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ABSTRACT

Neuroimaging stands to benefit from emerging ultrahigh-resolution histological atlases of the human brain;
the first of which is “BigBrain”. Ongoing research aims to characterise regional differentiation of
cytoarchitecture with BigBrain and to optimise registration of BigBrain with standard neuroimaging
templates. Together, this work paves the way for multi-scale investigations of brain organisation. However,
working with BigBrain can present new challenges for neuroimagers, including dealing with cellular
resolution neuroanatomy and complex transformation procedures. To simplify workflows and support
adoption of best practices, we developed BigBrainWarp, a toolbox for integration of BigBrain with
multimodal neuroimaging. The primary BigBrainWarp function wraps multiple state-of-the-art
deformation matrices into one line of code, allowing users to easily map data between BigBrain and
standard MRI spaces. Additionally, the toolbox contains ready-to-use cytoarchitectural features to improve
accessibility of histological information. The present article discusses recent contributions to BigBrain-
MRI integration and demonstrates the utility of BigBrainWarp for further investigations.
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1. INTRODUCTION

Understanding brain anatomy benefits from a multi-scale perspective, from the microscopic to the
macroscopic level. Regional variations in cells underlie macro-scale patterns, whether they are reflective
of functional dynamics, age, or disease states. For over 150 years (von Gudden, 1886), histological analysis
of post mortem tissue has helped to reveal the microscopic architecture of the brain. Neuroanatomists
observed a distinctive layered organisation of cells within the cortex (Baillarger, 1840) and developed
principles of cortical organisation, including the definition of cortical types (Meynert, 1867), cortical areas
(Brodmann, 1908; Geyer et al., 2011; Von Economo and Koskinas, 1925), and cortical gradients (Bailey
and von Bonin, 1951; Goulas et al., 2019; Sanides, 1962). More recently, digitisation of post mortem tissue
has allowed automated characterisation of cytoarchitecture (Schleicher et al., 1999). This mergence of
histology with computational neuroscience supports more observer-independent evaluation of classic
principles (Amunts et al., 2020; Paquola et al., 2019; Schiffer et al., 2020; Spitzer et al., 2018) and paves
the way for novel investigations of the cellular landscape of the brain.

In vivo neuroimaging offers a complementary window into the functional dynamics of the brain.
Additionally, the non-invasive nature of magnetic resonance imaging (MRI) supports examination of
population-level variation, which is largely inaccessible to post mortem neuroanatomy. Human brain
mapping research has furthermore established standard spaces, notably the MNI152 space for volumetric
whole-brain analysis (Fonov et al., 2011b, 2009; Mazziotta et al., 2001a, 2001b) and “fsaverage” and
“fs_LR” for surface-based cortical analyses (Fischl et al., 1999; Van Essen et al., 2012). Despite ongoing
advances in attaining higher spatial resolution with higher field strength (Deistung et al., 2013; Holdsworth
et al., 2019; Sitek et al., 2019; Trampel et al., 2019; Turner and De Haan, 2017), in vivo MRI researchers
remain constrained by limited spatial resolution from making inferences on a cellular level. Establishing
the relation between macro-scale patterns and cellular architecture is crucial to substantiate physiological
patterns observed with MRI and for further development of brain-inspired computational models.

BigBrain is a singular 3D volumetric reconstruction of a sliced and cell-body stained complete human brain
(Amunts et al., 2013). This resource allows for computational analysis of an entire human brain in relation
to cell staining at high resolutions (up to 20um). Tailored for neuroimagers, it is available in common MRI
formats (minc and NifTI), accompanied by cortical surface reconstructions (Lewis et al., 2014), and
nonlinearly registered to standard MRI templates (ICBM152 and MNI-ADNI) (Fonov et al., 2011a).
Furthermore, recent studies have expanded the resource by offering improved registrations to standard
spaces (Lewis et al., 2020; Xiao et al., 2019), nuanced intracortical surface models and laminar
approximations (Wagstyl et al., 2020, 2018a) as well as regional segmentations (DeKraker et al., 2019;
Xiao et al., 2019). Several studies have already capitalised on this unique resource for integrative
histological-neuroimaging analyses, including comparison of cytoarchitectural and functional gradients
(Paquola et al., 2019), cross-validation of in vivo defined microstructural gradients in the insula with
histological measures (Royer et al., 2020), mapping variations in functional connectivity along the
histological axis of the mesiotemporal lobe (Paquola et al., 2020b), fMRI responses of the histologically-
defined auditory system (Sitek et al., 2019), comparison of cytoarchitectural similarity with MRI-derived
estimates of structural connectivity (Wei et al., 2018), evaluating the cytoarchitectural heterogeneity of the
default mode network (Paquola et al., 2021), and analyses of the cytoarchitectural similarity of large-scale

oy —

The present article introduces the BigBrainWarp toolbox. The aim of the toolbox is to facilitate integration
of BigBrain with neuroimaging modalities, helping neuroscientists to utilise cytoarchitectural information
in conjunction with in vivo imaging. The toolbox is open and includes (i) histological features and pre-
transformed maps in BigBrain and imaging spaces, (ii) codes for performing data transformations and (iii)
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a knowledgebase for multi-modal integration of BigBrain with MRI. Toolbox functions and tutorials are
documented on http://bigbrainwarp.readthedocs.io. Here, introduce BigBrain to new users and demonstrate
the utility of the BigBrainWarp toolbox. In Section 2, we overview the derivation of cytoarchitectural
features from BigBrain and survey recent contributions to BigBrain-MRI integration. These include
publication of histological cortical maps, regional segmentations, and registration efforts. Finally, we detail
the core functions of BigBrainWarp and the current contents of the toolbox. In Section 3, we share three
tutorials to illustrate potential applications of BigBrainWarp.

2. MATERIAL AND METHODS
Overview of BigBrain

In brief, the reconstruction of BigBrain involved coronal slicing of a complete paraffin-embedded brain
(65-year-old male) into 7400 sections at 20pm thickness. Each section was stained for cell bodies (Merker,
1983), digitised and subjected to manual and automatic artefact repair. The digitised sections were
reconstructed into a contiguous 3D volume. The volumetric reconstruction is available online at 40um,
100pm, 200pm, 300um, 400um and 1000um resolutions (http://bigbrainproject.org). The 40um version is
released as 125 individual blocks corresponding to five subdivisions in the x, y, and z directions, with
overlap. 100-1000 um resolutions are provided as single files. Merker staining used in BigBrain is a form
of silver impregnation for cell bodies that produces a high contrast of black pigment in cells on a virtually
colorless background (Merker, 1983). In the digitised images, darker colouring is represented by lower
numbers (8bit graphics: 0-28=black-white). It is common practice to invert the values of the intensity, such
that image intensity increases with staining intensity.

The grey and white matter boundaries of the cortical surface released in 2014 contain 163,842 vertices on
each hemisphere, with vertices aligned between pial and white surfaces (Lewis et al., 2014). Surfaces were
generated using a modified version of CIVET (Kim et al., 2005; MacDonald et al., 2000). Since then, a
number of additional surface reconstructions have been published from which we may attain a range of
metrics (Table 1).

Table 1: Surface constructions for BigBrain

Surfaces Purpose Reference

Grey and white Initialisation and visualisation (Lewis et al., 2014)
Layer 1/2 & layer 4 Boundary conditions (Wagstyl et al., 2018a)
Equivolumetric Staining intensity profiles (Waehnert et al., 2014)
Deep learning laminar Laminar thickness (Wagstyl et al., 2020)
Hippocampal Initialisation and visualisation (DeKraker et al., 2019)
Confluence Initialisation and visualisation (Paquola et al., 2020a)

Note: Initialisation broadly refers to an input for feature generation, for example creation of staining intensity profiles or surface
transformations.
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Figure 1: Magnification of cytoarchitecture using BigBrain, from (A) whole brain 3D reconstruction (taken on
https://atlases.ebrains.eu/viewer) to (B) a histological section at 20pum resolution (available from bigbrainproject.org) to (C) an
intracortical staining profile. The profile represents variations in cellular density and size across cortical depths. Distinctive features
of laminar architecture are often observablei.e., alayer IV peak. Note, the presented profile was subjected to smoothing as described
in the following section. BigBrainWarp also supports integration of previous research on BigBrain including (D-E)
cytoarchitectural and (F-G) morphological models (DeKraker et al., 2019; Paquola et al., 2020a, 2019; Wagstyl et al., 2020).

Staining intensity profiles and derived features

Sampling staining intensity from many cortical depths provides a profile of the cytoarchitecture, hereafter
referred to as a staining intensity profile. This is achieved by constructing a set of surfaces within the cortex,
then sampling intensity estimates at matched vertices across the surfaces. The current approach involves
equivolumetric surface construction, whereby a set of intracortical surfaces are initialised at equidistant
depths, then modulated by cortical curvature (Waehnert et al., 2014). This holds advantages for histological
data because laminae vary in thickness depending on cortical folding (Bok, 1929). The procedure can be
deployed using dedicated python scripts (Wagstyl et al., 2018b) and is implemented in BigBrainWarp.

Smoothing can be employed in tangential and axial directions to ameliorate the effects of artefacts, blood
vessels, and individual neuronal arrangement (Wagstyl et al., 2018a). Smoothing across depths is enacted


https://doi.org/10.1101/2021.05.04.442563
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.04.442563; this version posted May 6, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

for each staining profile independently. Here, we use an iterative piece-wise linear procedure that minimises
curve shrinkage, where the degree of smoothing is modulated by the number of iterations (Taubin, 1995).
In contrast, surface-wise smoothing is performed at each depth and involves moving a Gaussian kernel
across the surface mesh. We tested the impact of number of surfaces and smoothing on profiles, using the
100pum whole brain volume. Specifically, we evaluated spatial autocorrelation and number of profile peaks
for each combination (number of surfaces 50-100, iterations of depth-wise smoothing=2-10, FWHM of
surface-smoothing=0-8, Figure S1). Spatial autocorrelation was calculated as the average product-moment
correlation of staining intensity profiles at various distances along the BigBrain surface mesh (distances: 1-
50 steps). Increasing the number of surfaces beyond 50 did not impact the spatial autocorrelation and led
to small increases in the number of peaks in intensity profiles. Depth-wise smoothing did not impact either
outcome measure. As could be expected, surface-wise smoothing substantially increased spatial
autocorrelation. For the initial BigBrainWarp release, we selected 50 surfaces, 2 iterations of depth-wise
smoothing and (a modest) 2 FWHM surface-wise smoothing. BigBrainWarp also provides a simple
function for generating staining intensity profiles.

Previous research has sought to characterise the laminar structure of the cortex using BigBrain staining
intensity profiles (Paquola et al., 2019; Schleicher et al., 1999; Wagstyl et al., 2018a; Zilles et al., 2002) .
The isocortex generally contains six layers (Brodmann, 1909), certain features of which manifest on
BigBrain staining intensity profiles. The transition from layer I to II exhibits a sharp increase in staining,
because layer I is only sparsely populated with cells. Layer IV harbours a noticeable peak in cell staining,
corresponding to dense packing of granule cells. The peak of layer IV corresponds to the division between
supragranular and infragranular layers, which have markedly different roles in neural communication
(Buffalo et al., 2011; Felleman and Van Essen, 1991; Rockland and Pandya, 1979). The relative depth of
layer IV is also potentially informative, likely related to the propensity for feedforward vs feedback
communication (Beul et al., 2017; Sanides, 1962; Wagstyl et al., 2018a), though the demarcation of
feedforward and feedback projections is more multifactorial and complex (Rockland, 2015). A six-layered
decomposition of BigBrain cortex has also been produced by training a convolutional neural network on
manual annotations in 51 regions, then extending the model to the whole isocortex (Wagstyl et al., 2020)
(Figure 1E). Laminar thickness estimates aligned with prior histological studies (Von Economo and
Koskinas, 1925), while increasing overall spatial precision. There remains difficulty in extending these
approaches to cortex without clear laminar differentiation, however (i.e., anterior insula, mesiotemporal
lobe).

More detailed characterisation of cytoarchitecture is offered by moment-based parameterisation of
intracortical intensity profiles. This technique, pioneered by the Jiilich group (Schleicher et al., 1999; Zilles
et al., 2002), involves calculating the central moments (i.e., mean, standard deviation, skewness, and
kurtosis) of each staining intensity profile and the derivative profile, resulting in a multidimensional feature
vector for each cortical point. Each central moment may be interpreted in neurobiological terms (Zilles et
al., 2002). For example, mean intensity generally increases in the anterior to posterior direction and has
been related to overall cellular density (Wree et al., 1982). In contrast, skewness varies from sensory to
limbic areas (i.e., sensory-fugal) and indexes the balance of cellular density in infra- vs supra-granular
layers (Paquola et al., 2020b). Comparison of profiles can illuminate large-scale patterns of cortical
organisation. Observer-independent discrimination of cortical areas can be accomplished by comparing
moment-based feature vectors between neighbouring vertices (Schleicher et al., 1999). The areal boundaries
are defined where the feature vector exhibits a sudden shift. Over the past 20 years, this procedure has been
employed in 23 post mortem brains, including BigBrain, resulting in a 3D probabilistic atlas of the human
brain (Amunts et al., 2020). While this work is based on a selection of histological sections of each brain,
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recent work investigates solutions for mapping each section in a stack with the help of deep learning, in
order to produce gapless 3D maps at full detail (Schiffer et al., 2020) and ultimately obtain a dense mapping
of the BigBrain model.

Cortex-wide cytoarchitectural similarity may also be estimated, by cross-correlating staining intensity
profiles between different cortical locations (Paquola et al., 2019). We recently applied diffusion map
embedding, a nonlinear manifold learning technique (Coifman and Lafon, 2006), to the profile cross-
correlation matrix of BigBrain to identify principle axes of cytoarchitectural differentiation (Paquola et al.,
2019) (Figure 1D). Here, we replicated the approach with updated staining intensity profiles. Bearing in
mind the high-dimensional matrix manipulation necessary for this procedure, we first decimated the
BigBrain mesh from 327,684 to ~10,000 vertices. Mesh decimation involves selection of a subset of vertices
that preserve the overall shape of the surface followed by retriangulation of the faces with only the selected
vertices. We assigned non-selected vertices to the nearest selected vertex, based on shortest path on the
mesh (ties were solved by shortest Euclidean distance). In this manner, all 327,684 vertices belong to one
of ~10,000 parcels. Derivation of the cytoarchitectural gradients involved (i) averaging staining intensity
profiles within each parcel, (ii) pair-wise correlation of parcel-average staining intensity profiles
(controlling for the global-average staining intensity profile), (iii) transformation to a normalised angle
matrix, and iv) diffusion map embedding of this matrix. Each eigenvector captures an axis of
cytoarchitectural variation and is accompanied by an eigenvalue that approximates the variance explained
by that eigenvector. Here, the first two eigenvectors explain approximately 42% and 35% of variance,
respectively, and describe anterior-posterior and sensory-fugal axes (further details in Tutorial 2).

Morphometric models in BigBrain

The high resolution of BigBrain allows for precise segmentation of anatomical structures. Manual
segmentations of the putamen, caudate nucleus, globus pallidus pars externa, globus pallidus pars interna,
nucleus accumbens, amygdala, thalamus, red nucleus, substantia nigra, subthalamic nucleus and the
hippocampus are available on Open Science Framework (https://osf.io/xkqb3/). Extending upon whole-
structure segmentation, a recent study (DeKraker et al., 2019) used anatomical landmarks to create an
internal coordinate system of the hippocampus. The approach involved solving Laplace's equation under
three sets of boundary conditions: anterior-posterior, proximal-distal (relative to the subiculum), and inner-
outer (DeKraker et al., 2018). Subsequently, the hippocampus can be “unfolded”, allowing examination of
histological and morphometric features in a topologically continuous space (Figure 1E), in line with other
surface-based studies of the hippocampus (Bernhardt et al., 2016; Caldairou et al., 2016; Kim et al., 2014;
Vos de Wael et al., 2018). Furthermore, this 3D coordinate system enabled the creation of a continuous
surface model of the mesiotemporal cortex (Paquola et al., 2020b). The hippocampus is typically excluded
from cortical surface models due to its complex folding and unusual cytoarchitectural makeup, with Cornu
Ammonis subfields being allocortical and the dentate gyrus an interlocked terminus. Using the proximal-
distal axis of the hippocampus, we were able to bridge the isocortical and hippocampal surface models
recapitulating the smooth confluence of cortical types in the mesiotemporal lobe (Figure 1F). The
continuous surface model, defined by a pial/inner surface and a white/outer surface, can also be used to
initialise equivolumetric surface constructions (Waehnert et al., 2014; Wagstyl et al., 2018b). We generated
staining intensity profiles using 40um resolution blocks of BigBrain across the cortical confluence, which
are released in BigBrainWarp with the matching surface model.
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BigBrain-MRI transformations

BigBrain-MRI integration is pillared upon transformations between spaces. Spatial registration already
exists as a fundamental component of most neuroimaging pipelines. As such, extensive research has
focused on the creation of standard spaces, such as ICBM-MNI152 (Fonov et al., 2011b, 2009) and
FreeSurfer’s fsaverage (Fischl et al., 1999). Multiple studies have demonstrated the continuous
enhancement of registration techniques over the years (Collins and Evans, 1997; Klein et al., 2009; Xiao et
al., 2019). Registration of BigBrain to MRI templates involves additional challenges, however, including
histological artefacts, differences in intensity contrasts and inter-individual variability.

For the initial BigBrain release (Amunts et al., 2013), full BigBrain volumes were resampled to
ICBM2009sym (a symmetric and non-linear MNI152 template) and MNI-ADNI (an older adult T1-
weighted template) (Fonov et al., 2011a). Each resampling procedure involved a linear then a nonlinear
transformation (available on ftp://bigbrain.loris.ca/BigBrainRelease.2015/). BigBrain volumes resampled
to ICBM2009sym are commonly referred to as BigBrainSym. We continue to use this nomenclature in
BigBrainWarp. A prior study (Xiao et al,, 2019) was able to further improve the accuracy of the
transformation for subcortical structures and the hippocampus using a two-stage multi-contrast registration
procedure. The first stage involved nonlinear registration of BigBrainSym to a PD25 T1-T2* fusion atlas
(Xiao et al., 2017, 2015), using manual segmentations of the basal ganglia, red nucleus, thalamus,
amygdala, and hippocampus as additional shape priors. Notably, the PD25 T1-T2* fusion contrast is more
similar to the BigBrainSym intensity contrast than a T1-weighted image, such as the commonly used
ICBM2009sym template. The second stage involved nonlinear registration of PD25 to ICBM2009sym and
ICBM2009asym using multiple contrasts. The authors have shared the deformation matrices on Open
Science Framework (https://osf.io/xkqb3/). The accuracy of the transformations was evaluated relative to
anatomical fiducials (Lau et al., 2019) and regional segmentations. The two-stage procedure resulted in
0.86-0.97 DICE coefficients for manual segmentations, improving upon direct overlap of BigBrainSym
with ICBM2009sym (0.55-0.91 DICE). Anatomical fiducials alignment incurred 1.77£1.25mm errors, on
par with direct overlap of BigBrainSym with ICBM2009sym (1.83#1.47mm). In line with this work,
BigBrainWarp enables evaluation of novel deformation fields using anatomical fiducials (Lau et al., 2019)
and region segmentations (evaluate_warps.sh).

The unique morphology of BigBrain also presents challenges for surface-based transformations.
Idiosyncratic gyrification of certain regions of BigBrain, especially the anterior cingulate, cause
misregistration (Lewis et al., 2020). To overcome this issue, ongoing work leverages multimodal surface
matching [MSM; (Robinson et al., 2018, 2014)] to optimise surface transformation from BigBrain to
standard surface templates. This procedure improves accuracy and minimises distortion of transformed
cortical maps, almost on par with in vivo MRI transformations (Lewis et al., 2020).

Compiling BigBrainWarp

For BigBrainWarp, we wrote a modular set of wrapper scripts to map between common BigBrain and MRI
spaces (Figure 2). The package automatically pulls state-of-the-art deformation matrices, then applies the
transformation to novel data. While applying these various transformations involve different tools (e.g.:
minc-tools, FSL, HCP-workbench), BigBrainWarp wraps these functions into a single bash script (see
Table 2 for functionality), reducing onus on the user to have experience in each software package.
Furthermore, containerisation of the BigBrainWarp via Docker allows users to interact with the scripts
without installing dependencies. This procedure ensures flexibility with ongoing developments in the field
and simplifies procedures for new users.
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Figure 2: Overview of spaces and transformations included within BigBrainWarp.

Table 2: Input parameters for the bigbrainwarp function

Parameter Description Conditions Options
in_space Space of input data Required bigbrain, bigbrainsym, icbm,
fsaverage, fs_LR
out_space  Space of output data Required bigbrain, bigbrainsym, icbm,
fsaverage, fs_LR
wd Path to working directory Required
in_vol Full path to input data, Permitted formats: mnc, nii or
whole brain volume. nii.gz
ih_lh Full path to input data, left . . . . .
hemisphere surface Requires either in_vol, or in_lh and in_rh Permitted formats: label.gii,
ih_rh Full path to input data, right annot, shape.gii, curv or txt
hemisphere surface
interp Interpolation method Required for in_vol. Optional for txt input. Not For in_vol, can be trilinear
permitted for other surface inputs. (default), tricubic, nearest or
sinc.
For txt, can be linear or nearest
out_name  Prefix for output files Required for surface input. Optional for volume
input, otherwise defaults to prefix of input file
out_type Specifies whether output in ~ Optional function for bigbrain and bigbrainsym  surface, volume
surface or volume space output. Otherwise, defaults to the same type as
the input.

We used BigBrainWarp to map histological gradients to fsaverage, fs_LR and ICBM152. For the initial
release of BigBrainWarp, we selected a multi-scale imaging dataset (MICs), which contains group-level
imaging features on standard surface templates from 50 healthy adults. In particular, we adopted cortical
gradients derived from qT1 mapping and resting-state functional connectivity. We used BigBrainWarp to
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transform microstructural and functional gradients, as well as intrinsic functional communities (Yeo et al.,
2011), to the BigBrain surface. The current contents of the toolbox are shown in Table 3.

Table 3: BigBrainWarp contents

Data Definition Original space Transformed
spaces

profiles.txt staining intensity profiles across the isocortex sampled BigBrain
from 100um volume

profiles_confluence.txt  staining intensity profiles of the right mesiotemporal lobe ~ BigBrain
sampled from 40pum volume

rh.confluence continuous surface of the right mesiotemporal lobe BigBrain icbm

Hist-Gl1 first gradient of cytoarchitectural differentiation derived BigBrain fsaverage, fs_LR,
from BigBrain icbm

Hist-G2 second gradient of cytoarchitectural differentiation BigBrain fsaverage, fs_LR,
derived from BigBrain icbm

Micro-Gl1 first gradient of microstructural differentiation derived fsaverage BigBrain, icbm

from quantitative in vivo T1 imaging

Func-G1 first gradient of functional differentiation derived from rs-  fsaverage, BigBrain, icbm
fMRI

Func-G2 second gradient of functional differentiation derived from  fsaverage BigBrain, icbm
rs-fMRI

Func-G3 third gradient of functional differentiation derived from rs-  fsaverage BigBrain, icbm
fMRI

Yeo2011_7Network 7 functional clusters from Yeo & Krienen et al., 2011 fsaverage BigBrain

Yeo2011_17Networks 17 functional clusters from Yeo & Krienen et al., 2011 fsaverage BigBrain

3. RESULTS

The BigBrainWarp toolbox supports a range of integrative BigBrain-MRI analyses. The following tutorials
outline three BigBrain-MRI analyses with unique types of transformations. Neither the forms nor the
motivations are exhaustive but illustrate applications. Code for each tutorial is available in the
BigBrainWarp toolbox.

Tutorial 1: BigBrain — ICBM2009sym MNI152 space

Motivation: Despite MRI acquisitions at high and ultra-high fields reaching submillimeter resolutions with
ongoing technical advances, certain brain structures (e.g., subthalamic nucleus) and subregions (e.g.,
hippocampal Cornu ammonis subfields) remain difficult to identify (Kulaga-Yoskovitz et al., 2015; Wisse
et al., 2017; Yushkevich et al., 2015). BigBrain can be used to label such regions, then the atlas labels can
be transformed to a standard imaging space for further investigation. In particular, this approach can support
exploration of the functional architecture of histologically-defined regions of interest.
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Approach: (i) Create volumetric label in BigBrain space. (ii) Perform nonlinear transformation to
ICBM2009sym space using BigBrainWarp. (iii) Transform individual resting-state functional MRI data to
ICBM2009sym MNI152 space. (iv) Sample timeseries from labelled voxels in this standard space.

Example: The mesiotemporal lobe plays important roles in multiple cognitive processes (Moscovitch et al.,
2005; Squire et al., 2004; Vos de Wael et al.,, 2018) and is affected by multiple neurological and
neuropsychiatric conditions (Ball et al., 1985; Bernhardt et al., 2016, 2015; Calabresi et al., 2013).
Increasing research suggests that this region shows complex subregional structural and functional
organization. Here, we illustrate how we track resting-state functional connectivity changes along the
latero-medial axis of the mesiotemporal lobe, from parahippocampal isocortex towards hippocampal
allocortex. For further details and additional motivation, please see (Paquola et al., 2020a): (i) Our
volumetric label represents the iso-to-allocortical axis of the mesiotemporal lobe. We constructed this axis
by joining the isocortical (Lewis et al., 2014) and hippocampal (DeKraker et al., 2019) surface meshes in
BigBrain histological space, calculated the distance of each vertex in the new surface model to the
intersection of isocortical and hippocampal meshes (Figure 3A). Next, we labelled voxels in BigBrain
histological space, according to the position of the iso-to-allocortical axis (Figure 3Bii). The iso-to-
allocortical axis is ready-made in the BigBrainWarp toolbox. (ii) We transform the volume from the
BigBrain histological space to ICBM2009sym (Figure 3Biii).

bigbrainwarp --in_space bigbrain --out_space icbm --wd /project/
--in_vol bigbrain_axis_vox.nii --interp linear

(iii) For each participant, in this case 50 healthy adults from the MICs dataset, we construct an
individualised transformation from ICBM2009sym to native functional space, based on the inverse of the
within-subject co-registration to the native T1-weighted imaging concatenated to the nonlinear between-
subject registration to ICBM2009sym. (iv) For each participant, BOLD timeseries are extracted from non-
zero voxels of the transformed iso-to-allocortical axis, which are classified as grey matter (>50%
probability) and collated in a 3D matrix (voxel X time X subject). Then, we sort and analyse this matrix
using the voxel-wise values of the iso-to-allocortical axis. For instance, product-moment correlations of
strength of resting state functional connectivity with iso-to-allocortical axis indicates how functional
connectivity varies along the histological axis for different areas of the isocortex (Figure 3C).

Tutorial 2: BigBrain = fsaverage

Motivation: In vivo brain imaging reveals regionally variable effects of many demographic and clinical
factors on brain structure and function. For example, prior studies studying lifespan processes presented
spatially variable patterns of cortical atrophy with advancing age, together with increased deposition of
pathological aggregates, such as amyloid beta (Bilgel et al., 2018; Jansen et al., 2015; Knopman et al., 2018;
Rodrigue et al., 2012; Sperling et al., 2011). Histological data provides a window into the cytoarchitectural
features that align with imaging-derived phenotypes and that, in this instance, may predispose an area to
specific aging related processes. Essentially, we can evaluate whether regions with a certain
cytoarchitecture overlap with those showing more marked aging effects. Furthermore, large-scale
cytoarchitectural gradients can provide a unified framework to describe topographies, simplifying and
standardising the reporting of imaging-derived phenotypes.

Approach: (i) Construct histological gradients using BigBrain and (ii) transform to standard neuroimaging
surface template using BigBrainWarp. (iii) Plot the imaging-derived map against each histological gradient
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A | Continuous surface model of the mesiotemporal lobe in BigBrain
i. Extant models on BigBrain coronal slice ii. Confluence of iso- and allo-cortical surfaces iii. Bridging surface meshes
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Figure 3: Intrinsic functional connectivity of the iso-to-allocortical axis of the mesiotemporal lobe. A) i. BigBrain surface models

surface model bridges the inner hippocampal vertices (minimum value on inner-outer axis) with pial mesiotemporal vertices
(entorhinal, parahippocampal or fusiform cortex). Vertices at the medial aspect of the subiculum were identified as bridgeheads
and used to bridge between the two surface constructions. Geodesic distance from the nearest bridgehead was used as the iso-to-
allocortical axis. B) Iso-to-allocortical axis values were projected from the surface into the BigBrain volume, then transformed to
ICBM2009sym MNI152 space using BigBrainWarp. C) Intrinsic functional connectivity was calculated between each voxel of the
iso-to-allocortical axis and 1000 isocortical parcels, using rs-fMRI images nonlinearly registered to ICBM2009sym. For each
parcel, we calculated the product-moment correlation of rsFC strength with iso-to-allocortical axis position.
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to understand the algebraic form of the relationship. Note, if imaging features are volumetric, one may use
registration fusion to resample the data from ICBM2009sym to fsaverage (Wu et al., 2018). (iv) Fit a
statistical model to evaluate the relationship between the cytoarchitectural gradients and the imaging-
derived map. For research questions with a more restricted region of interest, the cytoarchitectural gradient
could be reconstructed within that field of view and the same procedure could be utilised. The optimal
number of cytoarchitectural gradients should be evaluated.

Example: Cytoarchitectural correlates of age-related increases in amyloid beta (A}) deposition in a healthy

lifespan cohort (Lowe et al., 2019; Park, 2018). (i) and (ii) are pre-computed in BigBrainWarp (Figure 4A)
using

bigbrainwarp --in_space bigbrain --out_space fsaverage --wd /project/
--in_lh Hist_G1_lh.txt --in_rh Hist_G1_rh.txt --out_name Hist_G1

For this analysis, we used a 6mm FWHM smoothing kernel to approximately match the smoothing kernel
of the resting state fMRI data. (iii) We previously estimated the association of age with amyloid deposition
across the cortical surface by combining positron emission tomography with MRI data in 102 adults (30-
89 years), and assessed correspondence to functional connectivity gradients (Lowe et al., 2019). Here, we
plot the vertex-wise t-statistics against Hist-G1 and Hist-G2 (Figure 4B) (iv) We determine the optimal
model via the Bayesian Information Criterion in univariate and multivariate regressions between the t-
statistics and histological gradients (Figure 4C). The optimal model included only Hist-G2, indicating that
AP preferentially accumulates towards the more agranular anchor of the sensory-fugal gradient.

A | Construction of histological gradients
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Figure 4: Concordance of imaging-derived effects with histological gradients. A) Four stages of histological gradient
construction. (i) Vertex-wise staining intensity profiles (dotted lines) are averaged within parcels (solid lines). Colours represent
different parcels. (ii) Pair-wise partial correlation of parcel-average staining intensity profiles produces a cortex-wide matrix of
cytoarchitectural similarity. (iii) The correlation matrix is subjected to dimensionality reduction, in this case diffusion map
embedding, to extract the principle axes of cytoarchitectural variation. (iv) The principle components capture histological gradients
(Hist-G) and are projected onto the BigBrain cortical surface for inspection. B) The t-statistic cortical map illustrates regional
variations in the effect of age on AP deposition (Lowe et al., 2019), which was calculated vertex-wise on fsaverage5. To allow
comparison, histological gradients were transformed to fsaverage5 using BigBrainWarp. Scatterplots show the association of the
t-statistic map with the histological gradients. C) Bar plot shows the Bayesian Information Criterion of univariate and multivariate
regression models, using histological gradients to prediction regional variation in effect of age on Ap deposition. The univariate
Hist-G2 regression had the lowest Bayesian Information Criterion, representing the optimal model of those tested.

Tutorial 3: fsaverage/ICBM2009sym — BigBrain

Motivation: A core aim of fMRI research is to map functional specialisation in the brain (Bassett et al.,
2008; Eickhoff et al., 2018; Gordon et al., 2017; Raichle, 2015; Shine et al., 2019; Yeo et al., 2011). On the
one hand, this work follows a long legacy of defining cortical areas, and on the other hand, it extends
beyond the possibilities of post mortem research by capturing patterns of coordinated activity. For instance,
clustering resting state fMRI connectivity reveals a robust set of intrinsic functional networks (Beckmann
and Smith, 2004; Gordon et al., 2017; Yeo et al., 2011). Nonetheless, there exists a gap in the literature
between these well-characterised functional networks and their cytoarchitecture. BigBrain offers the
opportunity to characterise and evaluate differences of cytoarchitecture for functionally defined atlases.

Approach: (i) Transform functionally-defined regions from a standard neuroimaging surface template to
the BigBrain surface. Note, if the functional-defined regions are volumetric, one may use registration fusion
to resample the data from ICBM2009sym to fsaverage (Wu et al., 2018). (ii) Compile staining intensity
profiles by functional class. (iii) Assess discriminability of functional classes by staining intensity profiles.

Example: Cytoarchitectural differences of intrinsic functional networks. (i) Transform the 17-network
functional atlas (Yeo et al., 2011) to the BigBrain surface.

bigbrainwarp --in_space fsaverage --out_space bigbrain --wd /project/
--in_lh 1h.Ye02011_17Networks_1000.annot --in_rh 1h.Ye02011_17Networks_1000.annot
--out_name Yeo02011_17Networks_1000

(i) Stratify staining intensity profiles by network (Figure SA). (iii) Parameterise staining intensity profiles
by the central moments and assess variation across functional networks (Figure 5B). For example, the mean
and skewness illustrate distinct patterns of cytoarchitectural differentiation across the functional networks.
Visual networks have the highest mean and lowest skewness. Somatomotor, dorsal attention and fronto-
parietal networks contain most variable mean and skewness values. Ventral attention, limbic and fronto-
parietal networks harbour the lowest mean and highest skewness, whereas the default mode networks
occupy an intermediary position. Notably, all the networks exhibit broad distribution of the moments,
signifying substantial cytoarchitectural heterogeneity, as well as overlapping values. To quantify
discriminability of functional networks by cytoarchitecture, we can attempt to classify the functional
networks using the central moments. For this example, we z-standardised the central moments and split the
vertices into five folds, each with an equal representation of the 17 functional networks. Then, we trained
a one vs one linear support vector classification on 50% of each fold and tested the model on the remaining
50% of that fold. Functional networks were equally stratified across training and testing. Finally, for each
fold, we generated a confusion matrix, showing the accurate predictions on the diagonal and the incorrect
classification off the diagonal. Predictive ability provides insight into distinctiveness and homogeneity of
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functional networks. Visual networks harbour distinctive cytoarchitecture, reflected by relatively high
accuracy and few incorrect predictions. Ventral attention, limbic and temporoparietal networks are
relatively homogenous in cytoarchitecture, likely related to their restricted spatial distribution. The
predictive accuracy did not appear to be negatively impacted by minor misalignments of the atlas, as the
predictive accuracy was similar when excluding vertices within approximately 6mm of the network
boundaries (accuracy mean+SD (%), original=12.4+15.4, excluding boundaries=12.1+13.3).

A | Transformation of functional networks to BigBrain surface
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Figure 5: Prediction of functional network by cytoarchitecture. A) Surface-based transformation of 17-network functional atlas
to the BigBrain surface, operationalised with BigBrainWarp, allows staining intensity profiles to be stratified by functional network.
B) Ridgeplots show the moment-based parameterisation of staining intensity profiles within each functional network. The confusion
matrix illustrates the outcome of mutli-class classification of the functional networks, using the central moment of the staining
intensity profiles.
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4. DISCUSSION

Beyond cartography, a major aim of neuroanatomical research has been to understand the functioning of
the human brain. Throughout the 20™ century, cytoarchitectural studies were instrumental in demonstrating
functional specialisation across the cortex, as well as the uniqueness of the human brain amongst mammals
(Brodmann, 1909; Campbell et al., 1905; Sanides, 1962; Smith, 1907; Vogt and Vogt, 1919; Vogt, 1911).
Fine-grained anatomical resolution maintains an important role in understanding brain function in the
modern era, helping to bridge between microcircuit organisation and macroscale findings obtained with in
vivo neuroimaging. BigBrain is the first ultra-high-resolution 3D histological dataset that can be readily
integrated with in vivo neuroimaging. In this report, we presented BigBrainWarp, a simple and accessible
toolbox comprising histological data, previously developed transformation functions between BigBrain and
standard imaging spaces, and ready-to-use transformed cortical maps. The toolbox is containerised to
eliminate software dependencies and to ensure reproducibility. An expandable documentation is available,
alongside several tutorials, at http://bigbrainwarp.readthedocs.io.

Multimodal registrations are core to integrating BigBrain with in vivo neuroimaging data. Identifying
optimal solutions is more difficult than intra- and inter-subject co-registrations of neuroimaging data, owing
to histological artefacts, differences in intensity contrasts and morphological distortions. These challenges
have been addressed by recent studies, which improved integration of BigBrain with standardised MRI
spaces. An automated repair algorithm was specially devised for BigBrain, which involved nonlinear
alignment of neighbouring sections, intensity normalisation, outlier detection using block averaging then
artefact repair using the block averages (Lepage et al., 2010; Lewis et al., 2014). Following initial
transformation of BigBrain to ICBM2009b, which was part of the initial BigBrain release (Amunts et al
.2013), a recent study optimised subcortical registrations by generating a T1-T2* fusion contrast that is
more similar to the BigBrain intensity contrast than a T1-weighted image (Xiao et al., 2019) . Additionally,
that study involved manual segmentation of subcortical nuclei to use as shape priors in the registration,
which benefits the alignment of subcortical structures between BigBrain and standard neuroimaging
templates. Finally, inspired by advances in the alignment of surface-based MRI data (Robinson et al., 2018,
2014), the BigBrain team has recently developed a multi-modal surface matching pipeline for BigBrain that
involved re-tessellation of the BigBrain surface at a higher resolution, followed by alignment to standard
surface templates using coordinate, sulcal depth and curvature maps (Lewis et al., 2020). The procedure
significantly improves upon previous techniques, resulting in geometric distortions comparable to those
seen for registrations between neuroimaging datasets of different individuals (Lewis et al., 2020).

Practically, 3D histological models provide an unrivalled level of precision, and provide novel opportunities
to cross-validate and contextualise findings from human neuroimaging. BigBrainWarp is particularly well-
suited for investigations on the fundamental relationships between cytoarchitecture and function, which
remains an elusive aspect of brain organisation. Our tutorials illustrate and deconstruct a range of use cases
of BigBrain-MRI integration. In tutorial 1, we show how BigBrain can be used to initialise region of interest
analyses, such as mapping resting state functional connectivity along the iso-to-allocortical axis (Paquola
et al., 2020b), enabling precise delineation of regions that are difficult to identify with in vivo imaging and
functional interrogation of histological axes. In tutorial 2, we show how cytoarchitectural gradients can help
to characterise large-scale cortical patterns, such as the association of aging with AP deposition (Lowe et
al., 2019). This approach complements the tradition of reporting the cortical areas of significant clusters by
offering a simplified topographical description of the spatial pattern. Furthermore, by comparing predictive
power of various cytoarchitectural gradients, we may build towards hypotheses on the relationship between
microcircuit properties and demographic or clinical factors. In tutorial 3, we discuss more specific
histological features, namely moment-based parameterisation of staining intensity profiles (Schleicher et
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al., 1999; Zilles et al., 2002). These features depict the vast cytoarchitectural heterogeneity of the cortex
and enable evaluation of homogeneity within imaging-based parcellations, for example macroscale
functional communities (Yeo et al., 2011). Together, these tutorials showcase how we can easily and
robustly use BigBrain with BigBrainWarp to deepen our understanding of the human brain.

Despite all its promises, the singular nature of BigBrain currently prohibits replication and does not capture
important inter-individual variation at the scale of histology. Fortunately, the BigBrain teams are working
on new histology-based 3D models in the context of the HIBALL project
(https://bigbrainproject.org/hiball.html). System neuroscience has dramatically benefitted from the
availability of open resources (Di Martino et al., 2014; Milham et al., 2018; Poldrack et al., 2017; Van
Essen et al., 2013). This path, together with ongoing refinements in multimodal data integration and efforts
to make tools accessible, promises to further advance multi-scale neuroscience in the years to come.
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Supplementary Material

A | Similarity of outcome measures across all parameter combinations
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Supplementary Figure 1: Evaluation of sampling parameters for staining intensity profiles. A) Matrices
show the similarity (r) of spatial autocorrelation and number of peaks between parameter combinations. On
the far left, grey bars show the parameter combination for each row of the matrix. Errorbar plots show the
mean and SD of the correlation across a given parameter, while the other two parameters are consistent.
The correlations are shown with respect to the lowest of each parameter (50 surfaces, 2 iterations and O
FWHM). B) For varying degrees of depth-wise (rows) and surface-wise (columns) smoothing, line plots
show spatial autocorrelation and histograms show number of peaks.
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