 fMRI studies suggest a role for repetition suppression/adaptation to repeating stimuli in
523 support of image sharpening and perceptual priming (Gross *et al.*, 1967; Dolan *et al.*,
524 1997; James *et al.*, 2000; Grill-Spector *et al.*, 2006; Näätänen *et al.*, 2007). The present
525 findings suggest that for a sensory signal whose features are unclear, adaptation would
526 be counterproductive, whereas repetition-enhancement could potentially facilitate
527 identification of the unclear signal and its characteristics.

528 The present findings and two prior studies strongly support the idea of CT-mediated
529 transmission of intracortical signals leading to repetition-enhancement (Cai *et al.*,
530 2016b; Kommajosyula *et al.*, 2019). Nearly 80% (56/71) of the neurons showed
531 increases in PR, indicating relative increases in unit responses to a repeating stimulus,
532 especially at higher f_{mods} . MGB units showing the largest repetition enhancement effects
533 ($\text{PPI} > 0.3$) showed increases in firing rates with each successive repeating trial of less-
534 distinct stimuli at higher f_{mods} (Fig. 7). SSA studies using short tone-burst stimuli show
535 significantly less adaptation across trials in awake animals, suggesting that top-down
536 projections may reduce SSA in IC and MGB as suggested in the present study and
537 (Antunes *et al.*, 2010; Richardson *et al.*, 2013; Ayala *et al.*, 2015; Duque & Malmierca,
538 2015; Cai *et al.*, 2016a; Yaron *et al.*, 2020). The increase in discharge rate with
539 repetition is best explained by a buildup in the strength of the top-down/CT-mediated
540 contribution to the MGB response (Fig. 8B). This is supported by significant decreases
541 in the preference ratios (Figs. 3&5), and trial-by-trial enhancement (Fig. 7) which could
542 be blocked during repeating $\text{SAM}_{\Delta 25\%}$ stimuli. The level of adaptation seen with CT
543 blockade during less-distinct stimuli was comparable or greater than seen with the
544 $\text{SAM}_{\Delta 100\%}$ stimuli (Figs. 4&5) suggesting blockade of an some on-going level of top-
545 down resource engagement even during a temporally clear $\text{SAM}_{\Delta 100\%}$ stimulus. We

546 suggest that CT blockade reduces the ability to convey cortical estimates of the stimulus
547 to MGB neurons, rendering the MGB neurons less sensitive to mismatch/prediction
548 error. (Fig. 8C).

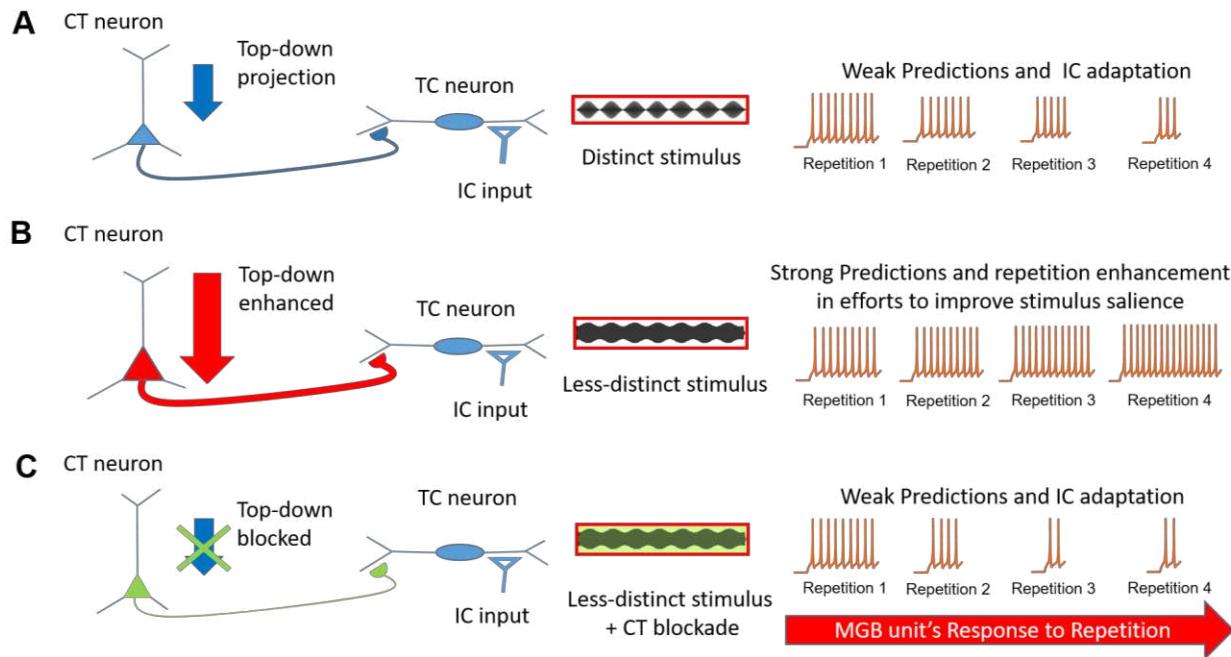


Fig. 8 Salience based generation of prediction errors in auditory thalamus: An upcoming sensory signal from inferior colliculus (IC) at the level of medial geniculate body (MGB) could interact with a top-down prediction from cortex, and generate prediction error component. The upcoming sensory signals (spikes) generated in response to distinct stimuli, are matched by the top-down predictions and hence little to no generation of prediction error component upon repetition of the distinct stimuli (A). The spike signals to weakly modulated stimuli fail to match the predictions, hence generation of prediction error increases upon repetition until the occurrence of a correct prediction based on the new internal representation formed by feedback from previous prediction error signals. This phenomenon is observed as an increase in response to each repetition (repetition enhancement) (B). CT blockade with weakly modulated stimuli, leads to blockade of delivery of predictions to MGB, and possibly erroneous prediction error signals and adaptive spike responses (C).

549

550 Significant changes in PPI were found in the ventral and dorsal MGB divisions, but not
551 the medial subdivision of the MGB (Fig. 4). The absence of significant changes in the
552 medial subdivision reflect the differential inputs, intrinsic properties and/or connectivity
553 patterns of dorsal MGB neurons, such that they receive different and more widespread
554 CT projections (Smith *et al.*, 2007). However, some caution should be exercised in the
555 interpretation of the subdivision findings since recorded neurons were not dye marked
556 and absolute location was only approximated using a template (see methods).

557 In conclusion, we found that less temporally distinct stimuli increased the
558 preference for repeating modulated signals, i.e. emergence of repetition-enhancement,
559 while blockade of CT projections led to reversal of this effect. In traditional predictive
560 coding theory, an error signal between cortical prediction and incoming sensory inputs

561 generates spiking activity that diminishes as the sensory and prediction templates
562 match, with the mechanisms of this operation not fully understood. The present results
563 are consistent with the idea that a less-distinct acoustic signal leads to the generation of
564 a prediction component similar to what might be seen with phonemic restoration
565 (Bologna *et al.*, 2018; Jaekel *et al.*, 2018). Corticothalamic feedback to MGB may serve
566 to amplify weak but predictable features in order to generate a more reliable stimulus
567 template for subsequent predictions, leading to improved detection of changes. We
568 suggest that CT blockade led to a decrease in higher order/top-down information
569 received by MGB neurons, leading to a decrease in corticothalamic mediated repetition-
570 enhancement.

571

572 **Author contribution:** SPK: Study concept, design, data acquisition, analyses,
573 interpretation, manuscript drafting, and revision; ELB: Data analyses, interpretation and
574 manuscript revision; LL: Confocal imaging, surgical assistance and manuscript revision;
575 RC: Study concept and manuscript revision; DMC: Study concept, design, supervision,
576 data interpretation and manuscript writing and revision. SPK's present address:
577 Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad
578 Campus, Telangana, 500078, India
579

580 **Conflict of interest:**

581 The authors declare no competing financial interests

582 **Acknowledgements:**

583 This work was supported by National Institute on Deafness and Other Communication
584 Disorders DC000151 to D.M.C. We thank the National Institute on Aging for providing
585 FBN rats; Kevin Brownell for data reduction, Dr. Kristin Delfino for statistical analysis;
586 Dr. Ken Hancock for design and continued development of our stimulus/acquisition
587 system, Lydia Howes for proof reading and Dr. Laurel Carney for suggestions on an
588 earlier version of the manuscript.

589

590 **References**

591 Anderson LA & Malmierca MS. (2013). The effect of auditory cortex deactivation on stimulus-specific
592 adaptation in the inferior colliculus of the rat. *The European journal of neuroscience* **37**, 52-62.

593

594 Anderson S & Karawani H. (2020). Objective evidence of temporal processing deficits in older adults.
595 *Hear Res* **397**, 108053.

596

597 Anderson S, Roque L, Gaskins CR, Gordon-Salant S & Goupell MJ. (2020). Age-Related Compensation
598 Mechanism Revealed in the Cortical Representation of Degraded Speech. *J Assoc Res
599 Otolaryngol* **21**, 373-391.

600

601 Antunes FM, Nelken I, Covey E & Malmierca MS. (2010). Stimulus-Specific Adaptation in the Auditory
602 Thalamus of the Anesthetized Rat. *PLoS one* **5**, e14071.

603

604 Auksztulewicz R & Friston K. (2016). Repetition suppression and its contextual determinants in
605 predictive coding. *Cortex* **80**, 125-140.

606

607 Ayala YA, Udeh A, Dutta K, Bishop D, Malmierca MS & Oliver DL. (2015). Differences in the strength of
608 cortical and brainstem inputs to SSA and non-SSA neurons in the inferior colliculus. *Scientific
609 reports* **5**, 10383.

610

611 Bartlett EL. (2013). The organization and physiology of the auditory thalamus and its role in processing
612 acoustic features important for speech perception. *Brain Lang* **126**, 29-48.

613

614 Bartlett EL, Stark JM, Guillory RW & Smith PH. (2000). Comparison of the fine structure of cortical and
615 collicular terminals in the rat medial geniculate body. *Neuroscience* **100**, 811-828.

616

617 Bartlett EL & Wang X. (2005). Long-lasting modulation by stimulus context in primate auditory cortex.
618 *Journal of neurophysiology* **94**, 83-104.

619

620 Bartlett EL & Wang X. (2007). Neural representations of temporally modulated signals in the auditory
621 thalamus of awake primates. *J Neurophysiol* **97**, 1005-1017.

622

623 Başkent D, Clarke J, Pals C, Benard MR, Bhargava P, Saija J, Sarampalis A, Wagner A & Gaudrain E.
624 (2016). Cognitive Compensation of Speech Perception With Hearing Impairment, Cochlear
625 Implants, and Aging: How and to What Degree Can It Be Achieved? *Trends Hear* **20**,
626 2331216516670279.

627

628 Bidelman GM, Mahmud MS, Yeasin M, Shen D, Arnott SR & Alain C. (2019a). Age-related hearing loss
629 increases full-brain connectivity while reversing directed signaling within the dorsal-ventral
630 pathway for speech. *Brain Struct Funct* **224**, 2661-2676.

631

632 Bidelman GM, Price CN, Shen D, Arnott SR & Alain C. (2019b). Afferent-efferent connectivity between
633 auditory brainstem and cortex accounts for poorer speech-in-noise comprehension in older
634 adults. *Hear Res* **382**, 107795.

635

636 Bigelow J, Morrill RJ, Dekloe J & Hasenstaub AR. (2019). Movement and VIP Interneuron Activation
637 Differentially Modulate Encoding in Mouse Auditory Cortex. *eNeuro* **6**, ENEURO.0164-
638 0119.2019.

639

640 Bologna WJ, Vaden Jr KI, Ahlstrom JB & Dubno JR. (2018). Age effects on perceptual organization of
641 speech: Contributions of glimpsing, phonemic restoration, and speech segregation. *The Journal
642 of the Acoustical Society of America* **144**, 267-281.

643

644 Cai R & Caspary DM. (2015). GABAergic inhibition shapes SAM responses in rat auditory thalamus.
645 *Neuroscience* **299**, 146-155.

646

647 Cai R, Montgomery SC, Graves KA, Caspary DM & Cox BC. (2018). The FBN rat model of aging:
648 investigation of ABR waveforms and ribbon synapse changes. *Neurobiology of aging* **62**, 53-63.

649

650 Cai R, Richardson BD & Caspary DM. (2016a). Responses to Predictable versus Random Temporally
651 Complex Stimuli from Single Units in Auditory Thalamus: Impact of Aging and Anesthesia.
652 *Journal of Neuroscience* **36**, 10696-10706.

653

654 Cai R, Richardson BD & Caspary DM. (2016b). Responses to Predictable versus Random Temporally
655 Complex Stimuli from Single Units in Auditory Thalamus: Impact of Aging and Anesthesia. *J
656 Neurosci* **36**, 10696-10706.

657

658 Caspary DM, Ling L, Turner JG & Hughes LF. (2008). Inhibitory neurotransmission, plasticity and aging in
659 the mammalian central auditory system. *The Journal of experimental biology* **211**, 1781-1791.

660

661 Caspary DM & Llano DA. (2018). Aging Processes in the Subcortical Auditory System. In *The Oxford
662 Handbook of the Auditory Brainstem*, ed. Kandler K. Oxford University Press.

663

664 Davis MH, Ford MA, Kherif F & Johnsrude IS. (2011). Does semantic context benefit speech
665 understanding through "top-down" processes? Evidence from time-resolved sparse fMRI. *J Cogn
666 Neurosci* **23**, 3914-3932.

667

668 de Gardelle V, Wasczuk M, Egner T & Summerfield C. (2013). Concurrent repetition enhancement and
669 suppression responses in extrastriate visual cortex. *Cerebral cortex* **23**, 2235-2244.

670

671 Diaz B, Hintz F, Kiebel SJ & von Kriegstein K. (2012). Dysfunction of the auditory thalamus in
672 developmental dyslexia. *Proceedings of the National Academy of Sciences of the United States of
673 America* **109**, 13841-13846.

674

675 Dimitrijevic A, Alsamri J, John MS, Purcell D, George S & Zeng F-G. (2016). Human Envelope Following
676 Responses to Amplitude Modulation: Effects of Aging and Modulation Depth. *Ear and hearing*
677 **37**, e322-e335.

678

679 Dolan RJ, Fink GR, Rolls E, Booth M, Holmes A, Frackowiak RSJ & Friston KJ. (1997). How the brain learns
680 to see objects and faces in an impoverished context. *Nature* **389**, 596-599.

681

682 Dubno JR, Dirks DD & Morgan DE. (1984). Effects of age and mild hearing loss on speech recognition in
683 noise. *The Journal of the Acoustical Society of America* **76**, 87-96.

684

685 Duque D & Malmierca MS. (2015). Stimulus-specific adaptation in the inferior colliculus of the mouse:
686 anesthesia and spontaneous activity effects. *Brain structure & function* **220**, 3385-3398.

687

688 Erb J, Schmitt LM & Obleser J. (2020). Temporal selectivity declines in the aging human auditory cortex.
689 *eLife* **9**.

690

691 Felix RA, 2nd, Gourévitch B & Portfors CV. (2018). Subcortical pathways: Towards a better understanding
692 of auditory disorders. *Hearing research* **362**, 48-60.

693

694 Fitzgibbons PJ & Gordon-Salant S. (1994). Age effects on measures of auditory duration discrimination.
695 *Journal of speech and hearing research* **37**, 662-670.

696

697 Ghitza UE, Prokopenko VF, West MO & Fabbricatore AT. (2006). Higher magnitude accumbal phasic
698 firing changes among core neurons exhibiting tonic firing increases during cocaine self-
699 administration. *Neuroscience* **137**, 1075-1085.

700

701 Goldberg JM & Brown PB. (1969). Response of binaural neurons of dog superior olivary complex to
702 dichotic tonal stimuli: some physiological mechanisms of sound localization. *Journal of
703 neurophysiology* **32**, 613-636.

704

705 Grill-Spector K, Henson R & Martin A. (2006). Repetition and the brain: neural models of stimulus-
706 specific effects. *Trends Cogn Sci* **10**, 14-23.

707

708 Gross CG, Schiller PH, Wells C & Gerstein GL. (1967). Single-unit activity in temporal association cortex of
709 the monkey. *Journal of neurophysiology* **30**, 833-843.

710

711 Guo W, Clause AR, Barth-Maron A & Polley DB. (2017). A Corticothalamic Circuit for Dynamic Switching
712 between Feature Detection and Discrimination. *Neuron* **95**, 180-194.e185.

713

714 Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, Yang A, Baratta MV, Winkle J, Desimone
715 R & Boyden ES. (2011). A high-light sensitivity optical neural silencer: development and
716 application to optogenetic control of non-human primate cortex. *Frontiers in systems*
717 *neuroscience* **5**, 18.

718

719 Harris KC & Dubno JR. (2017). Age-related deficits in auditory temporal processing: unique contributions
720 of neural dyssynchrony and slowed neuronal processing. *Neurobiology of aging* **53**, 150-158.

721

722 He J. (2003). Corticofugal modulation on both ON and OFF responses in the nonlemniscal auditory
723 thalamus of the guinea pig. *J Neurophysiol* **89**, 367-381.

724

725 Heinemann LV, Kaiser J & Altmann CF. (2011). Auditory repetition enhancement at short interstimulus
726 intervals for frequency-modulated tones. *Brain research* **1411**, 65-75.

727

728 Homma NY, Happel MFK, Nodal FR, Ohl FW, King AJ & Bajo VM. (2017). A Role for Auditory
729 Corticothalamic Feedback in the Perception of Complex Sounds. *J Neurosci* **37**, 6149-6161.

730

731 Huang N & Elhilali M. (2017). Auditory salience using natural soundscapes. *The Journal of the Acoustical
732 Society of America* **141**, 2163-2163.

733

734 Humes LE, Dubno JR, Gordon-Salant S, Lister JJ, Cacace AT, Cruickshanks KJ, Gates GA, Wilson RH &
735 Wingfield A. (2012). Central presbycusis: a review and evaluation of the evidence. *Journal of the
736 American Academy of Audiology* **23**, 635-666.

737

738 Jaekel BN, Newman RS & Goupell MJ. (2018). Age effects on perceptual restoration of degraded
739 interrupted sentences. *The Journal of the Acoustical Society of America* **143**, 84-97.

740

741 James TW, Humphrey GK, Gati JS, Menon RS & Goodale MA. (2000). The effects of visual object priming
742 on brain activation before and after recognition. *Current Biology* **10**, 1017-1024.

743

744 Jorgensen S & Dau T. (2011). Predicting speech intelligibility based on the signal-to-noise envelope
745 power ratio after modulation-frequency selective processing. *The Journal of the Acoustical
746 Society of America* **130**, 1475-1487.

747

748 Kalappa BI, Brozoski TJ, Turner JG & Caspary DM. (2014). Single unit hyperactivity and bursting in the
749 auditory thalamus of awake rats directly correlates with behavioural evidence of tinnitus. *The*
750 *Journal of physiology* **592**, 5065-5078.

751
752 Kato HK, Asinof SK & Isaacson JS. (2017). Network-Level Control of Frequency Tuning in Auditory Cortex.
753 *Neuron* **95**, 412-423.e414.

754
755 Kayser C, Petkov CI, Lippert M & Logothetis NK. (2005). Mechanisms for allocating auditory attention: an
756 auditory saliency map. *Current biology : CB* **15**, 1943-1947.

757
758 Koelsch S, Vuust P & Friston K. (2019). Predictive Processes and the Peculiar Case of Music. *Trends Cogn*
759 *Sci* **23**, 63-77.

760
761 Kommajosyula SP, Cai R, Bartlett E & Caspary DM. (2019). Top-down or bottom up: decreased stimulus
762 salience increases responses to predictable stimuli of auditory thalamic neurons. *J Physiol* **597**,
763 2767-2784.

764
765 Krishna BS & Semple MN. (2000). Auditory temporal processing: responses to sinusoidally amplitude-
766 modulated tones in the inferior colliculus. *J Neurophysiol* **84**, 255-273.

767
768 Luce PA & Pisoni DB. (1998). Recognizing spoken words: the neighborhood activation model. *Ear and*
769 *hearing* **19**, 1-36.

770
771 Lumani A & Zhang H. (2010). Responses of neurons in the rat's dorsal cortex of the inferior colliculus to
772 monaural tone bursts. *Brain Res* **1351**, 115-129.

773
774 Mafi AM, Hofer LN, Russ MG, Young JW & Mellott JG. (2020). The Density of Perineuronal Nets Increases
775 With Age in the Inferior Colliculus in the Fischer Brown Norway Rat. *Frontiers in aging*
776 *neuroscience* **12**, 27.

777
778 Malmierca MS, Anderson LA & Antunes FM. (2015). The cortical modulation of stimulus-specific
779 adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive
780 coding. *Frontiers in systems neuroscience* **9**, 19.

781
782 Malone BJ, Scott BH & Semple MN. (2010). Temporal Codes for Amplitude Contrast in Auditory Cortex.
783 *The Journal of Neuroscience* **30**, 767-784.

784
785 Mamo SK, Grose JH & Buss E. (2016). Speech-evoked ABR: Effects of age and simulated neural temporal
786 jitter. *Hearing research* **333**, 201-209.

787
788 Mardia KV & Jupp PE. (2000). *Directional Statistics*. New York: Wiley.

789
790 McClaskey CM, Dias JW & Harris KC. (2019). Sustained envelope periodicity representations are
791 associated with speech-in-noise performance in difficult listening conditions for younger and
792 older adults. *Journal of neurophysiology* **122**, 1685-1696.

793
794 McCormick DA & Pape HC. (1990). Noradrenergic and serotonergic modulation of a hyperpolarization-
795 activated cation current in thalamic relay neurones. *The Journal of physiology* **431**, 319-342.

796
797 Mihai PG, Moerel M, de Martino F, Trampel R, Kiebel S & von Kriegstein K. (2019). Modulation of
798 tonotopic ventral medial geniculate body is behaviorally relevant for speech recognition. *Elife* **8**.

799
800 Müller NG, Strumpf H, Scholz M, Baier B & Melloni L. (2013). Repetition suppression versus
801 enhancement--it's quantity that matters. *Cerebral cortex* **23**, 315-322.

802
803 Mumford D. (1992). On the computational architecture of the neocortex. II. The role of cortico-cortical
804 loops. *Biological cybernetics* **66**, 241-251.

805
806 Näätänen R, Paavilainen P, Rinne T & Alho K. (2007). The mismatch negativity (MMN) in basic research
807 of central auditory processing: A review. *Clinical Neurophysiology* **118**, 2544-2590.

808
809 Natan RG, Rao W & Geffen MN. (2017). Cortical Interneurons Differentially Shape Frequency Tuning
810 following Adaptation. *Cell Rep* **21**, 878-890.

811
812 Nelson PC & Carney LH. (2006). Cues for masked amplitude-modulation detection. *The Journal of the
813 Acoustical Society of America* **120**, 978-990.

814
815 Nelson PC & Carney LH. (2007). Neural rate and timing cues for detection and discrimination of
816 amplitude-modulated tones in the awake rabbit inferior colliculus. *Journal of neurophysiology*
817 **97**, 522-539.

818
819 Obleser J. (2014). Putting the listening brain in context. *Language and Linguistics Compass* **8**, 646-658.

820
821 Ono K, Kudoh M & Shibuki K. (2006). Roles of the auditory cortex in discrimination learning by rats. *The
822 European journal of neuroscience* **23**, 1623-1632.

823
824 Orman SS & Humphrey GL. (1981). Effects of changes in cortical arousal and of auditory cortex cooling
825 on neuronal activity in the medial geniculate body. *Experimental brain research* **42**, 475-482.

826
827 Parras GG, Nieto-Diego J, Carbajal GV, Valdes-Baizabal C, Escera C & Malmierca MS. (2017). Neurons
828 along the auditory pathway exhibit a hierarchical organization of prediction error. *Nature
communications* **8**, 2148.

830
831 Parthasarathy A & Bartlett EL. (2011). Age-related auditory deficits in temporal processing in F-344 rats.
832 *Neuroscience* **192**, 619-630.

833
834 Paxinos W & Watson C. (1998). *The Rat Brain in Stereotaxic Coordinates*. Academic Press, San Diego.

835
836 Peelle JE & Wingfield A. (2016). The Neural Consequences of Age-Related Hearing Loss. *Trends Neurosci*
837 **39**, 486-497.

838
839 Pérez-González D & Malmierca MS. (2014). Adaptation in the auditory system: an overview. *Front Integr
840 Neurosci* **8**, 19-19.

841
842 Pichora-Fuller MK, Alain C & Schneider BA. (2017). Older Adults at the Cocktail Party. In *The Auditory
843 System at the Cocktail Party*, ed. Middlebrooks JC, Simon JZ, Popper AN & Fay RR, pp. 227-259.
844 Springer International Publishing, Cham.

845
846 Pichora-Fuller MK, Kramer SE, Eckert MA, Edwards B, Hornsby BW, Humes LE, Lemke U, Lunner T,
847 Matthen M, Mackersie CL, Naylor G, Phillips NA, Richter M, Rudner M, Sommers MS, Tremblay
848 KL & Wingfield A. (2016). Hearing Impairment and Cognitive Energy: The Framework for
849 Understanding Effortful Listening (FUEL). *Ear and hearing* **37 Suppl 1**, 5s-27s.

850
851 Pichora-Fuller MK, Schneider BA, Macdonald E, Pass HE & Brown S. (2007). Temporal jitter disrupts
852 speech intelligibility: a simulation of auditory aging. *Hear Res* **223**, 114-121.

853
854 Presacco A, Simon JZ & Anderson S. (2019). Speech-in-noise representation in the aging midbrain and
855 cortex: Effects of hearing loss. *PLoS one* **14**, e0213899.

856
857 Price CN, Alain C & Bidelman GM. (2019). Auditory-frontal Channeling in alpha and beta Bands is Altered
858 by Age-related Hearing Loss and Relates to Speech Perception in Noise. *Neuroscience* **423**, 18-
859 28.

860
861 Rao RP & Ballard DH. (1999). Predictive coding in the visual cortex: a functional interpretation of some
862 extra-classical receptive-field effects. *Nat Neurosci* **2**, 79-87.

863
864 Recanzone G. (2018). The effects of aging on auditory cortical function. *Hear Res* **366**, 99-105.

865
866 Richardson BD, Hancock KE & Caspary DM. (2013). Stimulus-specific adaptation in auditory thalamus of
867 young and aged awake rats. *J Neurophysiol* **110**, 1892-1902.

868
869 Roque L, Karawani H, Gordon-Salant S & Anderson S. (2019). Effects of Age, Cognition, and Neural
870 Encoding on the Perception of Temporal Speech Cues. *Frontiers in neuroscience* **13**, 749.

871
872 Rouiller EM & Welker E. (1991). Morphology of corticothalamic terminals arising from the auditory
873 cortex of the rat: a Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study. *Hear Res* **56**, 179-
874 190.

875
876 Rybalko N, Suta D, Nwabueze-Ogbo F & Syka J. (2006). Effect of auditory cortex lesions on the
877 discrimination of frequency-modulated tones in rats. *The European journal of neuroscience* **23**,
878 1614-1622.

879
880 Saalmann YB & Kastner S. (2011). Cognitive and perceptual functions of the visual thalamus. *Neuron* **71**,
881 209-223.

882
883 Saderi D, Buran BN & David SV. (2020). Streaming of repeated noise in primary and secondary fields of
884 auditory cortex. *J Neurosci*.

885
886 Schofield BR & Hurley L. (2018). Circuits for Modulation of Auditory Function. In *The Mammalian
Auditory Pathways*, pp. 235-267. Springer.

888
889 Shannon RV, Zeng FG, Kamath V, Wygonski J & Ekelid M. (1995). Speech recognition with primarily
890 temporal cues. *Science (New York, NY)* **270**, 303-304.

891
892 Shinn-Cunningham BG & Wang D. (2008). Influences of auditory object formation on phonemic
893 restoration. *The Journal of the Acoustical Society of America* **123**, 295-301.

894
895 Smith PH, Bartlett EL & Kowalkowski A. (2007). Cortical and Collicular Inputs to Cells in the Rat
896 Paralaminar Thalamic Nuclei Adjacent to the Medial Geniculate Body. *Journal of
Neurophysiology* **98**, 681-695.

898
899 Sottile SY, Hackett TA, Cai R, Ling L, Llano DA & Caspary DM. (2017). Presynaptic Neuronal Nicotinic
900 Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted
901 by Aging. *J Neurosci* **37**, 11377-11389.

902
903 Strouse A, Ashmead DH, Ohde RN & Grantham DW. (1998). Temporal processing in the aging auditory
904 system. *The Journal of the Acoustical Society of America* **104**, 2385-2399.

905
906 Tabas A & von Kriegstein K. (2021). Adjudicating Between Local and Global Architectures of Predictive
907 Processing in the Subcortical Auditory Pathway. *Front Neural Circuits* **15**, 644743.

908
909 Tang J, Yang W & Suga N. (2012). Modulation of thalamic auditory neurons by the primary auditory
910 cortex. *Journal of neurophysiology* **108**, 935-942.

911

912 Ulanovsky N, Las L & Nelken I. (2003). Processing of low-probability sounds by cortical neurons. *Nat*
913 *Neurosci* **6**, 391-398.

914
915 Vaden KI, Jr., Kuchinsky SE, Ahlstrom JB, Teubner-Rhodes SE, Dubno JR & Eckert MA. (2016). Cingulo-
916 Opercular Function During Word Recognition in Noise for Older Adults with Hearing Loss.
917 *Experimental aging research* **42**, 67-82.

918
919 von Kriegstein K, Patterson RD & Griffiths TD. (2008). Task-dependent modulation of medial geniculate
920 body is behaviorally relevant for speech recognition. *Current biology : CB* **18**, 1855-1859.

921
922 Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF & Caspary DM. (2009). Plasticity at
923 glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus.
924 *Neuroscience* **164**, 747-759.

925
926 Warren RM. (1970). Perceptual restoration of missing speech sounds. *Science (New York, NY)* **167**, 392-
927 393.

928
929 Winer JA, Diehl JJ & Larue DT. (2001). Projections of auditory cortex to the medial geniculate body of the
930 cat. *J Comp Neurol* **430**, 27-55.

931
932 Winer JA, Miller LM, Lee CC & Schreiner CE. (2005). Auditory thalamocortical transformation: structure
933 and function. *Trends Neurosci* **28**, 255-263.

934
935 Wingfield A. (1975). Acoustic redundancy and the perception of time-compressed speech. *Journal of*
936 *speech and hearing research* **18**, 96-104.

937
938 Yaron A, Jankowski MM, Badrieh R & Nelken I. (2020). Stimulus-specific adaptation to behaviorally-
939 relevant sounds in awake rats. *PLoS one* **15**, e0221541.

940
941 Yin P, Johnson JS, O'Connor KN & Sutter ML. (2011). Coding of amplitude modulation in primary auditory
942 cortex. *J Neurophysiol* **105**, 582-600.

943
944

945 **Table 1: Rate-level functions under control and CT blockade conditions for 60**
946 **units**

Intensity (dB)	Control (Mean±SEM)	CT blockade (Mean±SEM)	p-value*
0	15.927±1.5	15.493±1.5	0.564
10	15.75±1.7	14.306±1.5	0.152
20	15.195±1.5	13.941±1.5	0.07
30	14.797±1.5	13.997±1.5	0.346
40	16.0396±1.7	13.472±1.4	0.004
50	14.854±1.5	13.920±1.5	0.17
60	15.429±1.5	13.791±1.4	0.031
70	15.462±1.4	15.008±1.5	0.437
80	18.062±1.8	18.182±1.7	0.908

947 Comparisons are made between control (column 2) vs. CT blockade (column 3) in 60
948 neurons; *Column 4 represents the Bonferroni-corrected p-values for comparisons
949 between MGB single-unit responses to control and CT blockade.

950

951

952

953

954

955

956

957

958

959 **Table 2: Bonferroni-corrected p-values for percentage of envelope-locking units**
960 **with changing sound stimuli modulation depth**

fm range (Hz)	SAM _{Δ100} vs. SAM _{Δ25%*}		SAM _{Δ100} vs. SAM _{Δ25%*} +CT blockade*	
	Random	Repeating	Random	Repeating
2	0.037	0.0079	0.037	0.0014
4	0.00082	0.000012	0.0071	0.000098
8	0.00016	0.00048	0.00000072	0.00016
16	0.0000072	0.000034	0.0000042	0.000058
32	0.000034	0.000012	0.000034	0.000034
64	0.0000001	0.0000001	0.0000001	0.00000019
128	0.000058	0.00048	0.000058	0.00082

961 *Each row represents the Bonferroni-corrected p-values following the Wilcoxon tests for
962 corresponding fm (in Hz) in the first column of the row. Comparisons are made between
963 salient vs. less-salient (column 2) and salient vs. less-salient+ CT blockade (column 3)
964 in all the of neurons (n=80).

965

966

967

968

969

970

971

972

973

974 **Table 3: Bonferroni-corrected p-values for PPI values of 56 units sensitive to**
975 **modulation depth change**

fm range (Hz)	SAM _{Δ100} vs. SAM _{Δ25%*}	SAM _{Δ25} vs. SAM _{Δ25%*} +CT blockade*	SAM _{Δ100} vs. SAM _{Δ25%*} +CT blockade*
2~1024	0.000001	1.4624E-11	0.019
2~8	0.194306274	0.002414952	0.238624372
4~16	0.026271845	7.2624E-06	0.081380638
8~32	0.004712185	3.10386E-07	0.071969343
16~64	0.004245266	3.88949E-06	0.213901181
32~128	0.000870169	8.76613E-06	0.533565168
64~256	5.21613E-05	4.47651E-08	0.347311451
128~512	6.14401E-05	7.89532E-10	0.091124673
256~1024	3.8719E-05	4.2874E-11	0.039640353

976 *Each row represents the Bonferroni-corrected p-values to corresponding fm range (in
977 Hz) in the first column of the row. Comparisons are made between salient vs. less-
978 salient (column 2); less-salient vs. less-salient + CT blockade (column 3); and salient vs.
979 less-salient+ CT blockade (column 4) in the majority of neurons (n=56).

980

981

982

983

984

985

986

987

988

989 **Table 4: Bonferroni-corrected p-values for PPI values of 15 units insensitive to**
990 **modulation depth change**

fm range (Hz)	SAM _{Δ100} vs. SAM _{Δ25%*}	SAM _{Δ25} vs. SAM _{Δ25%*} +CT blockade*	SAM _{Δ100} vs. SAM _{Δ25%*} +CT blockade*
2~1024	0.823374867	1.48214E-05	0.000142022
2~8	0.774652034	0.992047279	0.840986588
4~16	0.811395141	0.79258215	0.41545121
8~32	0.973549441	0.238930012	0.342751939
16~64	0.946456635	0.018936675	0.044413028
32~128	0.800376342	0.002708837	0.000256347
64~256	0.239459428	0.003792644	5.52114E-06
128~512	0.705864677	0.001001792	4.09608E-05
256~1024	0.997297984	0.000232669	0.000175392

991 *Each row represents the Bonferroni-corrected p-values to corresponding fm range (in
992 Hz) in the first column of the row. Comparisons are made between salient vs. less-
993 salient (column 2); less-salient vs. less-salient + CT blockade (column 3); and salient vs.
994 less-salient+ CT blockade (column 4) in the minority of neurons (n=15).

995

996

997

998

999

1000

1001

1002

1003

1004 **Table 5: An average of total spike count and Bonferroni-corrected p-values**
1005 **across all neurons to standard and weakly modulated stimuli presented in**
1006 **random or repeating order.**

<i>Presentation order</i>	Total spike count			p-value*		
	SAM _{Δ100%}	SAM _{Δ25%}	SAM _{Δ25% + CT blockade}	SAM _{Δ100% vs. SAM_{Δ25%}}	SAM _{Δ25% vs. SAM_{Δ25% + CT blockade}}	SAM _{Δ100% vs. SAM_{Δ25% + CT blockade}}
Random	839.2±54.6	675.6±45.1	708.6±50.3	0.000005	0.549	0.001
Repeating	731.3±46.3	693.5±45.1	625.8±50.2	0.618	0.011	0.0024

1007 Each row represents the average total spike count to SAM_{Δ100%} vs. SAM_{Δ25%} and the

1008 *Bonferroni-corrected p-values following the repeated measures ANOVA for
1009 comparisons. Comparisons were made between SAM_{Δ100%} vs. SAM_{Δ25%} , and SAM_{Δ25%}
1010 vs. SAM_{Δ100%} vs. SAM_{Δ100%} vs. SAM_{Δ25% + CT blockade}, and SAM_{Δ100%} vs. SAM_{Δ25% +}
1011 CT blockade in all the of neurons (n=80).