

1 **Genetic Engineering of *Treponema pallidum* subsp. *pallidum*, the Syphilis Spirochete**

2

3 Emily Romeis¹, Lauren Tantalo¹, Nicole Lieberman², Quynh Phung²,

4 Alex Greninger² and Lorenzo Giacani^{1,3*}

5

6 ¹Department of Medicine, Division of Allergy and Infectious Diseases, University of
7 Washington, Seattle, WA, USA

8 ²Department of Laboratory Medicine, University of Washington, Seattle, WA, USA

9 ³Department of Global Health, University of Washington, Seattle, WA, USA

10

11 *Corresponding Author: giacal@u.washington.edu

12 Short title: First Successful Genetic Manipulation of *T. pallidum*

13

14

15

16

17

18

19

20

21

22

23

24 **Abstract**

25 **Background.** Despite more than a century of research, genetic manipulation of
26 *Treponema pallidum* subsp. *pallidum* (*T. pallidum*), the causative agent of syphilis, has not been
27 successful. The lack of genetic engineering tools has severely limited understanding of the
28 mechanisms behind *T. pallidum* success as a pathogen. A recently described method for *in vitro*
29 cultivation of *T. pallidum*, however, has made it possible to experiment with transformation and
30 selection protocols in this pathogen. Here, we describe an approach that successfully replaced the
31 *tprA* (*tp0009*) pseudogene in the SS14 *T. pallidum* strain with a kanamycin resistance (*kan*^R)
32 cassette.

33 **Principal findings.** A suicide vector was constructed using the pUC57 plasmid
34 backbone. In the vector, the *kan*^R gene was cloned downstream of the *tp0574* gene promoter. The
35 *tp0574*prom-*kan*^R cassette was then placed between two 1-kbp homology arms identical to the
36 sequences upstream and downstream of the *tprA* pseudogene. To induce homologous
37 recombination and integration of the *kan*^R cassette into the *T. pallidum* chromosome, *in vitro*-
38 cultured SS14 strain spirochetes were exposed to the engineered vector in a CaCl₂-based
39 transformation buffer and let recover for 24 hours before adding kanamycin-containing selective
40 media. Integration of the *kan*^R cassette was demonstrated by qualitative PCR, droplet digital PCR
41 (ddPCR), and whole-genome sequencing (WGS) of transformed treponemes propagated *in vitro*
42 and *in vivo*. ddPCR analysis of RNA and mass spectrometry confirmed expression of the *kan*^R
43 message and protein in treponemes propagated *in vitro*. Moreover, *tprA* knockout (*tprA*^{ko}-SS14)
44 treponemes grew in kanamycin concentrations that were 64 times higher than the MIC for the
45 wild-type SS14 (wt-SS14) strain and in infected rabbits treated with kanamycin.

46 **Conclusion.** We demonstrated that genetic manipulation of *T. pallidum* is attainable. This
47 discovery will allow the application of functional genetics techniques to study syphilis
48 pathogenesis and improve syphilis vaccine development.

49

50 **Author Summary**

51 Syphilis is still an endemic disease in many low- and middle-income countries, and it has
52 been resurgent in high-income nations for almost two decades. In endemic areas, syphilis causes
53 significant morbidity and mortality, particularly when its causative agent, the spirochete
54 *Treponema pallidum* subsp. *pallidum* (*T. pallidum*) is transmitted to the fetus during pregnancy.
55 A better understanding of *T. pallidum* biology and syphilis pathogenesis would help devise better
56 control strategies for this infection. One of the limitations associated with working with *T.*
57 *pallidum* was our inability to genetically alter this pathogen to evaluate the function of genes
58 encoding virulence factors or create attenuated strains that could be useful for vaccine
59 development. Here, we report a transformation protocol that allowed us to replace a specific
60 region of the *T. pallidum* genome containing a pseudogene (i.e., a non-functional gene) with a
61 stably integrated kanamycin resistance gene. To our knowledge, this is the first-ever report of a
62 method to achieve a genetically modified *T. pallidum* strain and, as such, it can revolutionize
63 research in the syphilis field.

64

65 **Introduction**

66 Syphilis is a chronic sexually transmitted infection that still represents a significant
67 burden for public health as it causes significant morbidity and mortality worldwide. The World
68 Health Organization (WHO) estimates that syphilis global incidence ranges between 5.6 to 11

69 million new cases every year, while disease prevalence is between 18 to 36 million cases
70 worldwide [1, 2]. Although most of those cases occur in low- and middle-income countries
71 where the disease is endemic, syphilis rates have been steadily increasing in high-income
72 countries for decades now, including in the US. In these countries, mainly men who have sex
73 with men (MSM) and persons living with HIV (PLHIV) are affected [3-8]. In the US, the rate of
74 early syphilis in 2019 (11.9 cases per 100,000 population), represented a 460% increase
75 compared to the cases reported in 2000 (2.1 cases per 100,000 population) [3]. If untreated,
76 syphilis can progress to affect the patient's cardiovascular and central nervous systems, possibly
77 leading to serious manifestations such as aortic aneurism, stroke, hearing or visual loss,
78 dementia, and paralysis [9]. Because *T. pallidum* can cross the placental barrier, mother-to-child
79 transmission of syphilis during pregnancy accounts for up to 50% of stillbirths in sub-Saharan
80 Africa and a high proportion of perinatal morbidity and mortality cases [10].

81 A better understanding of *T. pallidum* biology and syphilis pathogenesis would help in
82 devising more effective measures for disease control. Recently, Edmondson *et al.* [11] described
83 a method to continually propagate *T. pallidum* *in vitro* using a cell culture-based system
84 previously pioneered by Fieldsteel *et al.* [12]. This method represented a major advancement in
85 the field, in that it provided investigators with an alternative to the propagation of treponemal
86 strains in laboratory rabbits. Despite such advancement, a limitation in the study of *T. pallidum*
87 remained the lack of tools for genetic modification of this pathogen. The availability of the
88 cultivation system, however, paved the way to experimenting with transformation and selection
89 procedures to introduce foreign DNA into the *T. pallidum* genome.

90 Here, we describe a protocol that allowed us to integrate a kanamycin resistance (*kan*^R)
91 cassette into a pseudogene (*tprA*, encoded by the *tp0009* gene) of the *T. pallidum* SS14 strain. In

92 the SS14 strain, the *tprA* gene is non-functional due to a frame-shift mutation caused by a CT
93 dinucleotide deletion at position 712 of the annotated gene open reading frame (ORF), even
94 though syphilis strains with a functional *tprA* gene are known, such as the Sea81-4 strain [13].
95 The choice to derive a *tprA* knockout (*tprA*^{ko}-SS14) strain was driven by the high likelihood that
96 a) this region would not affect *T. pallidum* viability if removed, being already non-functional in
97 the wild-type SS14 (wt-SS14) strain, and that b) eliminating this pseudogene would not result in
98 a polar effect inhibiting transcription of downstream genes. The *tprA* locus, even when encoding
99 a functional gene, is likely to be transcribed as a monocistronic mRNA based on prediction
100 software such as Operon-mapper (https://biocomputo.ibt.unam.mx/operon_mapper/). To this
101 end, we used a pUC57-based suicide vector where the *kan*^R gene was placed between two ~1 kbp
102 homology arms identical to the regions upstream (998 bp) and downstream (999 bp) of the *tprA*
103 frameshifted ORF, respectively. To drive expression of the *kan*^R gene, the promoter of the
104 *tp0574* gene (encoding the 47 kDa lipoprotein), previously identified by Weigel *et al.* [14], was
105 chosen based on experimental evidence that *tp0574* is among the most highly transcribed genes
106 in *T. pallidum*, and is possibly expressed constitutively in this pathogen [15, 16]. Following
107 transformation using a CaCl₂-based buffer and selection, qualitative PCR was used to confirm
108 integration of the *tp0574*prom-*kan*^R construct within the *tprA* locus by priming from sequences
109 outside of the homology arms not cloned into the vector. Transformants were shown to grow *in*
110 *vitro* in a kanamycin concentration (200 µg/ml) 64 times higher than the minimal inhibitory
111 concentration (MIC) of this antibiotic for the wt-SS14 strain (3.1 µg/ml), as well as in rabbits
112 infected intratesticularly (IT) and treated with pharmaceutical-grade kanamycin twice a day for
113 10 consecutive days post-infection. Replacement of the *tprA* pseudogene with the *tp0574*prom-
114 *kan*^R construct was confirmed by whole-genome sequencing from *in vitro*-cultivated treponemes

115 as well as quantitative droplet digital PCR (ddPCR) targeting the *kan*^R gene and the *tp0574*,
116 *tp0001* (*dnaA*), and *tprA* genes in the treponemal chromosome. Message levels of the *tp0574* and
117 *kan*^R genes, transcribed in the *tprA*^{ko}-SS14 by the same promoter, were also evaluated by RT-
118 ddPCR from *in vitro*-grown strains. Expression of the Kan^R protein in the *tprA*^{ko}-SS14 strain but
119 not in wt-SS14 was demonstrated by mass spectrometry (MS).

120 Although we ablated a pseudogene, which did not allow us to obtain a mutant lacking a
121 known phenotype to be evaluated through functional assays, the ability to transform and
122 manipulate *T. pallidum* using CaCl₂ and an appropriately engineered vector is a significant step
123 forward in the field. Our discovery opens numerous possibilities, including classical genetic
124 studies in this pathogen, the long-awaited application of functional genomics techniques, and
125 even the possibility of targeting virulence factors responsible for immune evasion and
126 persistence to obtain an attenuated strain for vaccine development.

127

128 **Results**

129 **Transformation and selection of *T. pallidum***

130 The pUC57-based *ptprAarms-tp0574prom-kan*^R plasmid construct was used to transform
131 wt-SS14 treponemes. Transformed *T. pallidum* cells were subsequently propagated in
132 kanamycin-supplemented media (25 µg/ml, effective on selection experiments of other
133 spirochetes). Because the transformation buffer contained CaCl₂ to increase membrane
134 permeability and facilitate plasmid intake, we also exposed wt-SS14 cells to transformation
135 buffer alone (without plasmid, to exclude CaCl₂ lethality for the treponemes) and proceeded to
136 propagate these cells in culture media with no antibiotic. Furthermore, to ensure that non-
137 transformed treponemes would not survive exposure to kanamycin at the concentration used for

138 *in vitro* selection, the wt-SS14 strain was also propagated in media containing 25 μ g/ml of
139 kanamycin. Due to the long generation time of the SS14 strain (~44 hours), *T. pallidum* cells
140 were sub-cultured every 14 days instead of every week until Passage #7 (Week 12 post-
141 transformation; Fig.1), and weekly thereafter. Transformed *tprA*^{ko}-SS14 treponemes could be
142 microscopically counted 2 weeks post-transformation (Fig.1; Passage #2), even though only 2.4
143 treponemes per dark-field microscope (DFM) field could be seen at this time (corresponding to a
144 concentration of 2.4×10^6 *T. pallidum* cells/ml). For transformed treponemes, cell density
145 increased four weeks post-transformation and remained steady throughout Passage #6 (Week 10
146 post-transformation). During this window (Passage #2-6), the average number of treponemes
147 counted was 2.8×10^7 cells/ml. The density of wt-SS14 treated with CaCl₂ alone was higher than
148 that of *tprA*^{ko}-SS14 cells already at Passage #2 (Week 2 post-exposure; Fig.1), suggesting that
149 treponemes were not harmed by CaCl₂. Propagation of this strain was halted at Passage #6
150 (Week 10 post-exposure; Fig.1). Wild-type SS14 cells propagated in kanamycin-containing
151 media could not be seen on the DFM over 10 weeks of propagation, confirming the ability of 25
152 μ g/ml kanamycin to inhibit *T. pallidum* growth *in vitro*. During Passage #7-10, the *tprA*^{ko}-SS14
153 treponemal inoculum was increased to obtain enough cells for subsequent experiments. During
154 these passages, the average number of treponemal cells counted was 2.8×10^8 cells/ml. Overall,
155 these data support that a kanamycin-resistant strain was obtained due to the transformation of the
156 wt-SS14 strain with the *ptprA*arms-*tp0574*prom-*kan*^R vector.

157

158

159

160 **Qualitative PCR, and quantitative ddPCR to confirm integration of the *kan*^R gene**
161 **and qualitative RT-PCR to evaluate *kan*^R gene expression**

162 At Passage #8 (Week 13 post-transformation; Fig.1), *tprA*^{ko}-SS14 cells were harvested
163 and processed for a) PCR to confirm integration of the *kan*^R gene into the *tprA* locus, b) RT-PCR
164 to assess the presence of message for the *kan*^R gene, and c) for quantitative ddPCR to evaluate
165 the ratio between the *kan*^R gene and three other targets: *tprA* (*tp0009*), *dnaA* (*tp0001*), and
166 *tp0574*. Samples from the wt-SS14 propagated in parallel to the *tprA*^{ko}-SS14 strain were used as
167 control. A qualitative, long-range PCR approach was first used to confirm integration of the
168 *tp0574*prom-*kan*^R sequence into the *tprA* locus, according to the schematic reported in Fig.2A.
169 To this end, primers annealing to the *T. pallidum* genomic region flanking the *tprA* homology
170 arms of the construct and to the *kan*^R gene, respectively, were employed. In these reactions,
171 DNA samples extracted from *tprA*^{ko}-SS14 cells as well as from wt-SS14 were amplified with
172 primer pairs 1+2, 3+4, 1+3, 5+6, and 2+4 (Fig.2A; primer sequences in Table 1). Amplification
173 of the *tp0574* gene was performed as a positive control. As expected, amplification using primer
174 pairs 1+2 and 3+4 (Fig.2B, sub-panels a and b, respectively) yielded a positive result only when
175 the *tprA*^{ko}-SS14 DNA was used as the template, showing that integration of the *kan*^R gene
176 occurred. Amplification of the *kan*^R gene was positive only from DNA extracted from the *tprA*^{ko}-
177 SS14, and the transformation plasmid DNA, used as positive control (sub-panel c), while
178 negative amplification using the 5+6 primer pair (annealing to the vector backbone; sub-panel d)
179 showed no residual plasmid in the *tprA*^{ko}-SS14 culture and that the *kan*^R amplicon (in sub-panel
180 c) was not due to residual vector used for transformation weeks earlier. When used together,
181 primers 2+4 generated a 3,746 bp amplicon with the *tprA*^{ko}-SS14 strain DNA template (sub-
182 panel e), which was the expected size if the small *kan*^R gene (816 bp in size) replaced the *tprA*

183 pseudogene (1,821 bp), and a 4,643 bp amplicon in the wild-type and undetectable residual wt-
184 SS14 in the *tprA*^{ko}-SS14 culture wells. As expected, the amplification of the *tp0574* gene was
185 uniformly positive for both the transformed and wild-type strain (sub-panel f). Overall, these
186 data showed that the *kan*^R gene was integrated into the *tprA*^{ko}-SS14 strain genome in place of the
187 *tprA* pseudogene and no residual plasmid could be amplified from the culture.

188 RNA extracted from the *tprA*^{ko}-SS14 and wt-SS14 strain (Passage 8, Week 13 post-
189 transformation; Fig.1) was DNaseI-treated to eliminate residual DNA and reverse transcribed.
190 cDNA was used as template to assess transcription of the *kan*^R gene and *tp0574* genes, as well as
191 the *tprA* gene. Previous studies on other *T. pallidum* strains with a *tprA* pseudogene suggested
192 that this locus is transcribed at a very low level in these strains, even though the coding sequence
193 contains a frameshift that would truncate the resulting peptide during translation [13]. Results
194 (Fig.2B) showed that the *kan*^R gene is expressed only in the *tprA*^{ko}-SS14 (sub-panel g). As
195 expected, *tp0574* was expressed in both strains (sub-panel h). *tprA*-specific mRNA could not be
196 detected in either sample from the *tprA*^{ko}- and wt- cultures harvested at this time point; however,
197 in samples harvested in subsequent passages, *tprA*-specific message was detected in wt-SS14
198 propagated alongside the *tprA*^{ko}-SS14 strain, but never in the *tprA*^{ko}-SS14 strain. These results
199 supported that the *kan*^R transgene is actively transcribed from the *tp0574* promoter in the *tprA*^{ko}-
200 SS14 strain while the *tprA* pseudogene is no longer transcribed in this strain due to *tprA* ablation.

201 We next performed droplet digital PCR (ddPCR) on *kan*^R, *dnaA*, and *tprA* loci in a
202 separate laboratory to evaluate copy number ratios among these genes. In the *tprA*^{ko}-SS14 strain,
203 the *kan*^R:*dnaA* ratio was equal to 1.05, while the *tprA*:*dnaA* ratio was virtually zero (0.006;
204 Fig.3). These data reiterated that a) integration of the *kan*^R gene occurred in the *tprA* locus, b)
205 that this replacement was stable, and c) that no extra copies of the *kan*^R gene existed outside of

206 the *T. pallidum* genome. On the contrary, when the wt-SS14 DNA was used as template, the
 207 *tprA:dnaA* was 1.01, while the *kan^R:dnaA* ratio was also virtually zero (0.005; Fig.3).

208

209 **Table 1. Primers used in this study**

Target gene; application	Forward (F) and reverse (R) primer sequences (5'-3'), and probe (P) if applicable	Amplicon length (bp)	Primer ID (Figure 1)
Left <i>tprA</i> flanking region (F primer), <i>kan^R</i> (R primer); qualitative PCR and sequencing	(F) GGTAATGGGCTCTGGGGTAT (R) ATTCCGACTCGTCCAACATC	2,289	#1 (F) #2 (R)
<i>kan^R</i> (F primer), Right <i>tprA</i> flanking region (R primer); qualitative PCR and sequencing (F)	(F) GAGCCATATTCAACGGGAGA (R) TCGCAGCAGCAACAAGTAAC	2,120	#3 (F) #4 (R)
<i>kan^R</i> ; qualitative PCR and RT-PCR	(F) GAGCCATATTCAACGGGAGA (R) ATTCCGACTCGTCCAACATC	663	#1 (F) #3 (R)
Left <i>tprA</i> flanking region (F primer), Right <i>tprA</i> flanking region (R primer); qualitative PCR	(F) ATTCCGACTCGTCCAACATC (R) TCGCAGCAGCAACAAGTAAC	3,746 or 4,643 (<i>tprA^{ko}/wt</i> ¹)	#2 (F) #4 (R)
<i>tp0574</i> ; qualitative PCR and RT-PCR	(F) TGTGGCTCGTCTCATCATGA (R) CTGGGCCACTACCTTCGCAC	313	
<i>Tp0009</i> (<i>tprA</i>); qualitative RT-PCR	(F) ATACGAACAGTGCAGAGAGCA (R) TCATCTCCGAACGAGTTTC	286	
<i>tp0574</i> ; qPCR, RT-qPCR	(F) CAAGTACGAGGGGAACATCG (R) TGATCGCTGACAAGCTTAGG	132	
<i>tp0574</i> ; ddPCR, and RT-ddPCR	(F) CAAGTACGAGGGGAACATCG (R) CACCGCTTGATCTCTGACA (P) HEX-TGCAGCATCCATCAGAGTCTCCG-BkFQ ²	139	
<i>kan^R</i> ; ddPCR, and RT-ddPCR	(F) CACTCAGGCGCAATCAC (R) CCAGACTTGTCAACAGGC (P) FAM-ACGGTTGGTTGATGCGAGTGATT-BkFQ	91	
<i>tp0001</i> (<i>dnaA</i>); ddPCR,	(F) CTCATGGAAATACTGCTCC (R) CGGATACAAAGTTCTCGAAG (P) FAM-AGCTTCACCCCGACCTGAAC-BkFQ	135	
<i>tprA</i> ; ddPCR	(F) TACGCGGTACCAATCTTCC (R) GCTTCTACGGCGCATATCTC (P) HEX-CGTATTGGGTGTCTGCTTGTATC-BkFQ	158	
<i>tp0574</i> promoter; sequencing	(F) AGCGGATCCTCCAAAAAGA (R) GATTACACCTCCGTATAGAG	N/A	
<i>tprA</i> homology arms; sequencing	(F) TGCAACCATCTCGATTACG (R) CGTATGCTTTACCCGCTGT	N/A	
pUC57 vector primers; sequencing, assessing plasmid carry-over	(F) TAAAACGACGGCCAGTGAAT (R) GACCATGATTACGCCAAGC	3,036	#5 (F) #6 (R)

210 ¹Wild type

211 ²Black hole fluorescence quencher

212

213

214

215 **Whole-genome sequencing from *in vitro*-propagated *tprA*^{ko}-SS14 treponemes**

216 At Passage #9 (Week 14 post-transformation; Fig.1), treponemes were harvested for
217 whole-genome sequencing (WGS) using a custom hybridization capture panel to enrich for *T.*
218 *pallidum*. Genome sequencing showed the absence of the *tprA* ORF in the *tprA*^{ko}-SS14 strain
219 when read assembly was performed using the wt-SS14 genome (Fig.4A). However, when
220 assembly used a template genome where *tprA* was replaced with the *kan*^R gene, results showed
221 replacement of *tprA* with the *tp0574*promoter-*kan*^R sequence (Fig.4B). The wild-type SS14
222 propagated in parallel to the knockout strain was also sequenced as a control. In the wt-SS14, the
223 *tprA* locus is intact (Fig.4C), while a gap appeared when reads from the wt-SS14 strain were
224 assembled to the *tprA*^{ko}-SS14 strain genome with *kan*^R in place of *tprA*. Because our sequencing
225 approach used enrichment probes based on multiple wild-type *T. pallidum* genomes and did not
226 include probes for the *kan*^R gene, coverage of the *kan*^R gene (Fig.4B) was slightly lower than the
227 average for the other regions of the *T. pallidum* genome (Fig.4B). These results showed again
228 that the *kan*^R gene replaced the *tprA* locus in the *tprA*^{ko}-SS14 strain. A search for reads matching
229 to the plasmid backbone was also conducted but yielded no mapping reads, showing lack of
230 residual plasmid in the culture.

231

232 **Kanamycin susceptibility assay**

233 *tprA*^{ko}-SS14 were grown in 25 µg/ml of kanamycin during routine propagation, a
234 concentration shown to be treponemicidal for the wild-type (Fig.1). To demonstrate that the
235 *tprA*^{ko}-SS14 strain could grow at significantly higher kanamycin concentration, *tprA*^{ko}-SS14 cells
236 harvested at Passage #10 (Week 15 post-transformation; Fig.1) were used to further assess
237 resistance to kanamycin by performing an *in vitro* susceptibility assay. To this end, we grew both

238 the wt-SS14 and *tprA*^{ko}-SS14 strains in media supplemented with kanamycin ranging from 200
239 to 1.6 µg/ml, for a total of 8 different concentrations tested in 8 replicate wells. Quantification of
240 treponemal burden, measured by qPCR targeting the *tp0574* gene showed that media
241 supplemented with 200 down to a MIC of 3.13 µg/ml of kanamycin strongly inhibited the
242 growth of the wild-type strain when compared to no-antibiotic wells (Fig.5A), but did not affect
243 the *tprA*^{ko}-SS14 strain, which grew as if no antibiotic was added (Fig.5B), thus confirming that
244 *tprA*^{ko}-SS14 treponemes had become resistant to kanamycin. Furthermore, the *tprA*^{ko}-SS14 strain
245 also appeared to have a growth advantage compared to the wild-type strain. When growth was
246 compared at day 7 post-inoculation using the no-antibiotic wells, the *tprA*^{ko}-SS14 was shown to
247 have grown significantly faster than the wild-type, with an average of ~12,000 genome copies/µl,
248 compared to the ~4,300 copies of the wild-type strain ($p<0.05$), even though the initial inoculum
249 size was the same. As a control, DNA extracted from the eight *tprA*^{ko}-SS14 replicate cultures
250 grown in 200 µg/ml of kanamycin was amplified using primers specific for the backbone of the
251 pUC57 plasmid (pair #5/6, as shown in Fig.2A), to ensure no residual plasmid was present in
252 these cultures. All these amplifications yielded a negative result unless the *ptprAarms-tp0574prom-kan*^R construct was used as positive control (Fig.5C), confirming no presence of
253 residual plasmid in these cultures. When the same DNA was tested with primers flanking the
254 *tprA* homology arms, the *tprA*^{ko}-SS14 cultures yielded a ~3.7Kbp amplicon, expected due to the
255 replacement of the *tprA* locus with the shorter *kan*^R sequence, while the wt-SS14 strain DNA
256 yielded a ~4.6 Kbp amplicon (Fig.5D).

258 The ratio *kan*^R:*dnaA* in the *tprA*^{ko}-SS14 cultures grown at different kanamycin
259 concentrations estimated by ddPCR ranged between 1.07 and 1.14 (Fig.6A) on average. On the
260 contrary, in wt-SS14 the *kan*^R:*dnaA* ratio was zero. In the *tprA*^{ko}-SS14 cultures, the *tprA*:*dnaA*

261 ratio was virtually zero (0.004; Fig.6B), while the *tprA:dnaA* ratio was 1.18 on average (Fig.6B).
262 The ratio *kan^R:tp0574* in *tprA^{ko}-SS14* grown in different kanamycin concentrations, was shown
263 to be in average 1.40 in treponemes analyzed after 7 days in culture, and slightly higher (1.66) in
264 treponemes harvested after 4 days in culture (Fig.6C), although this difference was not
265 significantly different. This result suggested that more copies of the *kan^R* gene than the *tp0574*
266 gene were present in the extracted DNA at sample harvest. This was overall an expected result.
267 The replacement of the *tprA* pseudogene (*tp0009*) in the SS14 strain, in fact, positioned the *kan^R*
268 gene in proximity (within 10 Kbp) of *T. pallidum dnaA*, *dnaN* (*tp0002*), and *gyrA* (*tp0005*) genes
269 that, in prokaryotes, are markers for the chromosomal origin of replication (*oriC*) [17, 18]. The
270 >1 ratio *kan^R:tp0574* in *tprA^{ko}-SS14* grown in culture likely reflects partial replication of some
271 chromosomes during propagation, and not differences in amplification efficiency. Such
272 conclusion is also supported by the evidence that in the wild type strain the average *tprA:tp0574*
273 ratio, obtained using the same samples above, is 1.31. Overall, these results supported that a) the
274 *kan^R* gene is stably integrated into *T. pallidum* genome, that b) there are no residual copies of the
275 *kan^R* gene present in episomes, that c) no transformation plasmid is still present and that, for
276 future experiments, d) the copy number of a transgene needs to be compared to that of a
277 neighboring gene to account for replication-induced bias, particularly if the transgene is close to
278 *oriC*.

279 Because in the knockout strain the *kan^R* gene and the *tp0574* gene are transcribed by the
280 same promoter, cDNA was used to quantify the message level for these two genes. The
281 *kan^R:tp0574* message ratio was found to be 0.77, which showed the *tp0547* gene being slightly
282 more highly expressed than the *kan^R* gene. This result suggested that the choice of using the
283 *tp0574* promoter to drive expression of the *kan^R* gene led to very similar message levels for these

284 genes, as hypothesized during the experimental design of the *ptprA*arms-*tp0574*prom-*kan*^R
285 plasmid (Fig.6D). Amplification of *kan*^R message was not detected in the wt-SS14 strain, and no
286 *tprA* message amplification occurred when cDNA from the knockout strain was used as the
287 template. *tprA* message was however detected by ddPCR in the wt-SS14 strain. In this case the
288 *tprA*:*tp0547* ratio was 0.040, confirming that the level of transcription of the *tprA* pseudogene is
289 extremely low, compared to *tp0547*.

290

291 **Rabbit infection**

292 We next examined how the *tprA*^{ko}-SS14 strain acted during *in vivo* infection in the New
293 Zealand white rabbit model, expecting that the strain would survive kanamycin treatment of the
294 animal. The rabbit infected with the *tprA*^{ko}-SS14 strain developed orchitis of the left testicle on
295 day 17 post-inoculation. Treponemal yield from the animal was 1.2×10^8 *T. pallidum* cells/ml of
296 testicular extract. At the time of harvest, the animal was seropositive with the *Treponema*
297 *pallidum* particle agglutination test (TPPA) and the Venereal Disease Research Laboratory
298 (VDRL) test, confirming the establishment of infection. The control rabbit, infected with the wt-
299 SS14 strain but not treated, developed orchitis at day 24 post-infection, and the treponemal yield
300 was 2.2×10^7 *T. pallidum* cells/ml of testicular extract. This animal was also TPPA-positive but
301 VDRL-negative. On day 24 post-infection, the control rabbit infected with the wt-SS14 strain
302 and subcutaneously treated with kanamycin had not developed orchitis and was euthanized
303 (repeat intramuscular injection of kanamycin was not allowed by local IACUC). Upon analysis
304 of the testicular exudate from this animal, treponemes could be seen, suggesting that the
305 subcutaneous treatment with kanamycin was not completely effective *in vivo* as it was *in vitro*
306 (Fig.1). From this animal, the treponemal yield was however much lower compared to the other

307 rabbits (1.5×10^5 *T. pallidum* cells/ml, based on detecting 3 treponemal cells in 20 DFM fields).

308 As a further confirmation of treatment failure, this animal was also TPPA-positive but VDRL

309 negative. These data suggested that, although the kanamycin concentration achieved in the

310 rabbits via subcutaneous injection was not completely treponemicidal, *tprA*^{ko}-SS14 were less

311 susceptible to the antibiotic and proliferated faster than the wild-type. DNA extracted from these

312 treponemal harvests was used for ddPCR targeting the *dnaA*, *tprA*, and *kan*^R genes. Droplet

313 Digital PCR showed that for the *tprA*^{ko}-SS14 propagated *in vivo*, the *kan*^R:*dnaA* and *tprA*:*dnaA*

314 ratios were 1.05 and 0.007, respectively (Fig.7). For the wt-SS14 strain extracted from the

315 untreated and treated rabbits, respectively, the *kan*^R:*dnaA* and *tprA*:*dnaA* ratios were 0.00 and

316 1.02, respectively (untreated rabbit) and 0.00 and 0.83, respectively (ineffectively treated rabbit;

317 Fig.7). In these samples the *kan*^R:*tp0574* ratio was also obtained and was found to be 1.30

318 (*tprA*^{ko}-SS14), and 0.000 (wt-SS14, in both the untreated and ineffectively treated animals. All

319 these *in vivo* ddPCR results are consistent with ratios seen during *in vitro* propagation (Fig.3 and

320 Fig.6).

321

322 **Mass spectrometry**

323 To further confirm the expression of the 31.01 kDa Kan^R protein, we performed liquid

324 MS on proteins of the *tprA*^{ko}-SS14 and wt-SS14 strains separated by SDS-PAGE and ranging

325 approximately from 20-45 kDa. This portion of the *T. pallidum* proteome was retrieved through

326 of band excision from the acrylamide gel to then undergo in-gel tryptic digestion before MS, and

327 the size range (20-45 kDa) was decided since a distinct ~31 kDa band corresponding to Kan^R

328 could not be undoubtedly identified in the Coomassie-stained gel. Nonetheless, MS data analysis

329 showed that peptides mapping to 77% of the Kan^R protein could be isolated from the *tprA*^{ko}-

330 SS14 strain sample (Fig.8), but not from the paired sample from the wild-type strain. Based on
331 the MS, the amount of the Kan^R protein corresponded to ~1% of the total protein content
332 detected in the specimen. The list of all peptides mapping to the Kan^R protein is reported in
333 Table 2. The full MS results for the samples corresponding to the *tprA*^{ko}-SS14 and wt-SS14 are
334 provided as Supporting Information (files labeled SS14_TprA_KO, and SS14_WT,
335 respectively). In the SS14_TprA_KO file, Kan^R peptides are labeled PMC_FU_2039. These data
336 demonstrated the expression of the Kan^R protein in the *tprA*^{ko}-SS14 following integration of the
337 gene. No peptides corresponding to the TprA protein (translated using both the +1/+2 reading
338 frames to overcome the effect of the frameshift) were found in the *tprA*^{ko}- or wt-SS14 samples.

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356 **Table 2. Peptides identified by MS on the *tprA*^{ko}-SS14 strain matching the Kan^R protein
357 sequence.**

SEQUENCE ¹	DeltaScore ²	MH+ [Da] ³	Theo. MH+ [Da] ³	ΔM [ppm] ³	Av. RT (min) ⁴
LYGKPDAPELFLK	0.5352	1490.824	1490.825	-0.58	65.4
NGWPVEQVWK	0.5923	1242.628	1242.627	0.84	71.2
LNSNLDADLYGYR	0.7262	1513.729	1513.728	0.77	57.1
TAFQVLEEYPDSGENIVDALAFLR	0.4535	2768.379	2768.378	0.51	105.1
LNSNLDADLYGYR	0.9097	1513.729	1513.728	0.34	64.6
LLPFSPDSVVTHGDFSLDNLIFDEGK	0.7094	2862.418	2862.42	-0.41	101.0
LNWLTAFFmPLPTIK	0.7275	1660.913	1660.913	-0.02	101.0
YQDLAILWNcLGEFSPSLQK	0.6645	2382.181	2382.18	0.33	100.9
TPDDAWLLTTAIPGK	0.8178	1598.842	1598.842	-0.52	101.6
mNNGLVDASDFDDERNGPVEQVWK	0.7833	2937.317	2937.311	1.98	83.0
TPDDAWLLTTAIPGK	0.6293	1598.844	1598.842	0.84	83.3
GSVANDVTDEmVR	0.8485	1408.637	1408.637	-0.51	33.5
DNVGQSGATIYR	0.7581	1280.626	1280.623	2.12	32.2
YGIDNPDMNK	0.9071	1182.511	1182.51	1.05	26.6
mNNGLVDASDFDDER	1	1713.701	1713.702	-0.67	52.1
LHSIPVcNcPFNSDR	0.7293	1815.827	1815.827	0.2	48.4
RLHSIPVcNcPFNSDR	0.6992	1971.927	1971.928	-0.53	43.5
LYGKPDAPELFLK	0.4045	1490.826	1490.825	0.5	64.5
GSVANDVTDEMVR	1	1392.643	1392.642	0.67	50.0
RLHSIPVcNcPFNSDR	0.6463	1971.929	1971.928	0.52	43.3
LQFHLMlDEFF	0.7876	1455.697	1455.698	-0.4	101.3

358 ¹All peptides were recognized with high confidence, with a false discovery rate set at <0.01

359 ²Normalized score difference between the currently selected PSM and the highest-scoring PSM
360 for this spectrum

361 ³Experimental mass (MH+), calculated mass of the peptide (Theo MH+), both in Da, and mass
362 measurement error (ΔM) in parts per million (ppm).

363 ⁴Averaged peptide retention time during chromatographic separation

364

365 **Derivation of a *tprA*^{ko}-SS14 pure isolate by limiting dilution and increased antibiotic**

366 **pressure.**

367 The *tprA*^{ko}-SS14 inactivates kanamycin by expressing an aminoglycoside N6'-
368 acetyltransferase that catalyzes the conversion of kanamycin to N6'-acetylkanamycin using
369 acetyl-CoA. We reasoned that if enough *tprA*^{ko}-SS14 cells were present, they could bring

370 kanamycin concentration below the minimal inhibitory concentration for this antibiotic and
371 allow growth of wild-type cells. To eliminate the possibility that wt-SS14 *T. pallidum* cells might
372 survive among the *tprA*^{ko}-SS14 cells, we performed serial dilutions of the *tprA*^{ko}-SS14 cells and
373 plated them on multiple wells of a 96-well plate containing Sf1Ep cells. Specifically, wells were
374 seeded with 3300 and 330 treponemal cells from the *tprA*^{ko}-SS14 culture. Additionally, we
375 increased kanamycin concentration to 200 µg/ml, shown already to be ineffective against the
376 *tprA*^{ko}-SS14 strain (Fig.5A). Although these cultures were passaged every two weeks to allow
377 treponemal growth, exhausted media was exchanged once a week to ensure Sf1Ep cells viability
378 and replenish the kanamycin supply. Lack of wt-SS14 cells was assessed by performing ddPCR
379 targeting the *tprA*, *kan*^R, and *dnaA* genes as described in the Methods section. Results (Fig.9)
380 showed that, after two (Fig.9; P1) and four (Fig.9; P2) weeks in culture, no *tprA*-specific signal
381 could be obtained by ddPCR, supporting complete lack of wild-type strain in the culture wells,
382 and that in the *tprA*^{ko}-SS14 strain, the *kan*^R:*dnaA* copy number was virtually identical.

383

384 **Discussion**

385 Given the significant impact of syphilis on human health, there is great interest in
386 deepening our understanding of the molecular mechanisms underlying its pathogenesis. In turn,
387 this could lead to improved strategies for disease control and vaccine development. A critical
388 step in this direction is the identification of treponemal factors that contribute to virulence. To
389 date, several experimental approaches have helped syphilis investigators identify and
390 functionally characterize these factors, such as expression in heterologous hosts (e.g. *Borrelia*
391 *burgdorferi*, *Treponema denticola*, and *Treponema phagedenis*) [19-21], comparative genomics
392 [22-26] and, to some extent, gene expression studies and proteomic analysis [15, 25, 27]. Genetic

393 manipulation strategies, however, particularly those that satisfy Koch's molecular postulates [28],
394 have not been available for *T. pallidum*. The lack of genetic tools was not overly frustrating
395 because, until 2018 [11, 27], *T. pallidum* could not even be continually propagated *in vitro*.
396 Understandably, this limitation hindered any attempt aimed at genetically engineering this
397 pathogen, as antibiotic selection could not readily be performed. In contrast, some *Chlamydia*
398 species have been propagated *in vitro* since the 1950s, and yet genetic tools for this pathogen
399 became available only recently [11, 29]. The protocol we devised to make our vector cross the *T.*
400 *pallidum* envelope was indeed inspired by an early protocol used to introduce DNA into
401 *Chlamydia* [22, 29]. The use of CaCl₂ was preferred to that of physical methods such as
402 electroporation simply because the number of treponemal cells yielded by *in vitro* culture is still
403 very limited compared to other bacteria, including other spirochetes, that have a generation time
404 significantly shorter than *T. pallidum* and that can be propagated *in vitro* in axenic cultures.
405 Years ago, before the introduction of the *in vitro* cultivation system for *T. pallidum*, our
406 laboratory considered an alternative approach to introducing foreign DNA into *T. pallidum*.
407 Despite *T. pallidum*'s lack of any known plasmids or phage, the mounting evidence that inter-
408 strain recombination occurs in *T. pallidum* strains and subspecies [22, 23, 30], prompted us to
409 hypothesize that *T. pallidum* could be competent for transformation. Back then, to test this
410 hypothesis, we exposed Nichols cells, shortly after harvest from rabbit testes to a construct
411 similar to the one used here, but with a chloramphenicol resistance (instead of *kan*^R) gene under
412 control of the *tp0574* promoter, between *tprA* homology arms. The construct also contained
413 several DNA uptake sequences (DUSs) [31] from both Gram-positive and Gram-negative
414 bacteria to facilitate uptake by a putative surface receptor/internalization machinery that was
415 predicted *in silico* in *T. pallidum* based on comparative genomics. Following exposure to the

416 construct, treponemes were re-injected into a naïve animal's testes, and selection was attempted
417 *in vivo* by treating the animal with chloramphenicol. Although these previous experiments failed
418 to provide evidence that genetically modified treponemes could be obtained, as treponemes
419 could not be retrieved from the infected animal despite seroconversion, the hypothesis that *T.*
420 *pallidum* could naturally uptake DNA from the environment and integrate it into its genome can
421 now be explored again, to help explain inter-strain recombination events.

422 New and far more exciting future directions include the development of shuttle plasmids
423 that do not need to integrate into the *T. pallidum* genome but are suitable to express *T. pallidum*
424 ORFs for complementation purposes, for example, but also to express fluorescent reporter
425 proteins such as GFP, CFP, mCherry, or reporter enzymes such as β-galactosidase, with the
426 overall goal of better understanding gene regulation. Expression of luciferase enzymes for *in vivo*
427 imaging, as done for other spirochetes [20, 30], could also be desirable. The transformation of *T.*
428 *pallidum* strains with shuttle plasmids should not be complicated by the presence of native
429 plasmids like it is in some *Chlamydia* species. Plasmids carrying the same origin of replication
430 are generally incompatible and tend not to coexist in a cell. Therefore, the maintenance of a
431 native plasmid limits the introduction of exogenous ones [20, 32]. The absence of endogenous
432 plasmids in *T. pallidum* should eliminate the issue of competition for plasmid replication factors
433 that could hinder the transformation efficiencies of exogenous recombinant plasmids.

434 Also, the development of a conditional expression vector for proteins or miRNA for RNA
435 silencing and post-transcriptional regulation would be highly beneficial. Our first attempt to
436 knock out the *tprK* gene (*tp0897*) of *T. pallidum* was conducted in parallel to the experiments
437 described in this manuscript. We were, however, unsuccessful in obtaining a *tprK*^{ko} strain. *TprK*
438 is a *T. pallidum* outer membrane protein (OMP) that undergoes extensive intra-strain antigenic

439 variation through non-reciprocal gene conversion and is one of the virulence factors primarily
440 responsible for *T. pallidum* immune evasion during infection [32-35]. Despite the extensive
441 recombination events that affect the gene ORF, *tprK* gene variants with frameshift mutations or
442 stop codons were never reported, even when deep sequencing was performed on this gene. This
443 could suggest that *T. pallidum* cells with a non-functional TprK are not viable and is consistent
444 with the spirochete's need to generate extreme diversity in this gene rather than simply deleting
445 it. Regarding our experiment to replace *tprK* with a *kan*^R cassette, we might simply have been
446 unsuccessful. However, if a *tprK*^{ko} strain were not viable, a conditional expression system could
447 circumvent the problem and be useful to understand what biological function the TprK protein
448 variants mediate in addition to immune evasion that makes it essential for this pathogen. In the
449 specific case of TprK, however, current work is aiming at deleting the source of *tprK* variability,
450 namely the donor cassettes that recombine into the gene expression site. This should generate
451 treponemes with an impaired recombination system that can only express a single TprK variant,
452 hence incapable of immune escape. Along the same line, the inactivation of many genes might
453 be problematic in the syphilis spirochete, because the small size of treponemal genomes suggests
454 that the genes that escaped evolutionary genomic reduction might be essential. In this scenario,
455 inducible systems for gene silencing or ablation would be helpful. Today, site-directed
456 recombination technologies are increasingly used to manipulate an organism's DNA under
457 controlled conditions *in vivo*. One example is the system analogous to Cre-Lox recombination
458 but involves the recombination of sequences between short flippase recognition target (FRT)
459 sites by the recombinase flippase (Flp). An FRT-Flp recombination system would allow *in vivo*
460 gene ablation if FRT could be introduced upstream and downstream of a locus. Expression in
461 *trans* of the Flp recombinase would then induce excision of the sequence between the FRTs. In

462 addition, an inducible expression system would be beneficial for epigenetic gene silencing
463 approaches, such as the CRISPR/Cas9 system and TALENS [35-38]. All these approaches,
464 however, will require some adjustments to the biology of *T. pallidum*, whose genome has a very
465 high GC content (~56%), and certain genes expressing ectopic proteins such as recombinases
466 will need to be optimized for expression in this spirochete. A different direction could take
467 advantage of transgenic expression to increase the amount of OMPs in *T. pallidum* envelope in a
468 *tprK*-impaired mutant. This approach could lead to a strain that could be used to create outer-
469 membrane vesicles rich in protective OMPs to be used for immunization purposes.

470 The result that the ratio between the *kan*^R gene and *tp0574* was higher than originally
471 expected was intriguing and worth discussing in the context perhaps of molecular detection
472 assays for *T. pallidum*. Following the sequencing of the Nichols strain genome, *T. pallidum* *oriC*
473 was localized at nucleotide +1 [39] based on gene synteny. Replication of the bacterial
474 chromosome is initiated at a single *oriC* region and proceeds in both directions. During growth,
475 replication is generally initiated once per cell cycle, however, under optimal nutrient and media
476 conditions, another round of replication can be initiated even before the previous round has
477 completed, resulting in the inheritance by daughter cells of partially replicated chromosomes [18,
478 40, 41]. Partial replication of a chromosome can create an unbalanced ratio between genes that
479 are near *oriC* (such as *kan*^R, in our case) that are already duplicated, and genes farther away from
480 *oriC* that are still in single copy (such as *tp0574*, located at the polar opposite of the *kan*^R gene in
481 the ~1Mb *T. pallidum* chromosome, and therefore one of the last genes to replicate). Hence,
482 during active cell growth, the ratio between copies of genes close to *oriC* and more distant ones
483 can be remarkably above 1. As mentioned, the >1 ratio *kan*^R:*tp0574* in *tprA*^{ko}-SS14 grown in
484 culture likely reflects partial replication of some chromosomes during propagation. This could

485 support that genes located near the origin of replication could be better targets for *T. pallidum*
486 detection in clinical samples, but perhaps that genes located further away from the origin could
487 be more suitable to estimate the actual number of treponemal cells in a sample.

488 Ongoing work in the laboratory is focusing also on analyzing the transcriptional and
489 proteome profile of the *tprA*^{ko}-SS14 strain compared to the wild-type. It is intriguing that, based
490 on our *in vitro* cultivation results, the *tprA*^{ko}-SS14 strain grew significantly faster than the wild-
491 type strain. This difference was not due to errors in the initial inoculum, as the experiment
492 reported in Fig.3 was repeated twice independently and the results were not different. The ability
493 of the transformed strain to proliferate faster was also suggested by the fact that the rabbit
494 infected with the *tprA*^{ko}-SS14 strain developed orchitis earlier than the untreated control, even
495 though the inoculum was the same. However, the *in vivo* experiments are not conclusive in this
496 regard, as only one rabbit was used as untreated control, and the later development of orchitis
497 could simply be due to rabbit-to-rabbit variability. It is nonetheless possible that ablating the
498 *tprA* pseudogene might have conferred a selective advantage and have reduced the metabolic
499 burden of expressing a gene that is not functional. Previous studies carried on in our laboratory
500 with *T. pallidum* strains carrying a frame-shifted *tprA* gene (although not with the SS14 strain),
501 showed that *tprA* is transcribed in these strains, although at a very low level [16].

502 Additional experiments to be performed include repeating the transformation experiment
503 reported here, as well as targeting other *T. pallidum* genes that, unlike *tprA*, will provide us with
504 the ability to study a phenotype. As proteins mediating motility, antigenic variation, and
505 adhesions are main virulence factors of spirochetes, our attention will focus next on ablating
506 expression of the endoflagella and evaluate whether a non-motile *T. pallidum* can successfully

507 establish an infection in the rabbit host, on eliminating the *tprK* donor sites to impair antigenic
508 variation and immune evasion, and knock-out adhesins.

509

510 **Conclusions**

511 We demonstrate that genetic engineering of the syphilis spirochete is possible with a
512 relatively simple method that has the potential to “transform” our way to approach the study of
513 *T. pallidum* biology and syphilis pathogenesis.

514

515 **Materials and Methods**

516 **Ethics statement**

517 Only male NZW rabbits (*Oryctolagus cuniculus*) ranging from 3.5-4.5 kg in weight were
518 used in this study. Specific pathogen-free (SPF; *Pasteurella multocida*, and *Treponema*
519 *paraluisuniculi*) animals were purchased from Western Oregon Rabbit Company (Philomath,
520 OR) and housed at the University of Washington (UW) Animal Research and Care Facility
521 (ARCF). Care was provided in accordance with the procedures described in the Guide for the
522 Care and Use of Laboratory Animals [42] under protocols approved by the UW Institutional
523 Animal Care and Use Committee (IACUC; Protocol # 4243-01, PI: Lorenzo Giacani). Upon
524 arrival and before use, all rabbits were bled and tested with a treponemal test (TPPA; Fujirebio,
525 Tokyo, Japan) and a non-treponemal test (VDRL; Becton Dickinson, Franklin Lakes, NJ) to
526 confirm lack of immunity due to infection with *Treponema paraluisuniculi*, given that animals
527 are tested randomly by the provider. Both tests were performed according to the manufacturer’s
528 instructions. Only seronegative rabbits were used for experimental infection with transformed

529 and wild-type treponemes (see paragraph below for rabbit infection, treatment and sample
530 collection).

531

532 **Plasmid construct**

533 The pUC57 vector (2,710 bp; Genscript, Piscataway, NJ) was engineered to carry the *kan*^R gene
534 downstream of the *T. pallidum* *tp0574* gene promoter and ribosomal binding site. Appropriate spacing (8
535 nt) was ensured between the RBS and the *kan*^R gene start codon in the construct. Upstream and
536 downstream of the *tp0574*prom-*kan*^R hybrid sequence, respectively, two homology arms corresponding
537 to the regions flanking the *tprA* gene were inserted. The upstream arm was 998 bp in length and
538 corresponded to position 7,343-8,340 of the wt-SS14 strain genome (NC021508.1/ CP004011.1). The
539 downstream arm was 999 bp, and encompassed position 10,165-11,163 of the SS14 genome. The
540 construct was cloned between the XheI and BamHI sites of the pUC57 vector, in opposite orientation
541 compared to the *lac* promoter that is upstream of the polylinker. Prior to use, the insert underwent
542 Sanger sequencing to ensure sequence accuracy. The sequence of the insert is provided in File S1. This
543 construct was named *ptprA*arms-*tp0574*prom-*kan*^R. Primers annealing a) to the vector only, b) within the
544 cloned insert, and c) upstream of the *tprA* homology arms in the *T. pallidum* genome are reported in
545 Table 1. The pUC57 vector carries an ampicillin resistance gene (*bla*) for selection in *E. coli*. Because
546 penicillin is the first-line antibiotic to cure syphilis, we first evaluated whether the sequences flanking
547 the *bla* gene of the pUC57 vector could have had sufficient homology to *T. pallidum* DNA to induce
548 recombination and integration of the *bla* gene in the genome, but no homology was found upon BLAST
549 analysis of these regions against the SS14 or other syphilis strain genomes. Regarding the insertion of a
550 *kan*^R gene in the *T. pallidum* genome, the CDC STI treatment guidelines do not recommend the use of
551 kanamycin for syphilis therapy, hence a kanamycin-resistant syphilis strain does not pose a risk in case

552 of unlikely exposure. To obtain a highly concentrated, endotoxin-free plasmid preparation, the
553 *ptprAarms-tp0574prom-kan^R* was transformed into TOP10 *E. coli* cells (Thermo Fisher, Waltham, MA),
554 which were then grown first in a 5-ml starter culture overnight, and then in 500 ml of LB media
555 supplemented with 100 µg/ml of ampicillin at 37°C. The plasmid was purified using the Endo-Free
556 Plasmid Mega Kit (Qiagen, Germantown, MD) according to the manufacturer's instructions. Following
557 purification, plasmid concentration was assessed using an ND-1000 spectrophotometer (Nanodrop
558 Technologies, Wilmington, NC). The vector was then divided into 50 µl aliquots and stored at -80 until
559 use.

560

561 **Source of *T. pallidum* for *in vitro* cultivation, transformation, and selection**

562 The SS14 strain of *T. pallidum* used for *in vitro* propagation was obtained from a frozen
563 stock previously propagated IT in NZW rabbits as already reported [43]. This strain was
564 originally isolated in 1977 in Atlanta (USA) from a penicillin-allergic patient with secondary
565 syphilis who did not respond to therapy with macrolides. *In vitro* culturing was performed
566 according to Edmondson *et al.* [11] in the wells of a 24-well plate initially, and then expanded in
567 a 6-well culture plate (Corning Inc, Corning, NY). The microaerophilic atmosphere (MA; 1.5%
568 O₂, 3.5% CO₂ and 95% N₂) necessary to sustain treponemal viability was achieved using a
569 Heracell VIOS 160i tri-gas incubator (Thermo Fisher). Before the addition of the treponemal
570 cells, Sf1Ep cells were incubated in a 5% CO₂ atmosphere in a HeraCell 150 incubator (Thermo
571 Fisher). For transformation, treponemes were first sub-cultured into the wells of a 24-well plate
572 as per protocol [11]. Briefly, the day before treponemal inoculation, a 24-well plate was seeded
573 with 2x10⁴ rabbit Sf1Ep cells/well in 2.5 ml of culture media. The plates were then incubated
574 overnight in the HeraCell incubator. On the same day, TpCM-2 media was prepared according to

575 protocol and equilibrated overnight at 34°C in the MA incubator. The following day, cell culture
576 media was removed from the 24-well plate, and cells were rinsed with equilibrated TpCM-2
577 media. Subsequently, each well was filled with 2.5 ml of equilibrated TpCM-2 media, and the
578 plate was transferred to the MA incubator. To prepare the treponemal inoculum, the Sf1Ep cells
579 seeded the previous week with wt-SS14 cells were trypsinized to allow the release and
580 enumeration of spirochetes using the DFM. A total of 2-3x10⁸ treponemes were inoculated 24
581 hours after plating the Sf1Ep. Following treponemal addition, the total volume of media in each
582 well was brought to 2.5 ml. Two days following treponemal cell addition, the plate was removed
583 from the MA incubator, and 1 ml of old media was replaced with fresh one. Four days after
584 treponemal cell inoculation, the plate was removed again from the MA incubator and the culture
585 media was eliminated gently not to disturb Sf1Ep cells and adherent treponemes and replaced by
586 500 µl of transformation buffer (50 mM CaCl₂, 10 mM Tris pH 7.4; equilibrated in MA)
587 containing 15 ug total of *ptprA*arms-47p-*kan*^R. As a control, to rule out CaCl₂ toxicity to
588 treponema cells, treponemes were also incubated with transformation buffer without plasmid
589 vector. Cells were incubated in these transformation buffers (with and without plasmid) for 10
590 min at 34°C in the MA incubator and then washed twice with equilibrated TpCM-2 media to
591 remove free plasmid from the culture wells. Finally, 2.5 ml of fresh TpCM-2 equilibrated in MA
592 were added to the wells, and plates were returned to the MA incubator. The following day,
593 concentrated tissue-culture grade liquid kanamycin sulfate (Sigma-Aldrich, St. Louis, MO) was
594 added to the appropriate wells to reach a final concentration of 25 µg/ml. As a control, to
595 confirm the treponemicidal activity of kanamycin, wild-type treponemes were also incubated in
596 fresh TpCM-2 media containing 25 µg/ml of kanamycin sulfate. Kanamycin sulfate-containing
597 TpCM-2 media was exchanged weekly but treponemes were sub-cultured every two weeks as

598 per published protocol [11] until they reached a density of $\sim 3 \times 10^7$ cells/ml, counted using the
599 DFM, at which point they were sub-cultured first into one well of a 6-well plate (seeded with 10^5
600 Sf1Ep cells on the previous day) to upscale the culture, and then into all the wells of a 6-well
601 plate at the following passage to further expand the strain and minimize the chances of culture
602 loss due to contamination. Whenever possible, treponemes that were not used for inoculation of a
603 new plate were pelleted by centrifugation at 15,000 rpm for 10 min using a tabletop centrifuge
604 and resuspended in 1X DNA lysis buffer (10 mM Tris-HCl, 0.1 M EDTA, 0.5% SDS), Trizol
605 (Thermo Fisher), or used to make glycerol stocks, regardless of the number of treponemes
606 counted by DFM.

607 To compare susceptibility to kanamycin of the *tprA*^{ko}-SS14 and wild-type strains,
608 treponemes obtained from the tenth *in vitro* passage were sub-cultured into two 96-well cell
609 culture plates (Corning) instead of 6-well plates to allow a total of eight replicates for each
610 kanamycin sulfate concentration tested. Briefly, the day before inoculation, two 96-well plates
611 were seeded with 3×10^3 rabbit Sf1Ep cells per well in 150 μ l of culture media. The plates were
612 then incubated overnight in the HeraCell incubator. On the same day, TpCM-2 media was
613 prepared according to protocol and equilibrated overnight at 34°C in the MA incubator. On the
614 following day, cell culture media was removed from the 96-well plates, and cells were rinsed
615 with equilibrated TpCM-2 media. Subsequently, each well was filled with 150 μ l of equilibrated
616 TpCM-2 media, and the plate was transferred to the MA incubator. To prepare the treponemal
617 inoculum for the 96-well plates, the Sf1Ep cells seeded the previous week with either the *tprA*^{ko}-
618 SS14 and wild-type strains were trypsinized to allow the release and enumeration of spirochetes.
619 Treponemes were counted using the DFM and diluted in TpCM-2 to 3.3×10^5 *T. pallidum* cells/ml
620 to obtain a treponemal inoculum of 5×10^4 cells in a total of 150 μ l, which were then added to

621 each well of the 96-well plates. The kanamycin sulfate concentrations tested were a 1:2 dilution
622 series ranging from 200 to 1.6 μ g/ml, for a total of 8 different concentrations tested in eight
623 replicate wells. No-antibiotic wells, as well as solvent-only wells (water), were also included as
624 controls. Tissue-culture grade kanamycin sulfate was purchased from Sigma-Aldrich. Wild-type
625 and *tprA*^{ko}-SS14 treponemes in no-antibiotic wells were harvested at day 0 (inoculum), day 1,
626 day 4, and day 7 post-inoculation after incubation at 34°C in the MA incubator to assess
627 treponemal growth in normal conditions and that, even in absence of antibiotic pressure, the *kan*^R
628 gene would remain steadily integrated in place of the *tprA* pseudogene in the *tprA*^{ko}-SS14
629 treponemes. The experiment where *tprA*^{ko}-SS14 treponemes were grown in a 96-well plate in the
630 presence or absence of kanamycin sulfate was performed twice to ensure a) the reproducibility,
631 and b) to obtain DNA-free RNA to compare the level of transcription of the *kan*^R gene and that
632 of the *tp574* genes by RT-ddPCR.

633 Treponemes harvested at passage #15 (Week 20 post-transformation) were resuspended
634 in SDS-PAGE sample buffer and proteins were separated on a 12% pre-made acrylamide gel
635 (Thermo Fisher) to evaluate the expression of the Kan^R protein using mass spectrometry after gel
636 band excision and digestion (see protocol below).

637

638 **Rabbit infection, treatment, and sample collection**

639 Pharmaceutical grade kanamycin sulfate (50 mg/ml in water) was prepared by Kelley-
640 Ross compounding pharmacy in Seattle, WA, and stored at -20°C until use according to the
641 pharmacist's instructions. Once thawed, the bottle was kept at 4°C and removed from the fridge
642 only to withdraw doses. On the day of infection, *tprA*^{ko}-SS14 and wild-type strains were
643 harvested from the wells of a 6-well culture plate, enumerated using a Nikon NiU darkfield

644 microscope (Nikon, Melville, NY), and diluted in sterile saline to 3×10^7 /ml. Three NZW rabbits
645 were infected. One rabbit was infected IT only in its left testicle with the *tprA*^{ko}-SS14 strain. This
646 rabbit received the first subcutaneous dose of kanamycin sulfate (5.0 mg/Kg) one hour before
647 infection and was treated every 12 hours for a total of 10 days, each time with the same dose.
648 The second rabbit was infected with the wt-SS14 strain and also treated with kanamycin as
649 above, while the third rabbit was infected with wt-SS14 but not treated. When orchitis
650 developed, rabbits were euthanized, and the left testicle was removed and minced in sterile saline
651 to extract treponemes. The control rabbit infected with the wt-SS14 strain and treated with
652 kanamycin was euthanized when the other control rabbits developed orchitis, and testicular
653 extracts were also processed. Treponemal suspensions were spun at 1,000 rpm at 4°C in an
654 Eppendorf 5430R refrigerated centrifuge, and cellular debris were discarded. Treponemes in the
655 supernate were enumerated by DFM and resuspended in 1X DNA lysis buffer by mixing equal
656 volume of extract and 2X buffer. The remaining treponemes were frozen in glycerol stocks (50%
657 serum-saline + 50% sterile glycerol). Terminal bleeding through cardiac puncture was performed
658 to obtain serum for VDRL and TPPA tests, performed as described above. All sera were heat-
659 inactivated at 56°C for 30 min before use.

660

661 **DNA and RNA extraction**

662 DNA extraction from cultured *tprA*^{ko}-SS14 or wild-type strains propagated in 6-well
663 plates following the transformation procedure was performed using the QIAamp mini kit
664 (Qiagen) according to the manufacturer's instructions. Extracted DNA was stored at -80°C until
665 use for qualitative PCR, ddPCR, or WGS (see below). DNA extraction from the 96-well culture
666 plates used to assess susceptibility to kanamycin of the *tprA*^{ko}-SS14 and wild-type strain,

667 respectively, was performed after a one-week incubation of the cells in the MA incubator. Plate
668 culture media was removed with a vacuum manifold from each well and discarded. Cells were
669 not trypsinized but 200 μ l of Genomic Lysis Buffer (Zymo Research, Irvine, CA) for DNA
670 extraction was added. Cells were then lysed through incubation in lysis buffer for 30 min at room
671 temperature as per provided protocol. While propagating the SS14 strain, we used dark-field
672 enumeration of treponemes present in the cell culture supernate and attached to Sf1Ep cells but
673 released by cell trypsinization, and determined that the majority (~85%) of *T. pallidum* cells *in*
674 *vitro* adhere to the rabbit epithelial cell monolayer, similar to what was reported by Edmondson
675 *et al.* for other cultivated strains [11]. This evidence allowed us to discard the culture media
676 without concern that the experimental results would be significantly affected. Following cell
677 lysis, the plates were frozen at -20°C until extraction could be completed. To purify DNA, the
678 96-well plates were thawed at 56°C in a dry incubator and quickly spun to recuperate
679 condensation drops on the well lids. DNA was extracted using a Quick-DNA 96 kit (Zymo
680 Research) according to the manufacturer's protocol. DNA was eluted in 100 μ l of water and
681 stored at -20°C until amplification using qPCR to evaluate treponemal burden. The same
682 samples were used to perform ddPCR (see protocol below) targeting *tp0001* (*dnaA*), *tprA*, and
683 the *kan*^R genes to investigate the ratio between these targets. As an additional control, extracted
684 samples were also tested randomly using pUC57-specific primers (Table 1) annealing upstream
685 and downstream of the cloned insert to assess carry-over of the plasmid used for transformation.

686 RNA extraction was performed using the Quick-RNA 96 kit (Zymo Research) following
687 the manufacturer's instructions with the exception that in-column DNA digestion using the
688 DNaseI enzyme (provided by the kit) was prolonged for a total of 1 hour and performed using
689 50% more enzyme than normally suggested. Single samples from *in vivo* and *in vitro*

690 propagation were instead extracted according to the Trizol reagent manual. Total RNA was
691 treated with DNaseI according to the protocol provided with the TURBO DNA-free kit (Thermo
692 Fisher). DNA-free RNA was checked for residual DNA contamination by qualitative
693 amplification using primers specific for the *tp0574* gene (primers in Table 1) as already
694 described [44]. Reverse transcription (RT) of total RNA was performed using the High-Capacity
695 cDNA Reverse Transcription kit (Thermo Fisher) with random hexamers according to the
696 provided protocol. cDNA samples were stored at -80°C until use for qualitative PCR to
697 demonstrate expression of the *kan^R* gene or for ddPCR to quantify the level of expression of the
698 *tp0574* and the *kan^R* genes (primers in Table 1).

699

700 **Qualitative and quantitative PCR**

701 Samples harvested during routine propagation of the *tprA^{ko}*-SS14 and wild-type strains
702 were assessed for integration of the *kan^R* gene into the *tprA* locus by using qualitative PCR. In
703 the first amplification, the sense primer targeted a region of the *T. pallidum* genome immediately
704 upstream of the left *tprA* homology arm of the vector (and hence not cloned into *ptprAarms-*
705 *tp0574prom-kan^R*), while the antisense primers targeted the *kan^R* gene, with the rationale that
706 only a *kan^R* gene integrated into the *tprA* locus would provide amplification. Primers and
707 amplicon size are reported in Table 1 and schematically represented in Fig.2, along with the
708 results of the PCR done on DNA extracted from treponemes at Passage #7. In the second PCR,
709 the sense primer targeted the *kan^R* gene, and the antisense primer (Table 1) targeted the genomic
710 region downstream of the left *tprA* homology arm of the vector. Amplification of the *tp0574*
711 gene was used as positive amplification control. Amplifications were performed using five
712 microliters of extracted DNA in 50 µl final volume containing 2.5 units of GoTaq polymerase

713 (Promega, Madison, WI), 200 μ M of each dNTP, 1.5 mM of MgCl₂, and 400 nM of sense and
714 antisense primers. Cycling parameters were initial denaturation (94°C) and final extension
715 (72°C) for 10 min each. Denaturation (94°C) and annealing (60°C) steps were carried on for 1
716 min each, while the extension step (72°C) was carried out for 1 or 2 min depending on amplicon
717 length. A total of 40 cycles were performed in each amplification. A qPCR assay was instead
718 used to quantify treponemal burden in samples extracted from the 96-well plate following the
719 kanamycin susceptibility assay of the *tprA*^{ko}-SS14 and wild-type strains. In this case, the
720 treponemal burden was evaluated using a qPCR approach targeting the *tp0574* gene previously
721 described [16]. Primers are reported in Table 1. Briefly, an absolute quantification protocol using
722 an external standard was used to quantify the *tp0574* gene copy number at the time of sample
723 harvest. Standard construction was also previously described in detail [16]. For amplification, the
724 Powerup SYBR Green Master Mix (Thermo Fisher) was used. Amplifications were run on a
725 QuantStudio 5 thermal cycler (Thermo Fisher) and results were analyzed using the instrument
726 software. Data were imported into Prism 8 (GraphPad Software, San Diego, CA) and further
727 analyzed to assess statistical significance of the values from test and no-antibiotic control groups
728 using one-way ANOVA with the Dunnett test for correction of multiple comparisons or t-test,
729 with significance set at *p*<0.05 in both cases.

730

731 **Droplet digital PCR (ddPCR)**

732 Droplet digital PCR assays were conducted to assess the ratio between the number of
733 copies of the *kan*^R gene and another target on *T. pallidum* genome in the *tprA*^{ko}-SS14 strain, in
734 this case, the *tp0574* gene, the *tp0001* gene (*dnaA*), or the *tprA* gene. The *tp0574* and *dnaA*
735 targets were chosen because of their relative distance to the *kan*^R insertion site (< 10 Kbp from

736 *dnaA*, and ~513Kbp from the *tp0574* gene) to account for possible discrepancies due to the
737 vicinity of the *kan^R* gene to *T. pallidum* chromosomal origin of replication. ddPCR was also used
738 to evaluate the level of transcription of the *kan^R* gene and the *tp0574* gene, as both genes are
739 transcribed by the same promoter. Amplification of the *tprA* gene was used as control. To this
740 end, four sets of primers/probes (Table1) were designed. DNA obtained from the 96-well plate
741 used to perform the kanamycin susceptibility assay with the *tprA^{ko}*-SS14 strain was used along
742 with the DNA from the *tprA^{ko}*-SS14 strain obtained from Passage #8, and DNA extracted from
743 the *tprA^{ko}*-SS14 and SS14 wild-type treponemes propagated *in vivo*. cDNA was obtained (as
744 described above) from the 96-well plate used to perform the kanamycin susceptibility assay with
745 the *tprA^{ko}*-SS14 strain, and from the *tprA^{ko}*-SS14 and SS14 wild-type treponemes propagated *in*
746 *vivo* and *in vitro* (Passage #8).

747 ddPCR was performed on a Bio-Rad QX100 system (Bio-Rad, Carlsbad, CA). Each
748 reaction was performed using ddPCR Supermix for Probes (Bio-Rad) with the final
749 concentration of primers at 900 nM and probes at 250 nM in a total reaction volume of 25 μ l.
750 Before amplification, template DNA was digested with 25 units of EcoRI (New England
751 Biolabs, Ipswich, MA). cDNA was used without the digestion step. After droplet generation,
752 droplets were transferred to a 96-well PCR plate and amplified on a 2720 Thermal Cycler
753 (Thermo Fisher) with the following cycling parameters: 94°C for 10 min, followed by 40 cycles
754 of 94°C for 30 s and 60°C for 1 min, and 98°C hold for 10 min. After amplification, the plate
755 was transferred to QX200 droplet reader (Bio-Rad). Results were analyzed using the QuantaSoft
756 software (Bio-Rad).

757

758

759

760 **Analysis of Kan^R expression by mass spectrometry**

761 Expression of the KanR protein (molecular weight of 31.1 KDa) was assessed by liquid
762 chromatography-mass spectrometry (LC-MS) in *tprA^{ko}*-SS14 and wild-type treponemes. For the
763 SDS PAGE, the *tprA^{ko}*-SS14 and wild-type treponemes were harvested as described above from
764 culture plates (Passage 15, Week 20 post-transformation), counted by DFM, and centrifuged at
765 100xg (1,000 rpm in a tabletop centrifuge with a 9 cm radius) to remove residual Sf1Ep cells. The
766 resulting supernate was then spun at 15,000 rpm at RT for 10 min to pellet treponemes and
767 pelletresuspend in 1X SDS-PAGE sample buffer (50 mM Tris-HCl; 100 mM DTT; 70 mM SDS;
768 1.5 mM Bromophenol blue, 2M glycerol). Approximately 10⁹ treponemes were resuspended in a
769 final volume of 200 µl of SDS-PAGE sample buffer. Samples were boiled and loaded onto a 12%
770 precast Tris-Tricine gel in a mini-Protean apparatus (both from Bio-Rad, Hercules, CA). Gels
771 were stained using SimplyBlue SafeStain (Thermo Fisher). Subsequently, a gel segment
772 encompassing protein sizes between 20-40 kDa (and thus including the ~30 kDa Kan^R protein)
773 was excised and bands were subjected to overnight in-gel trypsin digestion as previously
774 described [16, 24]. The volume of digestion products was reduced to approximately 10 µl using a
775 speed-vac. Peptides were analyzed by LC-MS at the Fred Hutchinson Cancer Research Center
776 proteomics facility using an LTQ HP1100 mass spectrometer (Thermo Fisher), results were
777 analyzed using the Proteome Discoverer software. Identified peptides were filtered to a false
778 discovery rate (FDR) of <0.01 to ensure high confidence in the identified peptides.

779

780 **Whole-genome sequencing**

781 Whole-genome sequencing was performed following DNA extraction of *tprA*^{ko}-SS14 and
782 wild-type treponemes cultured *in vitro* (Passage #9; Fig.1). Pre-capture libraries were prepared
783 from up to 100 ng input DNA using the KAPA Hyperplus kit (Roche) and TruSeq adapters and
784 barcoded primers (Illumina), following the manufacturer's protocols, yielding an average
785 fragment size longer than 500 bp. Hybrid capture of *T. pallidum* genomic DNA was performed
786 overnight (>16 hours) using a custom IDT xGen panel designed against the reference genome
787 NC_010741, following the manufacturer's protocol. Short-read sequencing was performed on
788 an Illumina MiSeq with 192 bp single-end reads, yielding at least 1e6 reads per sample. Reads
789 were adapter and quality trimmed using Trimmomatic v0.39 [45] and assembled to the TPA
790 reference genome NC_021508.1, or NC_021508.1 with the *tprA* gene replaced by the kanamycin
791 cassette, using Bowtie2 [46], to an average coverage exceeding 175x across the genome for all
792 samples. Manual confirmation of expected coverage and junctions was performed by visual
793 inspection in Geneious Prime v2020.1.2 [47].

794

795 **Derivation of a *tprA*^{ko}-SS14 pure isolate by limiting dilution and increased antibiotic
796 selective pressure**

797 Sf1Ep cells were seeded into the wells of a 96-well culture plate at a density of 3,000
798 cells/well in 150 µl of MEM and cultured overnight in a 37°C in the 5% CO₂ incubator. The next
799 morning after the cells had adhered to the plate the MEM was exchanged for 135 µl TpCM2
800 media which had been equilibrated overnight in a 34°C in the MA incubator. The cells were
801 equilibrated in the MA incubator for at least 3 hr before proceeding to inoculation of the *tprA*^{ko}-
802 SS14 cells, harvested using trypsinization from a 6-well plate where the strain was routinely
803 propagated. Following harvest, cell concentration was determined by DFM. For the serial

804 dilutions, 3.3×10^4 *tprA*^{ko}-SS14 cells were inoculated into each of 8 wells of the prepared 96-well
805 plate, mixed thoroughly, and then 15 μ l of the diluted *T. pallidum* mixture moved to the next set
806 of 8 wells. In this manner, successive 1:10 dilutions of *tprA*^{ko}-SS14 were made on the plate until
807 the mixture was diluted to 0.33 *tprA*^{ko}-SS14 cells/well. Kanamycin was added to each well for a
808 final concentration of 200ug/ml. The plate was grown for 2 weeks in the MA incubator, with a
809 half-media change at one week. After 2 weeks, the supernatant was removed from the plate, the
810 wells washed briefly with 20ul of trypsin, and then incubated with 20ul of trypsin for 5min at
811 37°C to release adherent *T. pallidum* cells. Ten microliters of the resulting *T. pallidum* mixture
812 were inoculated into a fresh 96-well plate prepared and incubated as described above. To the
813 remaining 10 μ l, 200 μ l of genomic lysis buffer from a Quick-DNA 96 kit (Zymo Research,
814 Irvine, CA) was added. The plate was sealed and stored at -20°C until DNA extraction. DNA
815 was extracted using the Quick-DNA 96 kit (Zymo Research). DNA was eluted in 30 μ l of
816 molecular H₂O, the minimum volume recommended for the kit. Lack of amplification signal for
817 *tprA* was assessed by ddPCR as described above.

818

819 **Acknowledgments**

820 This work was supported by the National Institute for Allergy and Infectious Diseases of
821 the National Institutes of Health grant number U19AI144133 (Project 2 and Genomics and
822 Isolation Core; Project 2 leader: L.G.; Core leaders: L.G. and A.G.; PI: Anna Wald, University of
823 Washington). We are grateful to Dr. Philip Stewart, Ph.D. (NIH Rocky Mountain Laboratory,
824 Hamilton, MT) and Mark C. Fernandez, Ph.D. candidate (University of Washington, Department
825 of Global Health) for helpful suggestions on the experimental design. The senior author, Lorenzo
826 Giacani, wishes to dedicate this milestone achievement in the field to Dr. Arturo Centurion-Lara,

827 MD, mentor and friend, who prematurely passed away in 2018. The content of this study is
828 solely the responsibility of the authors and does not necessarily represent the official views of the
829 National Institutes of Health. The funders had no role in study design, data collection, and
830 analysis, decision to publish, or preparation of the manuscript.

831

832 **References**

- 833 1. WHO. Prevalence and incidence of selected sexually transmitted infections *Chlamydia*
834 *trachomatis*, *Neisseria gonorrhoeae*, syphilis and *Trichomonas vaginalis*: methods and results
835 used by WHO to generate 2005 estimates. World Health Organization, Geneva. 2011.
- 836 2. Gerbase AC, Rowley JT, Mertens TE. Global epidemiology of sexually transmitted
837 diseases. *The Lancet*. 1998;351.
- 838 3. CDC. 2018 Sexually Transmitted Disease Surveillance. Atlanta, GA: US Department of
839 Health and Human Services: Centers for Disease Control and Prevention. 2019.
- 840 4. Savage EJ, Marsh K, Duffell S, Ison CA, Zaman A, Hughes G. Rapid increase in
841 gonorrhoea and syphilis diagnoses in England in 2011. *Euro Surveill*. 2012;17(29). PubMed
842 PMID: 22835469.
- 843 5. Savage EJ, Hughes G, Ison C, Lowndes CM. Syphilis and gonorrhoea in men who have
844 sex with men: a European overview. *Euro Surveill*. 2009;14(47). PubMed PMID: 19941803.
- 845 6. Simms I, Fenton KA, Ashton M, Turner KM, Crawley-Boevey EE, Gorton R, et al. The
846 re-emergence of syphilis in the United Kingdom: the new epidemic phases. *Sex Transm Dis*.
847 2005;32(4):220-6. PubMed PMID: 15788919.

848 7. Tucker JD, Cohen MS. China's syphilis epidemic: epidemiology, proximate determinants
849 of spread, and control responses. *Curr Opin Infect Dis.* 2011;24(1):50-5. PubMed PMID:
850 21150594.

851 8. Jin F, Prestage GP, Kippax SC, Pell CM, Donovan BJ, Kaldor JM, et al. Epidemic
852 syphilis among homosexually active men in Sydney. *Med J Aust.* 2005;183(4):179-83. PubMed
853 PMID: 16097913.

854 9. LaFond RE, Lukehart SA. Biological basis for syphilis. *Clin Microbiol Rev.*
855 2006;19(1):29-49. PubMed PMID: 16418521.

856 10. Goldenberg RL, Thompson C. The infectious origins of stillbirth. *Am J Obstet Gynecol.*
857 2003;189(3):861-73. PubMed PMID: 14526331.

858 11. Edmondson DG, Hu B, Norris SJ. Long-Term In Vitro Culture of the Syphilis Spirochete
859 *Treponema pallidum* subsp. *pallidum*. *mBio.* 2018;9(3). Epub 2018/06/28. doi:
860 10.1128/mBio.01153-18. PubMed PMID: 29946052; PubMed Central PMCID:
861 PMCPMC6020297.

862 12. Fieldsteel AH, Cox DL, Moeckli RA. Cultivation of virulent *Treponema pallidum* in
863 tissue culture. *Infect Immun.* 1981;32(2):908-15.

864 13. Giacani L, Iverson-Cabral SL, King JC, Molini BJ, Lukehart SA, Centurion-Lara A.
865 Complete Genome Sequence of the *Treponema pallidum* subsp. *pallidum* Sea81-4 Strain.
866 *Genome Announc.* 2014;2(2). PubMed PMID: 24744342.

867 14. Weigel LM, Brandt ME, Norgard MV. Analysis of the N-terminal region of the 47-
868 kilodalton integral membrane lipoprotein of *Treponema pallidum*. *Infect Immun.*
869 1992;60(4):1568-76. PubMed PMID: 9252185.

870 15. Smajs D, McKevitt M, Howell JK, Norris SJ, Cai WW, Palzkill T, et al. Transcriptome of
871 *Treponema pallidum*: gene expression profile during experimental rabbit infection. *J Bacteriol*.
872 2005;187(5):1866-74.

873 16. Giacani L, Molini B, Godornes C, Barrett L, Van Voorhis WC, Centurion-Lara A, et al.
874 Quantitative analysis of *tpr* gene expression in *Treponema pallidum* isolates: differences among
875 isolates and correlation with T-cell responsiveness in experimental syphilis. *Infect Immun*.
876 2007;75(1):104-12.

877 17. Skarstad K, Katayama T. Regulating DNA replication in bacteria. *Cold Spring Harb
878 Perspect Biol*. 2013;5(4):a012922. Epub 2013/03/09. doi: 10.1101/cshperspect.a012922.
879 PubMed PMID: 23471435; PubMed Central PMCID: PMCPMC3683904.

880 18. Leonard AC, Méchali M. DNA Replication Origins. *Cold Spring Harb Perspect Biol*.
881 2013;5(10). doi: 10.1101/cshperspect.a010116. PubMed PMID: 23838439; PubMed Central
882 PMCID: PMCPMC3783049.

883 19. Chi B, Chauhan S, Kuramitsu H. Development of a system for expressing heterologous
884 genes in the oral spirochete *Treponema denticola* and its use in expression of the *Treponema*
885 *pallidum* *flaA* gene. *Infect Immun*. 1999;67(7):3653-6. Epub 1999/06/22. doi:
886 10.1128/iai.67.7.3653-3656.1999. PubMed PMID: 10377154; PubMed Central PMCID:
887 PMCPMC116559.

888 20. Chan K, Nasereddin T, Alter L, Centurion-Lara A, Giacani L, Parveen N. *Treponema*
889 *pallidum* Lipoprotein TP0435 Expressed in *Borrelia burgdorferi* Produces Multiple
890 Surface/Periplasmic Isoforms and mediates Adherence. *Sci Rep*. 2016;6:25593. PubMed PMID:
891 27161310.

892 21. Cameron CE, Kuroiwa JM, Yamada M, Francescutti T, Chi B, Kuramitsu HK.

893 Heterologous expression of the *Treponema pallidum* laminin-binding adhesin Tp0751 in the

894 culturable spirochete *Treponema phagedenis*. *J Bacteriol.* 2008;190(7):2565-71. PubMed PMID:

895 18263731.

896 22. Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN. Development of a

897 transformation system for *Chlamydia trachomatis*: restoration of glycogen biosynthesis by

898 acquisition of a plasmid shuttle vector. *PLoS Pathog.* 2011;7(9):e1002258. Epub 2011/10/04.

899 doi: 10.1371/journal.ppat.1002258. PubMed PMID: 21966270; PubMed Central PMCID:

900 PMCPMC3178582.

901 23. Grillová L, Oppelt J, Mikalová L, Nováková M, Giacani L, Niesnerová A, et al. Directly

902 Sequenced Genomes of Contemporary Strains of Syphilis Reveal Recombination-Driven

903 Diversity in Genes Encoding Predicted Surface-Exposed Antigens. *Front Microbiol.*

904 2019;10:1691. Epub 2019/08/17. doi: 10.3389/fmicb.2019.01691. PubMed PMID: 31417509;

905 PubMed Central PMCID: PMCPMC6685089.

906 24. Arora N, Schuenemann VJ, Jager G, Peltzer A, Seitz A, Herbig A, et al. Origin of

907 modern syphilis and emergence of a pandemic *Treponema pallidum* cluster. *Nat Microbiol.*

908 2016;2:16245. PubMed PMID: 27918528.

909 25. Staudova B, Strouhal M, Zobanikova M, Cejkova D, Fulton LL, Chen L, et al. Whole

910 genome sequence of the *Treponema pallidum* subsp. *endemicum* strain *Bosnia A*: the genome is

911 related to yaws treponemes but contains few loci similar to syphilis treponemes. *PLoS Negl Trop*

912 *Dis.* 2014;8(11):e3261. PubMed PMID: 25375929.

913 26. Smajs D, Norris SJ, Weinstock GM. Genetic diversity in *Treponema pallidum*:
914 Implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect
915 Genet Evol. 2012;12(2):191-202. PubMed PMID: 22198325.

916 27. Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE. Functional insights from
917 proteome-wide structural modeling of *Treponema pallidum* subspecies *pallidum*, the causative
918 agent of syphilis. BMC Struct Biol. 2018;18(1):7. Epub 2018/05/18. doi: 10.1186/s12900-018-
919 0086-3. PubMed PMID: 29769048; PubMed Central PMCID: PMCPMC5956850.

920 28. Falkow S. Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect
921 Dis. 1988;10 Suppl 2:S274-6. Epub 1988/07/01. doi: 10.1093/cid/10.supplement_2.s274.
922 PubMed PMID: 3055197.

923 29. Bastidas RJ, Valdivia RH. Emancipating Chlamydia: Advances in the Genetic
924 Manipulation of a Recalcitrant Intracellular Pathogen. Microbiol Mol Biol Rev. 2016;80(2):411-
925 27. Epub 2016/04/01. doi: 10.1128/mmbr.00071-15. PubMed PMID: 27030552; PubMed Central
926 PMCID: PMCPMC4867370.

927 30. Gray R, Mulligan C, Molini B, Sun E, Giacani L, Godornes C, et al. Molecular evolution
928 of the *tprC, D, I, K, G*, and *J* genes in the pathogenic genus *Treponema*. Mol Biol Evol.
929 2006;23(11):2220-33. PubMed PMID: 16926243.

930 31. Mell JC, Redfield RJ. Natural competence and the evolution of DNA uptake specificity. J
931 Bacteriol. 2014;196(8):1471-83. Epub 2014/02/04. doi: 10.1128/jb.01293-13. PubMed PMID:
932 24488316; PubMed Central PMCID: PMCPMC3993363.

933 32. Nordström K, Austin SJ. Mechanisms that contribute to the stable segregation of
934 plasmids. Annu Rev Genet. 1989;23:37-69. Epub 1989/01/01. doi:
935 10.1146/annurev.ge.23.120189.000345. PubMed PMID: 2694936.

936 33. Addetia A, Lin MJ, Phung Q, Xie H, Huang ML, Ciccarese G, et al. Estimation of Full-
937 Length TprK Diversity in *Treponema pallidum* subsp. *pallidum*. mBio. 2020;11(5). Epub
938 2020/10/29. doi: 10.1128/mBio.02726-20. PubMed PMID: 33109767; PubMed Central PMCID:
939 PMCPMC7593977.

940 34. Giacani L, Brandt SL, Puray-Chavez M, Brinck Reid T, Godornes C, Molini BJ, et al.
941 Comparative Investigation of the Genomic Regions Involved in Antigenic Variation of the TprK
942 Antigen among Treponemal Species, Subspecies, and Strains. J Bacteriol. 2012;194(16):4208-
943 25. PubMed PMID: 22661689.

944 35. Giacani L, Molini BJ, Kim EY, Godornes BC, Leader BT, Tantalo LC, et al. Antigenic
945 variation in *Treponema pallidum*: TprK sequence diversity accumulates in response to immune
946 pressure during experimental syphilis. J Immunol. 2010;184(7):3822-9. PubMed PMID:
947 20190145.

948 36. Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea:
949 versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45:273-97.
950 Epub 2011/11/09. doi: 10.1146/annurev-genet-110410-132430. PubMed PMID: 22060043.

951 37. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome
952 editing. Nat Rev Mol Cell Biol. 2013;14(1):49-55. Epub 2012/11/22. doi: 10.1038/nrm3486.
953 PubMed PMID: 23169466; PubMed Central PMCID: PMCPMC3547402.

954 38. Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev
955 Genet. 2014;15(5):321-34. Epub 2014/04/03. doi: 10.1038/nrg3686. PubMed PMID: 24690881.

956 39. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, et al. Complete
957 genome sequence of *Treponema pallidum*, the syphilis spirochete. Science. 1998;281(5375):375-
958 88.

959 40. Costa A, Hood IV, Berger JM. Mechanisms for Initiating Cellular DNA Replication.
960 Annu Rev Biochem. 2013;82:25-54. doi: 10.1146/annurev-biochem-052610-094414. PubMed
961 PMID: 23746253; PubMed Central PMCID: PMCPMC4696014.

962 41. Trojanowski D, Hołówka J, Zakrzewska-Czerwińska J. Where and When Bacterial
963 Chromosome Replication Starts: A Single Cell Perspective. Front Microbiol. 2018;9:2819. Epub
964 2018/12/12. doi: 10.3389/fmicb.2018.02819. PubMed PMID: 30534115; PubMed Central
965 PMCID: PMCPMC6275241.

966 42. Janier M. Ceftriaxone is effective for treating patients with primary syphilis. Sex Transm
967 Dis. 1988;15(1):70. Epub 1988/01/01. PubMed PMID: 3358241.

968 43. Baker-Zander SA, Fohn MJ, Lukehart SA. Development of cellular immunity to
969 individual soluble antigens of *Treponema pallidum* during experimental syphilis. J Immunol.
970 1988;141(12):4363-9.

971 44. Giacani L, Hevner K, Centurion-Lara A. Gene organization and transcriptional analysis
972 of the *tprJ*, *tprI*, *tprG* and *tprF* loci in the Nichols and Sea 81-4 *Treponema pallidum* isolates. J
973 Bacteriol. 2005;187(17):6084-93.

974 45. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
975 data. Bioinformatics. 2014;30(15):2114-20. Epub 2014/04/04. doi:
976 10.1093/bioinformatics/btu170. PubMed PMID: 24695404; PubMed Central PMCID:
977 PMCPMC4103590.

978 46. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods.
979 2012;9(4):357-9. Epub 2012/03/06. doi: 10.1038/nmeth.1923. PubMed PMID: 22388286;
980 PubMed Central PMCID: PMCPMC3322381.

981 47. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious
982 Basic: an integrated and extendable desktop software platform for the organization and analysis
983 of sequence data. *Bioinformatics*. 2012;28(12):1647-9. Epub 2012/05/01. doi:
984 10.1093/bioinformatics/bts199. PubMed PMID: 22543367; PubMed Central PMCID:
985 PMCPMC3371832.

986

987 **Figure Legends**

988 **Figure 1.** Twenty-week *in vitro* growth curve of SS14 *T. pallidum* cells post-exposure to
989 *ptprAarms-tp0574prom-kan*^R plasmid in transformation buffer (orange), transformation buffer
990 alone (pink), media containing kanamycin (black), compared to the wild-type SS14 strain (blue).
991 RT-PCR: reverse-transcription-PCR; ddPCR: droplet digital PCR; RT-ddPCR: reverse-
992 transcription droplet digital PCR; WGS: whole-genome sequencing; KSA: kanamycin
993 susceptibility assay; qPCR: quantitative PCR.

994

995 **Figure 2. (A)** Schematic of the recombination event that led to the *tprA*^{ko}-SS14 strain. Primer
996 positions are indicated by color-coded arrows. Amplicon sizes (bp) generated by the different
997 primer combinations are reported in the legend. **(B)** Amplification reactions using the primer
998 combinations in panel A on DNA (sub-panels a-f) or cDNA (sub-panels g and h) template from
999 the *tprA*^{ko}- and wt- SS14 strain harvested at Passage #8 post-transformation. M: molecular size
1000 marker (bp); A^{ko}: *tprA*^{ko}-SS14, W: wt-SS14; N: no-template control, P: *ptprAarms-tp0574prom-*
1001 *kan*^R plasmid DNA template.

1002

1003 **Figure 3.** Droplet digital PCR (ddPCR) on DNA template from the *tprA*^{ko}- and wt- SS14 strain
1004 harvested at Passage #8 post-transformation showing ratios between the *kan*^R, *dnaA*, and *tprA*
1005 targets. *tprA:dnaA* ratio for the *tprA*^{ko}-SS14 strain was 0.006. The *kan*^R:*dnaA* ratio for the wt-
1006 SS14 was zero.

1007

1008 **Figure 4.** Whole-genome sequencing of DNA template from the *tprA*^{ko}- and wt-SS14 strain
1009 harvested at Passage #9 post-transformation. **(A)** *tprA*^{ko}-SS14 reads assembled to the wt-SS14
1010 genome sequence (NC_021508.1/CP004011.1) showing a gap where the *tprA* locus previously
1011 was. **(B)** *tprA*^{ko}-SS14 reads assembled to the wt-SS14 genome sequence where the *tprA* locus
1012 was replaced *in silico* with the *tp0574*promoter-*kan*^R sequence showing reads aligning to the
1013 *tp0574*promoter-*kan*^R sequence. **(C)** Reads from the wt-SS14 genome (sequenced here as
1014 control) aligned to the SS14 reference genome (NC_021508.1/CP004011.1) showing the
1015 integrity of the *tprA* locus. **(D)** Reads from the wt-SS14 genome (sequenced here as control)
1016 aligned to the *tprA*^{ko}-SS14 genome showing a gap where the *tp0574*promoter-*kan*^R sequence is
1017 located.

1018

1019 **Figure 5.** Kanamycin susceptibility assay for the wt-SS14 strain **(A)** and the *tprA*^{ko}-SS14 **(B)**. In
1020 panel A, values (mean \pm SD) for Day 0 and Day 1 are 8.95 (\pm 1.6) and 209.6 (\pm 12.2),
1021 respectively. In panel B, values for Day 0 and Day 1 (mean \pm SD) are 18.0 (\pm 1.8) and 315.6
1022 (\pm 14.7), respectively. mH₂O: molecular grade water. DNA was extracted from the 8 replicate
1023 *tprA*^{ko}-SS14 cultures propagated in 200 μ g/ml of kanamycin and tested with primers targeting
1024 the pUC57 vector backbone (panel **C**) used for transformation, showing lack of amplification.
1025 Wells 1-8: DNA template from the 8 replicate cultures; NTC: no template control; N: wt-SS14

1026 strain DNA; P: *ptprAarms-tp0574prom-kan^R* plasmid DNA template; M: molecular size marker.
1027 Expected amplicon size in ~3Kb. (D) DNA was extracted from the 8 replicate *tprA^{ko}*-SS14
1028 cultures propagated in 200 µg/ml of kanamycin and tested with primers targeting *T. pallidum*
1029 genomic region right outside of the *tprA* homology arms (primers in Table 1), showing that in
1030 the *tprA^{ko}*-SS14 strain a smaller amplicon is obtained due to the replacement of *tprA* by the *kan^R*
1031 gene, which is approximately 1Kb shorter in size. Wild-type SS14 DNA template yielded a
1032 longer amplicon due to an intact *tprA* locus still in place. No amplification was detected using
1033 the transformation plasmid DNA control. NTC: no template control; W: wt-SS14 strain DNA; P:
1034 *ptprAarms-tp0574prom-kan^R* plasmid DNA template; M: molecular size marker (Kbp).

1035

1036 **Figure 6.** Droplet digital PCR (ddPCR) on DNA or cDNA template from the *tprA^{ko}*- and wt-
1037 SS14 strain propagated in different kanamycin concentrations (*tprA^{ko}*-SS14) or no antibiotic (wt-
1038 SS14). (A) *kan^R:dnaA* gene copy number ratio. (B) *tprA:dnaA* gene copy number ratio. (C)
1039 *kan^R:tp0574* gene copy number ratio. (D) *kan^R:tp0574* mRNA ratio. NTC: no template control.

1040

1041 **Figure 7.** Droplet digital PCR (ddPCR) on DNA template from the *tprA^{ko}*- and wt- SS14 strain
1042 propagated in rabbits to which kanamycin was (w/) or was not (w/o) given. The only IACUC-
1043 approved administration route for kanamycin, however, resulted in treatment failure in rabbits
1044 infected with the wt-SS14 strain. *tprA:dnaA* ratio for the *tprA^{ko}*-SS14 strain was 0.007;
1045 *kan^R:dnaA* ratio for the wt-SS14 strains was zero.

1046

1047 **Figure 8.** Mass spectrometry coverage of the Kan^R protein expressed by the *tprA^{ko}*-SS14 strain.
1048 Orange sequences were experimentally identified. Light gray sequences were not. Protein

1049 coverage is 77%. If two identified peptides are adjacent, one is underlined. Overall, the Kan^R
1050 protein represented 1% of all proteins identified in the specimen.

1051

1052 **Figure 9.** Expansion of the *tprA*^{ko}-SS14 culture after inoculation of a limited number of
1053 treponemal cells. Two weeks past inoculation (P1), no *tprA*-specific signal could be detected by
1054 ddPCR, while the ratio *kan*^R:*dnaA* was virtually 1. The same results were obtained four weeks
1055 after inoculation (P2).

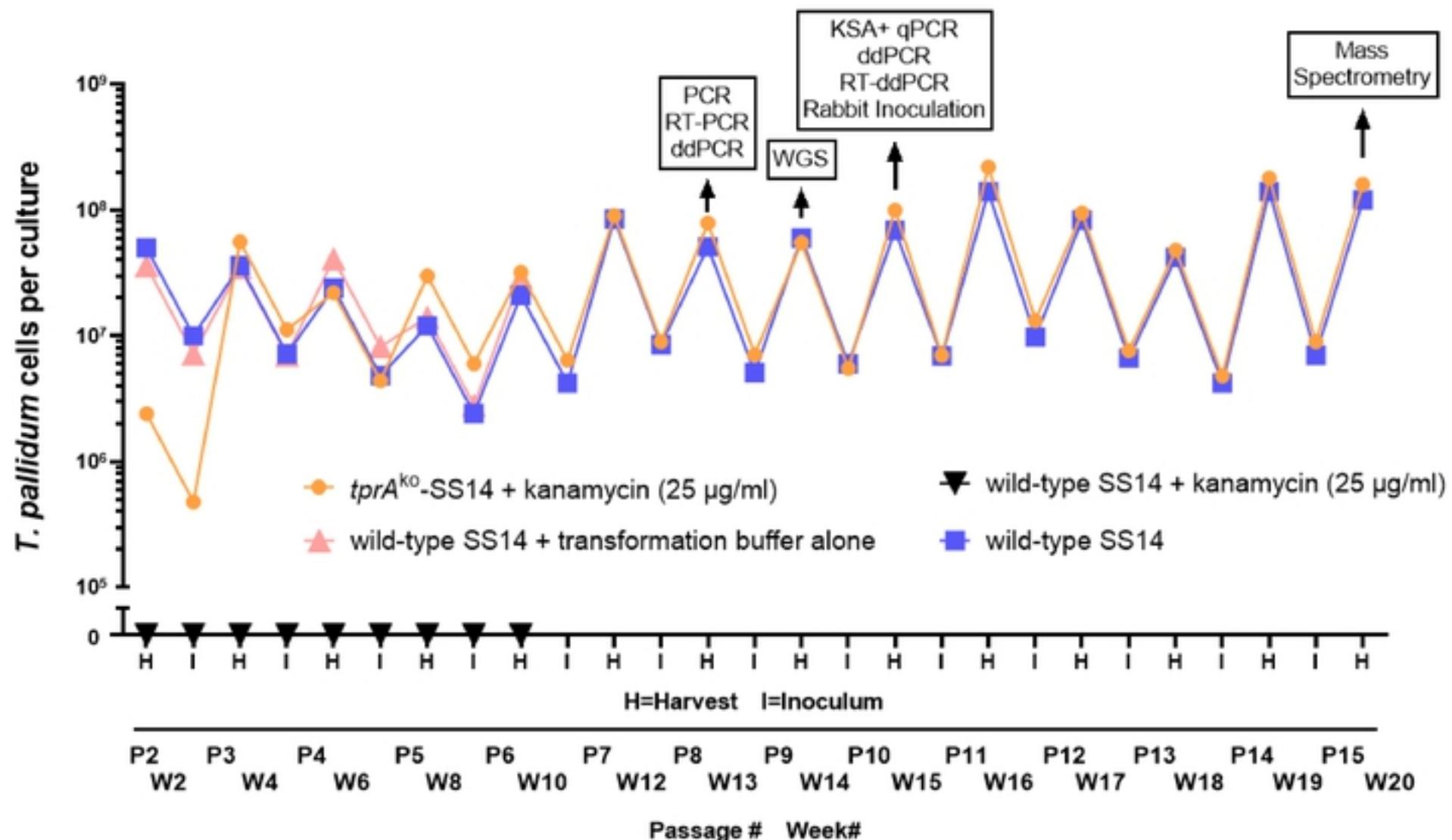


Figure 1

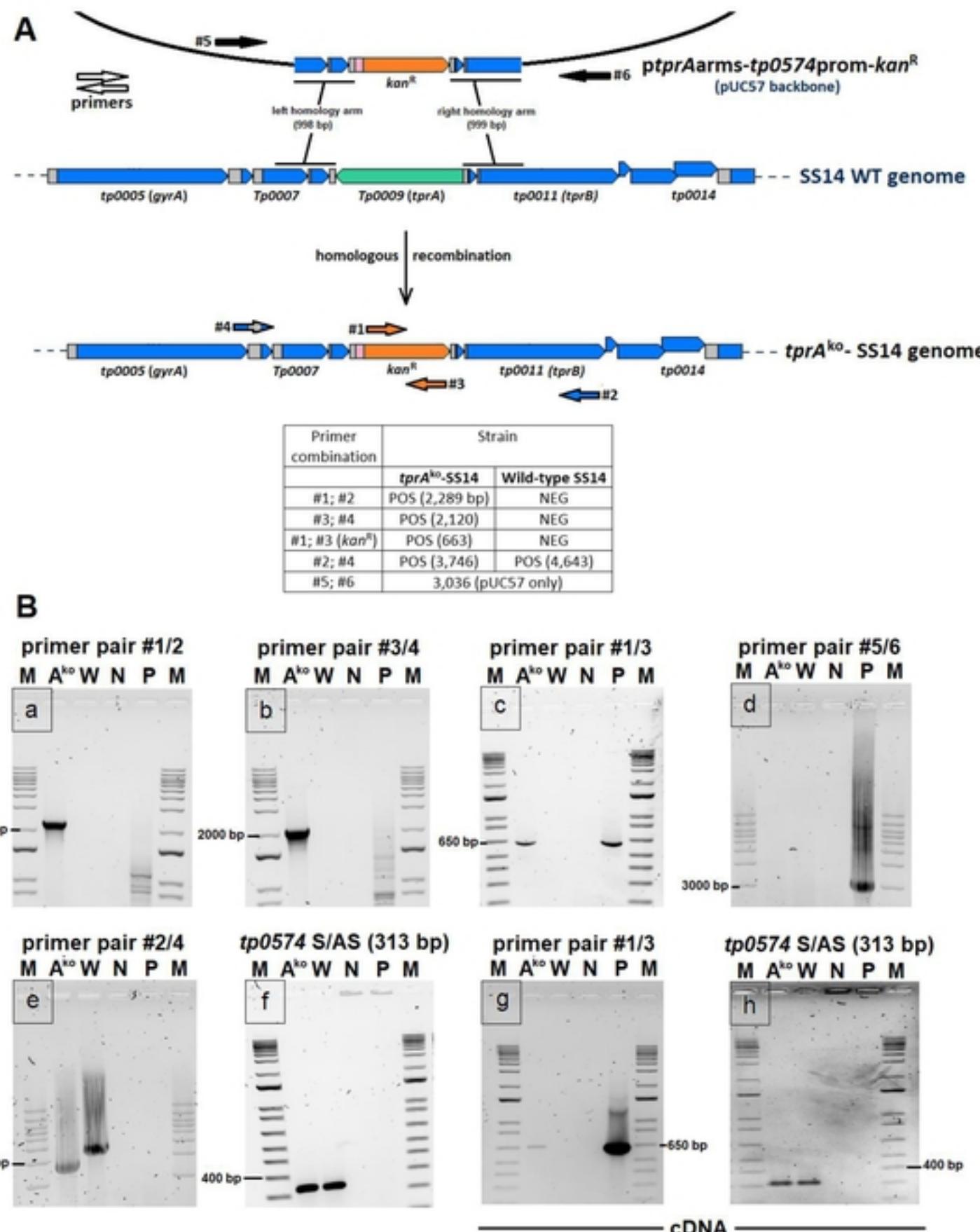


Figure 2

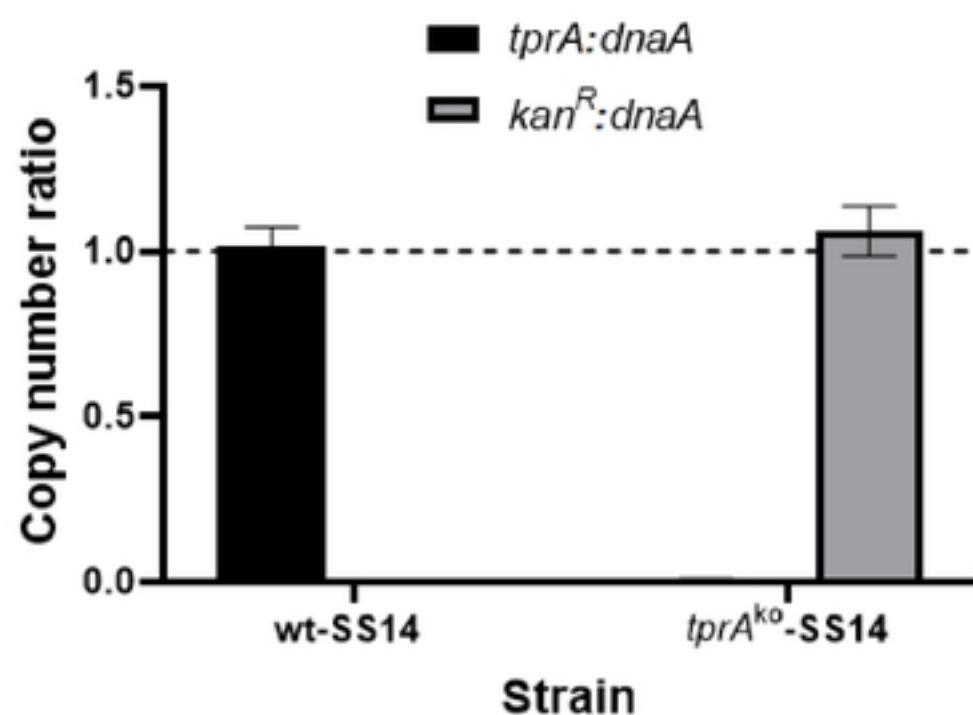
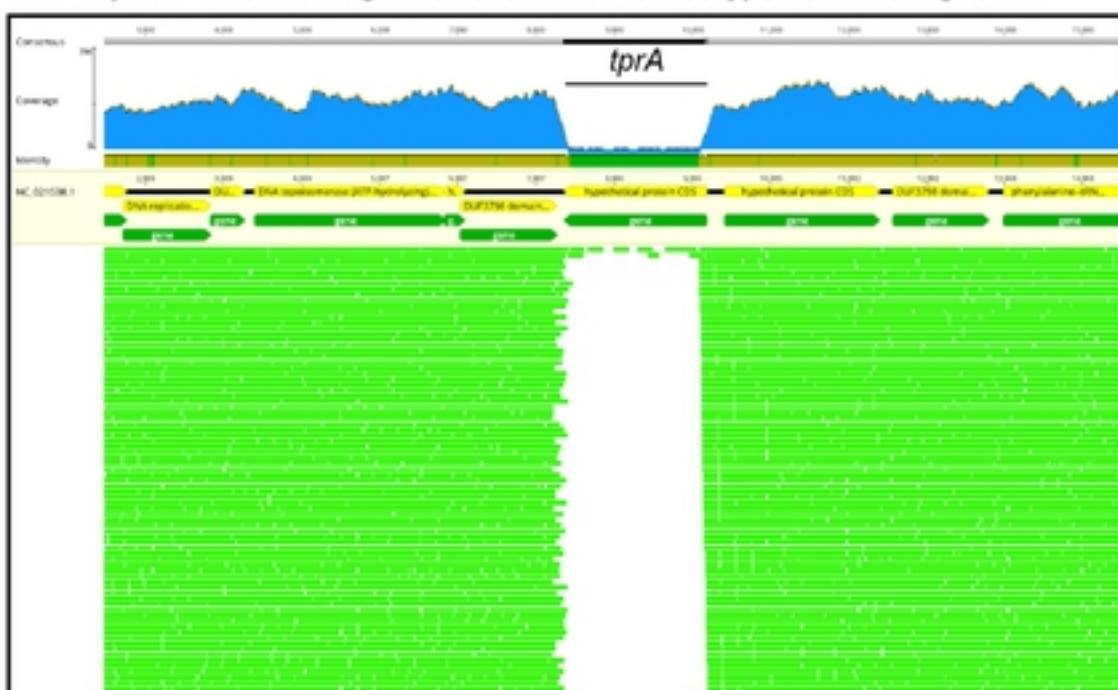
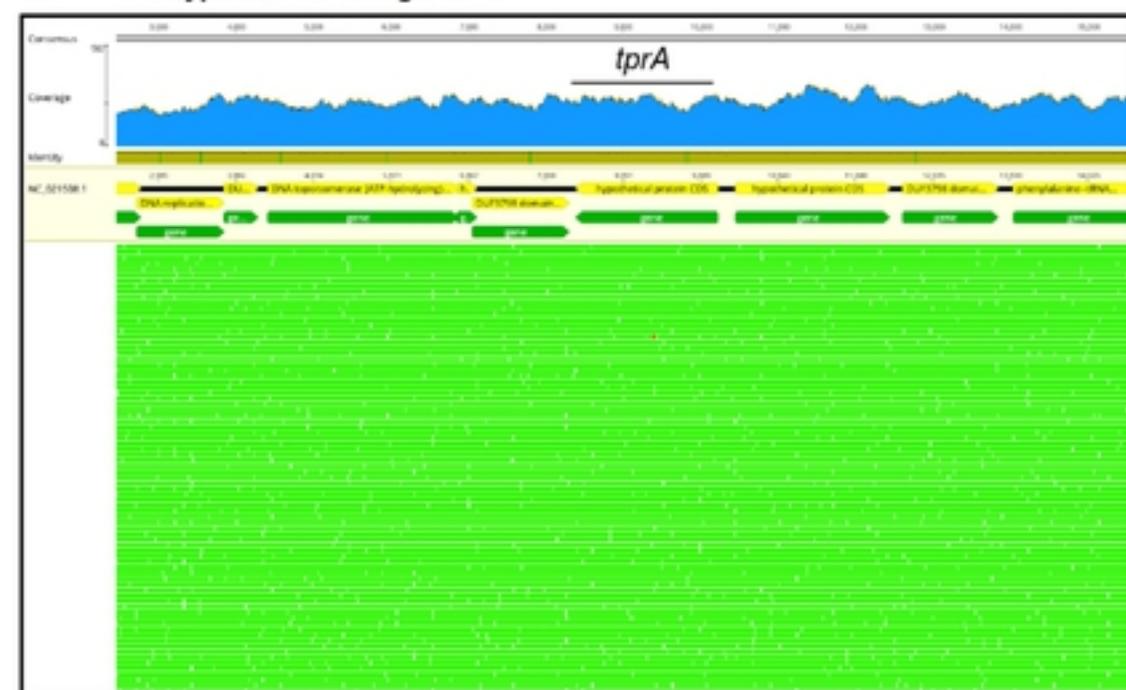
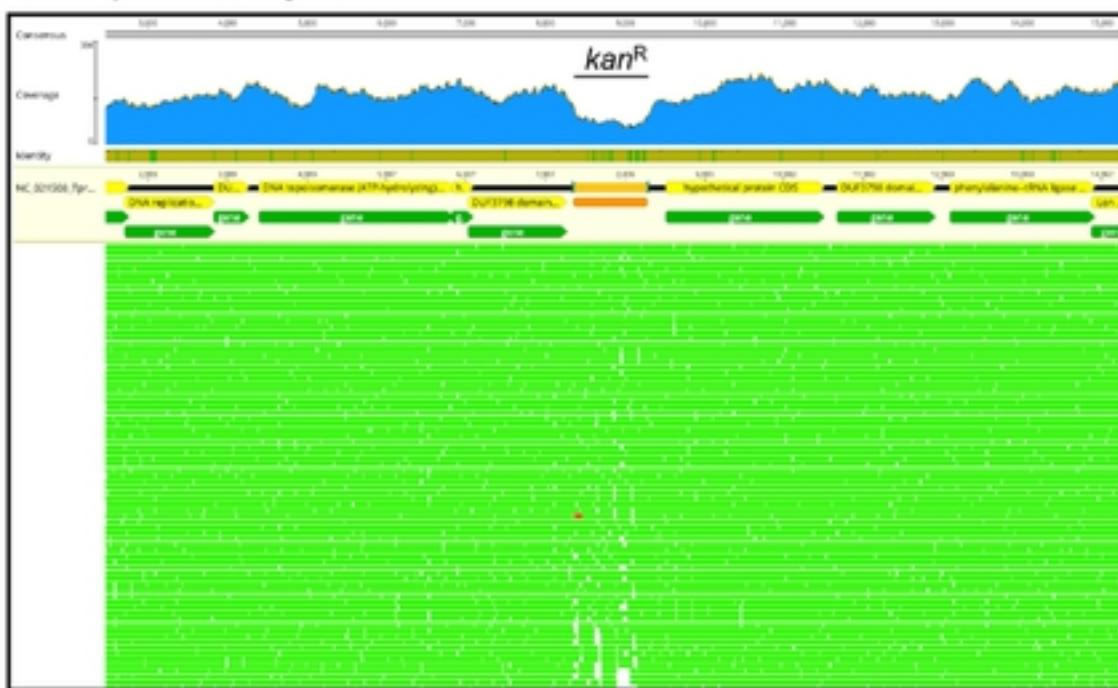
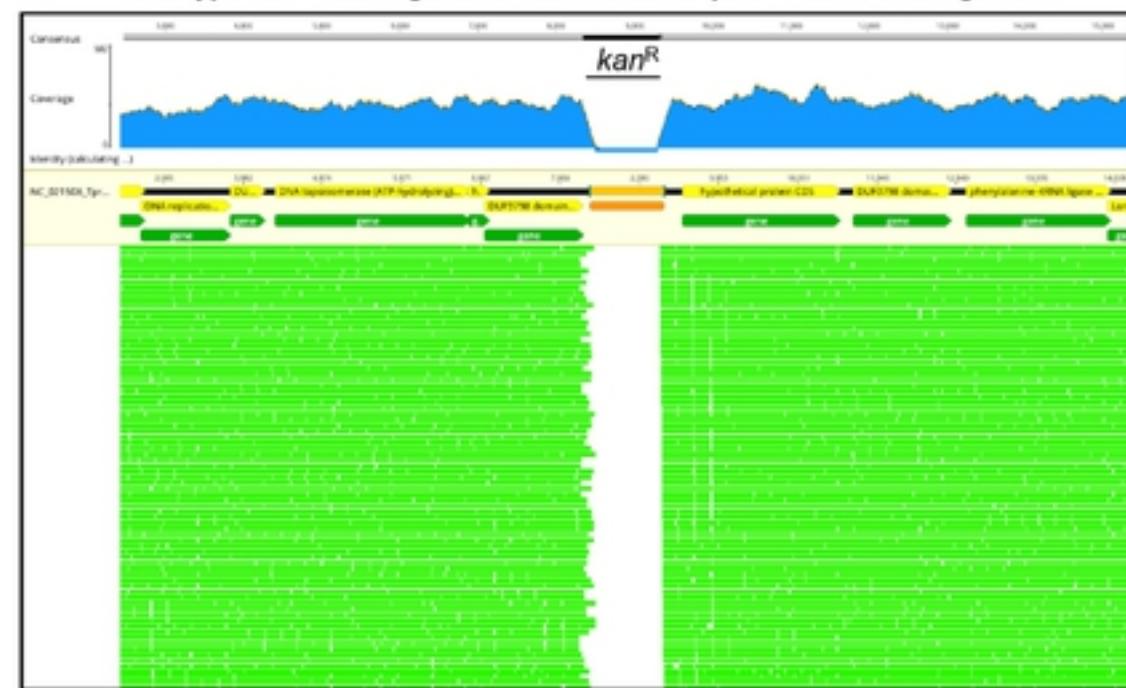
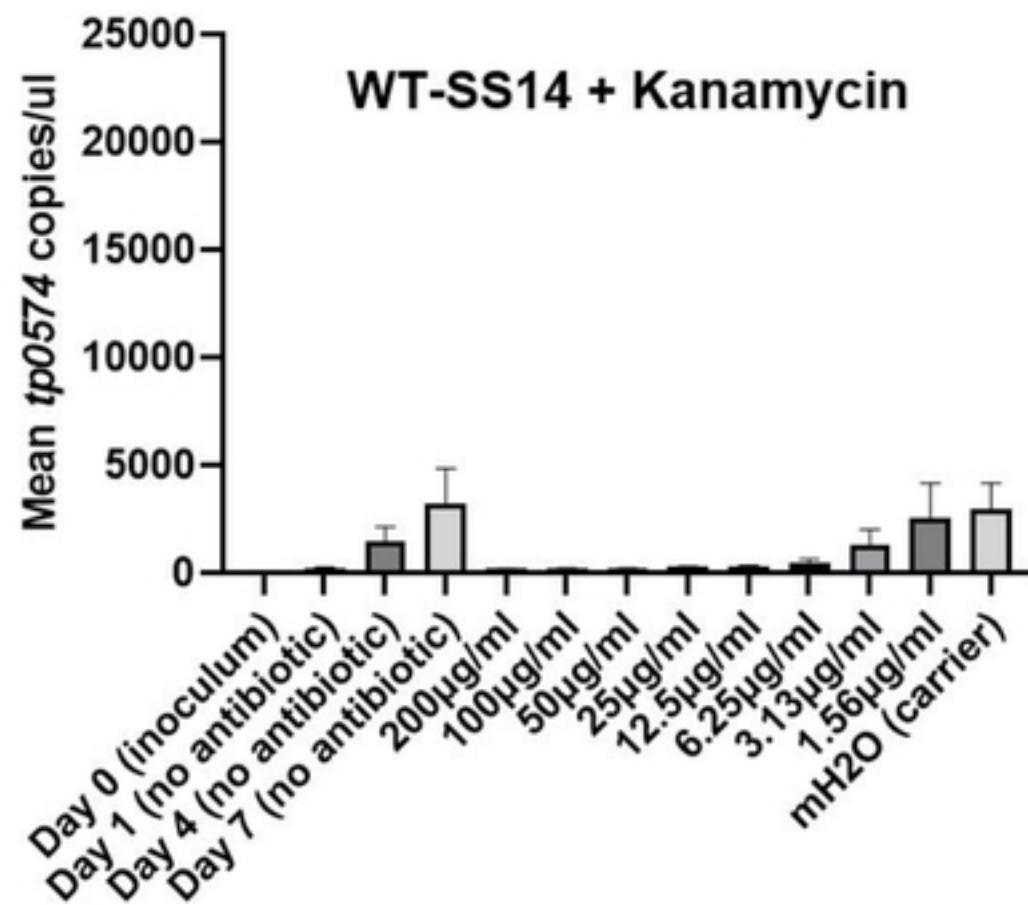
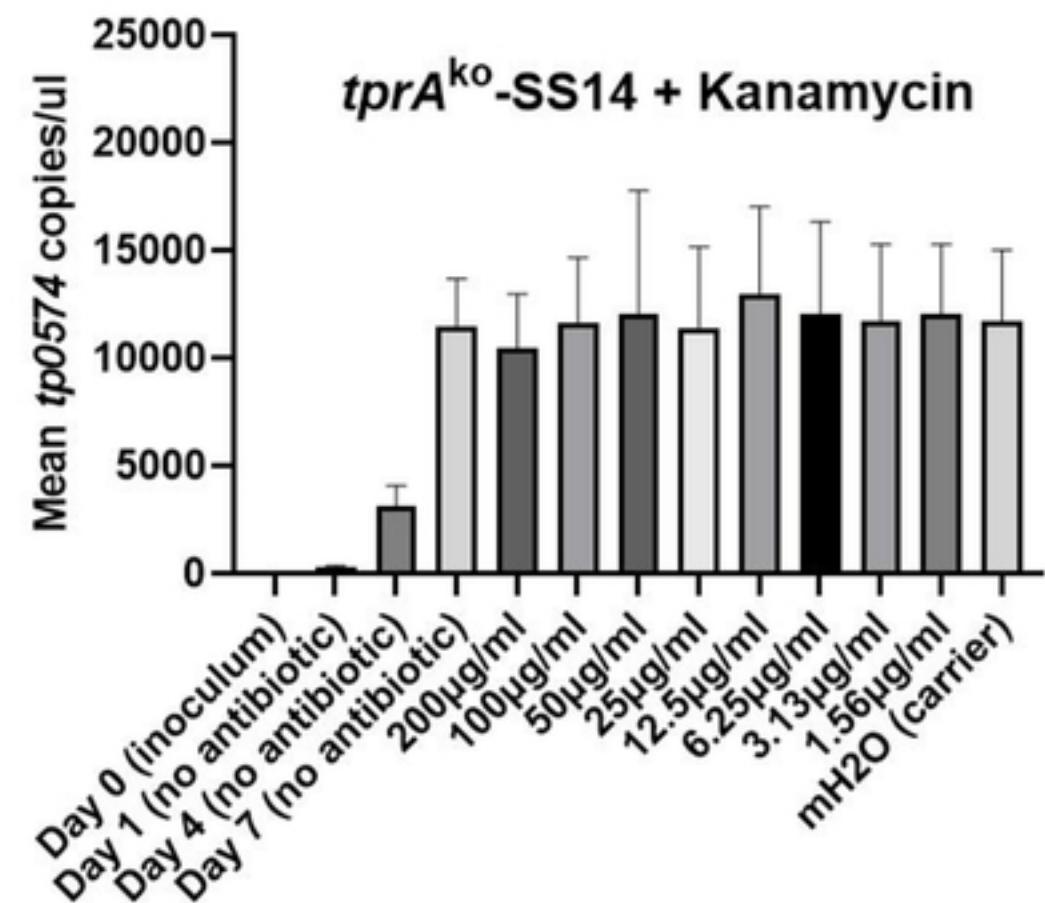
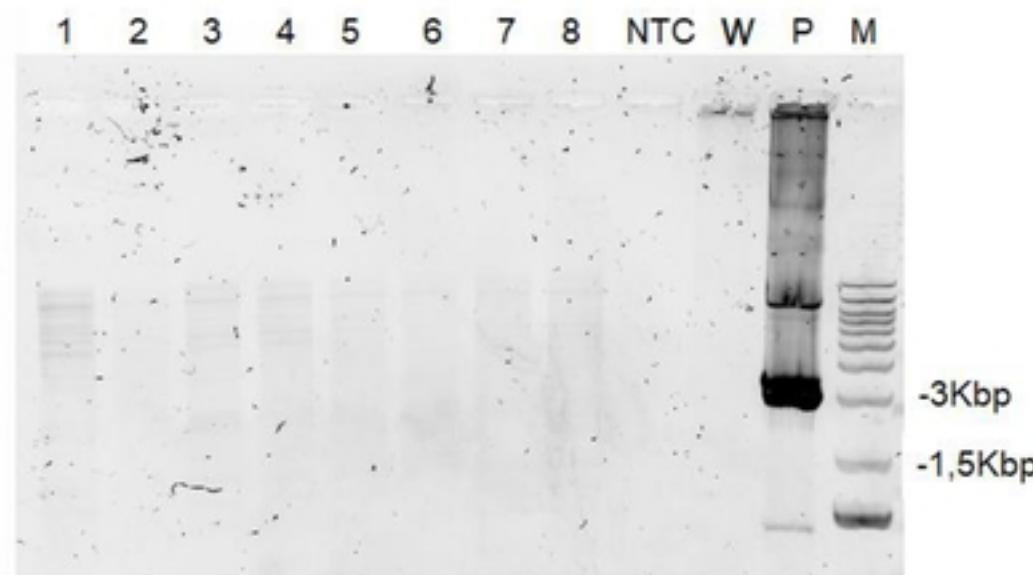
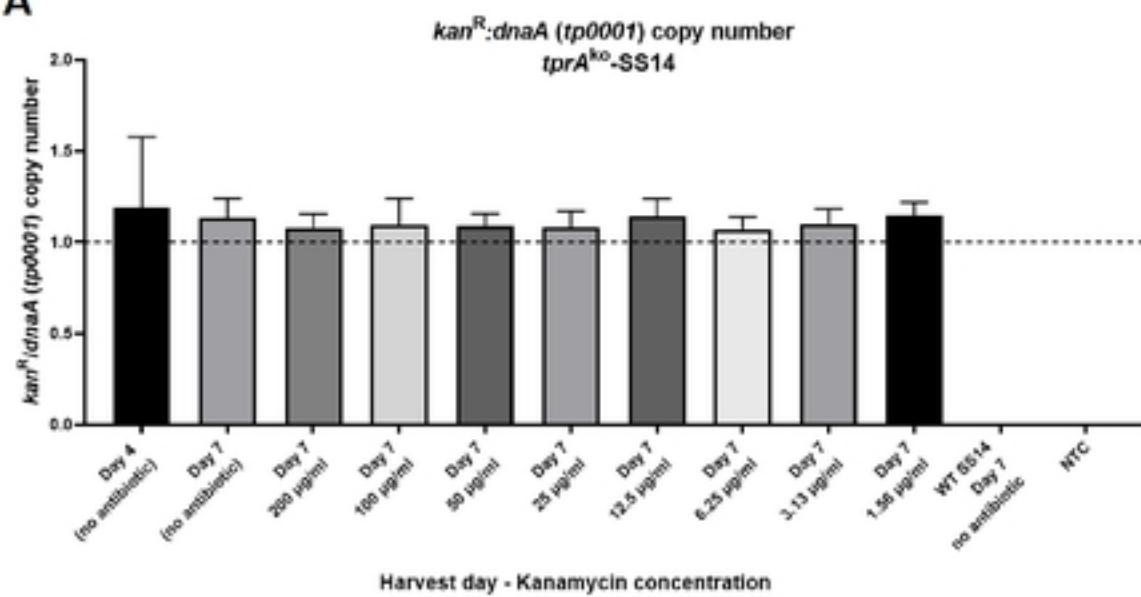
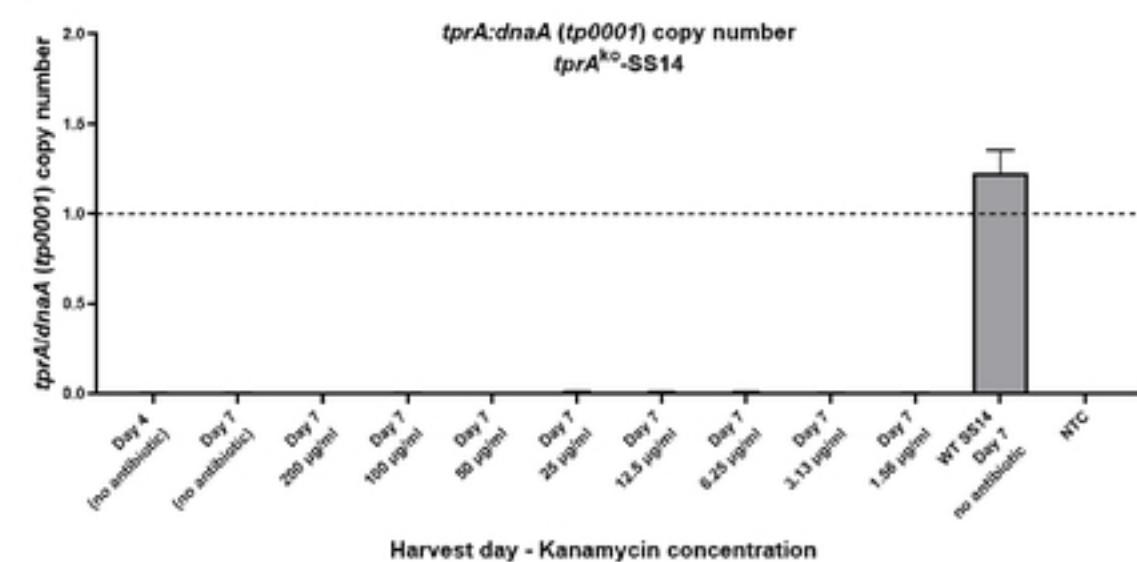
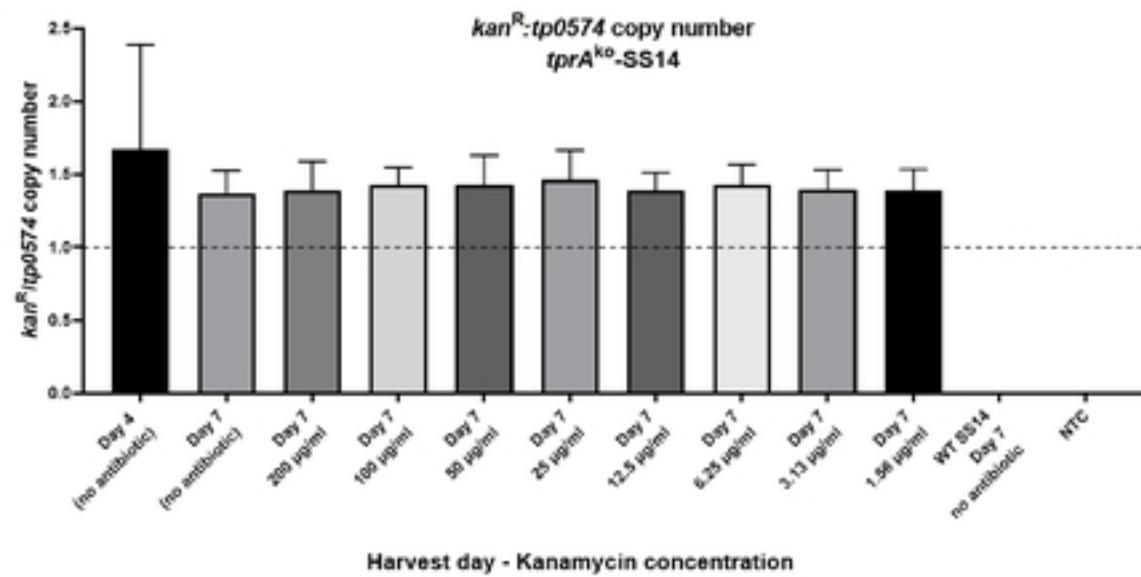
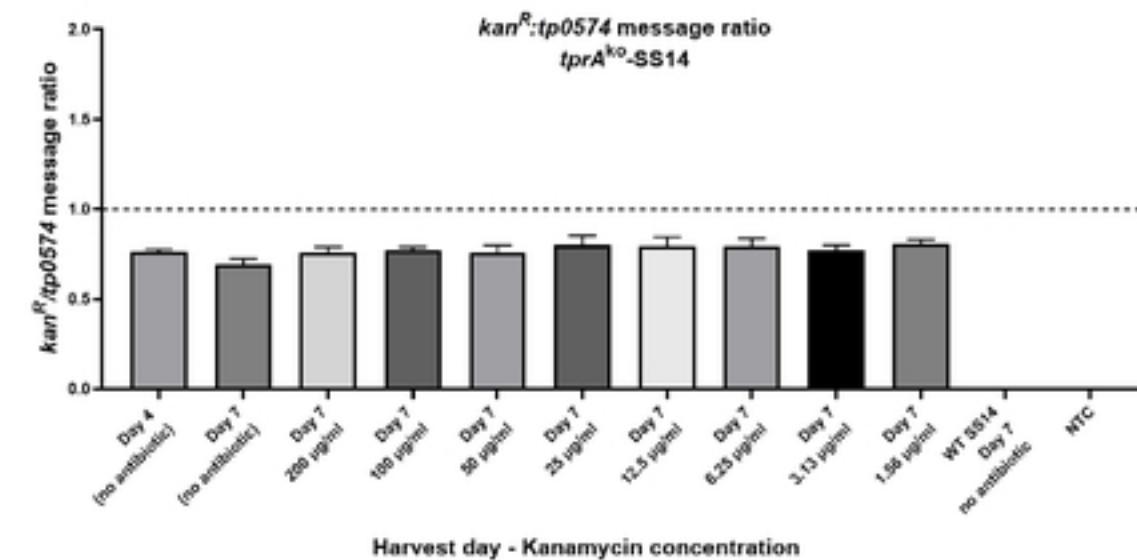




Figure 3


A *tprA*^{ko}-SS14 strain genome assembled to wild-type SS14 strain genome


B Wild-type SS14 strain genome




C *tprA*^{ko}-SS14 genome

D Wild-type SS14 strain genome assembled to *tprA*^{ko}-SS14 strain genome

Figure 4

A**B****C****D****Figure 5**

A**B****C****D****Figure 6**

In vivo-propagated treponemes

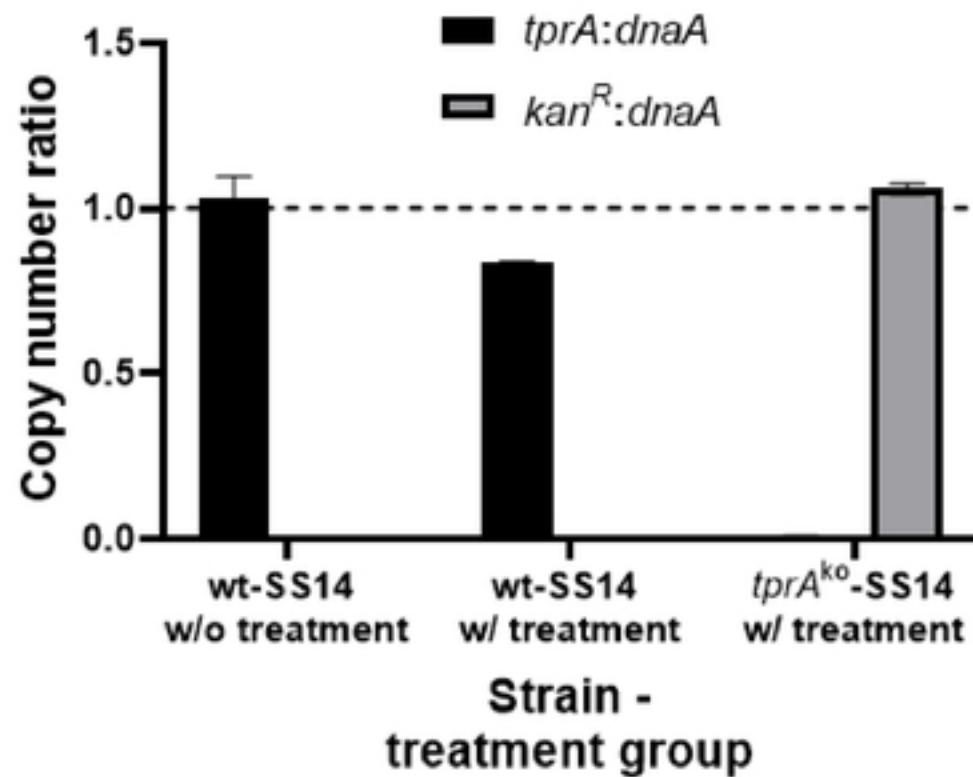


Figure 7

MSHIQRETCSRPRLNSNLDADLYGYRWARDNVGQSGATIYRLYGKPDAPEFLKHGKGSVANDVTDEMVRLNWLTAFMPLPTIKHFIRTPDDAWLL
TTAIPGKT**AFQVLEEYPDSGENIVDALAAFLRRLHSIPVCNC**PFNSDRVFRLTQAQSRMNNGLVDASDFDDERNGWPVEQVWKEMHKLLPFSPDSVV
THGDFSLDNLIFDEGKLIGCIDVGRVGIADRYQDLAILWNCLGEFSPSLQKRFFYK**YGIDNPDMNKLQFH**MLDEFF

Figure 8

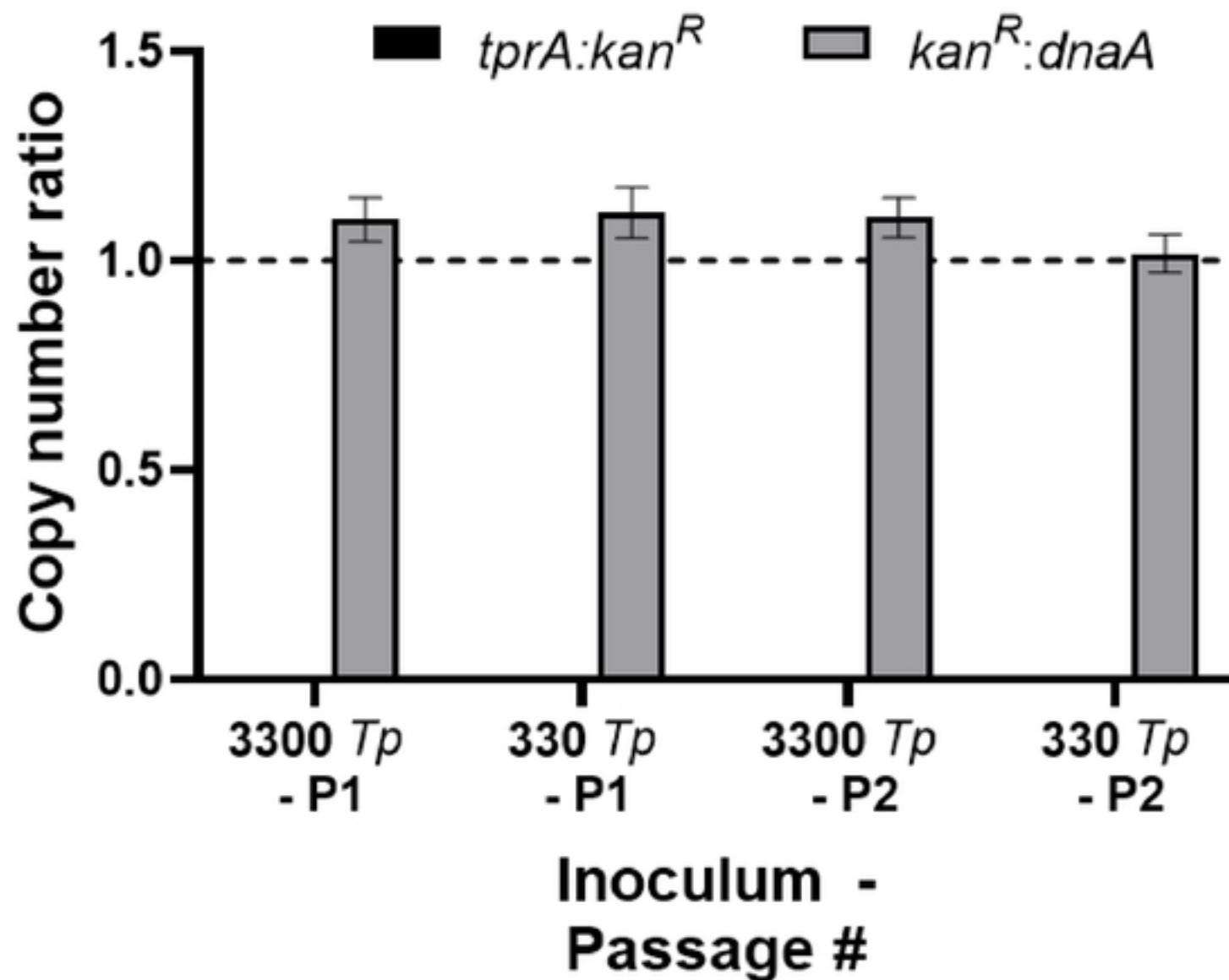


Figure 9