
1  

Multi-omics prediction of oat agronomic and seed nutritional 1 

traits across environments and in distantly related 2 

populations 3 

Haixiao Hu1, Malachy T. Campbell1, Trevor H. Yeats1, Xuying Zheng1, Daniel E. Runcie2, 4 

Giovanny Covarrubias-Pazaran3, Corey Broeckling4, Linxing Yao4, Melanie Caffe-Treml5,    5 

Lucı�a Gutiérrez6, Kevin P. Smith7, James Tanaka1, Owen A. Hoekenga8, Mark E. Sorrells1, 6 

Michael A. Gore1*, and Jean-Luc Jannink1,9* 7 

 8 

1Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, 9 

Ithaca, NY 14853, USA 10 

2Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA 11 

3International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera México-12 

Veracruz, El Batán, Texcoco, Edo. de México, CP 56130, México 13 

4Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 14 

Campus Delivery, Fort Collins, CO 80521, USA 15 

5Seed Technology Lab 113 Agronomy, Horticulture & Plant Science Box 2108 Brookings, SD 16 

57007, USA 17 

6Department of Agronomy University of Wisconsin-Madison Madison, WI 53706, USA 18 

7Department of Agronomy & Plant Genetics University of Minnesota St. Paul, MN 55108, USA 19 

8Cayuga Genetics Consulting Group LLC, Ithaca, NY 14850 USA 20 

9USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853 USA 21 

*Correspondence: Michael A. Gore (mag87@cornell.edu), Jean-Luc Jannink 22 

(jj332@cornell.edu) 23 

 24 

Running Title: Multi-omics prediction of oat phenotypic traits  25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.05.03.442386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442386
http://creativecommons.org/licenses/by-nc-nd/4.0/


2  

ABSTRACT  26 

Multi-omics prediction has been shown to be superior to genomic prediction with genome-wide 27 

DNA-based genetic markers (G) for predicting phenotypes. However, most of the existing 28 

studies were based on historical datasets from one environment; therefore, they were unable to 29 

evaluate the efficiency of multi-omics prediction in multi-environment trials and distantly-related 30 

populations. To fill those gaps, we designed a systematic experiment to collect omics data and 31 

evaluate 17 traits in two oat breeding populations planted in single and multiple environments. 32 

In the single-environment trial, transcriptomic BLUP (T), metabolomic BLUP (M), G+T, G+M and 33 

G+T+M models showed greater prediction accuracy than GBLUP for 5, 10, 11, 17 and 17 traits, 34 

respectively, and metabolites generally performed better than transcripts when combined with 35 

SNPs. In the multi-environment trial, multi-trait models with omics data outperformed both 36 

counterpart multi-trait GBLUP models and single-environment omics models, and the highest 37 

prediction accuracy was achieved when modeling genetic covariance as an unstructured 38 

covariance model. We also demonstrated that omics data can be used to prioritize loci from one 39 

population with omics data to improve genomic prediction in a distantly-related population using 40 

a two-kernel linear model that accommodated both likely casual loci with large-effect and loci 41 

that explain little or no phenotypic variance. We propose that the two-kernel linear model is 42 

superior to most genomic prediction models that assume each variant is equally likely to affect 43 

the trait and can be used to improve prediction accuracy for any trait with prior knowledge of 44 

genetic architecture. 45 

Key words: transcripts, metabolites, multi-omics prediction, oat  46 
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INTRODUCTION 47 

Oat (Avena sativa L.) ranks sixth in world cereal production and has increasingly been 48 

consumed as a human food (USDA, 2019). Oat has a high content of health-promoting 49 

compounds such as unsaturated fatty acids, dietary fiber, antioxidants and vitamins, which 50 

makes it an interesting target for metabolomics studies from a human health and nutrition 51 

perspective (IMARC Group, 2019). In addition, high-density genetic markers have been 52 

developed in oat (Bekele et al., 2018), a draft genome sequence has been released (PepsiCo, 53 

2020) and a high-quality and comprehensive seed transcriptome has been characterized (Hu et 54 

al., 2020). Furthermore, recent advances in high throughput sequencing and metabolite profiling 55 

technologies enable quantification of gene expression and metabolite abundance for hundreds 56 

of samples with high precision and reasonable cost (Alseekh & Fernie, 2018; Moll et al., 2014). 57 

All these advances in technology provides an opportunity to integrate different omics data and 58 

improve predictions for phenotypes of interest. 59 

Several multi-omics prediction studies have been reported in cereal species (Guo et al., 2016; 60 

Riedelsheimer et al., 2012; Schrag et al., 2018; Wang et al., 2019; Westhues et al., 2017; Y. Xu 61 

et al., 2017; Yang Xu et al., 2021). These studies have shed light on the merits of multi-omics 62 

prediction over traditional genomic prediction and discussed useful statistical methods for 63 

integrating omics data. For instance, Y. Xu et al. (2017) and Wang et al. (2019) suggested that 64 

best linear unbiased prediction was the most efficient method compared to other commonly 65 

used genomic prediction and non-linear machine learning methods. However, most of those 66 

studies were based on historical datasets with a limited number of metabolite features and each 67 

level of omics data was collected from different environments. Therefore, they were unable to 68 

evaluate the efficiency of multi-omics prediction in multi-environment trials and genetically 69 

distant populations. However, in plant breeding, multi-environment trials are important for 70 

assessing the performance of genotypes across environments and identifying well-adapted 71 

genotypes for a specific region (Burgueño et al., 2012; Mathew et al., 2018). In addition, 72 

prediction of breeding values of distantly-related individuals are needed in many and perhaps 73 

the most promising applications of genomic selection in both plant and animal breeding 74 

programs (Lorenz & Smith, 2015; Meuwissen, 2009; Moghaddar et al., 2019). 75 

To fill the knowledge gaps of multi-omics prediction in plant breeding, we designed a systematic 76 

experiment to collect omics data and evaluate eight agronomic and nine fatty acid traits 77 

(Supplemental Table 1) in a core set of a worldwide oat collection (termed Diversity panel) 78 

planted in one environment and advanced breeding lines adapted to the upper Midwest region 79 
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in the U.S. (termed Elite panel) planted in three environments. Our efforts included (i) comparing 80 

the accuracy of mufti-omics prediction against genomic prediction in a single-environment trial; 81 

(ii) evaluating the efficiency of multi-omics prediction in multi-environment trials; and (iii) 82 

exploring the potential of using multi-omics data to predict distantly-related individuals. 83 

RESULTS AND DISCUSSION 84 

After filtering out lines with low-quality genetic markers, the Diversity and Elite panels consisted 85 

of 368 and 232 lines (Supplemental Table 2), respectively, with 32 lines in common. A 86 

reconstructed phylogenetic tree revealed that the two panels were separated from each other in 87 

general, although some Diversity panel members were clustered to the Elite panel branches; 88 

and both panels showed population structure (Figure 1). This is consistent with our prior 89 

knowledge about origins of the two panels (Campbell et al., 2021) . 90 

Single-environment prediction in the Diversity panel 91 

Using GBLUP (G) as a baseline, there were 5, 10, 11, 17 and 17 traits out of the 17 total traits 92 

with improved prediction accuracy from transcriptomic BLUP (T), metabolomic BLUP (M), G+T, 93 

G+M and G+T+M models, respectively (Figure 2, Supplemental Table 3). Percent change in 94 

prediction accuracy over GBLUP ranged from 0.1% (Days to Heading, G+T model) to 70.3% 95 

(C18:0, G+M model) with a median of 21.5%. Because GBLUP does not allow for large-effect or 96 

zero-effect genetic markers, we also compared BayesB with the multi-omics models, and found 97 

BayesB showed similar results to GBLUP (Supplemental Figure 1). 98 

To evaluate whether transcriptomic and metabolomic features equally contribute to improved 99 

prediction accuracy or if one is more important than the other, we compared multi-omics 100 

prediction models with T and M kernels added in different orders. By adding kernels in their 101 

order along the central dogma of molecular biology, median prediction accuracy changes from 102 

G to G+T models and from G+T to G+T+M models across all traits ranged from -11.6% to 103 

35.8% (median=3.2%) and 6.5% to 55.6% (median=16.3%), respectively (Supplemental Figure 104 

2). In contrast, when adding the M kernel first (G+M model) then followed by the T kernel 105 

(G+T+M model), percent changes in prediction accuracy ranged from 2.5% to 67.3% 106 

(median=41.7%) and -3.3% to 3.5% (median=-0.03%), respectively (Supplemental Figure 3). 107 

These results indicated that seed metabolites generally contributed more than transcripts to 108 

improving prediction accuracy of both agronomic and seed nutritional traits when combined with 109 

SNPs. Other researchers (Westhues et al., 2017; Y. Xu et al., 2017) reported that prediction 110 

abilities of transcripts were lower than GBLUP. The poor predictive performance of transcripts in 111 
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existing studies might be explained by the fact that they were collected from a single time point 112 

and subject to dynamic changes in later unsampled developmental stages or by that transcripts 113 

and SNPs tend to capture similar genetic signals for predicted traits (Guo et al., 2016). 114 

Although metabolites played important roles when combined with other kernels in improving 115 

prediction accuracy, we found that metabolites alone from mature seeds (M model) showed 116 

mixed results for predicting agronomic traits (Figure 2), while they greatly outperformed SNPs in 117 

predicting fatty acids. The relatively low performance of mature seed compounds in predicting 118 

agronomic traits might be explained by the fact that development of the agronomic traits and 119 

accumulation of compounds in mature seeds occurred either at different times or in different 120 

tissues. To further understand why metabolites are better predictors for fatty acid traits, we used 121 

the Weighted Gene Co-expression Network Analysis (WGCNA, Zhang & Horvath, 2005) that 122 

accommodated both annotated and unannotated compounds and used metabolites annotations 123 

(Supplemental Table 4) to elucidate their biological functions. We found 26 network modules 124 

and eight of them were enriched with lipids and lipid-like molecules (Supplemental Table 5), 125 

which included 33.0% of identified seed metabolite compounds. Those compounds directly or 126 

indirectly connected with fatty acids through biochemical pathways and different pathways 127 

relevant to lipids were likely influenced by overlapping gene sets. Therefore, they should be able 128 

to capture more genetic co-variation (including both additive and non-additive covariation) with 129 

fatty acids than SNPs fitted in an additive model. This hypothesis was partially supported by our 130 

results that combining G model and M model (G+M model) significantly improved prediction 131 

accuracies than using either model alone for all the 17 traits (Figure 2, Supplemental Table 6) 132 

and by findings of Guo et al. (2016) that adding metabolites to saturated SNP densities still led 133 

to significant increases in predictive abilities.  134 

Multi-environment prediction in the Elite panel 135 

Beyond single-environment prediction, omics data might also have merit in predicting multi-136 

environment trials, which has not yet been investigated to our knowledge. Here we used SNPs 137 

and metabolites for analyzing the multi-environment trials in the Elite panel, because transcript 138 

profiling from a single developmental time point showed limited value for improving prediction 139 

accuracy in addition to being very labor-intensive. We focused on prediction of lines that have 140 

been evaluated in some but not in target environments (CV2, Burgueño et al., 2012). To this 141 

aim, we applied a single environment cross validation method (Mathew et al., 2018) 142 

(Supplemental Figure 4). Briefly, to predict a phenotype in the first environment, we masked 143 

20% of lines for cross validation and used metabolites from the other two environments to 144 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.05.03.442386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442386
http://creativecommons.org/licenses/by-nc-nd/4.0/


6  

construct metabolomic relationship matrices to minimize the influence of non-genetic effects on 145 

prediction accuracy. We then used multi-trait models treating phenotypes from all three 146 

environments as separate traits for model training but using only the phenotype data of the 147 

masked lines from the first environment as the testing data. This procedure was repeated for the 148 

second and third environments and prediction accuracies were averaged across the three 149 

environments for each run. 150 

Multi-environment predictions were performed using six multi-trait models (Supplemental Table 151 

7) on three different kernels/combinations (G, M, G+M) with various genetic and residual 152 

covariance structures (Figure 3, Supplemental Figure 5). The diagonal heterogeneous 153 

covariance structure (D-D) corresponds to a single-environment model without borrowing 154 

information from other environments. The question that we explored was whether multi-omics 155 

models (M and G+M) could improve prediction accuracy compared to corresponding multi-trait 156 

models based on SNPs alone (G model). To answer this question, within each of the five multi-157 

trait models (the D-D model was excluded), we compared percent change in prediction 158 

accuracy of M and G+M models relative to the G model. We found the M model outperformed 159 

the G model for all seed fatty acid traits except C16:1 and C18:3, with an increase in prediction 160 

accuracy ranging from 0.1 to 15.9%. However, the G+M model outperformed the G model for all 161 

traits except days to heading, with an increase in prediction accuracy over the G model ranging 162 

from 0.1 to 13.9%. These results confirmed the value of using multi-omics data in multi-163 

environment prediction. 164 

We then used the prediction accuracy from GBLUP in the single-environment model (D-D) as a 165 

baseline to compare the performance of different multi-trait models. We found that all multi-trait 166 

models outperformed their counterpart single-environment models (Figure 3, Supplemental 167 

Figures 6-8). The multi-trait models generally performed better when modeling the genetic 168 

covariance as unstructured (UN) or as factor-analytic (FA) than modeling genetic covariance as 169 

a diagonal structure (D). The highest prediction accuracy was achieved by either UN-D (UN and 170 

D represent genetic and residual covariance structures, respectively) or UN-UN models, 171 

although FA-D and FA-UN models provided very similar results. This indicated that the genetic 172 

covariance between environments played an important role in the multi-omics prediction 173 

models. These findings agree with recent genomic prediction studies (Malosetti et al., 2016; 174 

Montesinos-López et al., 2016) that UN covariance structure improved prediction accuracy 175 

compared to the models with diagonal homogeneous or heterogeneous covariances. Overall, 176 
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we concluded that considering genetic and non-genetic covariances is useful to improve 177 

prediction accuracy of multi-environment models using multi-omics data. 178 

Using multi-omics data to improve genomic prediction in distantly-related 179 

populations 180 

Although multi-omics data showed superiority over SNPs to predict phenotypes in both single 181 

and multi-environment trials, currently transcript and metabolite profiling is more expensive than 182 

SNP genotyping, which would limit their applications in plant breeding. Here we hypothesized 183 

that omics data from well characterized populations can be used to prioritize likely causal loci 184 

and improve performance of genomic prediction models in distantly-related populations. Seed 185 

fatty acid concentrations were used as target traits to test the hypothesis because their genetic 186 

architectures have been well characterized (Carlson et al., 2019) and lipid biosynthetic 187 

pathways are known to be highly conserved in higher plants (de Abreu e Lima et al., 2018). 188 

To explore this scientific question, we first attempted to prioritize likely causal loci from the 189 

Diversity panel based on the eight network modules enriched with lipids and lipid-like molecules 190 

(Supplemental Table 5). Among the eight network modules, only one (darkred) strongly 191 

correlated with fatty acids (Supplemental Figure 9). We then performed hierarchical clustering 192 

and GWAS on eigenvectors of all the 26 network modules and PC1 of fatty acids. The 193 

eigenvector of the darkred module was clustered together with PC1 of fatty acids (Supplemental 194 

Figure 10) and had significant GWAS hits on chromosome 6A (Supplemental Figure 11), which 195 

co-located with the fatty acids major-effect QTL (QTL-6A, Supplemental Figure 12). However, 196 

the QTL-6A was not detected from other network modules. We further prioritized 140 markers 197 

including significant markers and the markers in LD with them based on the darkred module 198 

GWAS hits on chromosome 6A.  199 

The primary use of locus prioritization is to split markers in the test population into two sets for a 200 

multi-kernel model prediction, in which the two genomic relationship kernels were constructed 201 

from the two marker sets. We termed our method multi-kernel network-based prediction (MK-202 

Network) and found it improved prediction accuracy over GBLUP and BayesB for all fatty acid 203 

traits (Figure 4) except C14:0 and C18:3, because they had different genetic architectures from 204 

other fatty acids and no significant markers from GWAS (Supplemental Figure 12). The percent 205 

change of mean prediction accuracy over 50 cross-validation runs ranged from 4.0% to 32.0% 206 

with a mean of 14.5%. 207 
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The universal QTL of fatty acids (QTL-6A, Supplemental Figures 12-13) and similar LD 208 

relationships (Supplemental Figure 14) with the surrounding loci between the Diversity and Elite 209 

panels promoted the success of our likely causal loci prioritization. The network-based 210 

prioritization strategy takes advantages of pleiotropy, in which one or a few genes influence both 211 

target traits and other metabolites from related network modules. In the darkred module, 23 of 212 

32 metabolites showed clear peaks at the QTL-6A, although only five of them were significant at 213 

FDR<0.05 (Supplemental Figure 15). This indicated that QTL-6A was likely a causal locus and 214 

influenced both fatty acids and the darkred module. The relationships between fatty acids and 215 

the darkred module are expected to be conserved between populations. However, we were 216 

unable to test this because there is currently no robust method to map all untargeted 217 

metabolites from one panel to another and quantify them precisely.  218 

Most genomic prediction methods assume that each variant is equally likely to affect the trait 219 

(MacLeod et al., 2016). There are certain loci that explain more phenotypic variance and they 220 

should be placed in different kernels than loci that explain little or no variance. However, the 221 

other kernel is still needed because we may unintentionally exclude important loci based on 222 

prior biological knowledge alone, for example, a prior GWAS might not identify all possible 223 

causal loci. There are many loci that have small effects, through whatever pathway, whether it is 224 

through trans effects as hypothesized in the omnigenic model (Liu et al., 2019) or through much 225 

more indirect effects like competition for photosynthates or impact on fitness (Price et al., 2018). 226 

Li et al. (2018) found that excluding those small-effect loci could not further improve prediction 227 

accuracy compared to GBLUP with all SNPs. Therefore, a two-kernel linear model that 228 

accommodates both likely casual loci and loci with minimal to no effect should be used to 229 

improve prediction accuracy for any traits with prior knowledge of genetic architecture. 230 

METHODS 231 

The plant materials and experimental designs 232 

The Diversity and Elite panels consisted of 378 and 252 lines (Supplemental Table 2), 233 

respectively. The Diversity panel originally included 500 lines described by Carlson et al. (2019) 234 

that was a core set of worldwide collection of oat germpalsm, and we further selected for lines 235 

with visible anther extrusion. The Diversity panel was planted at Ithaca, NY, and the Elite panel 236 

was planted at Madison, WI, Crookston, MN, and Brookings, SD, respectively. An augmented 237 

incomplete design was used for both panels. The Diversity panel included 18 blocks of 23 plots 238 

each, one common check across all blocks and six secondary checks replicated in three blocks 239 
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each. The Elite panel included 12 blocks of 25 plots each, one common check across all blocks 240 

and two secondary checks replicated in six blocks each. 241 

Phenotype evaluation and analysis 242 

Plant height was evaluated for five randomly selected plants in each plot after anthesis. Days to 243 

heading was defined by the days from seeding to heading in >50% of total plants. 100 randomly 244 

selected seeds from each plot were dehulled with a hand dehuller for evaluation of hundred 245 

kernel weight, hundred hull weight and groat percentage. After dehulling, 50 randomly selected 246 

seeds were delivered to the Proteomics and Metabolomics Facility at Colorado State University 247 

for metabolite analysis, and the other 50 seeds were used for measuring seed length, width and 248 

height with an electronic micrometer. Fatty acids were identified and quantified with targeted 249 

GC-MS, then normalized to concentration (mg/g of oats) against the internal standard (C17:0) 250 

(details were described in the Supplemental Methods).  251 

Genotype analysis 252 

Genotypic data of the two panels were downloaded from T3/oat 253 

(https://triticeaetoolbox.org/oat/). Marker quality control followed Calson et al. (2019) and there 254 

were 73,014 markers and 568 lines (368 for the diversity panel, 232 for the elite panel, 32 in 255 

common) left after filtering. Subsequently, missing genotypes were imputed using the linear 256 

regression method glmnet described by Chan et al. (2016). The imputed genotypic data was 257 

used for constructing a neighbor-joining tree based on Rogers’ distance using the ape package 258 

(Paradis et al., 2004).  259 

Transcript profiling 260 

RNAseq was based on developing seeds at 23 days after anthesis (DAA). The 23 DAA was 261 

chosen based on our pilot study (Hu et al., 2020) that showed 23 DAA had slightly higher 262 

correlation between transcript and metabolite abundance than other sampled developmental 263 

time points. Seed sample collection, RNA extraction, library construction procedures were 264 

described in details by Hu et al. (2020). Pooled libraries were sequenced using Illumina 265 

NextSeq500 with a 150 nt single-end run. The RNAseq reads quality trimming, transcript 266 

abundance quantification, and library size normalization following Hu et al.(2020). 267 

Metabolite profiling 268 

Metabolite analysis was based on physiologically mature seeds because they have the highest 269 

level of health-promoting compounds and those compounds are stable at room temperature 270 
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until germination. GC-MS non-targeted analysis and LC-MS Phenyl-Hexyl analysis were done at 271 

the Proteomics and Metabolomics Facility at Colorado State University. Details of chemical 272 

analysis, raw mass spectrometry data processing, metabolite annotation and normalization 273 

were described in the Supplemental Methods. The normalized metabolomics data was used for 274 

network analysis with WGCNA (Zhang & Horvath, 2005). 275 

Analysis of phenotypic traits, transcriptomic and metabolic features 276 

Phenotypic traits, transcriptomic and metabolic features were analyzed following a standard 277 

linear mixed model of an augmented design accounting for effects of check genotypes and 278 

blocks. For metabolites analysis, batch effect was also included in the model. All statistical 279 

models were described in the Supplemental Methods and fitted using the sommer package 280 

(Covarrubias-Pazaran, 2016). 281 

Single-environment prediction 282 

The additive genomic relationship matrix was made with the rrBLUP package (Endelman, 2011), 283 

and relationship matrices for transcriptomics and metabolomics data were made following 284 

Westhues et al. (2017). GBLUP, Transcriptomic BLUP (T), metabolomic BLUP (M), G+T, G+M 285 

and G+T+M models were fitted with the BGLR package (Pérez & De Los Campos, 2014). In the 286 

Diversity panel, transcriptomics and metabolomics data were collected on the same plots as the 287 

phenotypic data and therefore non-genetic (i.e., microenvironmental) factors that affected both 288 

omics features and phenotypic traits may induce non-genetic correlations among traits. 289 

Therefore, we estimated prediction accuracy as ��̂�� ���̂�̂�� described by Runcie and Cheng 290 

(2019), and used a 50:50 training:testing split of the data to ensure that ��̂�� could be estimated 291 

accurately in the testing partition. This cross-validation procedure was repeated for 50 times 292 

with different random partitions. 293 

Multi-environment prediction  294 

The metabolomics data were collected on the same plots as the phenotypic data in the Elite 295 

panel, which would bias prediction accuracy if directly using metabolites to predict target 296 

phenotypes in the same environment. Therefore, when predicting target phenotypes from one 297 

environment, we used metabolites from other two environments to make metabolomic 298 

relationship matrix. For each trait, we fitted six multi-trait mixed models on G, M and G+M 299 

kernels with different genetic and residual covariance structures (Supplemental Table 7). We 300 

applied a single environment cross validation method for genomic prediction described by 301 
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(Mathew et al., 2018). Procedure of the single environment cross validation was illustrated in 302 

Supplemental Figure 4 and described in detail in the Supplemental Methods. 303 

Prediction of distantly related individuals 304 

Prediction of distantly related individuals included two steps: likely causal loci prioritization and 305 

multiple-kernel prediction. We first performed likely causal locus prioritization from the Diversity 306 

panel based on the eight network modules enriched with lipids and lipid-like molecules, then 307 

utilized the prioritized markers and all rest markers to construct two genomic relationship 308 

kernels for a multiple-kernel prediction in the Elite panel. The details of related analyses were 309 

described in the Supplemental Methods. 310 
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 441 

Figure 1. Neighbor-joining tree of 568 oat lines in the Diversity and Elite panels. 442 
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 443 

Figure 2 Distribution of prediction accuracy of the 17 phenotypic traits in the Diversity panel 444 

across 50 re-sampling runs. For each trait, boxplots with different colors represent prediction 445 

models, which are G, T, M, G+T, G+M and G+T+M from left to right. Medians of percent change 446 

in prediction accuracy of models relative to GBLUP are indicated below each box in blue if 447 

positive and in red if negative. G = genomic BLUP, T = transcriptomic BLUP, M = metabolomic 448 

BLUP.  449 
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 450 

Figure 3 Distribution of prediction accuracy of the 15 phenotypic traits in the Elite panel across 451 

50 re-sampling runs estimated by multi-trait models for multi-environment prediction. The 15 452 

phenotypic traits in the Elite panel were evaluated at three environments. For each trait, 453 

boxplots with different colors represent models. Medians of percent change in prediction 454 

accuracy of M and G+M models relative to the G model are indicated below each box in blue if 455 

positive and in red if negative. For each model, the uppercase letters before and after the 456 

hyphen represent genetic and residual covariance structures: D=diagonal, UN=unstructured, 457 

FA=factor-analytic.  458 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.05.03.442386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442386
http://creativecommons.org/licenses/by-nc-nd/4.0/


19  

 459 

Figure 4 Prediction accuracy of the 10 fatty acid traits in the Elite panel estimated by GBLUP, 460 

BayesB and two-kernel BLUP models across 50 re-sampling runs. For each trait, barplots with 461 

different colors represent models. Means of percent change in prediction accuracy of all other 462 

models relative to GBLUP are indicated above each bar (in blue if positive, in red if negative, 463 

and in black if zero). MK-Network=network-based multiple-kernel prediction. 464 
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