

1 **SARS-CoV-2 GENOME SEQUENCING METHODS DIFFER IN THEIR ABILITY TO**
2 **DETECT VARIANTS FROM LOW VIRAL LOAD SAMPLES**

3 C. Lam¹, K. Gray^{1,2}, M. Gall², R. Sadsad^{1,3}, A. Arnott², J. Johnson-Mackinnon^{1,3}, W. Fong¹, K.
4 Basile^{2,3}, J. Kok^{1,2}, D. E. Dwyer^{1,2,3} V. Sintchenko^{1,2,3}, R.J. Rockett^{1,3}

5

6 ¹Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital,
7 Westmead, New South Wales, AUSTRALIA

8 ²Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health
9 Pathology, Institute for Clinical Pathology and Medical Research, Westmead, New South
10 Wales, AUSTRALIA

11 ³The University of Sydney, Sydney, New South Wales, AUSTRALIA

12

13 **ABSTRACT (149 words)**

14 SARS-CoV-2 genomic surveillance has been vital in understanding the spread of COVID-19,
15 the emergence of viral escape mutants and variants of concern. However, low viral loads in
16 clinical specimens affect variant calling for phylogenetic analyses and detection of low
17 frequency variants, important in uncovering infection transmission chains. We systematically
18 evaluated three widely adopted SARS-CoV-2 whole genome sequencing methods for their
19 sensitivity, specificity, and ability to reliably detect low frequency variants. Our analyses
20 highlight that the ARTIC v3 protocol consistently displays high sensitivity for generating
21 complete genomes at low viral loads compared with the probe-based Illumina respiratory viral
22 oligo panel, and a pooled long-amplicon method. We show substantial variability in the number
23 and location of low-frequency variants detected using the three methods, highlighting the
24 importance of selecting appropriate methods to obtain high quality sequence data from low
25 viral load samples for public health and genomic surveillance purposes.

26

27 **INTRODUCTION (4741 words, including methods)**

28 The rapid implementation of genomic epidemiology has enabled unparalleled understanding
29 and monitoring of viral evolution during the SARS-CoV-2 pandemic. The first reported SARS-
30 CoV-2 case in Australia was notified on January 25, 2020, and by the end of 2020, 28,381
31 SARS-CoV-2 cases had been identified nationwide
32 (<https://www.health.gov.au/resources/publications/coronavirus-covid-19-at-a-glance-30-december-2020-0>). Australia's low prevalence of COVID-19 is due to the implementation of

34 strong public health measures, which in New South Wales (NSW) has included integrated
35 genomic surveillance to inform public health responses and contact tracing efforts [1].

36 Whole genome sequencing (WGS) of SARS-CoV-2 was implemented in NSW,
37 Australia within two weeks of the first reported case in anticipation of increasing SARS-CoV-
38 2 infections [2]. A pooled long-amplicon (long-amp) based sequencing approach was initially
39 selected based on reagent and resource availability and was quickly adapted to fit existing WGS
40 workflows and infrastructure [3]. By March 28, 2020, 209 samples from NSW had been
41 sequenced and released on the Global Initiative on Sharing All Influenza Data database
42 (GISAID; www.gisaid.org) [3], representing 13% of all SARS-CoV-2 cases diagnosed in NSW
43 at the time. The initiative to promptly release genomic data has mirrored other national and
44 international efforts focused on near real-time monitoring of the evolution and intercontinental
45 spread of the SARS-CoV-2 [4-6]. Prospective WGS of SARS-CoV-2 cases in NSW has
46 continued and to date (April 30, 2021), 1710 genomes representing 32% of confirmed cases
47 have been generated.

48 A large array of SARS-CoV-2 sequencing protocols have been developed since the start
49 of the pandemic. They range from numerous target enrichment techniques which can be applied
50 to multiple sequencing technologies, to suites of bioinformatics and data visualisation
51 workflows [7]. The rapid development of all aspects of SARS-CoV-2 WGS was aided in part
52 by efforts from the global genomics community in developing viral WGS methods
53 (<https://artic.network/ncov-2019>). However, accurate SARS-CoV-2 genomic surveillance has
54 been hampered by several common challenges: firstly, a high level of variability exists between
55 sequencing protocols in obtaining complete SARS-CoV-2 genomes, particularly from clinical
56 samples with low viral loads (as reflected by real-time PCR (RT-PCR) cycle threshold (Ct)
57 values), such as those collected from patients without symptoms, mild disease, or late in the
58 course of infection. Secondly, the accuracy required to detect and call variants using different
59 protocols has not been adequately validated. All of these factors, sequencing method,
60 reproducibility and thresholds for variant calling may affect the quality and impact of genomic
61 surveillance and ultimately public health efforts to contain outbreaks.

62 Synthesis of SARS-CoV-2 genomic data with detailed epidemiological exposure and
63 contact tracing information can provide definitive evidence of importation events and
64 identification of local SARS-CoV-2 transmission chains [3, 8]. SARS-CoV-2 clusters,
65 transmission chains, or networks linked to superspreading events are often differentiated

66 genomically by single nucleotide polymorphisms (SNPs) within the SARS-CoV-2 genome [9].
67 The ability to rapidly and accurately characterise SNPs and other variants has become even
68 more important after the identification of several ‘variants of concern’ (VOC). VOC contain
69 specific mutations identified as important and relevant for COVID-19 control due to mounting
70 evidence of positive selection of specific non-synonymous spike protein mutations that can
71 increase the duration, severity and transmission of COVID-19 by affecting host immune
72 responses [10-13]. Complete genomes generated using highly sensitive and specific
73 sequencing methods are therefore required to inform and enable genomics guided surveillance
74 to provide the information necessary for COVID-19 control and policy decisions, particularly
75 as widespread SARS-CoV-2 vaccination is underway [14-17].

76 This study systematically evaluated three different sequencing methods for their
77 sensitivity and ability to generate complete SARS-CoV-2 genome sequences suitable for public
78 health surveillance. We assessed and compared (i) the pooled long-amplicon method [2] with
79 (ii) ARTIC v3 network tiled amplicon protocol (<https://artic.network/ncov-2019>) that has been
80 adopted widely since the start of the pandemic, and (iii) a probe capture-based Respiratory
81 Viral Oligo Panel (RVOP) (Illumina). Additionally, we investigated the pattern of low
82 frequency variants generated by these methods, which can be important in defining and
83 highlighting transmission chains [18].

84

85 RESULTS

86 ***Viral isolates, viral loads and genome profiles.*** Seven SARS-CoV-2 positive clinical
87 specimens were cultured as representatives of different SARS-CoV-2 genomic clusters that
88 were co-circulating in NSW between February - April 2020 [3]. Details of the genome obtained
89 from each clinical specimen, including GISAID ID, lineage and SNP profile are listed in
90 supplementary Table 1. Two of seven isolates lost a SNP compared to the genome obtained
91 directly from the original clinical specimens. The genome of Isolate 2 reverted to wild-type at
92 position C:26213; however, the SNP C:26213:T detected in the original clinical specimen was
93 still present as a low frequency variant. In Isolate 7, all reads at position 13730 were the wild-
94 type allele (C). To investigate the effect of low viral load on detection of variants, serial
95 dilutions of cell culture supernatant were performed. RT-PCR results from each culture
96 dilution demonstrated that a 10-fold decrease in viral load corresponded to a Ct increase of ~3-
97 4 cycles (Fig.1). A total of seven dilutions were made, five of which remained consistently
98 SARS-CoV-2 RT-PCR positive with corresponding viral loads decreasing from a median load

99 of 71,062 copies/µL (median Ct 25.42, range Ct 24.29 – 26.65, viral load range 47,482 –
100 1,178,540 copies/µL) to a median of 112 copies/µL (median Ct 36.62, range 34.7 – 38.19, viral
101 load range 18 – 1,584 copies/µL). Culture dilutions with Ct >39 were deemed too low to
102 attempt sequencing and were excluded from further analysis.

103 **Synthetic control.** Using the long-amp method, only 57% (8/14 amplicons) of the synthetic
104 control genome were able to be sequenced up to ~Ct 32, after which no amplicons were
105 produced. Regions which did not amplify at higher viral loads were A2, A3, A4, B4, B5 and
106 B6, signalling that these primer pairs span two contiguous but separate segments of the
107 synthetic genome. The smaller tiled amplicons from ARTIC v3 produced a higher proportion
108 (93.9%, 92/98 amplicons) of the genome; however, amplicons 16, 17, 33, 50, 66 and 82 did
109 not amplify. Missing regions from both ARTIC v3 and long-amplification methods overlapped,
110 confirming six distinct segments of the synthetic control. Due to the non-amplification of larger
111 products from the long-amplification method, less of the genome was able to be recovered,
112 meaning that subsequent variant calling from these missing regions could not be performed.
113 Complete genomes (>99% coverage) for the synthetic control was able to be obtained using
114 RVOP up to Ct 28.

115 **Comparison of genome coverage across three sequencing methods.** At Cts 25-29 (up to 2000
116 copies/µL), all three WGS methods generated near complete SARS-CoV-2 genomes with >10x
117 coverage (Figure 2, Supplementary Figure 1). The highest level of genome coverage across all
118 five dilutions was achieved using ARTIC v3 with >90% genome coverage achieved at viral
119 loads down to ~Ct 38 (2 copies/µL). For each of the complete genomes (expected genome size
120 of 29,903bp), there were fewer than 1000 ambiguous bases (N's) from the MN90894.3
121 reference genome (Figure 2). On the other hand, genome coverage decreased substantially
122 using long-amplicon and RVOP methods at a median Ct 32 (Ct range 30.7 – 33.4, median viral
123 load 1340 copies/µL, range 725 – 14,613 copies/µL) (Supplementary Figure 1) however the
124 differences observed were not significant (Figure 2). This decreasing trend continued at lower
125 dilutions for both long-amp and RVOP, resulting in significant differences of the genome
126 coverage obtained using the ARTIC, long-amplification and RVOP methods (p<0.05) (Figure
127 2).

128 **Read depth affects genome coverage and variant calling.** Read depth across amplicons
129 differed substantially between ARTIC v3 and long-amp methods creating highly uneven
130 genome coverage. ARTIC v3 amplicons 9, 17, 23, 64, 67, 70, 74 and 91 were amplified
131 inconsistently at higher Ct values (Ct>34). A2, B3 and B6 from the long-amplification protocol
132 were the poorest performing, often not amplified in samples with Ct <30. These 400 bp-5 kb

133 missing amplicons created large genomic gaps, which made variant calling problematic. In
134 contrast, the amplicons which amplified with high efficiency using ARTIC v3 (44, 57, 62), had
135 consistently higher average read depths regardless of Ct value. The RVOP achieved the most
136 consistent read depth across the genome, with relatively even distribution of missing bases
137 compared with either amplification-based sequencing method. However, average read depth of
138 samples at ~Ct 32 (Ct range 30.7 – 33.4) was low (Figure 3) with inconsistent genome coverage
139 <10x, also resulting in problems with variant calling.

140 ***ARTIC rebalanced pools:*** Using the COVID-19 Genomics Consortium (COG-UK) guidelines,
141 we rebalanced ARTIC v3 primers in an attempt to improve amplification of specific amplicons
142 and obtain more even sequencing coverage across the genome. Figure 4 shows the performance
143 of rebalanced primers compared with original primer concentrations prior to rebalancing.
144 Unsurprisingly, as viral load decreases, coverage across poorer performing amplicons
145 decreased in parallel (Figure 4 and Supplemental Figure 1). No significant changes in coverage
146 were observed (across all dilutions) with amplicons 15, 27, 73, even though the primer
147 concentrations were increased by 1.5x-2.1x. However, amplicons 64, 67, 70 and 74 (for which
148 primer concentrations were increased by a factor of between 6-7.8x), performed significantly
149 better than original unbalanced primer pools. Other amplicons (i.e. 36, 54 and 66) whose
150 primers were increased by a factor of >3x performed worse than expected (likely due to
151 potentially poorly designed primers or excessive interactions with other primers). Regardless
152 of individual primer rebalancing factors, sufficient depth (>10x) to meet variant calling QC at
153 Ct 35 was obtained for all amplicons.

154 ***Comparative sensitivity of three SARS-CoV2 sequencing methods.*** Sensitivity of each method
155 was defined as the ability to accurately call SNPs, based on a clear consensus amongst all the
156 dilutions. All three methods exceeded 90% sensitivity with median Ct 28.7 (Ct range 27.6 -
157 31.3, median viral load 12,025 copies/µL) (Figure 5). The sensitivity for ARTIC remained high
158 for samples up to Cts >38, whereas sensitivities for both pooled long-amplicon and RVOP
159 dropped below 80% at Ct >30. No differences in sensitivity or specificity were observed
160 between ARTIC original primer pooling compared with rebalanced primer pools. Interestingly,
161 at higher Ct values, the RVOP was more likely to represent true SNPs as low frequency variants
162 (discussed in further detail below).

163 ***RVOP and the detection of other respiratory pathogens.*** The RVOP can detect 43 common
164 human respiratory viruses and 60 human control genes (which serve as internal positive
165 controls for library construction and sequencing steps) in individual clinical samples [19].
166 Trimmed reads from all seven diluted cultures prepared using the RVOP were mapped against

167 203 reference sequences of 43 respiratory pathogens. Human rhinovirus 89 (NC_001617.1)
168 and adenovirus C (NC_001490.1) were detected, although coverage across both viral genomes
169 was less than 2%. An in-house respiratory panel RT-PCR reconfirmed the presence of both
170 rhinovirus (Ct 27) and adenovirus (Ct 26) in the negative respiratory matrix (Supplementary
171 Table 3). Twenty-seven reads mapped to human coronavirus 229E, but when BLAST was used
172 to check the identity of these reads, the majority of mis-mapped reads also had high homology
173 with SARS-CoV-2 and were subsequently found to have short read lengths (<40 bp).

174 ***Low frequency variant detection.*** On average 16.7 low frequency variants were detected using
175 all three techniques per sample (range 12-25). However, almost half of these low frequency
176 variants were removed, due to their detection in a single dilution per isolate. Generally, these
177 non-replicated low frequency variants were only detected in low viral load dilutions (1x 10⁻⁶
178 and 1x10⁻⁷). Low frequency variants repeatedly detected in at least two dilutions were most
179 commonly detected using RVOP (median number of sites 10, range 6-16) followed by ARTIC
180 (median number of sites 1, range 0-5) and long-amplification (median number of sites 1, range
181 0-4) and (Supplementary Figure 1, Supplementary Table 2). The presence of low frequency
182 variants was confirmed, at the same genome position by all three methods, in two culture
183 isolates (median number of sites 2, range 0-4): Isolate 1 at positions 657, 27972, 29585, Isolate
184 2 at positions 12299, 16466 (Supplementary Table 2). No additional low frequency variants
185 were detected using the ARTIC v3 rebalanced pools. Despite using a simulated respiratory
186 matrix to control for background artefacts, there was little consistency in the number and
187 location of low-frequency variants detected across the diluted genomes using each of the three
188 methods.

189

190 DISCUSSION

191 This study highlighted important quality requirements for high-throughput sequencing
192 of SARS-CoV-2 for the purpose of public health surveillance. These parameters are critical for
193 the application of SARS-CoV-2 genomics in tracking transmission pathways and monitoring
194 ongoing viral evolution in circulating virus populations. Sequencing of samples with low viral
195 loads and high Ct values (eg. Ct >33) has been challenging regardless of methodology used
196 [20-23]. Sequencing of such samples can still be attempted, but the resulting genomes often
197 have a substantial portion of missing bases, making it difficult to infer genomic clusters or
198 identify VOC.

199 Our findings demonstrated the rapid loss of genome coverage using pooled long-
200 amplicon sequencing and the RVOP at Ct >32 (median viral load 1340 copies/µL), indicating

201 that low viral load or suboptimal RNA quality can be a limiting factor that must be considered
202 when using these methods to generate reproducible genomic data. In contrast, near complete
203 genomes can be recovered using ARTIC v3 at $Ct > 38$, suggesting that the ARTIC protocol is
204 either more sensitive at low viral loads or less impacted by reduced RNA quality. Indeed, the
205 ARTIC protocol has performed well for samples with higher viral loads ($Ct < 25$) [24-26] and
206 has been implemented in numerous laboratories worldwide. However, at lower viral loads, we
207 found both amplification-based methods inconsistently produced data in genomic regions of
208 known significance. Analogous to the findings presented here, uneven amplification
209 efficiencies and coverage bias have been widely reported for low viral load specimens [25, 26].
210 Increasing coverage over underperforming regions of the genome may be achieved by
211 sequencing at higher depths, but this approach is costly and impractical in outbreak situations
212 where high and rapid throughput is necessary. Rebalancing primer concentrations for ARTIC
213 v3 improved coverage over previously poorly sequenced regions, and it is likely that additional
214 manipulation of primer pooling or primer design would further enhance coverage.

215 In contrast, the RVOP generates consistent and even SARS-CoV-2 genome coverage
216 over a range of Ct values, despite the sensitivity being only marginally higher than for long-
217 amplicon sequencing. While not examined fully in this study, the RVOP can simultaneously
218 detect other pathogens in a single sample, reducing delays in diagnosis and treatment options
219 for patients who test negative for SARS-CoV-2. Similar to the genome coverage achieved for
220 SARS-CoV-2 in this study, the RVOP should also be able to generate whole genomes of other
221 respiratory viral pathogens targeted by the panel. We were unable to confirm complete
222 coverage of adenovirus and rhinovirus (despite their presence confirmed using RT-PCR) as the
223 pooled respiratory matrix used for this study consisted of a convenient sample of SARS-CoV-
224 2 negative universal transport media (UTM). Poor sample quality as a result of suboptimal
225 transport and storage conditions may have been another contributing factor to the limited and
226 inconsistent coverage of other respiratory pathogens.

227 The loss of informative sequencing data, especially in genomic regions of interest, can
228 hamper public health efforts to monitor changes in circulating viral populations. Given that
229 numerous VOC have been identified worldwide [14, 27-29], amplicon drop-outs, particularly
230 within the spike region, are problematic. For instance, B6 from the long-amplification protocol,
231 and amplicons 70 and 74 from the original ARTIC v3 protocol encompass part of the spike
232 protein, but all performed poorly and often did not amplify at $Ct > 32$. Rebalancing the ARTIC
233 v3 primer pools increased sequencing coverage and depth over amplicons 70 and 74. However,
234 it is important to note that both long-amplicon and ARTIC v3 methods involve primer binding

235 prior to amplification and are therefore prone to amplicon drop-outs if variants arise within
236 primer sites. The risk of amplicon dropouts can be overcome by redesigning primers away from
237 variant sites; such protocol changes can be time consuming and difficult to implement but will
238 be necessary given the rapid rise and spread of VOC. The constantly changing population
239 dynamics of the circulating SARS-CoV-2 viruses will require ongoing, high quality genomic
240 surveillance to track the evolution of circulating isolates and help inform necessary changes to
241 sequencing methodologies.

242 Detecting and locating genomic positions of low frequency variants from culture
243 derived specimens can provide insight into the reliability of intra-host single nucleotide
244 variants (iSNVs) called from clinical specimens. The role of intra-host genomic variability in
245 SARS-CoV-2 may be important in inferring transmission events [30] and may be responsible
246 for significant complications in patients with malignancies [31]. Thus, such low frequency
247 variants require ongoing detection and surveillance. There have been suggestions that iSNVs
248 can be detected at a frequency as low as 2% [18], however only those iSNVs occurring at a
249 frequency of >10% and a minimum coverage of 100x were investigated in the present study.
250 At this threshold, substantial variability of low frequency variants was observed using the
251 methods tested in this study even after controlling for background artefacts generated during
252 the WGS process (via the use of viral cultures in a defined respiratory matrix). The
253 inconsistency in low frequency variants calls can be attributed to the unique sequencing
254 chemistries of each method, and the impact of upstream amplification and hybridisation
255 procedures, highlighting the importance of recognising and accounting for biases that arise
256 during both laboratory preparation and downstream bioinformatic processes.

257 While we have systematically tested and determined the threshold at which complete
258 genomes can be generated for each method, we have not yet addressed issues with poor quality
259 specimens. Quality and quantities of RNA in clinical specimens for WGS is highly dependent
260 on sample types, collection methods, transport and processing. Suboptimal processes are not
261 uncommon and inherent with high throughput and often centralised testing. Sample
262 degradation as a result of these factors has been highlighted as a significant problem to
263 generating high quality genome sequences [23].

264 In conclusion, our systematic evaluation of sensitivity and ability to detect low
265 frequency variants demonstrated that overall, the ARTIC v3 protocol was the most sensitive
266 method for generating complete SARS-CoV-2 genomes. The additional advantages of the

267 ARTIC protocol are better capacity to recover genomes from clinical samples with low viral
268 loads and the ability to detect low frequency variants. Ongoing updates to the ARTIC v3
269 protocol, such as the rebalancing of primer pools (through the COG-UK and efforts from
270 research institutions), will ensure continual improvements to the WGS process. The
271 optimisation of SARS-CoV-2 genome sequencing can increase the utility of SARS-CoV-2
272 genomics for COVID-19 cluster detection, transmission tracking and public health responses.
273

274 METHODS

275 **Clinical specimens.** The study period and region included the 4 months between March and
276 July 2020, in NSW, Australia. SARS-CoV-2 RT-PCR positive specimens which were
277 subsequently cultured at NSW Health Pathology-Institute of Clinical Pathology and Medical
278 Research (ICPMR) in the study period were included for selection. Respiratory samples in
279 UTM which were RT-PCR negative for SARS-CoV-2 were collected and stored at 4°C. These
280 negative specimens were de-identified and pooled together totalling 40 mL before RNA was
281 extracted. This RNA was used to dilute SARS-CoV-2 isolates, referenced in the manuscript as
282 negative respiratory matrix. Ethical and governance approval for the study was granted by the
283 Western Sydney Local Health District Human Research Ethics Committee (2020/ETH02426).

284 **Viral isolation.** SARS-CoV-2 positive respiratory specimens were cultured in Vero C1008
285 cells (Vero 76, clone E6, Vero E6 [ECACC 85020206]) as previously outlined [32]. Briefly,
286 Vero cell cultures were seeded at 1-3 x 10⁴ cells/cm² in Dulbecco's minimal essential medium
287 (DMEM, LONZA, Alpharetta, GA, USA) supplemented with 9% foetal bovine serum (FBS,
288 HyClone, Cytiva, Sydney, Australia). Media was replaced within 12 hours with inoculation
289 media containing 1% FBS with the addition of penicillin, streptomycin and amphotericin B
290 deoxycholate to prevent microbial overgrowth and then inoculated with 500 µL of SARS-CoV-
291 2 positive respiratory sample. The inoculated cultures were incubated at 37°C in 5% CO₂ for 5
292 days (days 0 to 4). Cell cultures were observed daily for cytopathic effect (CPE). Routine
293 mycoplasma testing was performed to exclude mycoplasma contamination of the cell line and
294 all culture work was undertaken in physical containment laboratory level 3 (PC3) biosafety
295 conditions. The presence of CPE and increasing viral load was indicative of positive SARS-
296 CoV-2 isolation. RT-PCR testing was performed on day 1, 2, 3 and 4 by conducting RNA
297 extraction and SARS-CoV-2 RT-PCR on 200 µL of culture supernatant. Culture supernatant
298 was harvested four days after inoculation and stored at -80°C.

299 **RNA extraction from viral culture.** A total of 600 μ L (three x 200 μ L) of day 4 SARS-CoV-2
300 culture supernatant was used as input into the RNeasy Mini Kit (Qiagen) for RNA extraction
301 with minor modifications. 600 μ L of RLT buffer was added to 200 μ L of sample and mixed
302 well. An equal volume (800 μ L) of 70% ethanol was then added and mixed well by pipetting,
303 before loading onto RNeasy column in successive aliquots until the entire volume was
304 extracted. RNA was eluted in 30 μ L, pooled for a total of 90 μ L and stored at -80°C prior to
305 dilution. Total RNA was extracted from pooled SARS-CoV-2 negative clinical specimens as
306 above.

307 **Respiratory virus detection by RT-PCR.** A previously described RT-PCR [33] targeting the N
308 gene was employed to estimate the viral load of cultured RNA and ensure the absence of SARS-
309 CoV-2 in the negative respiratory matrix. Additional RT-PCRs were used to investigate the
310 presence of common viral respiratory viruses: human influenza viruses A & B,
311 parainfluenzaviruses 1, 2 & 3, respiratory syncytial virus, adenovirus, and rhinovirus in
312 negative UTM extract [34].

313 **Synthetic control.** A commercially available synthetic RNA control reference strain (Wuhan -
314 1 strain, TWIST Biosciences) containing six non-overlapping fragments replicating the most
315 commonly used reference sequence (NCBI GenBank accession MN908947.3) was used as a
316 control. Serial 10-fold dilutions starting at 20,000 copies/ μ L to 2 copies/ μ L were made and
317 used to generate a standard curve and quantify the viral load of each culture spiked dilution per
318 reaction. The N gene SARS-CoV-2 RT-PCR was used to determine the viral load of the neat
319 culture RNA after extraction. The synthetic control was also serially diluted 10-fold in
320 respiratory matrix (as outlined below), enriched using each of the methods below and
321 sequenced in parallel with diluted cultures.

322 **Normalisation and serial dilution of viral culture RNA into negative respiratory matrix**
323 Based on the viral load of the neat culture RNA (Ct 12.57– 14.48, viral load 2.0×10^8 - 6.0×10^7
324 copies/ μ L), each culture RNA extract was diluted 1:10 with negative RNA extract. Then 10-
325 fold serial dilutions were made in negative RNA extract until an estimated concentration of
326 >10 copies/ μ L (Ct 37-40) was reached for each isolate. cDNA was generated for all serially
327 diluted RNA samples using LunaScript RT SuperMix Kit (New England BioLabs). Sufficient
328 volume was prepared to perform duplicates for each method at each dilution. RNA and
329 corresponding cDNA dilutions were aliquoted and stored at -80°C and -20°C, respectively.
330 RT-PCR was then performed for each sample dilution to determine Ct value and corresponding
331 viral load.

332 ***Viral enrichment and genome sequencing.*** For each of the serially diluted samples, viral
333 enrichment was performed using three methods: ARTIC v3, a 14-pool long-amplicon
334 approach, and probe capture using Illumina RNA Prep with Enrichment with the Respiratory
335 Viral Oligo Panel (RVOP). Details of each enrichment method are outlined below.

336 *ARTIC v3 nCoV-2019 sequencing protocol - ARTICv3* (<https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye>): The ARTIC v3 protocol was performed with
337 the following modifications. Tiling PCR was used to amplify the whole genome according to
338 ARTIC nCoV2-2019 sequencing protocol. Each PCR included 12.5 μ L Q5 High Fidelity 2x
339 Master Mix (New England Biolabs), 3.6 μ L of either pool 1 or pool 2 10 μ M primer master mix
340 (final concentration of each primer was ~10-11pM), 5 μ L of template, molecular grade water
341 was added to generate a total volume of 25 μ L. Cycling conditions were as follows: initial
342 denaturation at 95°C- 2 min, followed by 35 cycles of: 95°C for 30 s, 63°C for 2 min 45 s, and
343 a final extension step of 75°C for 10 min. Pool 1 and pool 2 amplicons were combined and
344 purified with a 1:1 ratio of AMPureXP beads (Beckman Coulter) and eluted in 30 μ L of sterile
345 water. Purified products were quantified using Qubit™ 1x dsDNA HS Assay Kit
346 (ThermoFisher Scientific) and diluted to the desired input concentration for library preparation.
347 Sequencing libraries were prepared using Nextera XT (Illumina) according to manufacturer's
348 respective instructions. Sequencing libraries were then sequenced as 2x150bp runs on either
349 the Illumina iSeq or MiniSeq platforms.

350 An updated ARTIC v3 protocol with rebalanced primer pools was also evaluated in this study.
351 Primers for each ARTIC v3 pool were combined according to updated COG-UK consortium
352 guidelines (<https://www.protocols.io/view/covid-19-artic-v3-illumina-library-construction-an-bky5kxy6>). Subsequent PCR and sequencing using the rebalanced ARTIC primer pools
353 were performed as above.

354 *Pooled long-amplicon PCR* (dx.doi.org/10.17504/protocols.io.befyjbpw): Pooled long-
355 amplicon sequencing was performed as described previously [2]. Briefly, 14 overlapping PCR
356 amplicons were independently generated and pooled together in equal volumes. Pooled
357 products were purified with 0.8x AMPure XP beads (Beckman Coulter) and eluted in 30 μ L of
358 sterile water. Qubit™ 1x dsDNA HS Assay Kit (ThermoFisher Scientific) was used to quantify
359 pooled amplicons before diluting to the desired input concentration for library preparation.
360 Sequencing libraries were prepared using the Nextera XT kit (Illumina) and sequenced on
361 either iSeq or MiniSeq (Illumina) using 2x76bp paired end reads. No other changes were made
362 to the protocol.

365 ***Respiratory Viral Oligo Panel (RVOP):*** Diluted culture RNA extracts were used as input into
366 the RNA Prep with Enrichment kit (Illumina). RNA denaturation, first and second strand
367 cDNA synthesis, cDNA fragmentation, library construction, clean up and normalisation were
368 performed according to manufacturer's instructions. Individual libraries were then combined
369 in 3-plex reactions for probe hybridisation. The Respiratory Viral Oligo Panel v2 (Illumina)
370 was used for probe hybridisation with the final hybridisation step held at 58°C overnight.
371 Hybridised probes were then captured and washed according to manufacturer's instructions
372 and amplified as follows: initial denaturation 98°C for 30 s, 14 cycles of: 98°C for 10 s, 60°C
373 for 30 s, 72°C for 30 s, and a final 72°C for 5 min. Library quantities and fragment size were
374 determined using Qubit™ 1x dsDNA HS Assay and Agilent HS Tapestation and sequenced
375 using 2x76bp runs on the Illumina MiniSeq.

376 ***Bioinformatic analysis.*** Raw sequence data was processed using an in-house quality control
377 procedure prior to further analysis. Demultiplexed reads were quality trimmed using
378 Trimmomatic v0.36 (sliding window of 4, minimum read quality score of 20, leading/trailing
379 quality of 5 and minimum length of 36 after trimming) [35]. Reference mapping and variant
380 calling was performed using iVar version 1.2 [36]. Briefly, reads were mapped to the reference
381 SARS-CoV-2 genome (NCBI GenBank accession MN908947.3) using BWA-mem version
382 0.7.17, with unmapped reads discarded. Primer positions were supplied to iVar trim to soft-
383 clip any reads in the bam file which matched primer sequences. Average genome coverage was
384 estimated by determining the number missing bases (N's) in each sequenced genome. Variants
385 were called using iVar variants (min. read depth >10x, quality >20, min. frequency threshold
386 of 0.1). SNPs were defined based on an alternative frequency ≥ 0.9 whereas low frequency
387 variants were defined by an alternative frequency between 0.1 and 0.9. Low frequency variants
388 with <100x depth were excluded over concerns over reliability of calls where the frequency of
389 either allele dropped below 10. Low frequency variants were only included if they were
390 detected in 2 or more dilutions of each spike culture sequenced. Variants falling in the 5' and
391 3'UTR regions were excluded due to poor sequencing quality of these regions. Polymorphic
392 sites that have previously been highlighted as problematic were monitored [37]. SARS-CoV-2
393 lineages were inferred using Phylogenetic Assignment of Named Global Outbreak LINEages
394 v2 (PANGOLIN) (<https://github.com/hCoV-2019/pangolin>) [38]. The frequency and positions
395 of polymorphisms were compared between dilutions of the same culture and also against the
396 original genome generated from the respiratory specimen and between cultures. Median
397 genome coverage was calculated using the median depth in 50 bp bins across the reference

398 genome for each method and dilution. Median read depth per amplicon was assessed in non-
399 overlapping segments of each ARTIC v3 amplicon which was then converted to a factor of the
400 expected read coverage (total mapped reads/genome size*150 bp). These factors were
401 compared between original and rebalanced ARTIC v3 sequencing runs. Graphs were generated
402 using R (version 3.6.1).

403 ***Analytical performance- sensitivity and specificity.*** Sensitivity and specificity were calculated
404 for each sequencing method using a consensus SNP approach. For each isolate, a SNP called
405 in any method was considered a ‘true positive’ SNP if it occurred in two or more sequencing
406 methods at the highest dilution. SNPs identified by a single sequencing method only (and not
407 detected in the original clinical specimen) were considered false positives. Sensitivity was
408 calculated using the following formula $A/(A+C) \times 100$ where A was the number of true positive
409 SNPs and C is the number of false negative SNPs. Specificity was calculated using the formula
410 $D/(D+B) \times 100$ where D was the number of true negative bases (within the CDS region) and B
411 was the number of false positive SNPs. Pairwise statistical comparisons were conducted
412 between genome coverage and sensitivities at each dilution across each method using Friedman
413 Test or Mann-Whitney tests with a significance level of $p<0.05$.

414

415 **Acknowledgements:** The authors thank the Sydney Informatics Hub at The University of
416 Sydney, NSW Ministry of Health, and staff from the Microbial Genomics Reference
417 Laboratory and the Virology Laboratory, NSW Health Pathology-ICPMR for their assistance.
418 We are grateful to partner laboratories within the NSW Health Pathology network and private
419 laboratories for their participation in the COVID-19 genomics surveillance
420 and to GISAID for collating international data on SARS-CoV-2.

421

422 **Funding:** This work was conducted with funding from NSW Health as part of the COVID-19
423 priority grants scheme.

424 **Data availability:** Fastq files have been deposited in BioProject PRJNA723901 for all 118
425 genomes produced in this study. Individual SRA and GISAID accessions can be found in
426 Supplementary Table 4 and 1 respectively.

427

428

429

430 **REFERENCES**

431 1. McAnulty, J.M. and K. Ward, *Suppressing the Epidemic in New South Wales*. N Engl
432 J Med, 2020. **382**(21): p. e74.

433 2. Eden, J.S., et al., *An emergent clade of SARS-CoV-2 linked to returned travellers from*
434 *Iran*. Virus Evol, 2020. **6**(1): p. veaa027.

435 3. Rockett, R.J., et al., *Revealing COVID-19 transmission in Australia by SARS-CoV-2*
436 *genome sequencing and agent-based modeling*. Nat Med, 2020. **26**(9): p. 1398-1404.

437 4. Oude Munnink, B.B., et al., *Rapid SARS-CoV-2 whole-genome sequencing and*
438 *analysis for informed public health decision-making in the Netherlands*. Nat Med,
439 2020. **26**(9): p. 1405-1410.

440 5. Meredith, L.W., et al., *Rapid implementation of SARS-CoV-2 sequencing to*
441 *investigate cases of health-care associated COVID-19: a prospective genomic*
442 *surveillance study*. Lancet Infect Dis, 2020. **20**(11): p. 1263-1271.

443 6. Gudbjartsson, D.F., et al., *Spread of SARS-CoV-2 in the Icelandic Population*. N Engl
444 J Med, 2020. **382**(24): p. 2302-2315.

445 7. Hadfield, J., et al., *Nextstrain: real-time tracking of pathogen evolution*.
446 Bioinformatics, 2018. **34**(23): p. 4121-4123.

447 8. Deng, X., et al., *Genomic surveillance reveals multiple introductions of SARS-CoV-2*
448 *into Northern California*. Science, 2020. **369**(6503): p. 582-587.

449 9. Worobey, M., et al., *The emergence of SARS-CoV-2 in Europe and North America*.
450 Science, 2020. **370**(6516): p. 564-570.

451 10. Martin, D., et al., *The emergence and ongoing convergent evolution of the N501Y*
452 *lineages coincided with a major global shift in the SARS-CoV-2 selective landscape*.
453 Virological.org, 2021.

454 11. Cele, S., et al., *Escape of SARS-CoV-2 501Y. V2 variants from neutralization by*
455 *convalescent plasma*. medRxiv, 2021.

456 12. Williams, T.C. and W.A. Burgers, *SARS-CoV-2 evolution and vaccines: cause for*
457 *concern?* Lancet Respir Med, 2021.

458 13. Ho, D., et al., *Increased Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 to*
459 *Antibody Neutralization*. Res Sq, 2021.

460 14. Tegally, H., et al., *Emergence and rapid spread of a new severe acute respiratory*
461 *syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations*
462 *in South Africa*. medRxiv, 2020.

463 15. Galloway, S.E., et al., *Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States,*
464 *December 29, 2020-January 12, 2021.* MMWR Morb Mortal Wkly Rep, 2021. **70**(3):
465 p. 95-99.

466 16. Leung, K., et al., *Early transmissibility assessment of the N501Y mutant strains of*
467 *SARS-CoV-2 in the United Kingdom, October to November 2020.* Euro Surveill, 2021.
468 **26**(1).

469 17. Naveca, F., et al., *Phylogenetic relationship of SARS-CoV-2 sequences from*
470 *Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y*
471 *in the Spike protein.* Virological. org, 2021.

472 18. Lythgoe, K.A., et al., *Shared SARS-CoV-2 diversity suggests localised transmission of*
473 *minority variants.* bioRxiv, 2020.

474 19. Illumina, *Detection and characterization of respiratory viruses, including SARS-CoV-*
475 *2, using Illumina RNA Prep with Enrichment.* 2020, Illumina.

476 20. Paden, C.R., et al., *Rapid, Sensitive, Full-Genome Sequencing of Severe Acute*
477 *Respiratory Syndrome Coronavirus 2.* Emerg Infect Dis, 2020. **26**(10): p. 2401-2405.

478 21. Doddapaneni, H., et al., *Oligonucleotide capture sequencing of the SARS-CoV-2*
479 *genome and subgenomic fragments from COVID-19 individuals.* bioRxiv, 2020.

480 22. Gohl, D.M., et al., *A rapid, cost-effective tailed amplicon method for sequencing*
481 *SARS-CoV-2.* BMC Genomics, 2020. **21**(1): p. 863.

482 23. Pillay, S., et al., *Whole Genome Sequencing of SARS-CoV-2: Adapting Illumina*
483 *Protocols for Quick and Accurate Outbreak Investigation during a Pandemic.* Genes
484 (Basel), 2020. **11**(8).

485 24. Charre, C., et al., *Evaluation of NGS-based approaches for SARS-CoV-2 whole*
486 *genome characterisation.* Virus Evol, 2020. **6**(2): p. veaa075.

487 25. Itokawa, K., et al., *Disentangling primer interactions improves SARS-CoV-2 genome*
488 *sequencing by multiplex tiling PCR.* PLoS One, 2020. **15**(9): p. e0239403.

489 26. Tyson, J.R., et al., *Improvements to the ARTIC multiplex PCR method for SARS-CoV-*
490 *2 genome sequencing using nanopore.* bioRxiv, 2020.

491 27. Fiorentini, S., et al., *First detection of SARS-CoV-2 spike protein N501 mutation in*
492 *Italy in August, 2020.* The Lancet. Infectious Diseases, 2021.

493 28. Thomson, E.C., et al., *The circulating SARS-CoV-2 spike variant N439K maintains*
494 *fitness while evading antibody-mediated immunity.* bioRxiv, 2020.

495 29. Zhang, W., et al., *Emergence of a novel SARS-CoV-2 strain in Southern California,*
496 *USA.* medRxiv, 2021.

497 30. Worby, C.J., M. Lipsitch, and W.P. Hanage, *Shared Genomic Variants: Identification*
498 *of Transmission Routes Using Pathogen Deep-Sequence Data*. Am J Epidemiol,
499 2017. **186**(10): p. 1209-1216.

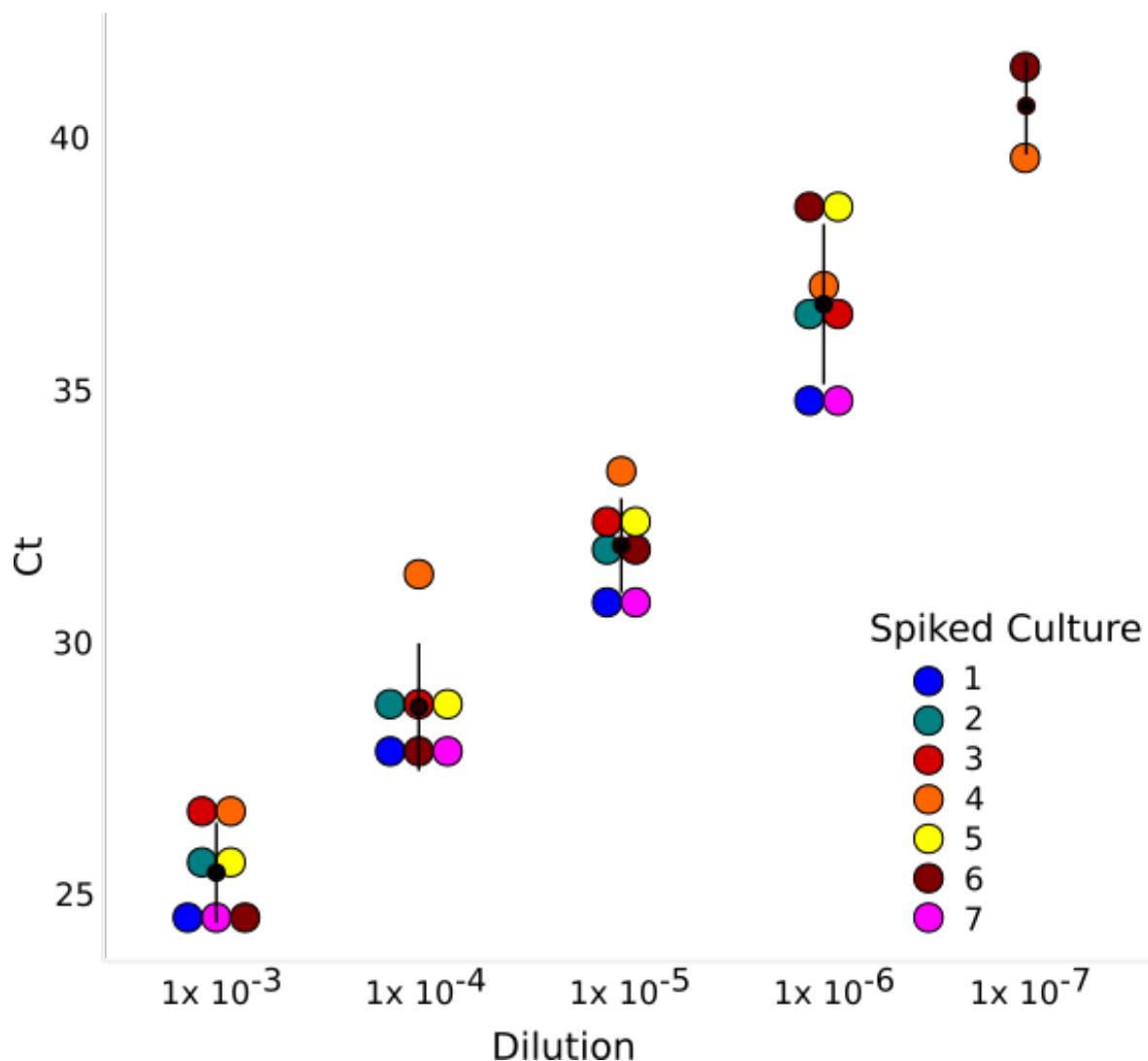
500 31. Siqueira, J., et al., *SARS-CoV-2 genomic and quasispecies analyses in cancer patients*
501 *reveal relaxed intrahost virus evolution*. bioRxiv, 2020.

502 32. Basile, K., et al., *Cell-based culture of SARS-CoV-2 informs infectivity and safe de-*
503 *isolation assessments during COVID-19*. Clin Infect Dis, 2020.

504 33. Rahman, H., et al., *Interpret with caution: An evaluation of the commercial*
505 *AusDiagnostics versus in-house developed assays for the detection of SARS-CoV-2*
506 *virus*. J Clin Virol, 2020. **127**: p. 104374.

507 34. Ratnamohan, V.M., et al., *Pandemic clinical case definitions are non-specific:*
508 *multiple respiratory viruses circulating in the early phases of the 2009 influenza*
509 *pandemic in New South Wales, Australia*. Virol J, 2014. **11**: p. 113.

510 35. Bolger, A.M., M. Lohse, and B. Usadel, *Trimmomatic: a flexible trimmer for Illumina*
511 *sequence data*. Bioinformatics, 2014. **30**(15): p. 2114-20.

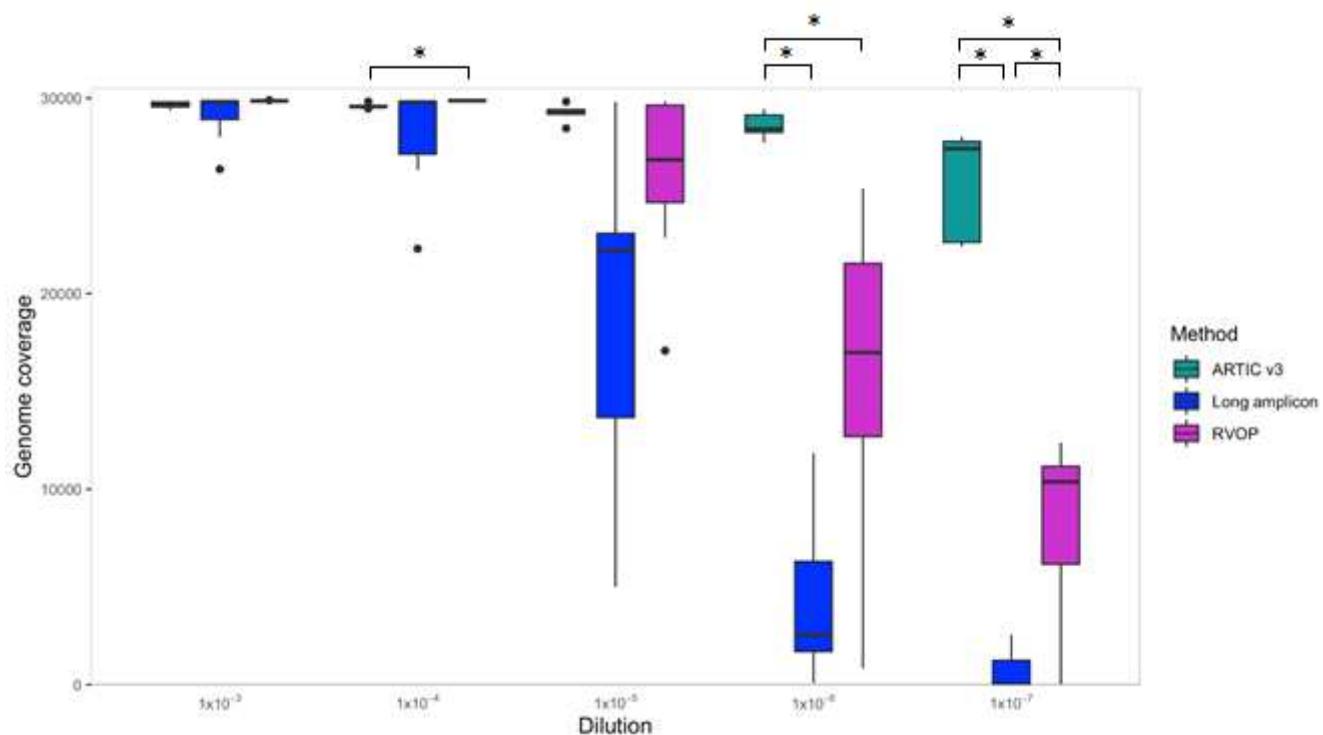

512 36. Grubaugh, N.D., et al., *An amplicon-based sequencing framework for accurately*
513 *measuring intrahost virus diversity using PrimalSeq and iVar*. Genome Biol, 2019.
514 **20**(1): p. 8.

515 37. De Maio, N., et al., *Issues with SARS-CoV-2 sequencing data*. Virological, 2020(6): p.
516 80-92.

517 38. Rambaut, A., et al., *A dynamic nomenclature proposal for SARS-CoV-2 lineages to*
518 *assist genomic epidemiology*. Nat Microbiol, 2020. **5**(11): p. 1403-1407.

519

520



521

522 **Figure 1:** Viral load of SARS-CoV-2 cultures spiked in respiratory matrix. RT-PCR
523 quantification of seven serially diluted SARS-CoV-2 cultures demonstrates an increase of 3-4
524 cycles for each ten-fold dilution of viral culture.

525

526

527

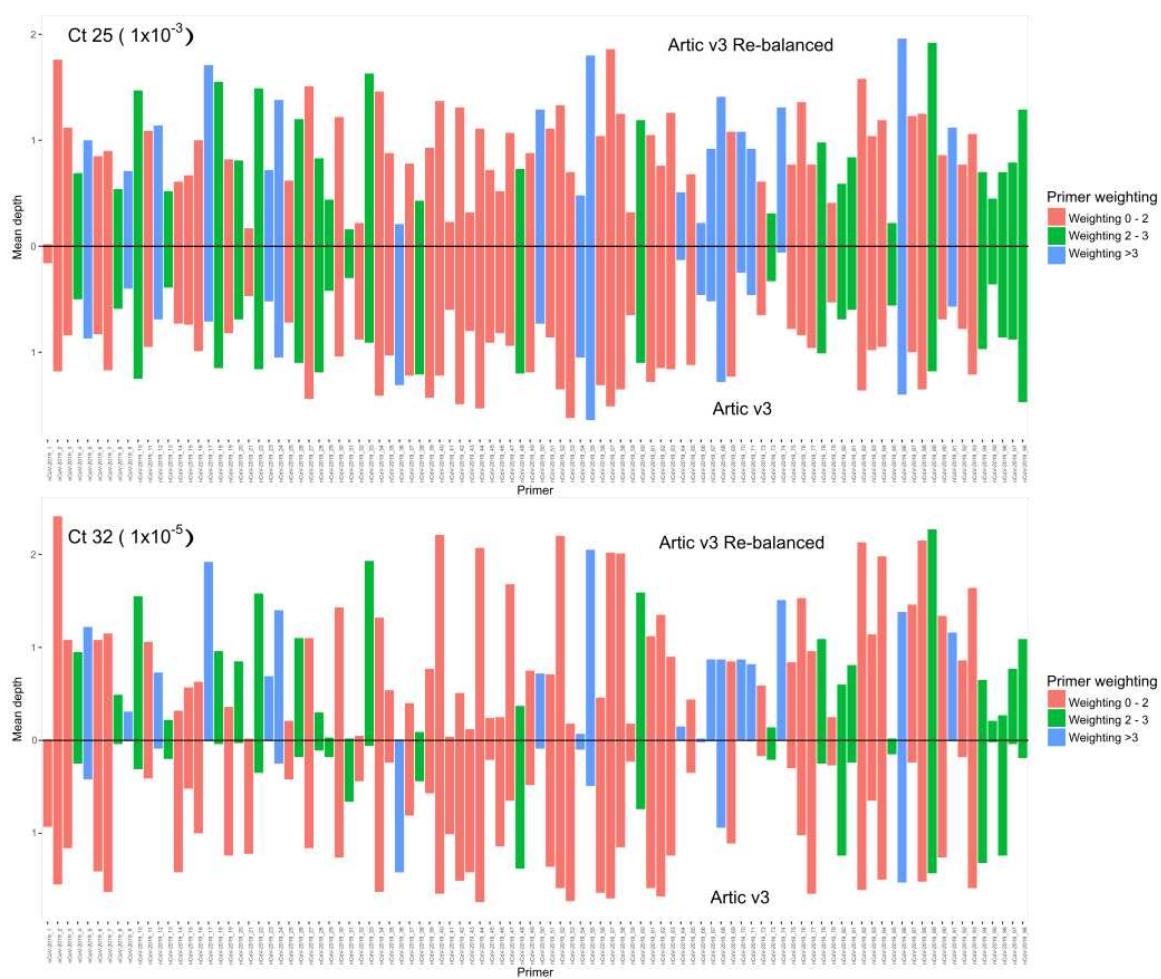

528 **Figure 2.** Boxplot showing the genome coverage of ARTIC v3, long-amplification and probe
529 capture (RVOP) based whole genome sequencing methods of SARS-CoV-2 cultures.

530 Significant differences (*) observed in genome coverage between different methods ($p < 0.05$).
531 NB pairwise comparisons between each methodology were only performed within each
532 dilution.

533

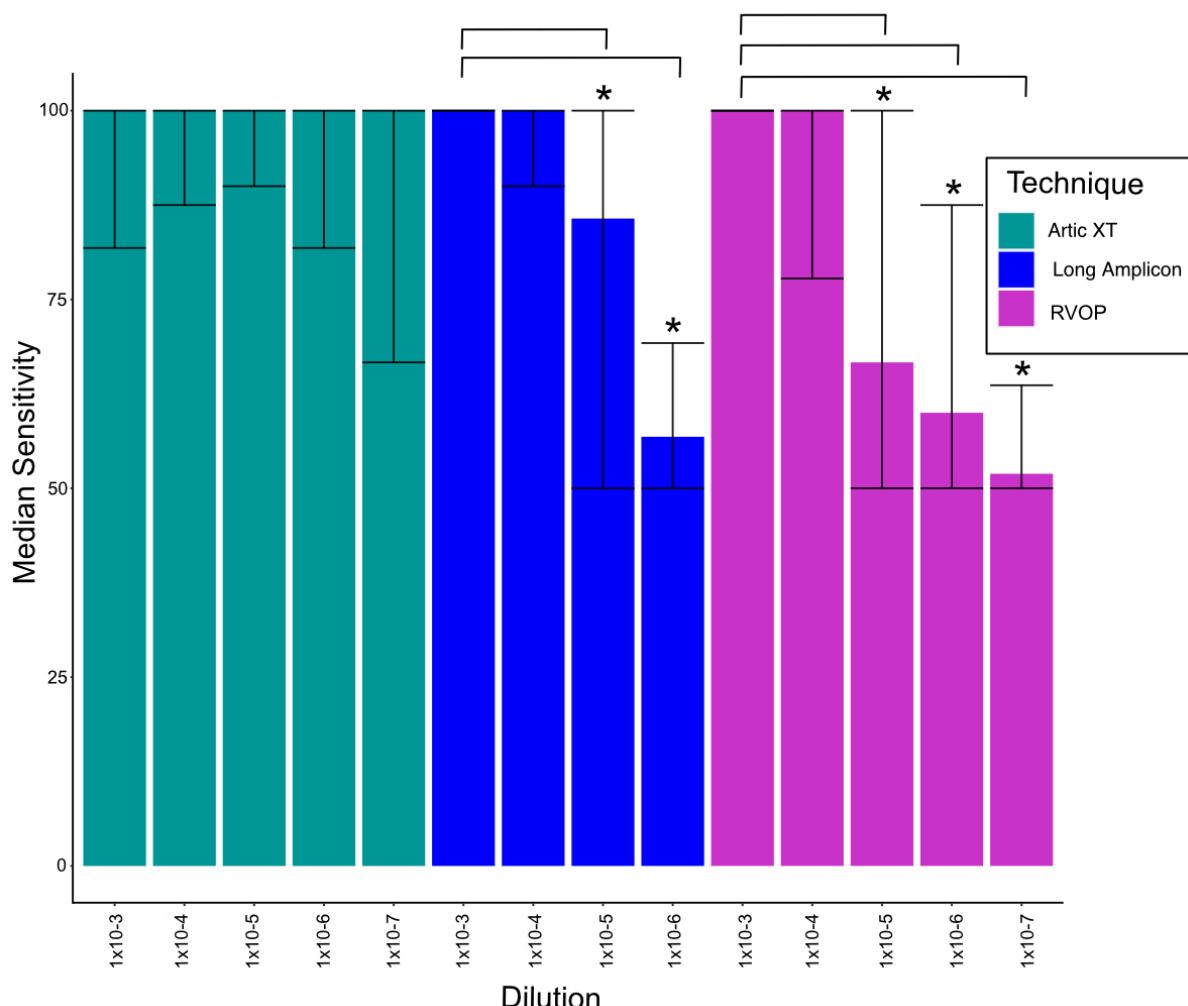
534

535



536

537 **Figure 3:** Overall read depth across the SARS-CoV-2 genome using ARTIC v3 (green line),
538 long-amplification (blue line), and probe capture RVOP (pink line) whole genome sequencing
539 methods. Depth is averaged across all samples for each method separately. Lines are smoothed
540 by using the ‘geom_spline’ function in R. The coloured bar at the top represents the regions of
541 the SARS-CoV-2 genome, and black bars represent informative single nucleotide
542 polymorphisms.


543

544

545 **Figure 4:** Comparison between ARTIC v3 original primer pooling and rebalanced primer pools
546 at Ct 25 and Ct 32. Median depth is expressed as a factor of average read depth across each
547 amplicon. Bars above zero represent sequencing depth achieved by ARTIC v3 rebalanced
548 primer pools; height of bars below zero represent sequencing depth of ARTIC v3 original
549 primer pools. ARTIC v3 primers are listed across the x-axis in sequential order across the
550 genome. For exact primer weightings, refer to: <https://www.protocols.io/view/covid-19-artic-v3-illumina-library-construction-an-bky5kxy6>).

551
552

553
554 **Figure 5:** Sensitivity of ARTIC v3, long-amplification and RVOP (Respiratory Viral Oligo
555 Panel, Illumina) whole genome sequencing methods. The sensitivity of ARTIC v3 was the
556 highest across all viral load dilutions. No sensitivity calculations could be made for the pooled
557 long-amplification method at 10^{-7} dilutions due to insufficient amplicons for variant calling.
558 Significant differences (*) in sensitivity were observed between dilution 10^{-3} and dilutions 10^{-5}
559 and 10^{-6} using the long-amplification method and dilution 10^{-3} and dilutions 10^{-5} , 10^{-6} and
560 10^{-7} using the RVOP method. No differences were observed between ARTIC v3 original primer
561 pooling and rebalanced pools.

562

563

564 **Supplementary materials**

565 **Supplementary Table 1: Genomes of SARS-CoV-2 isolates used in the study**

Isolate ID	GISAID ID	Lineage	SNP profile
Isolate 1 (NSW05)	EPI_ISL_412975	B.4	G:1397:A, G:4255:A, <i>G:11083:T</i> , A:20047:G, T:28688:C, G:29742:T
Isolate 2 (NSW13)	EPI_ISL_413599	B.4	G:1397:A, C:2113:T, G:11083:T, C:18928:T, C:26213:T*, T:28688:C, G:29374:A, G:29742:T
Isolate 3 (NSW08)	EPI_ISL_413594	B	G:25323:T
Isolate 4 (NSW14)	EPI_ISL_413600	B.4	G:1397:A, G:4255:A, <i>G:11083:T</i> , A:20047:G, T:28688:C, G:29742:T
Isolate 5 (NSW155)	EPI_ISL_427647	B.1	C:241:T, C:3037:T, C:14408:T, A:23403:G, G:28881:A, G:28882:A, G:28883:C
Isolate 6 (NSW26)	EPI_ISL_417389	B.4	G:1397:A, C:2113:T, A:9483:G, <i>G:11083:T</i> , C:18928:T, G:24227:A, T:28688:C, G:29374:A, G:29742:T
Isolate 7 (NSW48)	EPI_ISL_417403	B.6	C:6312:A, <i>G:11083:T</i> , C:13730:T*, C:23929:T, C:28311:T

566 The * symbol denotes SNPs lost in culture. The mutation lost in Isolate 2 was detected as a low
567 frequency variant. The SNP lost during culture of Isolate 7 was not detected as a low frequency
568 variant. Italics indicate known hypervariable sites.

569

570 **Supplementary Table 2. Low frequency variants detected using each method**

Sample ID	Long-Amp	ARTIC v3	RVOP
TWIST Control - UTM	3350, 6669, <u>11074(+T)</u> , 11079	14707, 26791, 26793, 26794, 26796	5765 , 5766 , 10001, <u>11074(+T)</u> , 12413 , 12926 (+C), 23652 , 26433 , 26791, 26793, 26794, 26794
TWIST Control - Water	3350, 6669	26791, 26793, 26794, 26796	N/A
Isolate 1.	657, <u>11082(-N)</u> , 27972, 29585	657, <u>11082(-N)</u> , 27972, 29585	5765 , 5766 , <u>11082(-N)</u> , 12413 , 12926 (+C), 15071, 17561, 18408, 18848, 20079, 23403, 23652 , 26433 , 27870, 27972, 29585
Isolate 2.	<u>10323</u> , <u>11074(+T)</u> , <u>11082(-N)</u> , 12299, 16466	<u>10323</u> , <u>11082(-N)</u> , 12299, 16466	5765 , 5766 , <u>11082(-N)</u> , 12299, 16466, 18402, 21055, 21949, 23652
Isolate 3.	-	-	5765 , 5766 , 12413 , 12926 (+C), 23652 , 26433 , 27870
Isolate 4.	<u>11082(-N)</u>	<u>11074(+T)</u> , <u>11082</u>	5765 , 5766 , <u>11082(-N)</u> , 12413 , 12926 (+C), 17561, 20079, 23403, 23652 , 26433 , 27870
Isolate 5.	695, 29190	-	5765, 5766, 12413, 12926, 23652, 27870
Isolate 6.	11050, <u>11082(-N)</u>	<u>11082(-N)</u>	5765 , 5766 , <u>11082(-N)</u> , 12413 , 12926 (+C), 15071, 19812, 21949, 23652 , 26433 , 27870

Isolate 7.	6310, <u>11074(+T)</u> , <u>11082(-N)</u>	5765, 5766, 6310, 11082(-N), 12413, 12926 (+C), 15071, 23652, 26433, 27870
------------	--	---

571 Low frequency variant positions are based on the reference SARS-CoV-2 genome (NCBI
572 GenBank accession MN908947.3). Underline and italic positions are known regions of
573 hypervariability commonly masked from phylogenetic analysis, indels are denoted with
574 brackets indicating the inserted base or N for a deleted base. Bold positions indicate iSNV sites
575 which occurred in both the TWIST control and spiked isolate RNA, indicative that the iSNV
576 is likely an artefact and may occur from non-specific mapping of non-SARS-CoV-2 RNA.

577

578 **Supplementary Table 3:**

579 *Negative SARS-CoV-2 RNA extract and detection of other respiratory pathogens*

Respiratory pathogen	Ct Value
Rhinovirus	27
Adenovirus	27
Influenza	ND
RSV	ND
Parainfluenza	ND

580

581 **Supplementary Table 4: Details of SRA data availability for all 118 genomes produced in**
582 **the study**

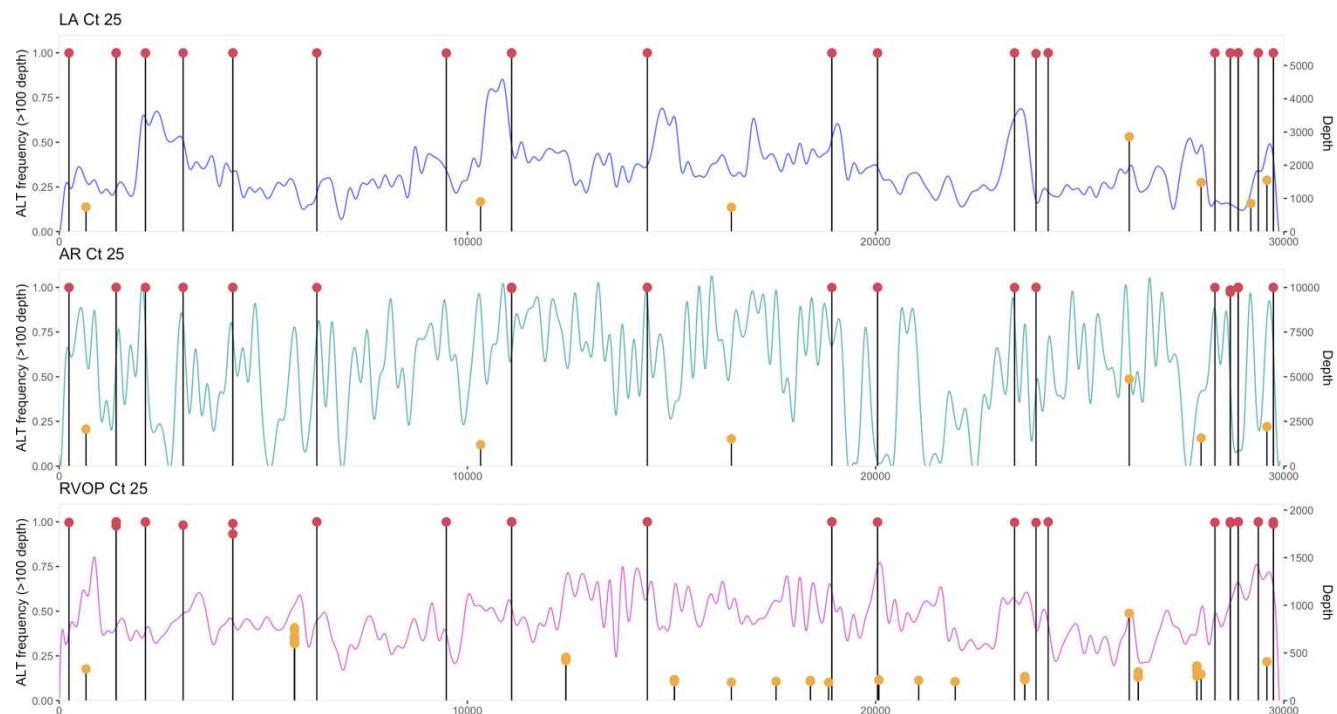
583

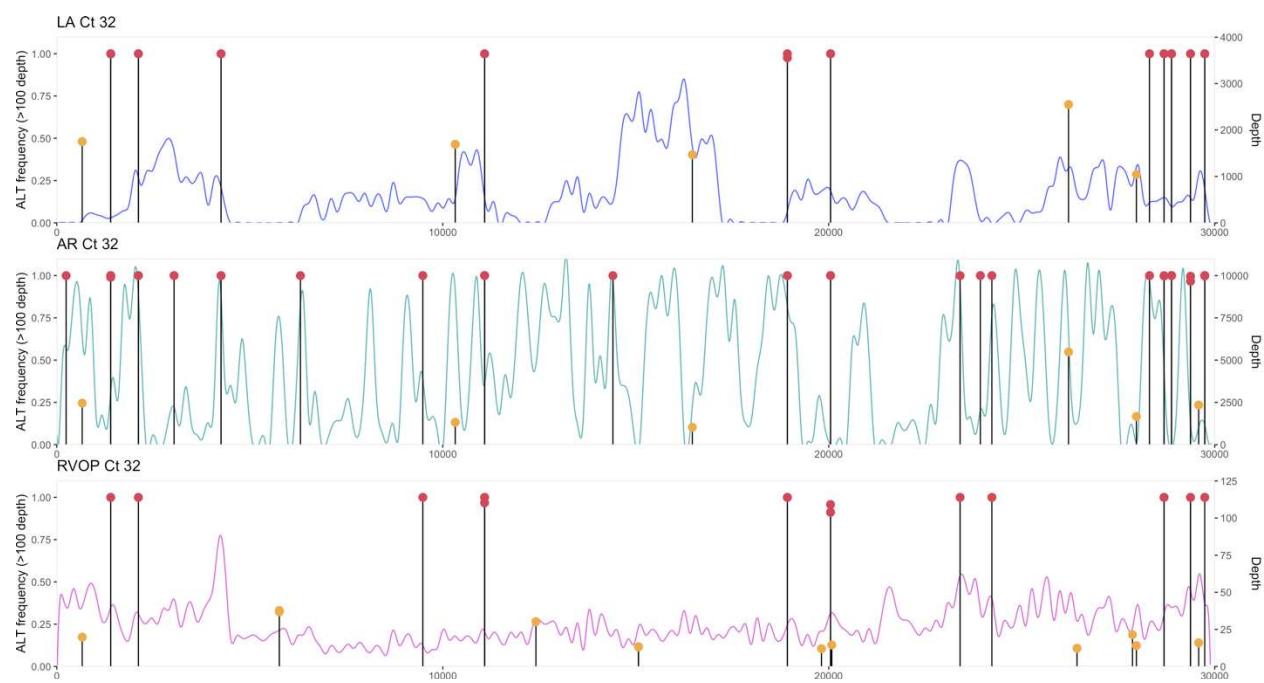
584

585

586

587


588


589

590 **Supplementary Figure 1:** Comparison of read depth for Long-amplification method (LA-
591 blue), ARTIC v3 (AR- green) and the respiratory viral oligo panel (RVOP- pink) at Ct 25
592 (panel A) and Ct 32 (panel B) and averaged across samples. The depth of coverage is shown
593 on the right axis, while the proportion of reads for single nucleotide polymorphisms (SNPs)
594 and low frequency variant calling is on the left axis. The position of SNPs (red circles) and low
595 frequency variants (orange circles) across the genome are overlaid on top of the both coverage
596 graphs.

597 **A)**

598

603