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ABSTRACT  

Neuroimaging stands to benefit from emerging ultrahigh-resolution histological atlases of the human brain; 
the first of which is <BigBrain=. Ongoing research aims to characterise regional differentiation of 
cytoarchitecture with BigBrain and to optimise registration of BigBrain with standard neuroimaging 
templates. Together, this work paves the way for multi-scale investigations of brain organisation. However, 
working with BigBrain can present new challenges for neuroimagers, including dealing with cellular 
resolution neuroanatomy and complex transformation procedures. To simplify workflows and support 
adoption of best practices, we developed BigBrainWarp, a toolbox for integration of BigBrain with 
multimodal neuroimaging. The primary BigBrainWarp function wraps multiple state-of-the-art 
deformation matrices into one line of code, allowing users to easily map data between BigBrain and 
standard MRI spaces. Additionally, the toolbox contains ready-to-use cytoarchitectural features to improve 
accessibility of histological information. The present article discusses recent contributions to BigBrain-
MRI integration and demonstrates the utility of BigBrainWarp for further investigations.  
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1. INTRODUCTION 

Understanding brain anatomy benefits from a multi-scale perspective, from the microscopic to the 
macroscopic level. Regional variations in cells underlie macro-scale patterns, whether they are reflective 
of functional dynamics, age, or disease states. For over 150 years (von Gudden, 1886), histological analysis 
of post mortem tissue has helped to reveal the microscopic architecture of the brain. Neuroanatomists 
observed a distinctive layered organisation of cells within the cortex (Baillarger, 1840) and developed 
principles of cortical organisation, including the definition of cortical types (Meynert, 1867), cortical areas 
(Brodmann, 1908; Geyer et al., 2011; Von Economo and Koskinas, 1925), and cortical gradients (Bailey 
and von Bonin, 1951; Goulas et al., 2019; Sanides, 1962). More recently, digitisation of post mortem tissue 
has allowed automated characterisation of cytoarchitecture (Schleicher et al., 1999). This mergence of 
histology with computational neuroscience supports more observer-independent evaluation of classic 
principles (Amunts et al., 2020; Paquola et al., 2019; Schiffer et al., 2020; Spitzer et al., 2018) and paves 
the way for novel investigations of the cellular landscape of the brain.  

In vivo neuroimaging offers a complementary window into the functional dynamics of the brain. 
Additionally, the non-invasive nature of magnetic resonance imaging (MRI) supports examination of 
population-level variation, which is largely inaccessible to post mortem neuroanatomy. Human brain 
mapping research has furthermore established standard spaces, notably the MNI152 space for volumetric 
whole-brain analysis (Fonov et al., 2011b, 2009; Mazziotta et al., 2001a, 2001b) and <fsaverage= and 
<fs_LR= for surface-based cortical analyses (Fischl et al., 1999; Van Essen et al., 2012). Despite ongoing 
advances in attaining higher spatial resolution with higher field strength (Deistung et al., 2013; Holdsworth 
et al., 2019; Sitek et al., 2019; Trampel et al., 2019; Turner and De Haan, 2017), in vivo MRI researchers 
remain constrained by limited spatial resolution from making inferences on a cellular level. Establishing 
the relation between macro-scale patterns and cellular architecture is crucial to substantiate physiological 
patterns observed with MRI and for further development of brain-inspired computational models.  

BigBrain is a singular 3D volumetric reconstruction of a sliced and cell-body stained complete human brain 
(Amunts et al., 2013). This resource allows for computational analysis of an entire human brain in relation 
to cell staining at high resolutions (up to 20µm). Tailored for neuroimagers, it is available in common MRI 
formats (minc and NifTI), accompanied by cortical surface reconstructions (Lewis et al., 2014), and 
nonlinearly registered to standard MRI templates (ICBM152 and MNI-ADNI) (Fonov et al., 2011a). 
Furthermore, recent studies have expanded the resource by offering improved registrations to standard 
spaces (Lewis et al., 2020; Xiao et al., 2019), nuanced intracortical surface models and laminar 
approximations (Wagstyl et al., 2020, 2018a) as well as regional segmentations (DeKraker et al., 2019; 
Xiao et al., 2019). Several studies have already capitalised on this unique resource for integrative 
histological-neuroimaging analyses, including comparison of cytoarchitectural and functional gradients 
(Paquola et al., 2019), cross-validation of in vivo defined microstructural gradients in the insula with 
histological measures (Royer et al., 2020), mapping variations in functional connectivity along the 
histological axis of the mesiotemporal lobe (Paquola et al., 2020b), fMRI responses of the histologically-
defined auditory system (Sitek et al., 2019), comparison of cytoarchitectural similarity with MRI-derived 
estimates of structural connectivity (Wei et al., 2018), evaluating the cytoarchitectural heterogeneity of the 
default mode network (Paquola et al., 2021), and analyses of the cytoarchitectural similarity of large-scale 
network hubs (Arnatkevičiūtė et al., 2020).  

The present article introduces the BigBrainWarp toolbox. The aim of the toolbox is to facilitate integration 
of BigBrain with neuroimaging modalities, helping neuroscientists to utilise cytoarchitectural information 
in conjunction with in vivo imaging. The toolbox is open and includes (i) histological features and pre-
transformed maps in BigBrain and imaging spaces, (ii) codes for performing data transformations and (iii) 
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a knowledgebase for multi-modal integration of BigBrain with MRI. Toolbox functions and tutorials are 
documented on http://bigbrainwarp.readthedocs.io. Here, introduce BigBrain to new users and demonstrate 
the utility of the BigBrainWarp toolbox. In Section 2, we overview the derivation of cytoarchitectural 
features from BigBrain and survey recent contributions to BigBrain-MRI integration. These include 
publication of histological cortical maps, regional segmentations, and registration efforts. Finally, we detail 
the core functions of BigBrainWarp and the current contents of the toolbox. In Section 3, we share three 
tutorials to illustrate potential applications of BigBrainWarp.  

 

2. MATERIAL AND METHODS 

Overview of BigBrain 

In brief, the reconstruction of BigBrain involved coronal slicing of a complete paraffin-embedded brain 
(65-year-old male) into 7400 sections at 20μm thickness. Each section was stained for cell bodies (Merker, 
1983), digitised and subjected to manual and automatic artefact repair. The digitised sections were 
reconstructed into a contiguous 3D volume. The volumetric reconstruction is available online at 40µm, 
100µm, 200µm, 300µm, 400µm and 1000µm resolutions (http://bigbrainproject.org). The 40µm version is 
released as 125 individual blocks corresponding to five subdivisions in the x, y, and z directions, with 
overlap. 100-1000 µm resolutions are provided as single files. Merker staining used in BigBrain is a form 
of silver impregnation for cell bodies that produces a high contrast of black pigment in cells on a virtually 
colorless background (Merker, 1983). In the digitised images, darker colouring is represented by lower 
numbers (8bit graphics: 0-28=black-white). It is common practice to invert the values of the intensity, such 
that image intensity increases with staining intensity. 

The grey and white matter boundaries of the cortical surface released in 2014 contain 163,842 vertices on 
each hemisphere, with vertices aligned between pial and white surfaces (Lewis et al., 2014). Surfaces were 
generated using a modified version of CIVET (Kim et al., 2005; MacDonald et al., 2000). Since then, a 
number of additional surface reconstructions have been published from which we may attain a range of 
metrics (Table 1).  

 

Table 1: Surface constructions for BigBrain 

 

Surfaces Purpose Reference 

Grey and white Initialisation and visualisation  (Lewis et al., 2014) 

Layer 1/2 & layer 4 Boundary conditions (Wagstyl et al., 2018a) 

Equivolumetric Staining intensity profiles  (Waehnert et al., 2014) 

Deep learning laminar Laminar thickness (Wagstyl et al., 2020) 

Hippocampal Initialisation and visualisation (DeKraker et al., 2019) 

Confluence Initialisation and visualisation (Paquola et al., 2020a) 

Note: Initialisation broadly refers to an input for feature generation, for example creation of staining intensity profiles or surface 
transformations.  
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Figure 1: Magnification of cytoarchitecture using BigBrain, from (A) whole brain 3D reconstruction (taken on 

https://atlases.ebrains.eu/viewer) to (B) a histological section at 20µm resolution (available from bigbrainproject.org) to (C) an 

intracortical staining profile. The profile represents variations in cellular density and size across cortical depths. Distinctive features 

of laminar architecture are often observable i.e., a layer IV peak. Note, the presented profile was subjected to smoothing as described 

in the following section. BigBrainWarp also supports integration of previous research on BigBrain including (D-E) 

cytoarchitectural and (F-G) morphological models (DeKraker et al., 2019; Paquola et al., 2020a, 2019; Wagstyl et al., 2020).  

 

Staining intensity profiles and derived features 

Sampling staining intensity from many cortical depths provides a profile of the cytoarchitecture, hereafter 
referred to as a staining intensity profile. This is achieved by constructing a set of surfaces within the cortex, 
then sampling intensity estimates at matched vertices across the surfaces. The current approach involves 

equivolumetric surface construction, whereby a set of intracortical surfaces are initialised at equidistant 
depths, then modulated by cortical curvature (Waehnert et al., 2014). This holds advantages for histological 
data because laminae vary in thickness depending on cortical folding (Bok, 1929). The procedure can be 
deployed using dedicated python scripts (Wagstyl et al., 2018b) and is implemented in BigBrainWarp. 

Smoothing can be employed in tangential and axial directions to ameliorate the effects of artefacts, blood 
vessels, and individual neuronal arrangement (Wagstyl et al., 2018a). Smoothing across depths is enacted 
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for each staining profile independently. Here, we use an iterative piece-wise linear procedure that minimises 
curve shrinkage, where the degree of smoothing is modulated by the number of iterations (Taubin, 1995). 
In contrast, surface-wise smoothing is performed at each depth and involves moving a Gaussian kernel 

across the surface mesh. We tested the impact of number of surfaces and smoothing on profiles, using the 
100µm whole brain volume. Specifically, we evaluated spatial autocorrelation and number of profile peaks 
for each combination (number of surfaces 50-100, iterations of depth-wise smoothing=2-10, FWHM of 
surface-smoothing=0-8, Figure S1). Spatial autocorrelation was calculated as the average product-moment 

correlation of staining intensity profiles at various distances along the BigBrain surface mesh (distances: 1-
50 steps). Increasing the number of surfaces beyond 50 did not impact the spatial autocorrelation and led 
to small increases in the number of peaks in intensity profiles. Depth-wise smoothing did not impact either 
outcome measure. As could be expected, surface-wise smoothing substantially increased spatial 
autocorrelation. For the initial BigBrainWarp release, we selected 50 surfaces, 2 iterations of depth-wise 

smoothing and (a modest) 2 FWHM surface-wise smoothing. BigBrainWarp also provides a simple 
function for generating staining intensity profiles.  

Previous research has sought to characterise the laminar structure of the cortex using BigBrain staining 
intensity profiles (Paquola et al., 2019; Schleicher et al., 1999; Wagstyl et al., 2018a; Zilles et al., 2002) . 
The isocortex generally contains six layers (Brodmann, 1909), certain features of which manifest on 
BigBrain staining intensity profiles. The transition from layer I to II exhibits a sharp increase in staining, 
because layer I is only sparsely populated with cells. Layer IV harbours a noticeable peak in cell staining, 
corresponding to dense packing of granule cells. The peak of layer IV corresponds to the division between 
supragranular and infragranular layers, which have markedly different roles in neural communication 
(Buffalo et al., 2011; Felleman and Van Essen, 1991; Rockland and Pandya, 1979). The relative depth of 
layer IV is also potentially informative, likely related to the propensity for feedforward vs feedback 
communication (Beul et al., 2017; Sanides, 1962; Wagstyl et al., 2018a), though the demarcation of 
feedforward and feedback projections is more multifactorial and complex (Rockland, 2015). A six-layered 
decomposition of BigBrain cortex has also been produced by training a convolutional neural network on 
manual annotations in 51 regions, then extending the model to the whole isocortex (Wagstyl et al., 2020) 
(Figure 1E). Laminar thickness estimates aligned with prior histological studies (Von Economo and 
Koskinas, 1925), while increasing overall spatial precision. There remains difficulty in extending these 
approaches to cortex without clear laminar differentiation, however (i.e., anterior insula, mesiotemporal 
lobe). 

More detailed characterisation of cytoarchitecture is offered by moment-based parameterisation of 
intracortical intensity profiles. This technique, pioneered by the Jülich group (Schleicher et al., 1999; Zilles 
et al., 2002), involves calculating the central moments (i.e., mean, standard deviation, skewness, and 
kurtosis) of each staining intensity profile and the derivative profile, resulting in a multidimensional feature 
vector for each cortical point. Each central moment may be interpreted in neurobiological terms (Zilles et 
al., 2002). For example, mean intensity generally increases in the anterior to posterior direction and has 
been related to overall cellular density  (Wree et al., 1982). In contrast, skewness varies from sensory to 
limbic areas (i.e., sensory-fugal) and indexes the balance of cellular density in infra- vs supra-granular 
layers (Paquola et al., 2020b). Comparison of profiles can illuminate large-scale patterns of cortical 
organisation. Observer-independent discrimination of cortical areas can be accomplished by comparing 
moment-based feature vectors between neighbouring vertices (Schleicher et al., 1999). The areal boundaries 
are defined where the feature vector exhibits a sudden shift. Over the past 20 years, this procedure has been 
employed in 23 post mortem brains, including BigBrain, resulting in a 3D probabilistic atlas of the human 
brain (Amunts et al., 2020). While this work is based on a selection of histological sections of each brain, 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.04.442563doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442563
http://creativecommons.org/licenses/by-nc/4.0/


recent work investigates solutions for mapping each section in a stack with the help of deep learning, in 
order to produce gapless 3D maps at full detail (Schiffer et al., 2020) and ultimately obtain a dense mapping 
of the BigBrain model. 

Cortex-wide cytoarchitectural similarity may also be estimated, by cross-correlating staining intensity 
profiles between different cortical locations (Paquola et al., 2019). We recently applied diffusion map 
embedding, a nonlinear manifold learning technique (Coifman and Lafon, 2006), to the profile cross-
correlation matrix of BigBrain to identify principle axes of cytoarchitectural differentiation (Paquola et al., 
2019) (Figure 1D). Here, we replicated the approach with updated staining intensity profiles. Bearing in 
mind the high-dimensional matrix manipulation necessary for this procedure, we first decimated the 
BigBrain mesh from 327,684 to ~10,000 vertices. Mesh decimation involves selection of a subset of vertices 
that preserve the overall shape of the surface followed by retriangulation of the faces with only the selected 
vertices. We assigned non-selected vertices to the nearest selected vertex, based on shortest path on the 
mesh (ties were solved by shortest Euclidean distance). In this manner, all 327,684 vertices belong to one 
of ~10,000 parcels. Derivation of the cytoarchitectural gradients involved (i) averaging staining intensity 
profiles within each parcel, (ii) pair-wise correlation of parcel-average staining intensity profiles 
(controlling for the global-average staining intensity profile), (iii) transformation to a normalised angle 
matrix, and iv) diffusion map embedding of this matrix. Each eigenvector captures an axis of 
cytoarchitectural variation and is accompanied by an eigenvalue that approximates the variance explained 
by that eigenvector. Here, the first two eigenvectors explain approximately 42% and 35% of variance, 
respectively, and describe anterior-posterior and sensory-fugal axes (further details in Tutorial 2). 

 

Morphometric models in BigBrain 

The high resolution of BigBrain allows for precise segmentation of anatomical structures. Manual 
segmentations of the putamen, caudate nucleus, globus pallidus pars externa, globus pallidus pars interna, 
nucleus accumbens, amygdala, thalamus, red nucleus, substantia nigra, subthalamic nucleus and the 
hippocampus are available on Open Science Framework (https://osf.io/xkqb3/). Extending upon whole-
structure segmentation, a recent study (DeKraker et al., 2019) used anatomical landmarks to create an 
internal coordinate system of the hippocampus. The approach involved solving Laplace's equation under 
three sets of boundary conditions: anterior-posterior, proximal-distal (relative to the subiculum), and inner-
outer (DeKraker et al., 2018). Subsequently, the hippocampus can be <unfolded=, allowing examination of 
histological and morphometric features in a topologically continuous space (Figure 1E), in line with other 
surface-based studies of the hippocampus (Bernhardt et al., 2016; Caldairou et al., 2016; Kim et al., 2014; 
Vos de Wael et al., 2018). Furthermore, this 3D coordinate system enabled the creation of a continuous 
surface model of the mesiotemporal cortex (Paquola et al., 2020b). The hippocampus is typically excluded 
from cortical surface models due to its complex folding and unusual cytoarchitectural makeup, with Cornu 
Ammonis subfields being allocortical and the dentate gyrus an interlocked terminus. Using the proximal-
distal axis of the hippocampus, we were able to bridge the isocortical and hippocampal surface models 
recapitulating the smooth confluence of cortical types in the mesiotemporal lobe (Figure 1F). The 
continuous surface model, defined by a pial/inner surface and a white/outer surface, can also be used to 
initialise equivolumetric surface constructions (Waehnert et al., 2014; Wagstyl et al., 2018b). We generated 
staining intensity profiles using 40µm resolution blocks of BigBrain across the cortical confluence, which 
are released in BigBrainWarp with the matching surface model.  
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BigBrain-MRI transformations 

BigBrain-MRI integration is pillared upon transformations between spaces. Spatial registration already 
exists as a fundamental component of most neuroimaging pipelines. As such, extensive research has 
focused on the creation of standard spaces, such as ICBM-MNI152 (Fonov et al., 2011b, 2009) and 
FreeSurfer’s fsaverage (Fischl et al., 1999). Multiple studies have demonstrated the continuous 
enhancement of registration techniques over the years (Collins and Evans, 1997; Klein et al., 2009; Xiao et 
al., 2019). Registration of BigBrain to MRI templates involves additional challenges, however, including 
histological artefacts, differences in intensity contrasts and inter-individual variability. 

For the initial BigBrain release (Amunts et al., 2013), full BigBrain volumes were resampled to 
ICBM2009sym (a symmetric and non-linear MNI152 template) and MNI-ADNI (an older adult T1-
weighted template) (Fonov et al., 2011a). Each resampling procedure involved a linear then a nonlinear 
transformation (available on ftp://bigbrain.loris.ca/BigBrainRelease.2015/). BigBrain volumes resampled 
to ICBM2009sym are commonly referred to as BigBrainSym. We continue to use this nomenclature in 
BigBrainWarp. A prior study (Xiao et al., 2019) was able to further improve the accuracy of the 
transformation for subcortical structures and the hippocampus using a two-stage multi-contrast registration 
procedure. The first stage involved nonlinear registration of BigBrainSym to a PD25 T1-T2* fusion atlas 
(Xiao et al., 2017, 2015), using manual segmentations of the basal ganglia, red nucleus, thalamus, 
amygdala, and hippocampus as additional shape priors. Notably, the PD25 T1-T2* fusion contrast is more 
similar to the BigBrainSym intensity contrast than a T1-weighted image, such as the commonly used 
ICBM2009sym template. The second stage involved nonlinear registration of PD25 to ICBM2009sym and 
ICBM2009asym using multiple contrasts. The authors have shared the deformation matrices on Open 
Science Framework (https://osf.io/xkqb3/). The accuracy of the transformations was evaluated relative to 
anatomical fiducials (Lau et al., 2019) and regional segmentations. The two-stage procedure resulted in 
0.86-0.97 DICE coefficients for manual segmentations, improving upon direct overlap of BigBrainSym 
with ICBM2009sym (0.55-0.91 DICE). Anatomical fiducials alignment incurred 1.77±1.25mm errors, on 
par with direct overlap of BigBrainSym with ICBM2009sym (1.83±1.47mm). In line with this work, 
BigBrainWarp enables evaluation of novel deformation fields using anatomical fiducials (Lau et al., 2019) 
and region segmentations (evaluate_warps.sh).    

The unique morphology of BigBrain also presents challenges for surface-based transformations. 
Idiosyncratic gyrification of certain regions of BigBrain, especially the anterior cingulate, cause 
misregistration (Lewis et al., 2020). To overcome this issue, ongoing work leverages multimodal surface 
matching [MSM; (Robinson et al., 2018, 2014)] to optimise surface transformation from BigBrain to 
standard surface templates. This procedure improves accuracy and minimises distortion of transformed 
cortical maps, almost on par with in vivo MRI transformations (Lewis et al., 2020). 

 

Compiling BigBrainWarp 

For BigBrainWarp, we wrote a modular set of wrapper scripts to map between common BigBrain and MRI 
spaces (Figure 2). The package automatically pulls state-of-the-art deformation matrices, then applies the 
transformation to novel data. While applying these various transformations involve different tools (e.g.: 
minc-tools, FSL, HCP-workbench), BigBrainWarp wraps these functions into a single bash script (see 
Table 2 for functionality), reducing onus on the user to have experience in each software package. 
Furthermore, containerisation of the BigBrainWarp via Docker allows users to interact with the scripts 
without installing dependencies. This procedure ensures flexibility with ongoing developments in the field 
and simplifies procedures for new users. 
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Figure 2: Overview of spaces and transformations included within BigBrainWarp. 

 

Table 2: Input parameters for the bigbrainwarp function 

Parameter Description Conditions Options 

in_space Space of input data Required bigbrain, bigbrainsym, icbm, 
fsaverage, fs_LR  

out_space Space of output data Required bigbrain, bigbrainsym, icbm, 
fsaverage, fs_LR 

wd Path to working directory Required  
in_vol Full path to input data, 

whole brain volume. 

Requires either in_vol, or in_lh and in_rh 

Permitted formats: mnc, nii or 
nii.gz 

ih_lh Full path to input data, left 
hemisphere surface Permitted formats: label.gii, 

annot, shape.gii, curv or txt ih_rh Full path to input data, right 
hemisphere surface 

interp Interpolation method  Required for in_vol. Optional for txt input. Not 
permitted for other surface inputs. 

For in_vol, can be trilinear 
(default), tricubic, nearest or 
sinc. 
For txt, can be linear or nearest 

out_name Prefix for output files Required for surface input. Optional for volume 
input, otherwise defaults to prefix of input file 

 

out_type Specifies whether output in 
surface or volume space  

Optional function for bigbrain and bigbrainsym 
output. Otherwise, defaults to the same type as 
the input.   

surface, volume 

 

We used BigBrainWarp to map histological gradients to fsaverage, fs_LR and ICBM152. For the initial 
release of BigBrainWarp, we selected a multi-scale imaging dataset (MICs), which contains group-level 
imaging features on standard surface templates from 50 healthy adults. In particular, we adopted cortical 
gradients derived from qT1 mapping and resting-state functional connectivity. We used BigBrainWarp to 
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transform microstructural and functional gradients, as well as intrinsic functional communities (Yeo et al., 
2011), to the BigBrain surface. The current contents of the toolbox are shown in Table 3. 

 

Table 3: BigBrainWarp contents 

Data Definition Original space Transformed 

spaces 

profiles.txt staining intensity profiles across the isocortex sampled 
from 100µm volume 

BigBrain  

profiles_confluence.txt staining intensity profiles of the right mesiotemporal lobe 
sampled from 40µm volume 

BigBrain  

rh.confluence continuous surface of the right mesiotemporal lobe BigBrain icbm 

Hist-G1 first gradient of cytoarchitectural differentiation derived 
from BigBrain 

BigBrain fsaverage, fs_LR, 
icbm 

Hist-G2 second gradient of cytoarchitectural differentiation 
derived from BigBrain 

BigBrain fsaverage, fs_LR, 
icbm 

Micro-G1 first gradient of microstructural differentiation derived 
from quantitative in vivo T1 imaging 

fsaverage BigBrain, icbm 

Func-G1 first gradient of functional differentiation derived from rs-
fMRI 

fsaverage, BigBrain, icbm 

Func-G2 second gradient of functional differentiation derived from 
rs-fMRI 

fsaverage BigBrain, icbm 

Func-G3 third gradient of functional differentiation derived from rs-
fMRI 

fsaverage BigBrain, icbm 

Yeo2011_7Network 7 functional clusters from Yeo & Krienen et al., 2011 fsaverage BigBrain 

Yeo2011_17Networks 17 functional clusters from Yeo & Krienen et al., 2011 fsaverage BigBrain 

 

 

3. RESULTS 

The BigBrainWarp toolbox supports a range of integrative BigBrain-MRI analyses. The following tutorials 
outline three BigBrain-MRI analyses with unique types of transformations. Neither the forms nor the 
motivations are exhaustive but illustrate applications. Code for each tutorial is available in the 
BigBrainWarp toolbox.  

 

Tutorial 1: BigBrain → ICBM2009sym MNI152 space 

Motivation: Despite MRI acquisitions at high and ultra-high fields reaching submillimeter resolutions with 
ongoing technical advances, certain brain structures (e.g., subthalamic nucleus) and subregions (e.g., 
hippocampal Cornu ammonis subfields) remain difficult to identify (Kulaga-Yoskovitz et al., 2015; Wisse 
et al., 2017; Yushkevich et al., 2015). BigBrain can be used to label such regions, then the atlas labels can 
be transformed to a standard imaging space for further investigation. In particular, this approach can support 
exploration of the functional architecture of histologically-defined regions of interest.  
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Approach: (i) Create volumetric label in BigBrain space. (ii) Perform nonlinear transformation to 
ICBM2009sym space using BigBrainWarp. (iii) Transform individual resting-state functional MRI data to 
ICBM2009sym MNI152 space. (iv) Sample timeseries from labelled voxels in this standard space. 

Example: The mesiotemporal lobe plays important roles in multiple cognitive processes (Moscovitch et al., 
2005; Squire et al., 2004; Vos de Wael et al., 2018) and is affected by multiple neurological and 
neuropsychiatric conditions (Ball et al., 1985; Bernhardt et al., 2016, 2015; Calabresi et al., 2013). 
Increasing research suggests that this region shows complex subregional structural and functional 
organization. Here, we illustrate how we track resting-state functional connectivity changes along the 
latero-medial axis of the mesiotemporal lobe, from parahippocampal isocortex towards hippocampal 
allocortex. For further details and additional motivation, please see (Paquola et al., 2020a): (i) Our 
volumetric label represents the iso-to-allocortical axis of the mesiotemporal lobe. We constructed this axis 
by joining the isocortical (Lewis et al., 2014) and hippocampal (DeKraker et al., 2019) surface meshes in 
BigBrain histological space, calculated the distance of each vertex in the new surface model to the 
intersection of isocortical and hippocampal meshes (Figure 3A). Next, we labelled voxels in BigBrain 
histological space, according to the position of the iso-to-allocortical axis (Figure 3Bii). The iso-to-
allocortical axis is ready-made in the BigBrainWarp toolbox. (ii) We transform the volume from the 
BigBrain histological space to ICBM2009sym (Figure 3Biii).  

bigbrainwarp --in_space bigbrain --out_space icbm --wd /project/  

--in_vol bigbrain_axis_vox.nii --interp linear 

 

(iii) For each participant, in this case 50 healthy adults from the MICs dataset, we construct an 
individualised transformation from ICBM2009sym to native functional space, based on the inverse of the 
within-subject co-registration to the native T1-weighted imaging concatenated to the nonlinear between-
subject registration to ICBM2009sym. (iv) For each participant, BOLD timeseries are extracted from non-
zero voxels of the transformed iso-to-allocortical axis, which are classified as grey matter (>50% 
probability) and collated in a 3D matrix (voxel ✕ time ✕ subject). Then, we sort and analyse this matrix 
using the voxel-wise values of the iso-to-allocortical axis. For instance, product-moment correlations of 
strength of resting state functional connectivity with iso-to-allocortical axis indicates how functional 
connectivity varies along the histological axis for different areas of the isocortex (Figure 3C).  

 

Tutorial 2: BigBrain → fsaverage 

Motivation: In vivo brain imaging reveals regionally variable effects of many demographic and clinical 
factors on brain structure and function. For example, prior studies studying lifespan processes presented 
spatially variable patterns of cortical atrophy with advancing age, together with increased deposition of 
pathological aggregates, such as amyloid beta (Bilgel et al., 2018; Jansen et al., 2015; Knopman et al., 2018; 
Rodrigue et al., 2012; Sperling et al., 2011). Histological data provides a window into the cytoarchitectural 
features that align with imaging-derived phenotypes and that, in this instance, may predispose an area to 
specific aging related processes. Essentially, we can evaluate whether regions with a certain 
cytoarchitecture overlap with those showing more marked aging effects. Furthermore, large-scale 
cytoarchitectural gradients can provide a unified framework to describe topographies, simplifying and 
standardising the reporting of imaging-derived phenotypes. 

Approach: (i) Construct histological gradients using BigBrain and (ii) transform to standard neuroimaging 
surface template using BigBrainWarp.  (iii) Plot the imaging-derived map against each histological gradient  
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Figure 3: Intrinsic functional connectivity of the iso-to-allocortical axis of the mesiotemporal lobe. A) i. BigBrain surface models 
of the isocortex and hippocampal subfields are projected on a 40 µm resolution coronal slice of BigBrain. ii-iii. The continuous 
surface model bridges the inner hippocampal vertices (minimum value on inner-outer axis) with pial mesiotemporal vertices 
(entorhinal, parahippocampal or fusiform cortex). Vertices at the medial aspect of the subiculum were identified as bridgeheads 
and used to bridge between the two surface constructions. Geodesic distance from the nearest bridgehead was used as the iso-to-
allocortical axis. B) Iso-to-allocortical axis values were projected from the surface into the BigBrain volume, then transformed to 
ICBM2009sym MNI152 space using BigBrainWarp. C) Intrinsic functional connectivity was calculated between each voxel of the 
iso-to-allocortical axis and 1000 isocortical parcels, using rs-fMRI images nonlinearly registered to ICBM2009sym. For each 
parcel, we calculated the product-moment correlation of rsFC strength with iso-to-allocortical axis position.  
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to understand the algebraic form of the relationship. Note, if imaging features are volumetric, one may use 
registration fusion to resample the data from ICBM2009sym to fsaverage (Wu et al., 2018). (iv) Fit a 
statistical model to evaluate the relationship between the cytoarchitectural gradients and the imaging-
derived map. For research questions with a more restricted region of interest, the cytoarchitectural gradient 
could be reconstructed within that field of view and the same procedure could be utilised. The optimal 
number of cytoarchitectural gradients should be evaluated.  

Example: Cytoarchitectural correlates of age-related increases in amyloid beta (Aβ) deposition in a healthy 
lifespan cohort (Lowe et al., 2019; Park, 2018). (i) and (ii) are pre-computed in BigBrainWarp (Figure 4A) 
using 

bigbrainwarp --in_space bigbrain --out_space fsaverage --wd /project/ 

--in_lh Hist_G1_lh.txt --in_rh Hist_G1_rh.txt  --out_name Hist_G1 

 For this analysis, we used a 6mm FWHM smoothing kernel to approximately match the smoothing kernel 
of the resting state fMRI data. (iii) We previously estimated the association of age with amyloid deposition 
across the cortical surface by combining positron emission tomography with MRI data in 102 adults (30-
89 years), and assessed correspondence to functional connectivity gradients (Lowe et al., 2019). Here, we 
plot the vertex-wise t-statistics against Hist-G1 and Hist-G2 (Figure 4B) (iv) We determine the optimal 
model via the Bayesian Information Criterion in univariate and multivariate regressions between the t-
statistics and histological gradients (Figure 4C). The optimal model included only Hist-G2, indicating that 
Aβ preferentially accumulates towards the more agranular anchor of the sensory-fugal gradient.  
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Figure 4: Concordance of imaging-derived effects with histological gradients. A) Four stages of histological gradient 
construction. (i) Vertex-wise staining intensity profiles (dotted lines) are averaged within parcels (solid lines). Colours represent 
different parcels. (ii) Pair-wise partial correlation of parcel-average staining intensity profiles produces a cortex-wide matrix of 
cytoarchitectural similarity. (iii) The correlation matrix is subjected to dimensionality reduction, in this case diffusion map 
embedding, to extract the principle axes of cytoarchitectural variation. (iv) The principle components capture histological gradients 
(Hist-G) and are projected onto the BigBrain cortical surface for inspection. B) The t-statistic cortical map illustrates regional 
variations in the effect of age on Aβ deposition (Lowe et al., 2019), which was calculated vertex-wise on fsaverage5. To allow 
comparison, histological gradients were transformed to fsaverage5 using BigBrainWarp. Scatterplots show the association of the 
t-statistic map with the histological gradients. C) Bar plot shows the Bayesian Information Criterion of univariate and multivariate 
regression models, using histological gradients to prediction regional variation in effect of age on Aβ deposition. The univariate 
Hist-G2 regression had the lowest Bayesian Information Criterion, representing the optimal model of those tested. 

 

Tutorial 3: fsaverage/ICBM2009sym → BigBrain 

Motivation: A core aim of fMRI research is to map functional specialisation in the brain (Bassett et al., 
2008; Eickhoff et al., 2018; Gordon et al., 2017; Raichle, 2015; Shine et al., 2019; Yeo et al., 2011). On the 
one hand, this work follows a long legacy of defining cortical areas, and on the other hand, it extends 
beyond the possibilities of post mortem research by capturing patterns of coordinated activity. For instance, 
clustering resting state fMRI connectivity reveals a robust set of intrinsic functional networks (Beckmann 
and Smith, 2004; Gordon et al., 2017; Yeo et al., 2011). Nonetheless, there exists a gap in the literature 
between these well-characterised functional networks and their cytoarchitecture. BigBrain offers the 
opportunity to characterise and evaluate differences of cytoarchitecture for functionally defined atlases. 

Approach: (i) Transform functionally-defined regions from a standard neuroimaging surface template to 
the BigBrain surface. Note, if the functional-defined regions are volumetric, one may use registration fusion 
to resample the data from ICBM2009sym to fsaverage (Wu et al., 2018). (ii) Compile staining intensity 
profiles by functional class. (iii) Assess discriminability of functional classes by staining intensity profiles. 

Example: Cytoarchitectural differences of intrinsic functional networks. (i) Transform the 17-network 
functional atlas (Yeo et al., 2011) to the BigBrain surface.  

bigbrainwarp --in_space fsaverage --out_space bigbrain --wd /project/ 

--in_lh lh.Yeo2011_17Networks_1000.annot --in_rh lh.Yeo2011_17Networks_1000.annot  

--out_name Yeo2011_17Networks_1000 

(ii) Stratify staining intensity profiles by network (Figure 5A). (iii) Parameterise staining intensity profiles 
by the central moments and assess variation across functional networks (Figure 5B). For example, the mean 
and skewness illustrate distinct patterns of cytoarchitectural differentiation across the functional networks. 
Visual networks have the highest mean and lowest skewness. Somatomotor, dorsal attention and fronto-
parietal networks contain most variable mean and skewness values. Ventral attention, limbic and fronto-
parietal networks harbour the lowest mean and highest skewness, whereas the default mode networks 
occupy an intermediary position. Notably, all the networks exhibit broad distribution of the moments, 
signifying substantial cytoarchitectural heterogeneity, as well as overlapping values. To quantify 
discriminability of functional networks by cytoarchitecture, we can attempt to classify the functional 
networks using the central moments. For this example, we z-standardised the central moments and split the 
vertices into five folds, each with an equal representation of the 17 functional networks. Then, we trained 
a one vs one linear support vector classification on 50% of each fold and tested the model on the remaining 
50% of that fold. Functional networks were equally stratified across training and testing. Finally, for each 
fold, we generated a confusion matrix, showing the accurate predictions on the diagonal and the incorrect 
classification off the diagonal. Predictive ability provides insight into distinctiveness and homogeneity of 
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functional networks. Visual networks harbour distinctive cytoarchitecture, reflected by relatively high 
accuracy and few incorrect predictions. Ventral attention, limbic and temporoparietal networks are 
relatively homogenous in cytoarchitecture, likely related to their restricted spatial distribution. The 
predictive accuracy did not appear to be negatively impacted by minor misalignments of the atlas, as the 
predictive accuracy was similar when excluding vertices within approximately 6mm of the network 
boundaries (accuracy mean±SD (%), original=12.4±15.4, excluding boundaries=12.1±13.3).  

 

Figure 5: Prediction of functional network by cytoarchitecture. A) Surface-based transformation of 17-network functional atlas 
to the BigBrain surface, operationalised with BigBrainWarp, allows staining intensity profiles to be stratified by functional network. 
B) Ridgeplots show the moment-based parameterisation of staining intensity profiles within each functional network. The confusion 
matrix illustrates the outcome of mutli-class classification of the functional networks, using the central moment of the staining 
intensity profiles.  
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4. DISCUSSION 

Beyond cartography, a major aim of neuroanatomical research has been to understand the functioning of 
the human brain. Throughout the 20th century, cytoarchitectural studies were instrumental in demonstrating 
functional specialisation across the cortex, as well as the uniqueness of the human brain amongst mammals 
(Brodmann, 1909; Campbell et al., 1905; Sanides, 1962; Smith, 1907; Vogt and Vogt, 1919; Vogt, 1911). 
Fine-grained anatomical resolution maintains an important role in understanding brain function in the 
modern era, helping to bridge between microcircuit organisation and macroscale findings obtained with in 

vivo neuroimaging. BigBrain is the first ultra-high-resolution 3D histological dataset that can be readily 
integrated with in vivo neuroimaging. In this report, we presented BigBrainWarp, a simple and accessible 
toolbox comprising histological data, previously developed transformation functions between BigBrain and 
standard imaging spaces, and ready-to-use transformed cortical maps. The toolbox is containerised to 
eliminate software dependencies and to ensure reproducibility. An expandable documentation is available, 
alongside several tutorials, at http://bigbrainwarp.readthedocs.io. 

Multimodal registrations are core to integrating BigBrain with in vivo neuroimaging data. Identifying 
optimal solutions is more difficult than intra- and inter-subject co-registrations of neuroimaging data, owing 
to histological artefacts, differences in intensity contrasts and morphological distortions. These challenges 
have been addressed by recent studies, which improved integration of BigBrain with standardised MRI 
spaces. An automated repair algorithm was specially devised for BigBrain, which involved nonlinear 
alignment of neighbouring sections, intensity normalisation, outlier detection using block averaging then 
artefact repair using the block averages (Lepage et al., 2010; Lewis et al., 2014). Following initial 
transformation of BigBrain to ICBM2009b, which was part of the initial BigBrain release (Amunts et al 
.2013), a recent study optimised subcortical registrations by generating a T1-T2* fusion contrast that is 
more similar to the BigBrain intensity contrast than a T1-weighted image (Xiao et al., 2019) . Additionally, 
that study involved manual segmentation of subcortical nuclei to use as shape priors in the registration, 
which benefits the alignment of subcortical structures between BigBrain and standard neuroimaging 
templates. Finally, inspired by advances in the alignment of surface-based MRI data (Robinson et al., 2018, 
2014), the BigBrain team has recently developed a multi-modal surface matching pipeline for BigBrain that 
involved re-tessellation of the BigBrain surface at a higher resolution, followed by alignment to standard 
surface templates using coordinate, sulcal depth and curvature maps (Lewis et al., 2020). The procedure 
significantly improves upon previous techniques, resulting in geometric distortions comparable to those 
seen for registrations between neuroimaging datasets of different individuals (Lewis et al., 2020). 

Practically, 3D histological models provide an unrivalled level of precision, and provide novel opportunities 
to cross-validate and contextualise findings from human neuroimaging. BigBrainWarp is particularly well-
suited for investigations on the fundamental relationships between cytoarchitecture and function, which 
remains an elusive aspect of brain organisation. Our tutorials illustrate and deconstruct a range of use cases 
of BigBrain-MRI integration. In tutorial 1, we show how BigBrain can be used to initialise region of interest 
analyses, such as mapping resting state functional connectivity along the iso-to-allocortical axis (Paquola 
et al., 2020b), enabling precise delineation of regions that are difficult to identify with in vivo imaging and 
functional interrogation of histological axes. In tutorial 2, we show how cytoarchitectural gradients can help 
to characterise large-scale cortical patterns, such as the association of aging with Aβ deposition (Lowe et 
al., 2019). This approach complements the tradition of reporting the cortical areas of significant clusters by 
offering a simplified topographical description of the spatial pattern. Furthermore, by comparing predictive 
power of various cytoarchitectural gradients, we may build towards hypotheses on the relationship between 
microcircuit properties and demographic or clinical factors. In tutorial 3, we discuss more specific 
histological features, namely moment-based parameterisation of staining intensity profiles (Schleicher et 
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al., 1999; Zilles et al., 2002). These features depict the vast cytoarchitectural heterogeneity of the cortex 
and enable evaluation of homogeneity within imaging-based parcellations, for example macroscale 
functional communities (Yeo et al., 2011). Together, these tutorials showcase how we can easily and 
robustly use BigBrain with BigBrainWarp to deepen our understanding of the human brain.  

Despite all its promises, the singular nature of BigBrain currently prohibits replication and does not capture 
important inter-individual variation at the scale of histology. Fortunately, the BigBrain teams are working 
on new histology-based 3D models in the context of the HIBALL project 
(https://bigbrainproject.org/hiball.html). System neuroscience has dramatically benefitted from the 
availability of open resources (Di Martino et al., 2014; Milham et al., 2018; Poldrack et al., 2017; Van 
Essen et al., 2013). This path, together with ongoing refinements in multimodal data integration and efforts 
to make tools accessible, promises to further advance multi-scale neuroscience in the years to come.  
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Supplementary Material 

 

Supplementary Figure 1: Evaluation of sampling parameters for staining intensity profiles. A) Matrices 
show the similarity (r) of spatial autocorrelation and number of peaks between parameter combinations. On 
the far left, grey bars show the parameter combination for each row of the matrix. Errorbar plots show the 
mean and SD of the correlation across a given parameter, while the other two parameters are consistent. 
The correlations are shown with respect to the lowest of each parameter (50 surfaces, 2 iterations and 0 
FWHM). B) For varying degrees of depth-wise (rows) and surface-wise (columns) smoothing, line plots 
show spatial autocorrelation and histograms show number of peaks. 
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