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ABSTRACT

Multi-omics prediction has been shown to be superior to genomic prediction with genome-wide
DNA-based genetic markers (G) for predicting phenotypes. However, most of the existing
studies were based on historical datasets from one environment; therefore, they were unable to
evaluate the efficiency of multi-omics prediction in multi-environment trials and distantly-related
populations. To fill those gaps, we designed a systematic experiment to collect omics data and
evaluate 17 traits in two oat breeding populations planted in single and multiple environments.
In the single-environment trial, transcriptomic BLUP (T), metabolomic BLUP (M), G+T, G+M and
G+T+M models showed greater prediction accuracy than GBLUP for 5, 10, 11, 17 and 17 traits,
respectively, and metabolites generally performed better than transcripts when combined with
SNPs. In the multi-environment trial, multi-trait models with omics data outperformed both
counterpart multi-trait GBLUP models and single-environment omics maodels, and the highest
prediction accuracy was achieved when modeling genetic covariance as an unstructured
covariance model. We also demonstrated that omics data can be used to prioritize loci from one
population with omics data to improve genomic prediction in a distantly-related population using
a two-kernel linear model that accommodated both likely casual loci with large-effect and loci
that explain little or no phenotypic variance. We propose that the two-kernel linear model is
superior to most genomic prediction models that assume each variant is equally likely to affect
the trait and can be used to improve prediction accuracy for any trait with prior knowledge of

genetic architecture.

Key words: transcripts, metabolites, multi-omics prediction, oat
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INTRODUCTION

Oat (Avena sativa L.) ranks sixth in world cereal production and has increasingly been
consumed as a human food (USDA, 2019). Oat has a high content of health-promoting
compounds such as unsaturated fatty acids, dietary fiber, antioxidants and vitamins, which
makes it an interesting target for metabolomics studies from a human health and nutrition
perspective (IMARC Group, 2019). In addition, high-density genetic markers have been
developed in oat (Bekele et al., 2018), a draft genome sequence has been released (PepsiCo,
2020) and a high-quality and comprehensive seed transcriptome has been characterized (Hu et
al., 2020). Furthermore, recent advances in high throughput sequencing and metabolite profiling
technologies enable quantification of gene expression and metabolite abundance for hundreds
of samples with high precision and reasonable cost (Alseekh & Fernie, 2018; Moll et al., 2014).
All these advances in technology provides an opportunity to integrate different omics data and

improve predictions for phenotypes of interest.

Several multi-omics prediction studies have been reported in cereal species (Guo et al., 2016;
Riedelsheimer et al., 2012; Schrag et al., 2018; Wang et al., 2019; Westhues et al., 2017; Y. Xu
et al., 2017; Yang Xu et al., 2021). These studies have shed light on the merits of multi-omics
prediction over traditional genomic prediction and discussed useful statistical methods for
integrating omics data. For instance, Y. Xu et al. (2017) and Wang et al. (2019) suggested that
best linear unbiased prediction was the most efficient method compared to other commonly
used genomic prediction and non-linear machine learning methods. However, most of those
studies were based on historical datasets with a limited number of metabolite features and each
level of omics data was collected from different environments. Therefore, they were unable to
evaluate the efficiency of multi-omics prediction in multi-environment trials and genetically
distant populations. However, in plant breeding, multi-environment trials are important for
assessing the performance of genotypes across environments and identifying well-adapted
genotypes for a specific region (Burguefio et al., 2012; Mathew et al., 2018). In addition,
prediction of breeding values of distantly-related individuals are needed in many and perhaps
the most promising applications of genomic selection in both plant and animal breeding
programs (Lorenz & Smith, 2015; Meuwissen, 2009; Moghaddar et al., 2019).

To fill the knowledge gaps of multi-omics prediction in plant breeding, we designed a systematic
experiment to collect omics data and evaluate eight agronomic and nine fatty acid traits
(Supplemental Table 1) in a core set of a worldwide oat collection (termed Diversity panel)

planted in one environment and advanced breeding lines adapted to the upper Midwest region
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80 inthe U.S. (termed Elite panel) planted in three environments. Our efforts included (i) comparing
81 the accuracy of mufti-omics prediction against genomic prediction in a single-environment trial;
82 (i) evaluating the efficiency of multi-omics prediction in multi-environment trials; and (iii)

83  exploring the potential of using multi-omics data to predict distantly-related individuals.

84 RESULTS AND DISCUSSION

85  Atter filtering out lines with low-quality genetic markers, the Diversity and Elite panels consisted
86 of 368 and 232 lines (Supplemental Table 2), respectively, with 32 lines in common. A
87  reconstructed phylogenetic tree revealed that the two panels were separated from each other in
88 general, although some Diversity panel members were clustered to the Elite panel branches;
89 and both panels showed population structure (Figure 1). This is consistent with our prior

90 knowledge about origins of the two panels (Campbell et al., 2021) .

91 Single-environment prediction in the Diversity panel
92 Using GBLUP (G) as a baseline, there were 5, 10, 11, 17 and 17 traits out of the 17 total traits

93  with improved prediction accuracy from transcriptomic BLUP (T), metabolomic BLUP (M), G+T,
94 G+M and G+T+M models, respectively (Figure 2, Supplemental Table 3). Percent change in
95  prediction accuracy over GBLUP ranged from 0.1% (Days to Heading, G+T model) to 70.3%
96 (C18:0, G+M model) with a median of 21.5%. Because GBLUP does not allow for large-effect or
97  zero-effect genetic markers, we also compared BayesB with the multi-omics models, and found

98 BayesB showed similar results to GBLUP (Supplemental Figure 1).

99 To evaluate whether transcriptomic and metabolomic features equally contribute to improved
100 prediction accuracy or if one is more important than the other, we compared multi-omics
101  prediction models with T and M kernels added in different orders. By adding kernels in their
102 order along the central dogma of molecular biology, median prediction accuracy changes from
103 G to G+T models and from G+T to G+T+M models across all traits ranged from -11.6% to
104  35.8% (median=3.2%) and 6.5% to 55.6% (median=16.3%), respectively (Supplemental Figure
105 2). In contrast, when adding the M kernel first (G+M model) then followed by the T kernel
106 (G+T+M model), percent changes in prediction accuracy ranged from 2.5% to 67.3%
107  (median=41.7%) and -3.3% to 3.5% (median=-0.03%), respectively (Supplemental Figure 3).
108 These results indicated that seed metabolites generally contributed more than transcripts to
109 improving prediction accuracy of both agronomic and seed nutritional traits when combined with
110  SNPs. Other researchers (Westhues et al., 2017; Y. Xu et al., 2017) reported that prediction

111  abilities of transcripts were lower than GBLUP. The poor predictive performance of transcripts in


https://doi.org/10.1101/2021.05.03.442386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442386; this version posted May 3, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

112  existing studies might be explained by the fact that they were collected from a single time point
113 and subject to dynamic changes in later unsampled developmental stages or by that transcripts

114  and SNPs tend to capture similar genetic signals for predicted traits (Guo et al., 2016).

115  Although metabolites played important roles when combined with other kernels in improving
116  prediction accuracy, we found that metabolites alone from mature seeds (M model) showed
117  mixed results for predicting agronomic traits (Figure 2), while they greatly outperformed SNPs in
118 predicting fatty acids. The relatively low performance of mature seed compounds in predicting
119 agronomic traits might be explained by the fact that development of the agronomic traits and
120 accumulation of compounds in mature seeds occurred either at different times or in different
121  tissues. To further understand why metabolites are better predictors for fatty acid traits, we used
122  the Weighted Gene Co-expression Network Analysis (WGCNA, Zhang & Horvath, 2005) that
123 accommodated both annotated and unannotated compounds and used metabolites annotations
124  (Supplemental Table 4) to elucidate their biological functions. We found 26 network modules
125 and eight of them were enriched with lipids and lipid-like molecules (Supplemental Table 5),
126  which included 33.0% of identified seed metabolite compounds. Those compounds directly or
127  indirectly connected with fatty acids through biochemical pathways and different pathways
128 relevant to lipids were likely influenced by overlapping gene sets. Therefore, they should be able
129 to capture more genetic co-variation (including both additive and non-additive covariation) with
130 fatty acids than SNPs fitted in an additive model. This hypothesis was partially supported by our
131 results that combining G model and M model (G+M model) significantly improved prediction
132  accuracies than using either model alone for all the 17 traits (Figure 2, Supplemental Table 6)
133 and by findings of Guo et al. (2016) that adding metabolites to saturated SNP densities still led

134  to significant increases in predictive abilities.

135 Multi-environment prediction in the Elite panel

136 Beyond single-environment prediction, omics data might also have merit in predicting multi-
137  environment trials, which has not yet been investigated to our knowledge. Here we used SNPs
138 and metabolites for analyzing the multi-environment trials in the Elite panel, because transcript
139  profiling from a single developmental time point showed limited value for improving prediction
140 accuracy in addition to being very labor-intensive. We focused on prediction of lines that have
141  been evaluated in some but not in target environments (CV2, Burguefio et al., 2012). To this
142 aim, we applied a single environment cross validation method (Mathew et al.,, 2018)
143  (Supplemental Figure 4). Briefly, to predict a phenotype in the first environment, we masked

144 20% of lines for cross validation and used metabolites from the other two environments to
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145  construct metabolomic relationship matrices to minimize the influence of non-genetic effects on
146  prediction accuracy. We then used multi-trait models treating phenotypes from all three
147  environments as separate traits for model training but using only the phenotype data of the
148 masked lines from the first environment as the testing data. This procedure was repeated for the
149 second and third environments and prediction accuracies were averaged across the three

150 environments for each run.

151  Multi-environment predictions were performed using six multi-trait models (Supplemental Table
152  7) on three different kernels/combinations (G, M, G+M) with various genetic and residual
153 covariance structures (Figure 3, Supplemental Figure 5). The diagonal heterogeneous
154  covariance structure (D-D) corresponds to a single-environment model without borrowing
155 information from other environments. The question that we explored was whether multi-omics
156 models (M and G+M) could improve prediction accuracy compared to corresponding multi-trait
157 models based on SNPs alone (G model). To answer this question, within each of the five multi-
158 trait models (the D-D model was excluded), we compared percent change in prediction
159 accuracy of M and G+M models relative to the G model. We found the M model outperformed
160 the G model for all seed fatty acid traits except C16:1 and C18:3, with an increase in prediction
161  accuracy ranging from 0.1 to 15.9%. However, the G+M model outperformed the G model for all
162 traits except days to heading, with an increase in prediction accuracy over the G model ranging
163 from 0.1 to 13.9%. These results confirmed the value of using multi-omics data in multi-

164  environment prediction.

165 We then used the prediction accuracy from GBLUP in the single-environment model (D-D) as a
166 baseline to compare the performance of different multi-trait models. We found that all multi-trait
167 models outperformed their counterpart single-environment models (Figure 3, Supplemental
168 Figures 6-8). The multi-trait models generally performed better when modeling the genetic
169 covariance as unstructured (UN) or as factor-analytic (FA) than modeling genetic covariance as
170 adiagonal structure (D). The highest prediction accuracy was achieved by either UN-D (UN and
171 D represent genetic and residual covariance structures, respectively) or UN-UN models,
172  although FA-D and FA-UN models provided very similar results. This indicated that the genetic
173  covariance between environments played an important role in the multi-omics prediction
174  models. These findings agree with recent genomic prediction studies (Malosetti et al., 2016;
175 Montesinos-Lopez et al., 2016) that UN covariance structure improved prediction accuracy

176 compared to the models with diagonal homogeneous or heterogeneous covariances. Overall,


https://doi.org/10.1101/2021.05.03.442386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442386; this version posted May 3, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

177 we concluded that considering genetic and non-genetic covariances is useful to improve

178  prediction accuracy of multi-environment models using multi-omics data.

179 Using multi-omics data to improve genomic prediction in distantly-related
180 populations

181  Although multi-omics data showed superiority over SNPs to predict phenotypes in both single
182  and multi-environment trials, currently transcript and metabolite profiling is more expensive than
183  SNP genotyping, which would limit their applications in plant breeding. Here we hypothesized
184  that omics data from well characterized populations can be used to prioritize likely causal loci
185 and improve performance of genomic prediction models in distantly-related populations. Seed
186 fatty acid concentrations were used as target traits to test the hypothesis because their genetic
187  architectures have been well characterized (Carlson et al., 2019) and lipid biosynthetic

188 pathways are known to be highly conserved in higher plants (de Abreu e Lima et al., 2018).

189 To explore this scientific question, we first attempted to prioritize likely causal loci from the
190 Diversity panel based on the eight network modules enriched with lipids and lipid-like molecules
191 (Supplemental Table 5). Among the eight network modules, only one (darkred) strongly
192  correlated with fatty acids (Supplemental Figure 9). We then performed hierarchical clustering
193 and GWAS on eigenvectors of all the 26 network modules and PC1 of fatty acids. The
194  eigenvector of the darkred module was clustered together with PC1 of fatty acids (Supplemental
195 Figure 10) and had significant GWAS hits on chromosome 6A (Supplemental Figure 11), which
196 co-located with the fatty acids major-effect QTL (QTL-6A, Supplemental Figure 12). However,
197 the QTL-6A was not detected from other network modules. We further prioritized 140 markers
198 including significant markers and the markers in LD with them based on the darkred module
199  GWAS hits on chromosome 6A.

200 The primary use of locus prioritization is to split markers in the test population into two sets for a
201  multi-kernel model prediction, in which the two genomic relationship kernels were constructed
202  from the two marker sets. We termed our method multi-kernel network-based prediction (MK-
203  Network) and found it improved prediction accuracy over GBLUP and BayesB for all fatty acid
204  traits (Figure 4) except C14:0 and C18:3, because they had different genetic architectures from
205 other fatty acids and no significant markers from GWAS (Supplemental Figure 12). The percent
206  change of mean prediction accuracy over 50 cross-validation runs ranged from 4.0% to 32.0%
207  with a mean of 14.5%.
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208 The universal QTL of fatty acids (QTL-6A, Supplemental Figures 12-13) and similar LD
209 relationships (Supplemental Figure 14) with the surrounding loci between the Diversity and Elite
210 panels promoted the success of our likely causal loci prioritization. The network-based
211  prioritization strategy takes advantages of pleiotropy, in which one or a few genes influence both
212  target traits and other metabolites from related network modules. In the darkred module, 23 of
213 32 metabolites showed clear peaks at the QTL-6A, although only five of them were significant at
214  FDR<0.05 (Supplemental Figure 15). This indicated that QTL-6A was likely a causal locus and
215 influenced both fatty acids and the darkred module. The relationships between fatty acids and
216 the darkred module are expected to be conserved between populations. However, we were
217 unable to test this because there is currently no robust method to map all untargeted

218 metabolites from one panel to another and quantify them precisely.

219 Most genomic prediction methods assume that each variant is equally likely to affect the trait
220 (MacLeod et al., 2016). There are certain loci that explain more phenotypic variance and they
221  should be placed in different kernels than loci that explain little or no variance. However, the
222  other kernel is still needed because we may unintentionally exclude important loci based on
223  prior biological knowledge alone, for example, a prior GWAS might not identify all possible
224  causal loci. There are many loci that have small effects, through whatever pathway, whether it is
225  through trans effects as hypothesized in the omnigenic model (Liu et al., 2019) or through much
226  more indirect effects like competition for photosynthates or impact on fitness (Price et al., 2018).
227  Li et al. (2018) found that excluding those small-effect loci could not further improve prediction
228 accuracy compared to GBLUP with all SNPs. Therefore, a two-kernel linear model that
229 accommodates both likely casual loci and loci with minimal to no effect should be used to

230 improve prediction accuracy for any traits with prior knowledge of genetic architecture.

231 METHODS

232 The plant materials and experimental designs

233 The Diversity and Elite panels consisted of 378 and 252 lines (Supplemental Table 2),
234  respectively. The Diversity panel originally included 500 lines described by Carlson et al. (2019)
235 that was a core set of worldwide collection of oat germpalsm, and we further selected for lines
236  with visible anther extrusion. The Diversity panel was planted at Ithaca, NY, and the Elite panel
237 was planted at Madison, WI, Crookston, MN, and Brookings, SD, respectively. An augmented
238 incomplete design was used for both panels. The Diversity panel included 18 blocks of 23 plots

239 each, one common check across all blocks and six secondary checks replicated in three blocks
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240 each. The Elite panel included 12 blocks of 25 plots each, one common check across all blocks

241  and two secondary checks replicated in six blocks each.

242  Phenotype evaluation and analysis

243  Plant height was evaluated for five randomly selected plants in each plot after anthesis. Days to
244  heading was defined by the days from seeding to heading in >50% of total plants. 100 randomly
245  selected seeds from each plot were dehulled with a hand dehuller for evaluation of hundred
246  kernel weight, hundred hull weight and groat percentage. After dehulling, 50 randomly selected
247  seeds were delivered to the Proteomics and Metabolomics Facility at Colorado State University
248  for metabolite analysis, and the other 50 seeds were used for measuring seed length, width and
249  height with an electronic micrometer. Fatty acids were identified and quantified with targeted
250 GC-MS, then normalized to concentration (mg/g of oats) against the internal standard (C17:0)

251  (details were described in the Supplemental Methods).

252 Genotype analysis

253  Genotypic data of the two panels were downloaded from T3/oat
254 (https://triticeaetoolbox.org/oat/). Marker quality control followed Calson et al. (2019) and there
255  were 73,014 markers and 568 lines (368 for the diversity panel, 232 for the elite panel, 32 in
256 common) left after filtering. Subsequently, missing genotypes were imputed using the linear
257  regression method gimnet described by Chan et al. (2016). The imputed genotypic data was
258 used for constructing a neighbor-joining tree based on Rogers’ distance using the ape package
259  (Paradis et al., 2004).

260  Transcript profiling

261 RNAseq was based on developing seeds at 23 days after anthesis (DAA). The 23 DAA was
262  chosen based on our pilot study (Hu et al., 2020) that showed 23 DAA had slightly higher
263  correlation between transcript and metabolite abundance than other sampled developmental
264  time points. Seed sample collection, RNA extraction, library construction procedures were
265  described in details by Hu et al. (2020). Pooled libraries were sequenced using lllumina
266  NextSeg500 with a 150 nt single-end run. The RNAseq reads quality trimming, transcript

267  abundance quantification, and library size normalization following Hu et al.(2020).

268 Metabolite profiling

269  Metabolite analysis was based on physiologically mature seeds because they have the highest

270 level of health-promoting compounds and those compounds are stable at room temperature
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271  until germination. GC-MS non-targeted analysis and LC-MS Phenyl-Hexyl analysis were done at
272  the Proteomics and Metabolomics Facility at Colorado State University. Details of chemical
273 analysis, raw mass spectrometry data processing, metabolite annotation and normalization
274  were described in the Supplemental Methods. The normalized metabolomics data was used for
275  network analysis with WGCNA (Zhang & Horvath, 2005).

276  Analysis of phenotypic traits, transcriptomic and metabolic features

277  Phenotypic traits, transcriptomic and metabolic features were analyzed following a standard
278 linear mixed model of an augmented design accounting for effects of check genotypes and
279 blocks. For metabolites analysis, batch effect was also included in the model. All statistical
280 models were described in the Supplemental Methods and fitted using the sommer package
281  (Covarrubias-Pazaran, 2016).

282  Single-environment prediction

283  The additive genomic relationship matrix was made with the rrBLUP package (Endelman, 2011),
284  and relationship matrices for transcriptomics and metabolomics data were made following
285  Westhues et al. (2017). GBLUP, Transcriptomic BLUP (T), metabolomic BLUP (M), G+T, G+M
286  and G+T+M models were fitted with the BGLR package (Pérez & De Los Campos, 2014). In the
287  Diversity panel, transcriptomics and metabolomics data were collected on the same plots as the
288  phenotypic data and therefore non-genetic (i.e., microenvironmental) factors that affected both

289 omics features and phenotypic traits may induce non-genetic correlations among traits.
290 Therefore, we estimated prediction accuracy as corg( /ﬁg) described by Runcie and Cheng

291  (2019), and used a 50:50 training:testing split of the data to ensure that cér; could be estimated

292  accurately in the testing partition. This cross-validation procedure was repeated for 50 times

293  with different random partitions.

294  Multi-environment prediction

295 The metabolomics data were collected on the same plots as the phenotypic data in the Elite
296 panel, which would bias prediction accuracy if directly using metabolites to predict target
297 phenotypes in the same environment. Therefore, when predicting target phenotypes from one
298 environment, we used metabolites from other two environments to make metabolomic
299 relationship matrix. For each trait, we fitted six multi-trait mixed models on G, M and G+M
300 kernels with different genetic and residual covariance structures (Supplemental Table 7). We

301 applied a single environment cross validation method for genomic prediction described by

10


https://doi.org/10.1101/2021.05.03.442386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442386; this version posted May 3, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

302 (Mathew et al., 2018). Procedure of the single environment cross validation was illustrated in

303  Supplemental Figure 4 and described in detail in the Supplemental Methods.

304 Prediction of distantly related individuals

305 Prediction of distantly related individuals included two steps: likely causal loci prioritization and
306  multiple-kernel prediction. We first performed likely causal locus prioritization from the Diversity
307 panel based on the eight network modules enriched with lipids and lipid-like molecules, then
308 utilized the prioritized markers and all rest markers to construct two genomic relationship
309 kernels for a multiple-kernel prediction in the Elite panel. The details of related analyses were

310 described in the Supplemental Methods.
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441

442  Figure 1. Neighbor-joining tree of 568 oat lines in the Diversity and Elite panels.
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Figure 2 Distribution of prediction accuracy of the 17 phenotypic traits in the Diversity panel
across 50 re-sampling runs. For each trait, boxplots with different colors represent prediction
models, which are G, T, M, G+T, G+M and G+T+M from left to right. Medians of percent change
in prediction accuracy of models relative to GBLUP are indicated below each box in blue if
positive and in red if negative. G = genomic BLUP, T = transcriptomic BLUP, M = metabolomic
BLUP.
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Figure 3 Distribution of prediction accuracy of the 15 phenotypic traits in the Elite panel across

50 re-sampling runs estimated by multi-trait models for multi-environment prediction. The 15

phenotypic traits in the Elite panel were evaluated at three environments. For each trait,

boxplots with different colors represent models. Medians of percent change in prediction

accuracy of M and G+M models relative to the G model are indicated below each box in blue if

positive and in red if negative. For each model, the uppercase letters before and after the

hyphen represent genetic and residual covariance structures: D=diagonal, UN=unstructured,

FA=factor-analytic.
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459
460  Figure 4 Prediction accuracy of the 10 fatty acid traits in the Elite panel estimated by GBLUP,
461 BayesB and two-kernel BLUP models across 50 re-sampling runs. For each trait, barplots with
462  different colors represent models. Means of percent change in prediction accuracy of all other
463  models relative to GBLUP are indicated above each bar (in blue if positive, in red if negative,
464  and in black if zero). MK-Network=network-based multiple-kernel prediction.
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