

1 **Expression of a CO₂-permeable aquaporin enhances mesophyll conductance in the C₄
2 species *Setaria viridis***

3 **Maria Ermakova¹*, Hannah Osborn¹, Michael Groszmann¹, Soumi Bala¹, Samantha McGaughey¹,
4 Caitlin Byrt¹, Hugo Alonso-Cantabrana¹, Steve Tyerman², Robert T. Furbank¹, Robert E. Sharwood^{1,3*},
5 Susanne von Caemmerer¹**

6 ¹ Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant
7 Science, Research School of Biology, The Australian National University, Acton, Australian Capital
8 Territory, 2601, Australia

9 ² ARC Centre of Excellence in Plant Energy Biology, School of Agriculture Food and Wine, University of
10 Adelaide, Glen Osmond, South Australia, 5064, Australia

11 ³ Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753,
12 Australia

13 ***Corresponding authors:** maria.ermakova@anu.edu.au and r.sharwood@westernsydney.edu.au

14 **Key words:** *Setaria viridis*, *Setaria italica*, aquaporin, CO₂ diffusion, mesophyll conductance, C₄
15 photosynthesis, C¹⁸O¹⁶O discrimination

16

17 **Abstract**

18 A fundamental limitation of photosynthetic carbon fixation is the availability of CO₂. In C₄ plants,
19 primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO₂ diffusion
20 in facilitating C₄ photosynthesis. We have examined the expression, localization, and functional role of
21 selected plasma membrane intrinsic aquaporins (PIPs) from *Setaria italica* (foxtail millet) and
22 discovered that *SiPIP2;7* is CO₂-permeable. When ectopically expressed in mesophyll cells of *S. viridis*
23 (green foxtail), SiPIP2;7 was localized to the plasma membrane and caused no marked changes in leaf
24 biochemistry. Gas-exchange and C¹⁸O¹⁶O discrimination measurements revealed that targeted
25 expression of SiPIP2;7 enhanced the conductance to CO₂ diffusion from the intercellular airspace to
26 the mesophyll cytosol. Our results demonstrate that mesophyll conductance limits C₄ photosynthesis
27 at low pCO₂ and that SiPIP2;7 is a functional CO₂ permeable aquaporin that can improve CO₂ diffusion
28 at the airspace/mesophyll interface and enhance C₄ photosynthesis.

29

30 Diffusion of CO₂ across biological membranes is a fundamental aspect to photosynthesis. The
31 significant contribution of aquaporins to increased CO₂ diffusion has been demonstrated in C₃ plants¹⁻³.
32 Aquaporins have key roles in regulating the movement of water and solutes into roots and between
33 tissues, cells and organelles⁴. These pore-forming integral membrane proteins can be divided into
34 multiple sub-families depending on their amino acid sequence and sub-cellular localization. The PIPs
35 (plasma membrane intrinsic proteins) are the only sub family, to date, known to permeate CO₂⁵. The
36 PIPs are subdivided into paralog groups PIP1s and PIP2s, based on sequence homology⁶⁻⁸. Typically,
37 PIP2s show higher water permeability when expressed in heterologous systems⁹ and PIP1s seemingly
38 require interaction with a PIP2 to correctly traffic to the plasma membrane^{10,11}. In plants, a number of
39 CO₂ permeable PIPs have been identified including *Arabidopsis thaliana* AtPIP1;2¹² and AtPIP2;1¹³;
40 *Hordeum vulgare* HvPIP2;1, HvPIP2;2, HvPIP2;3 and HvPIP2;5¹⁴; *Nicotiana tabacum* NtPIP1;5s
41 (NtAQP1)^{15,16} and *Zea mays* ZmPIP1;5 and ZmPIP1;6¹⁷.

42 The roles of the CO₂ permeable aquaporins have been largely characterized in C₃ photosynthetic plants
43 where aquaporins localized in both the plasma membrane and chloroplast envelopes have been shown
44 to facilitate CO₂ diffusion from the intercellular airspace to the site of Rubisco in chloroplasts^{18,19}.
45 However, little is known about their role in C₄ photosynthesis. The C₄ photosynthetic pathway is a
46 biochemical CO₂ pump where the initial conversion of CO₂ to bicarbonate (HCO₃⁻) by carbonic
47 anhydrase (CA) and subsequent fixation to phosphoenolpyruvate (PEP) by PEP carboxylase (PEPC) takes

48 place in the cytosol of mesophyll cells. The pathway requires a close collaboration between mesophyll
49 and bundle sheath cells and this constrains leaf anatomy limiting mesophyll surface area that forms a
50 diffusive interface for CO₂²⁰. Mesophyll conductance is defined as the conductance to CO₂ diffusion
51 from the intercellular airspace to the mesophyll cytosol²¹⁻²⁴. Although the rate of C₄ photosynthesis is
52 almost saturated at ambient pCO₂, current modelling suggests that higher mesophyll conductance can
53 increase assimilation rate and water-use-efficiency at low intercellular CO₂ partial pressures which
54 occur when stomatal conductance is low²⁵.

55 *Setaria italica* (foxtail millet) and *Setaria viridis* (green foxtail) are C₄ grasses of the Paniceae tribe and
56 Poaceae family, related to important agronomical crops such as *Z. mays* (maize) and *Sorghum bicolor*
57 (sorghum). *S. viridis* is frequently used as a model species for C₄ photosynthesis research as it is diploid
58 with a relatively small genome that is sequenced and can be easily transformed^{23,26,27}. Here we used a
59 yeast heterologous expression system to examine the permeability to CO₂ of selected PIPs from *S.*
60 *italica*. We identified *SiPIP2;7* as encoding a CO₂-permeable aquaporin that, when expressed in the
61 plasma membrane of *S. viridis* mesophyll cells, increased mesophyll conductance. Our results
62 demonstrate that CO₂-permeable aquaporins can be used to increase CO₂ diffusion from the
63 intercellular airspace to mesophyll cytosol to provide higher carboxylation efficiency in C₄ leaves.

64 Results

65 *S. italica* PIP family

66 Four *PIP1* and eight *PIP2* genes were identified in both *S. italica* and *S. viridis* and their protein
67 sequences were 99–100 % identical between the two species (Table S1). Phylogenetic analysis based
68 on the amino acid sequences of the *S. italica* PIP family showed that three distinct clades emerge: the
69 PIP1 clade, PIP2 clade I, and PIP2 clade II (Fig. S1). Isoforms within these three clades have characteristic
70 differences including sequence signatures associated with substrate selectivity (Table S2). Three of
71 *SiPIP1*s (1;1, 1;2, 1;5) and all *SiPIP2* clade I members (2;1, 2;4, 2;5, 2;6, 2;7) matched the current
72 consensus sequence for CO₂ transport^{6,28}.

73 RNA-seq data from the publicly available Phytozome database (Phytozome), was examined for tissue-
74 specific expression patterns of the *S. italica* PIPs (Fig. 1a). *SiPIP1;1*, 1;2, 1;5, and 2;1 express at moderate
75 to high levels and *SiPIP2;6* at low to moderate levels, in all tissues analyzed (root, leaves, shoot,
76 panicle). *SiPIP1;6*, 2;4, 2;5, 2;7 and 2;3 were expressed predominantly in roots at low to moderate
77 levels. *SiPIP2;8* was expressed only in leaves and *SiPIP2;2* transcripts were not detected.

78 **Functional characterization of PIPs**

79 GFP localization of SiPIP-GFP fusions were used to confirm expression and determine targeting to the
80 yeast plasma membrane (Fig. 1b). Overall, SiPIP1s had lower GFP signal that was patchy at the cell
81 periphery with strong internal signal consistent with localization to the endoplasmic reticulum. GFP
82 signal was also present diffusively throughout the cytosol suggestive of protein degradation. Overall,
83 SiPIP1s were poorly produced in yeast and were not efficiently targeting to the plasma membrane as
84 needed for the functional assays. For the PIP2s, only SiPIP2;1, SiPIP2;4, SiPIP2;5, and SiPIP2;7 showed
85 clear localization to the plasma membrane in addition to other internal structures, and were therefore
86 selected for further functional analyses.

87 CO_2 permeability was measured in yeast co-expressing a *SiPIP* along with *human CARBONIC*
88 *ANHYDRASE II* (*hCAII*). A stopped flow spectrophotometer was used to monitor CO_2 -triggered
89 intracellular acidification via changes in fluorescence intensity of a pH sensitive fluorescein dye Fig. S2;
90 ^{12,18,29}. Importantly for reliable results, all SiPIP yeast lines tested showed similar cell volumes and were
91 not limited by CA activity (Fig. S2). A screen of the lines revealed that yeast expressing *SiPIP2;7* had the
92 highest CO_2 permeability of $1.5 \times 10^{-4} \text{ m s}^{-1}$, which was significantly larger than the negative control
93 expressing *hCAII* only (Fig. 1c). Other *SiPIPs* displayed comparable CO_2 permeability to the *hCAII* only
94 control. The changes in CO_2 permeability detected on the stopped flow spectrophotometer for yeast
95 expressing *SiPIP2;7* were not an artifact brought on by an increased permeability to protons causing
96 the intracellular acidification (Fig. S3).

97 Freeze-thaw survival assays, which quantify water permeability of aquaporins ³⁰, provided further
98 confirmation that the SiPIPs expressed in yeast were functional. Overexpression of water permeable
99 aquaporins greatly improves freeze-thaw tolerance in yeast, especially in the highly compromised
100 aquaporin knockout mutant *aqp1/2* ³⁰. Yeast expressing the β -glucuronidase reporter gene (515.GUS)
101 was used a control to show that the single freeze-thaw treatment was effective in almost killing off the
102 entire yeast population (Fig. 1d). Consistent with the poor plasma membrane localization and
103 abundance of SiPIP2;1-GFP (Fig. 1b), yeast expressing *SiPIP2;1* did not show any protection to freeze-
104 thaw treatments (Fig. 1c). On the other hand, *SiPIP2;4, 2;5* and *2;7* all showed some level of protection,
105 indicating that they permeated water and were functional within the plasma membrane of yeast cells.
106 For detailed characterisation of water permeability, SiPIP2;7 was expressed in *Xenopus laevis* oocytes.
107 Swelling assay confirmed that SiPIP2;7 is a functional water channel (Fig. S4).

108 **Expression of PIP2;7 in mesophyll cells of *S. viridis***

109 To confirm and exploit the CO₂ permeability characteristic of SiPIP2;7 *in planta*, we created transgenic
110 *S. viridis* plants expressing *SiPIP2;7* with a C-terminal FLAG-tag fusion and under the control of the
111 mesophyll-preferential *Z. mays* PEPC promoter^{31,32}. Out of 52 T₀ plants analyzed for SiPIP2;7-FLAG
112 protein abundance and the hygromycin phosphotransferase (*hpt*) gene copy number (Fig. S5), lines 27,
113 44 and 52 were selected for further analysis because they had the strongest FLAG signal per transgene
114 insertion number. Immunodetection of FLAG and photosynthetic proteins was performed on leaves of
115 homozygous transgenic plants (Fig. 2a); azygous plants of line 44 were used as control hereafter.
116 Monomeric and dimeric SiPIP2;7-FLAG was detected in all transgenic plants (Fig. S5) and abundance of
117 the prevalent dimeric form was used for relative quantification of SiPIP2;7 abundance (Fig. 2a). Plants
118 of line 44 had the highest production of SiPIP2;7-FLAG whilst plants of lines 27 and 52 accumulated
119 about 2-4 times less of this protein. Immunodetection of FLAG on leaf cross-sections, visualized with
120 confocal microscopy, confirmed partial localization of SiPIP2;7-FLAG to the plasma membrane of
121 mesophyll cells (Fig. 2c). Transcript analysis confirmed highly elevated expression of *SiPIP2;7*-FLAG in
122 leaves, but not in roots of transgenic lines (Fig. S6).

123 Abundances of photosynthetic proteins PEPC, CA, the Rieske subunit of the Cytochrome *b*₆*f* complex,
124 and the small subunit of Rubisco (RbcS), did not differ between transgenic and control plants (Fig. 2a).
125 In line with the immunoblotting results, measured activities of PEPC and CA, and the amount of Rubisco
126 active sites were not altered in the transgenic plants (Table 1). Chlorophyll content, leaf dry weight per
127 area and biomass of roots and shoots did not differ between the genotypes either (Table 1).

128 To study the effects of *SiPIP2;7*-FLAG ectopic expression on photosynthetic properties in the transgenic
129 plants, we conducted concurrent gas-exchange and fluorescence analyses at different intercellular CO₂
130 partial pressure (C_i) (Fig. 3). No significant changes were detected between transgenic and control
131 plants in CO₂ assimilation rates (A), effective quantum yield of Photosystem II (φPSII) or stomatal
132 conductance to water vapor at ambient CO₂ (Fig. S7). However, since CO₂ assimilation rates were
133 consistently higher in all transgenic plants at low C_i (Fig. 3a, inset), we analyzed the initial slopes of the
134 CO₂ response curves and mesophyll conductance. Fitting linear regressions (Fig. 4a) indicated that lines
135 44 and 52 had significantly greater initial slopes (average values of 0.52 and 0.53, respectively)
136 compared to the control (0.41), whereas line 27 had a slightly increased initial slope (0.46).

137 **Mesophyll conductance to CO₂ in plants expressing SiPIP2;7**

138 Measurements of $\Delta^{18}\text{O}$ were used to estimate conductance of CO_2 from the intercellular airspace to
139 the sites of CO_2 and H_2O exchange in the mesophyll cytosol (g_m) with the assumption that CO_2 was in
140 full isotopic equilibrium with leaf water in the cytosol^{23,33}. Transgenic lines 27 and 44 had significantly
141 greater mesophyll conductance than control plants ($0.42 \text{ mol m}^{-2} \text{ s}^{-1} \text{ bar}^{-1}$) with average values of 0.59
142 and $0.55 \text{ mol m}^{-2} \text{ s}^{-1} \text{ bar}^{-1}$, respectively (Fig. 4b). We also used the g_m calculations proposed by Ogée *et*
143 *al.*³⁴ which try to account for the rates of bicarbonate consumption by CA. The CA hydration constant
144 (k_{CA}) of $6.5 \text{ mol m}^{-2} \text{ s}^{-1} \text{ bar}^{-1}$ was used for these calculations (Table 1). We found that the g_m measured
145 with this method gave on average 1.25 times greater values but did not change the ranking of
146 mesophyll conductance shown in Fig. 4a (Fig. S8). The C₄ photosynthetic model by von Caemmerer and
147 Furbank³⁵ and von Caemmerer³⁶ relates the initial slope of the CO_2 response curve (dA/C_i) to g_m (see
148 Fig. 4 caption and Materials and Methods). Fig. 4c shows that the measured relationship between the
149 initial slope and g_m fits closely with model prediction.

150 **Discussion**

151 The diffusion of CO_2 from the earth's atmosphere to the site of primary carboxylation within leaves of
152 C₃ and C₄ plants often limits photosynthesis and impacts the efficient use of water. In C₄ plants, primary
153 carboxylation occurs in mesophyll cytosol and a large mesophyll conductance, g_m , is required to
154 account for high photosynthetic rates which generate a large drawdown between the intercellular
155 airspace and the cytosol²¹. An effective strategy to enhance CO_2 diffusion in C₃ plants has been the
156 overexpression of CO_2 permeable aquaporins in plasma membrane and the chloroplast envelope
157 leading to improved g_m , assimilation rate or grain yield^{1,3,15,37}. Screening *S. italica* PIPs for CO_2
158 permeability in a yeast heterologous system resulted in identification of SiPIP2;7 as a CO_2 pore (Fig.
159 1c). Expression analysis revealed that SiPIP2;7 was almost exclusively expressed in roots under ideal
160 conditions (Fig. 1a, Fig. S6) which, combined with the water permeability identified in yeast and oocyte
161 assays (Fig. 1d, Fig. S4), suggest that SiPIP2;7 may function in regulating root hydraulic conductivity, a
162 role extensively documented for PIP aquaporins^{38,39}. The physiological relevance of SiPIP2;7's CO_2
163 permeating capacity is not immediately clear. Gas uptake by roots is well documented⁴⁰ and in C₃
164 plants CO_2 uptake by roots may contribute to the C₄ photosynthesis-like metabolism detected in stems
165 and petioles⁴¹. It is possible that SiPIP2;7 is conditionally expressed in leaves, or even that its capacity
166 to transport CO_2 is inadvertent and related to the transportation of another yet undetermined
167 substrate; analogous to the uptake of toxic metalloids by some NIP aquaporins due to their capacity to

168 transport boron⁴². Further work is needed to determine whether PIPs in general function natively as
169 relevant CO₂ pores in C₄ leaves.

170 We employed the CO₂ transport capacity of SiPIP2;7 to enhance transmembrane CO₂ diffusion from
171 the intercellular airspace into the mesophyll cytosol, where CA and PEPC reside, by overexpressing
172 SiPIP2;7 in *S. viridis*. We confirmed the localization of SiPIP2;7 within the mesophyll plasma membranes
173 (Fig. 2c) and detected the increase in CO₂ diffusion across the mesophyll membranes in transgenic
174 plants by two independent methods. First, we calculated g_m from the C¹⁸O¹⁶O discrimination
175 measurements (Fig. 4b) and the theory for these calculations has been outlined^{23,33,43}. Second, we
176 fitted linear regressions to the initial slopes of the AC_i curves (Fig. 3a inset, Fig. 4a), which depend on
177 g_m , V_{pmax} and K_p where the two latter parameters denote the maximum PEPC activity and the Michaelis
178 Menten constant of PEPC for HCO₃⁻^{35,36}. Since PEPC and CA activities were not altered in plants
179 expressing SiPIP2;7 (Table 1), higher initial slopes of the AC_i curves in transgenic lines were attributed
180 to the increased g_m . Up-regulation of g_m in lines 27 and 52 was confirmed by one of the methods, while
181 both methods indicated significantly increased g_m in line 44 (Fig. 4). When plotted against each other,
182 the initial slopes and g_m in transgenic and control plants, fitted the model predictions confirming the
183 hypothesised functional role of g_m in C₄ photosynthesis^{24,36,44}. Our findings explicitly demonstrate that
184 mesophyll conductance limits C₄ photosynthesis at low CO₂ and indicate that increasing CO₂ diffusion
185 at the airspace/mesophyll interface, combined with complementary traits including overexpression of
186 Cytochrome *b6f* and Rubisco^{27,31}, could further improve C₄ photosynthesis.

187 Materials and methods

188 Heterologous expression in yeast

189 cDNAs encoding the 12 *S. italica* aquaporins (Table S1) and *human CARBONIC ANHYDRASE II*
190 (AK312978) were codon-optimized for expression in yeast with IDT DNA tool
191 (<https://sg.idtdna.com/pages/tools>) and a yeast related kozak sequence was added at the 5' end to
192 help increase translation⁴⁵. For CO₂ permeability measurements, pSF-TPI1-URA3 with an aquaporin
193 and pSF-TEF1-LEU2 with hCAII were co-transformed into the *S. cerevisiae* strain INVSc1 (Thermo Fisher
194 Scientific, Waltham, MA). For water permeability measurements, pSF-TPI1-URA3 with an aquaporin
195 was transformed into the *aqy1/2* double mutant yeast strain deficient in aquaporins⁴⁶. The yeast
196 vectors pSF-TPI1-URA3 and pSF-TEF1-LEU2 were obtained from Oxford Genetics (Oxford, UK). Yeast
197 transformation was performed using the Frozen-EZ yeast transformation II kit (Zymo Research, Irvine,
198 CA) and selection of positive transformants was based on amino acid complementation. To ensure CA

199 was not limiting, CA activity was determined using a membrane inlet mass spectrometry as described
200 by Endeward, et al. ⁴⁷ (Fig. S2). For CO₂ permeability measurements an average cell diameter of 4.63
201 μm was determined by measuring ~100 yeast cells expressing each aquaporin (Fig. S2). To study the
202 subcellular localizations of aquaporins in yeast, a C-terminus GFP tag was added to the sequences into
203 the pSF-TPI1-URA3 vector (pSF-TPI1-URA3-GFP). The fluorescence signal was observed using a Zeiss
204 780 confocal laser scanning microscope (Zeiss, Oberkochen, Germany): excitation 488 nm, emission
205 530 nm. Cytosolic GFP expression was used as control.

206 **CO₂ induced intracellular acidification assay**

207 CO₂ intracellular acidification was measured in yeast cells loaded with fluorescein diacetate (Sigma-
208 Aldrich, St. Louis, MO) as described previously ^{48,49}. Briefly, an overnight culture of yeast cells was
209 collected and resuspended in an equal volume of 50 mM 4-(2-hydroxyethyl)-1-
210 piperazineethanesulfonic acid (HEPES)-NaOH, pH 7.0, 50 μM fluorescein diacetate and incubated for
211 30 min in the dark at 37 °C. The suspension was centrifuged and the pellet resuspended in ice-cold
212 incubation buffer (25 mM HEPES-NaOH, pH 6.0, 75 mM NaCl). Cells loaded with fluorescein diacetate
213 were then injected into the stopped flow spectrophotometer (DX.17MV; Applied Photophysics,
214 Leatherhead, UK) alongside a buffer solution (25 mM HEPES, pH 6.0, 75 mM NaHCO₃, bubbled with
215 CO₂ for 2 h). The kinetics of acidification was measured at 490 nm excitation and >515 nm emission
216 (OG515 long pass filter, Schott, supplied by Applied Photophysics). Data was collected over a time
217 interval of 0.2 s and analysed using ProData SX viewer software (Applied Photophysics). CO₂
218 permeability was determined using the method of Yang, et al. ⁵⁰. An average of 75 injections over at
219 least three separate cultures was used for each aquaporin.

220 **Determination of water permeability**

221 A freeze-thaw yeast assay was used to determine water permeability of aquaporins expressed in
222 *aqy1/2* based on previous reports ³⁰. Briefly, an overnight culture was diluted to ~6x10⁶ cells (final
223 volume 1 mL) in appropriate selection liquid growth medium and incubated at 30°C for 1 h. 250 μL of
224 each culture were then aliquoted into two standard 1.5 mL microtubes: the first (control) tube was
225 placed on ice and the second tube was subject to a single freeze-thaw treatment, consisting of 30-s
226 freezing in liquid nitrogen and thawing for 20 min in a 30 °C water bath. Following the treatment, the
227 cells were placed on ice. The tubes were then vortexed briefly to ensure even suspension of cells and
228 200 μL of the culture was transferred to wells of a Nunc-96 400 μL flat bottom untreated plate (Thermo
229 Fisher Scientific, Cat#243656). Yeast growth in control and treated cultures were monitored over a 24-

230 30 h period in a M1000 Pro plate reader (TECAN, Männedorf, Switzerland) at 30 °C with double orbital
231 shaking at 400 rpm and measuring absorbance at 650 nm every 10 min. Growth data was log
232 transformed and freeze-thaw survival calculated as the growth (area under the curve) of treated
233 culture relative to its untreated control from time zero up until the untreated control culture reached
234 stationary phase.

235 For swelling assays, the coding sequence of *SiPIP2;7* was cloned into pGEMHE oocyte expression vector
236 using LR clonase II (Thermo Fisher Scientific) and cRNA was synthesised with mMessage mMachine®
237 T7 Transcription Kit (Thermo Fisher Scientific). *Xenopus laevis* oocytes were injected with 46 nL of
238 RNase-free water with either no cRNA or 23 ng cRNA with a micro-injector Nanoinject II (Drummond
239 Scientific, Broomall, PA). Post-injection oocytes were stored at 18°C in a Low Na⁺ Ringer's solution [62
240 mM NaCl, 36 mM KCl, 5 mM MgCl₂, 0.6 mM CaCl₂, 5 mM HEPES, 5% (v/v) horse serum (H-1270, Sigma-
241 Aldrich) and antibiotics: 0.05 mg mL⁻¹ tetracycline, 100 units mL⁻¹ penicillin/0.1 mg mL⁻¹ streptomycin],
242 pH 7.6 for 24–30 h. Photometric swelling assay was performed 24-30 h post-injection ⁵¹.

243 **Construct assembly and *S. viridis* transformation**

244 The coding sequence of *S. viridis* *PIP2;7* (Sevir.2G128300.1, Phytozome,
245 <https://phytozome.jgi.doe.gov/>) has been codon optimized for the Golden Gate cloning ⁵² and
246 translationally fused with the glycine linker and the FLAG-tag coding sequence ⁵³. The resulting coding
247 sequence was assembled with the *Z. mays* *PEPC* promoter and the bacterial tNos terminator into the
248 second expression module of the pAGM4723 binary vector. The first expression module has been
249 occupied by the hygromycin phosphotransferase (*hpt*) gene assembled with the *Oryza sativa* actin
250 promoter and the tNos terminator. The construct was transformed into *S. viridis* cv. MEO V34-1 using
251 *Agrobacterium tumefaciens* strain *AGL1* following the procedure described in Osborn, et al. ²³. *T*₀ plants
252 resistant to hygromycin were transferred to soil and analyzed for *hpt* insertion number by droplet
253 digital PCR (iDNA Genetics, Norwich, UK). The *T*₁ and *T*₂ progenies of *T*₀ plants 27, 44 and 52 were
254 analyzed. Azygous *T*₁ plants of line 44 and their progeny were used as control.

255 **Plant growth conditions**

256 Seeds were surface-sterilized and germinated on medium (pH 5.7) containing 2.15 g L⁻¹ Murashige and
257 Skoog salts, 10 mL L⁻¹ 100x Murashige and Skoog vitamins stock, 30 g L⁻¹ sucrose, 7 g L⁻¹ Phytoblend,
258 20 mg L⁻¹ hygromycin (no hygromycin for azygous plants). Seedlings that developed secondary roots
259 were transferred to 0.6 L pots with garden soil mix layered on top with 2 cm seed raising mix (Debco,

260 Tyabb, Australia) both containing 1 g L⁻¹ Osmocote (Scotts, Bella Vista, Australia). Plants were grown in
261 controlled environmental chambers with 16 h light/8 h dark, 28 °C day, 22 °C night, 60% humidity and
262 ambient CO₂ concentrations. Light intensity of 300 μmol m⁻² s⁻¹ was supplied by 1000 W red sunrise
263 3200 K lamps (Sunmaster Growlamps, Solon, OH). Youngest fully expanded leaves of the 3–4 weeks
264 plants before flowering were used for all analyses.

265 **Chlorophyll and enzyme activity**

266 Chlorophyll content was measured on frozen leaf discs homogenised with a TissueLyser II (Qiagen,
267 Venlo, The Netherlands)⁵⁴. PEPC activity was determined after Pengelly, et al.⁵⁵ from fresh leaf extracts
268 from the plants adapted for 1 h to 800 μmol photons m⁻² s⁻¹. CA activity was measured on a membrane
269 inlet mass spectrometer as a rate of ¹⁸O exchange from labelled ¹³C¹⁸O₂ to H₂¹⁶O at 25 °C according to
270 von Caemmerer, et al.⁵⁶ by calculating the hydration rate after Jenkins, et al.⁵⁷. The amount of Rubisco
271 active sites was determined by [¹⁴C] carboxyarabinitol bisphosphate binding as described earlier⁵⁸.

272 **RNA isolation and qPCR**

273 Leaf and root tissue were frozen in liquid N₂. Leaf samples were homogenised using a TissueLyser II
274 and RNA was extracted using the RNeasy Plant Mini Kit (Qiagen). Roots were ground with mortar and
275 pestle in liquid N₂ and RNA was isolated according to Massey⁵⁹. Briefly, 150 μL of pre-heated (60 °C)
276 extraction buffer [0.1 M trisaminomethane (Tris)-HCl, pH 8, 5 mM ethylenediaminetetraacetic acid
277 (EDTA), 0.1 M NaCl, 0.5% sodium dodecyl sulfate (SDS), 1% 2-mercaptoethanol] was added to ~100 mg
278 of fine root powder and incubated at 60 °C for 5 min. 150 μL of phenol:chloroform:isoamyl alcohol
279 (25:24:1) saturated with 10 mM Tris (pH 8.0) and 1 mM EDTA was added to the samples, vortexed
280 vigorously for 10 min and centrifuged at 4500 g for 15 min. Aqueous phase was mixed with 120 μL of
281 isopropanol and 15 μL of 3 M sodium acetate and incubated at -80 °C for 15 min, then centrifuged at
282 4500 g (30 min, 4 °C). The pellet was washed twice in 300 μL of ice-cold 70% ethanol, air dried and
283 dissolved in 60 μL of RNase-free water. After addition of 40 μL of 8 M LiCl, samples were incubated
284 overnight at 4 °C. Nucleic acids were pelleted by centrifugation at 16,000 g (60 min, 4 °C), washed twice
285 with 200 μL of ice-cold 70% ethanol, air dried and dissolved in RNase-free water. DNA from the samples
286 was removed using an Ambion TURBO DNA free kit (Thermo Fisher Scientific), and RNA quality was
287 determined using a NanoDrop (Thermo Fisher Scientific). 100 ng of total RNA were reverse transcribed
288 into cDNA using a SuperScript™ III Reverse Transcriptase (Thermo Fisher Scientific). qPCR and melt
289 curve analysis were performed on a ViiA7 Real-time PCR system (Thermo Fisher Scientific) using the
290 Power SYBR green PCR Master Mix (Thermo Fisher Scientific) according to the manufacturer's protocol.

291 Primer pairs designed to distinguish between *S. viridis* *PIP2;6* and *PIP2;7* using Primer3 in Geneious
292 Prime (<https://www.geneious.com>) and reference primers are listed in Table S3.

293 **Western blotting and immunolocalization**

294 Protein isolation from leaves and gel electrophoresis were performed as described earlier²⁷. Proteins
295 were probed with antibodies against FLAG (ab49763, 1:5000, Abcam, Cambridge, UK), RbcS⁶⁰
296 (1:10,000), Rieske (AS08 330, 1:3000, Agrisera, Vännäs Sweden), PEPC (AS09 458, 1:10,000, Agrisera),
297 CA⁶¹ (1:10,000). Quantification of immunoblots was performed with Image Lab software (Biorad,
298 Hercules, CA). For immunolocalization leaf tissue was fixed and probed with primary antibodies against
299 FLAG (1:40) and secondary goat anti-mouse Alexa Fluor 488-conjugated antibodies (ab150113, 1:200,
300 Abcam) as described in Ermakova, et al.⁶². Images were captured with a Zeiss 780 microscope using
301 ZEN 2012 software (Black edition, Zeiss, Oberkochen, Germany). Images for plants of lines 27, 44 and
302 azygous plants were acquired using online fingerprinting (488 nm excitation) with three user-defined
303 spectral profiles for AlexaFluor488, endogenous autofluorescence and chlorophyll. The spectral profile
304 for endogenous autofluorescence was derived from the azygous control. The image for line 52 was
305 initially collected as a full spectral scan (490-660 nm), then linearly un-mixed using the same online
306 fingerprint settings as previously described. Images were post-processed with FIJI⁶³, and histograms
307 for all images were min-max adjusted.

308 **Gas exchange measurements**

309 Gas-exchange and fluorescence analysis were performed at an irradiance of 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ (90%
310 red/10% blue actinic light) and different intercellular CO_2 partial pressures using a LI-6800 (LI-COR
311 Biosciences, Lincoln, NE) equipped with a fluorometer head 6800-01 A (LI-COR Biosciences). Leaves
312 were first equilibrated at 400 ppm CO_2 in the reference side, leaf temperature 25 °C, 60% humidity and
313 flow rate 500 $\mu\text{mol s}^{-1}$ and then a stepwise increase of CO_2 concentrations from 0 to 1600 ppm was
314 imposed at 3 min intervals. Initial slopes of the CO_2 response curves were determined by linear fitting
315 in OriginPro 2018b (OriginLab, Northampton, MA). Quantum yield of PSII upon the application of
316 multiphase saturating pulses (8000 $\mu\text{mol m}^{-2} \text{s}^{-1}$) was calculated according to Genty, et al.⁶⁴.

317 **$\text{C}^{18}\text{O}^{16}\text{O}$ discrimination measurements**

318 Simultaneous measurements of exchange of CO_2 , H_2O , $\text{C}^{18}\text{O}^{16}\text{O}$ and H_2^{18}O were made by coupling two
319 LI-6400XT gas-exchange systems to a tunable diode laser (TDL: model TGA200A, Campbell Scientific
320 Inc., Logan, UT) to measure $\text{C}^{18}\text{O}^{16}\text{O}$ discrimination and a Cavity Ring-Down Spectrometer (L2130-i,

321 Picarro Inc., Sunnyvale, CA) to measure the oxygen isotope composition of water vapor ²³.
322 Measurements were made at 2% O₂, 380 $\mu\text{mol mol}^{-1}$ CO₂, leaf temperature of 25 °C, irradiance of 1500
323 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and relative humidity of 55%. Each leaf was measured at 4 min intervals and 10 readings
324 were taken. Mesophyll conductance was calculated as described by Osborn, et al. ²³ with the
325 assumptions that there was sufficient carbonic anhydrase (CA) in the mesophyll cytosol for isotopic
326 equilibration between CO₂ and HCO₃⁻. We also used the calculations proposed by Ogée, et al. ³⁴ to
327 estimate g_m . These calculations try to account for the rates of bicarbonate consumption by CA. We
328 used the rate constant of CA hydration (k_{CA}) of 6.5 mol m⁻² s⁻¹ bar⁻¹ for these calculations.

329 **Statistical analysis**

330 One-way ANOVAs with Tukey post-hoc test were performed in OriginPro 2018b. A two-tailed,
331 heteroscedastic Student's *t*-tests were performed in Microsoft Excel.

332 **Data availability**

333 The datasets and materials generated during the current study are available from the corresponding
334 authors on request.

335 **The authors declare no competing interests**

336 **Acknowledgements and funding sources**

337 We thank Xueqin Wang for *S. viridis* transformation, Zac Taylor for gas-exchange measurements,
338 Murray Badger and Dimitri Tolleter for measuring CA activity in yeast, Daryl Webb, Ayla Manwaring
339 and the Centre for Advanced Microscopy at the Australian National University for confocal imaging,
340 Wendy Sullivan for help with the stopped flow spectrophotometry and Nerea Ubierna for sharing her
341 spreadsheet for the Ogee *et al.* g_m calculations. Funding information: this research was supported by
342 the Australian Research Council (ARC) Centre of Excellence for Translational Photosynthesis
343 (CE140100015). RES was funded by ARC DECRA (DE130101760). This work is presented in the
344 Australian provisional patent application # 2021900409.

345 **Author contributions:** RES, SVC, RTF and ME designed the research. ME, HO, MG, SB, SM, RES and
346 SVC performed experiments. ME, RES, SVC and HO wrote the manuscript with contribution of MG. All
347 authors contributed to data analysis and manuscript editing.

348

349 **References**

350 1 Flexas, J. *et al.* Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO₂ in vivo. *The Plant Journal* **48**, 427-439, doi:10.1111/j.1365-313X.2006.02879.x (2006).

351 2 Sade, N. *et al.* The Role of Tobacco Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield Production Under Salt Stress. *Plant Physiology* **152**, 245, doi:10.1104/pp.109.145854 (2010).

352 3 Hanba, Y. T. *et al.* Overexpression of the Barley Aquaporin HvPIP2;1 Increases Internal CO₂ Conductance and CO₂ Assimilation in the Leaves of Transgenic Rice Plants. *Plant and Cell Physiology* **45**, 521-529, doi:10.1093/pcp/pch070 (2004).

353 4 Tyerman, S. D., McGaughey, S. A., Qiu, J., Yool, A. J. & Byrt, C. S. Adaptable and multifunctional ion-conducting aquaporins. *Annual Review of Plant Biology* **72**, doi:10.1146/annurev-arplant-081720-013608 (2021).

354 5 Uehlein, N., Kai, L. & Kaldenhoff, R. in *Plant Aquaporins: From Transport to Signaling* (eds François Chaumont & Stephen D. Tyerman) 255-265 (Springer International Publishing, 2017).

355 6 Azad, A. K. *et al.* Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective. *PLOS ONE* **11**, e0157735, doi:10.1371/journal.pone.0157735 (2016).

356 7 Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J. & Jung, R. Aquaporins Constitute a Large and Highly Divergent Protein Family in Maize. *Plant Physiology* **125**, 1206, doi:10.1104/pp.125.3.1206 (2001).

357 8 Groszmann, M., Osborn, H. L. & Evans, J. R. Carbon dioxide and water transport through plant aquaporins. *Plant, Cell & Environment* **40**, 938-961, doi:<https://doi.org/10.1111/pce.12844> (2017).

358 9 Chaumont, F., Barrieu, F., Jung, R. & Chrispeels, M. J. Plasma Membrane Intrinsic Proteins from Maize Cluster in Two Sequence Subgroups with Differential Aquaporin Activity. *Plant Physiology* **122**, 1025, doi:10.1104/pp.122.4.1025 (2000).

359 10 Berny, Marie C., Gilis, D., Rooman, M. & Chaumont, F. Single Mutations in the Transmembrane Domains of Maize Plasma Membrane Aquaporins Affect the Activity of Monomers within a Heterotetramer. *Molecular Plant* **9**, 986-1003, doi:<https://doi.org/10.1016/j.molp.2016.04.006> (2016).

360 11 Zelazny, E. *et al.* FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. *Proceedings of the National Academy of Sciences* **104**, 12359, doi:10.1073/pnas.0701180104 (2007).

361 12 Heckwolf, M., Pater, D., Hanson, D. T. & Kaldenhoff, R. The *Arabidopsis thaliana* aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator. *Plant Journal* **67**, 795-804 (2011).

362 13 Wang, C. *et al.* Reconstitution of CO₂ Regulation of SLAC1 Anion Channel and Function of CO₂-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor. *The Plant Cell* **28**, 568-582, doi:10.1105/tpc.15.00637 (2016).

363 14 Mori, I. C. *et al.* CO₂ Transport by PIP2 Aquaporins of Barley. *Plant and Cell Physiology* **55**, 251-257, doi:10.1093/pcp/pcu003 (2014).

364 15 Uehlein, N., Lovisolo, C., Siefritz, F. & Kaldenhoff, R. The tobacco aquaporin NtAQP1 is a membrane CO₂ pore with physiological functions. *Nature* **425**, 734-737, doi:10.1038/nature02027 (2003).

365 16 De Rosa, A., Watson-Lazowski, A., Evans, J. R. & Groszmann, M. Genome-wide identification and characterisation of Aquaporins in *Nicotiana tabacum* and their relationships with other Solanaceae species. *BMC Plant Biology* **20**, 266, doi:10.1186/s12870-020-02412-5 (2020).

366 17 Heinen, R. B. *et al.* Expression and characterization of plasma membrane aquaporins in stomatal complexes of *Zea mays*. *Plant Molecular Biology* **86**, 335-350, doi:10.1007/s11103-014-0232-7 (2014).

367 18 Uehlein, N. *et al.* Function of *Nicotiana tabacum* aquaporins as chloroplast gas pores challenges the concept of membrane CO₂ permeability. *The Plant cell* **20**, 648-657, doi:10.1105/tpc.107.054023 (2008).

368 19 Kaldenhoff, R. Mechanisms underlying CO₂ diffusion in leaves. *Current Opinion in Plant Biology* **15**, 276-281, doi:<http://dx.doi.org/10.1016/j.pbi.2012.01.011> (2012).

369 20 von Caemmerer, S., Evans, J., Cousins, A., Badger, M. & Furbank, R. Charting new pathways to C4 rice. (2007).

401 21 Evans, J. R. & von Caemmerer, S. Carbon dioxide diffusion inside leaves. *Plant Physiology* **110**, 339-346
402 (1996).

403 22 Barbour, M. M., Evans, J. R., Simonin, K. A. & von Caemmerer, S. Online CO₂ and H₂O oxygen isotope
404 fractionation allows estimation of mesophyll conductance in C₄ plants, and reveals that mesophyll
405 conductance decreases as leaves age in both C₄ and C₃ plants. *New Phytologist* **210**, 875-889,
406 doi:10.1111/nph.13830 (2016).

407 23 Osborn, H. L. *et al.* Effects of reduced carbonic anhydrase activity on CO₂ assimilation rates in *Setaria*
408 *viridis*: a transgenic analysis. *Journal of Experimental Botany* **68**, 299-310, doi:10.1093/jxb/erw357
409 (2016).

410 24 Ubierna, N., Gandin, A., Boyd, R. A. & Cousins, A. B. Temperature response of mesophyll conductance
411 in three C₄ species calculated with two methods: ¹⁸O discrimination and in vitro V_{pmax}. *New Phytologist*
412 **214**, 66-80, doi:10.1111/nph.14359 (2017).

413 25 von Caemmerer, S. & Furbank, R. T. Strategies for improving C₄ photosynthesis. *Current Opinion in*
414 *Plant Biology* **31**, 125-134, doi:<http://dx.doi.org/10.1016/j.pbi.2016.04.003> (2016).

415 26 Brutnell, T. P. *et al.* *Setaria viridis*: a model for C₄ photosynthesis. *The Plant Cell Online* **22**, 2537-2544
416 (2010).

417 27 Ermakova, M., Lopez-Calcagno, P. E., Raines, C. A., Furbank, R. T. & von Caemmerer, S. Overexpression
418 of the Rieske FeS protein of the Cytochrome b₆f complex increases C₄ photosynthesis in *Setaria viridis*.
419 *Communications Biology* **2**, doi:<https://doi.org/10.1038/s42003-019-0561-9> (2019).

420 28 Perez Di Giorgio, J. *et al.* Prediction of Aquaporin Function by Integrating Evolutionary and Functional
421 Analyses. *The Journal of Membrane Biology* **247**, 107-125, doi:10.1007/s00232-013-9618-8 (2014).

422 29 Ding, X. *et al.* Water and CO₂ permeability of SsAqpZ, the cyanobacterium *Synechococcus* sp. PCC7942
423 aquaporin. *Biology of the Cell* **105**, 118-128, doi:<https://doi.org/10.1111/boc.201200057> (2013).

424 30 Tanghe, A. *et al.* Aquaporin expression correlates with freeze tolerance in baker's yeast, and
425 overexpression improves freeze tolerance in industrial strains. *Appl Environ Microbiol* **68**, 5981-5989,
426 doi:10.1128/aem.68.12.5981-5989.2002 (2002).

427 31 Salesse-Smith, C. E. *et al.* Overexpression of Rubisco subunits with RAF1 increases Rubisco content in
428 maize. *Nature Plants* **4**, 802-810, doi:10.1038/s41477-018-0252-4 (2018).

429 32 Gupta, S. D. *et al.* The C4Ppc promoters of many C₄ grass species share a common regulatory
430 mechanism for gene expression in the mesophyll cell. *The Plant Journal* **101**, 204-216,
431 doi:10.1111/tpj.14532 (2020).

432 33 Barbour, M. M., Evans, J. R., Simonin, K. A. & von Caemmerer, S. Online CO₂ and H₂O oxygen isotope
433 fractionation allows estimation of mesophyll conductance in C₄ plants, and reveals that mesophyll
434 conductance decreases as leaves age in both C₄ and C₃ plants. *New Phytologist* **210**, 875-889
435 doi:10.1111/nph.13830 (2016).

436 34 Ogée, J., Wingate, L. & Genty, B. Estimating Mesophyll Conductance from Measurements of
437 C₄ Photosynthetic Discrimination and Carbonic Anhydrase Activity. *Plant
438 Physiology* **178**, 728, doi:10.1104/pp.17.01031 (2018).

439 35 von Caemmerer, S. & Furbank, R. T. in *The biology of C₄ Photosynthesis* (eds Rowan F. Sage & Russell
440 K. Monson) 173-211 (Academic Press, 1999).

441 36 von Caemmerer, S. *Biochemical models of leaf Photosynthesis*. (CSIRO Publishing, 2000).

442 37 Xu, F. *et al.* Overexpression of rice aquaporin OsPIP1;2 improves yield by enhancing mesophyll CO₂
443 conductance and phloem sucrose transport. *Journal of Experimental Botany* **70**, 671-681,
444 doi:10.1093/jxb/ery386 (2019).

445 38 McGaughey, S. A., Qiu, J., Tyerman, S. D. & Byrt, C. S. in *Annual Plant Reviews online* 381-416 (2018).

446 39 Gambetta, G. A., Knipfer, T., Fricke, W. & McElrone, A. J. in *Plant aquaporins* 133-153 (Springer,
447 2017).

448 40 Stemmet, M. C., De Bruyn, J. A. & Zeeman, P. B. THE UPTAKE OF CARBON DIOXIDE BY PLANT ROOTS.
449 *Plant and Soil* **17**, 357-364 (1962).

450 41 Hibberd, J. M. & Quick, W. P. Characteristics of C₄ photosynthesis in stems and petioles of C₃
451 flowering plants. *Nature* **415**, 451-454 (2002).

452 42 Mukhopadhyay, R., Bhattacharjee, H. & Rosen, B. P. Aquaglyceroporins: generalized metalloid
453 channels. *Biochimica et biophysica acta* **1840**, 1583-1591, doi:10.1016/j.bbagen.2013.11.021 (2014).

454 43 Ogée, J., Wingate, L. & Genty, B. Estimating mesophyll conductance from measurements of C¹⁸OO
455 discrimination and carbonic anhydrase activity. *Plant Physiology* **178**, 728-752,
456 doi:10.1104/pp.17.01031 (2018).

457 44 Pfeffer, M. & Peisker, M. in *Photosynthesis: from light to biosphere* Vol. V (ed P. Mathis) 547-550
458 (Kluwer Academic Publishers, 1995).

459 45 Nakagawa, S., Niimura, Y., Gojobori, T., Tanaka, H. & Miura, K.-i. Diversity of preferred nucleotide
460 sequences around the translation initiation codon in eukaryote genomes. *Nucleic acids research* **36**,
461 861-871, doi:10.1093/nar/gkm1102 (2008).

462 46 Suga, S. & Maeshima, M. Water Channel Activity of Radish Plasma Membrane Aquaporins
463 Heterologously Expressed in Yeast and Their Modification by Site-Directed Mutagenesis. *Plant and Cell
464 Physiology* **45**, 823-830, doi:10.1093/pcp/pch120 (2004).

465 47 Endeward, V. *et al.* Evidence that aquaporin 1 is a major pathway for CO₂ transport across the human
466 erythrocyte membrane. *The FASEB Journal* **20**, 1974-1981, doi:<https://doi.org/10.1096/fj.04-3300com>
467 (2006).

468 48 Bertl, A. & Kaldenhoff, R. Function of a separate NH₃-pore in Aquaporin TIP2;2 from wheat. *FEBS
469 Letters* **581**, 5413-5417, doi:<https://doi.org/10.1016/j.febslet.2007.10.034> (2007).

470 49 Otto, B. *et al.* Aquaporin Tetramer Composition Modifies the Function of Tobacco Aquaporins. *Journal
471 of Biological Chemistry* **285**, 31253-31260 (2010).

472 50 Yang, B. *et al.* Carbon Dioxide Permeability of Aquaporin-1 Measured in Erythrocytes and Lung of
473 Aquaporin-1 Null Mice and in Reconstituted Proteoliposomes. *Journal of Biological Chemistry* **275**,
474 2686-2692 (2000).

475 51 Qiu, J., McGaughey, S. A., Groszmann, M., Tyerman, S. D. & Byrt, C. S. Phosphorylation influences
476 water and ion channel function of AtPIP2;1. *Plant, Cell & Environment* **43**, 2428-2442,
477 doi:<https://doi.org/10.1111/pce.13851> (2020).

478 52 Engler, C. *et al.* A Golden Gate Modular Cloning Toolbox for Plants. *ACS Synthetic Biology* **3**, 839-843,
479 doi:10.1021/sb4001504 (2014).

480 53 Hopp, T. P. *et al.* A Short Polypeptide Marker Sequence Useful for Recombinant Protein Identification
481 and Purification. *Bio/Technology* **6**, 1204-1210, doi:10.1038/nbt1088-1204 (1988).

482 54 Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients
483 and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents:
484 verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.
485 *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **975**, 384-394, doi:[https://doi.org/10.1016/S0005-2728\(89\)80347-0](https://doi.org/10.1016/S0005-
486 2728(89)80347-0) (1989).

487 55 Pengelly, J. J. L. *et al.* Growth of the C₄ dicot *Flaveria bidentis*: photosynthetic acclimation to low light
488 through shifts in leaf anatomy and biochemistry. *Journal of Experimental Botany* **61**, 4109-4122 (2010).

489 56 von Caemmerer, S. *et al.* Carbonic anhydrase and C₄ photosynthesis: a transgenic analysis. *Plant Cell
490 Environ* **27**, 697-703 (2004).

491 57 Jenkins, C. L., Furbank, R. T. & Hatch, M. D. Mechanism of C(4) photosynthesis: a model describing the
492 inorganic carbon pool in bundle sheath cells. *Plant physiology* **91**, 1372-1381 (1989).

493 58 Ruuska, S. A., Andrews, T. J., Badger, M. R., Price, G. D. & von Caemmerer, S. The role of chloroplast
494 electron transport and metabolites in modulating Rubisco activity in tobacco. Insights from transgenic
495 plants with reduced amounts of cytochrome b/f complex or glyceraldehyde 3-phosphate
496 dehydrogenase. *Plant physiology* **122**, 491-504 (2000).

497 59 Massey, B. *Understanding betalain regulation in floral and vegetative tissues of Ptilotus cultivars*, The
498 University of Queensland, (2012).

499 60 Martin-Avila, E. *et al.* Modifying Plant Photosynthesis and Growth via Simultaneous Chloroplast
500 Transformation of Rubisco Large and Small Subunits. *The Plant Cell* **32**, 2898,
501 doi:10.1105/tpc.20.00288 (2020).

502 61 Ludwig, M., von Caemmerer, S., Dean Price, G., Badger, M. R. & Furbank, R. T. Expression of Tobacco
503 Carbonic Anhydrase in the C₄ Dicot *Flaveria bidentis* Leads to Increased Leakiness of the Bundle Sheath

504 and a Defective CO₂-Concentrating Mechanism. *Plant Physiology* **117**, 1071,
505 doi:10.1104/pp.117.3.1071 (1998).

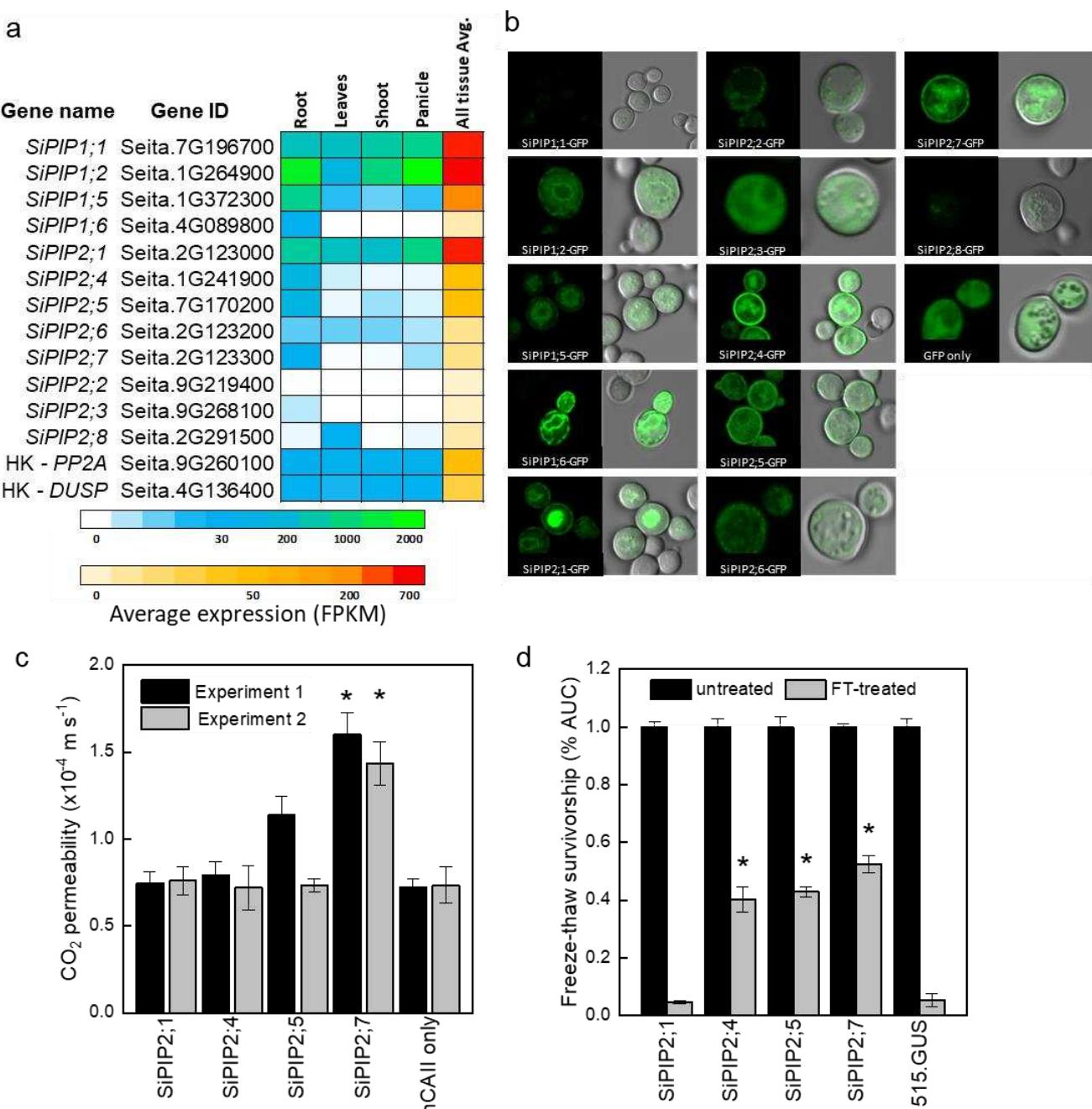
506 62 Ermakova, M. *et al.* Installation of C4 photosynthetic pathway enzymes in rice using a single construct.
507 *Plant Biotechnology Journal* doi.org/10.1111/pbi.13487, doi:<https://doi.org/10.1111/pbi.13487>
508 (2020).

509 63 Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nature Methods* **9**, 676-
510 682, doi:10.1038/nmeth.2019 (2012).

511 64 Genty, B., Briantais, J.-M. & Baker, N. The relationship between the quantum yield of photosynthetic
512 electron transport and and quenching of chlorophyll fluorescence. *Biochimica and Biophysica Acta*
513 **990**, 87-92 (1989).

514 65 von Caemmerer, S. Updating the steady state model of C₄ photosynthesis.
515 *bioRxiv*, 2021.2003.2013.435281, doi:10.1101/2021.03.13.435281 (2021).

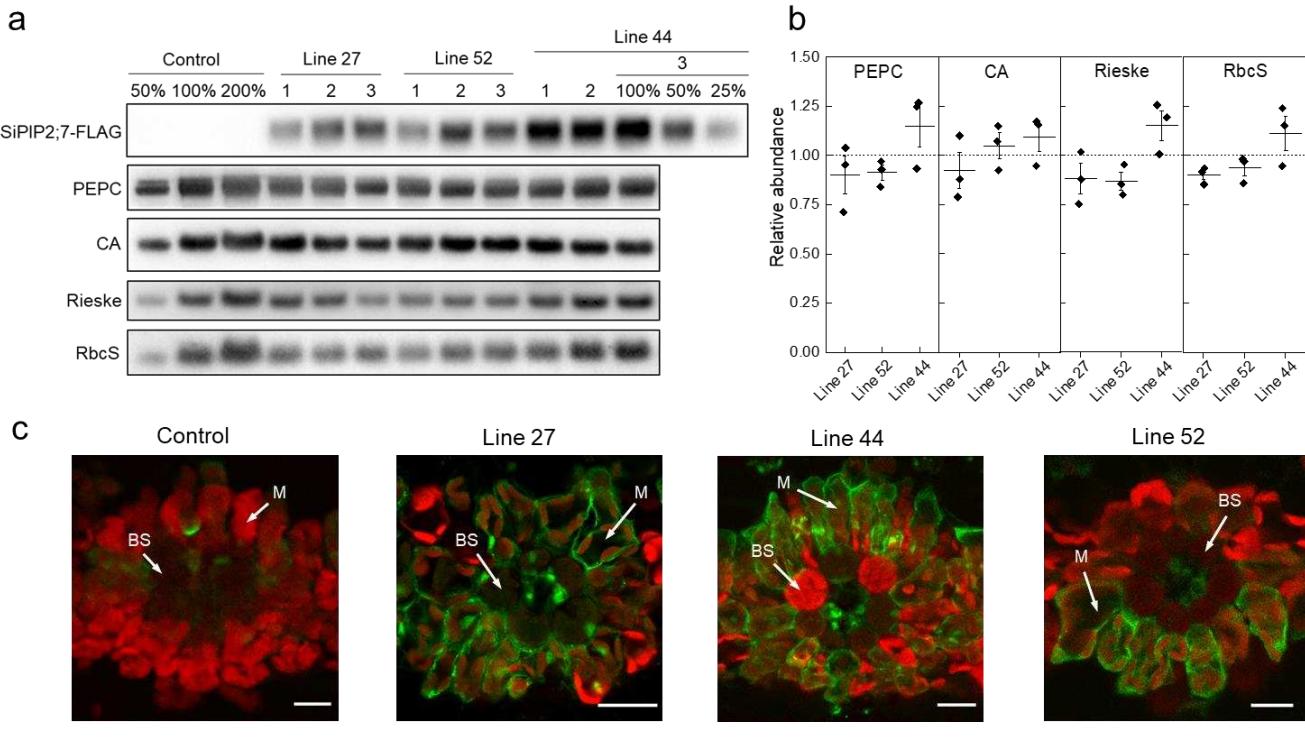
516 66 DiMario, R. J. & Cousins, A. B. A single serine to alanine substitution decreases bicarbonate affinity of
517 phosphoenolpyruvate carboxylase in C4Flaveria trinervia. *Journal of Experimental Botany* **70**, 995-
518 1004, doi:10.1093/jxb/ery403 (2019).


519

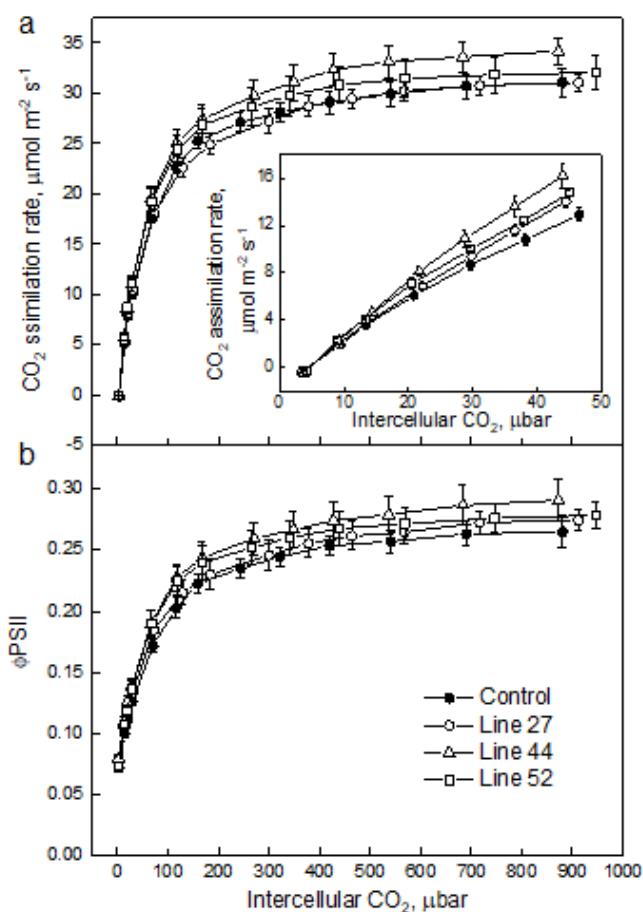
520

521 **Table 1.** Properties of *S. viridis* plants expressing *SiPIP2;7-FLAG* in mesophyll cells. PEPC, PEP
522 carboxylase; Rubisco, ribulose bisphosphate carboxylase oxygenase; LMA, leaf mass per area. Azygous
523 plants of line 44 were used as control. Mean \pm SE, $n = 3$ except for biomass ($n = 8$). Three-weeks old
524 plants before flowering were used for all analyses. No significant difference was found between the
525 transgenic and control plants (One-way ANOVA, $\alpha = 0.05$).

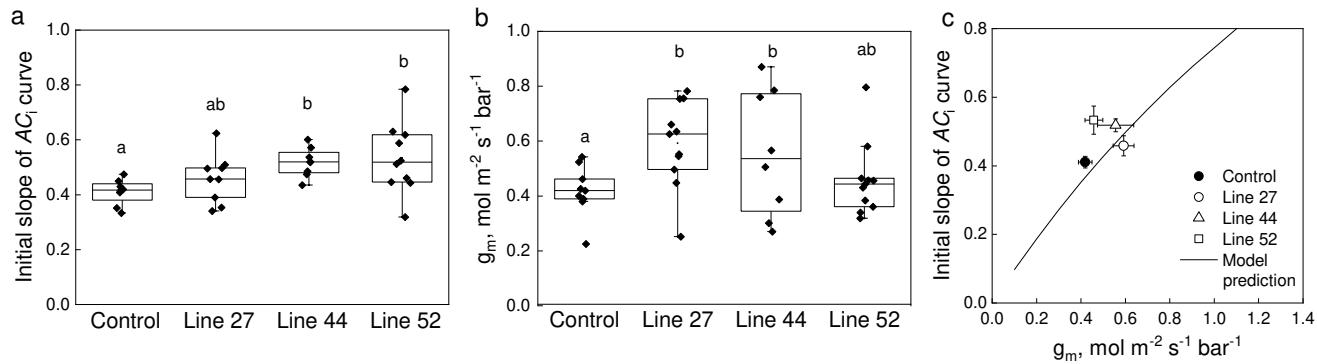
Parameter	Control	Line 27	Line 44	Line 52
PEPC activity, $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$	220.1 ± 25.8	197.6 ± 12.7	208.7 ± 7.9	218.5 ± 3.5
CA hydration rate, $\text{mol m}^{-2} \text{ s}^{-1} \text{ bar}^{-1}$	6.50 ± 0.10	6.32 ± 0.22	5.34 ± 0.67	5.35 ± 0.56
Rubisco active sites, $\mu\text{mol m}^{-2}$	12.17 ± 0.63	12.53 ± 0.54	12.84 ± 0.13	12.63 ± 0.74
Chlorophyll (<i>a+b</i>), mmol m^{-2}	0.71 ± 0.07	0.72 ± 0.04	0.72 ± 0.05	0.72 ± 0.08
Chlorophyll <i>a/b</i>	5.01 ± 0.16	5.08 ± 0.05	4.97 ± 0.09	5.07 ± 0.15
LMA, g (dry weight) m^{-2}	23.6 ± 1.6	24.0 ± 1.5	25.6 ± 1.3	25.4 ± 1.3
Shoot biomass, g (dry weight) plant^{-1}	2.06 ± 0.36	2.01 ± 0.20	2.23 ± 0.31	2.24 ± 0.34
Root biomass, g (dry weight) plant^{-1}	0.27 ± 0.07	0.28 ± 0.03	0.34 ± 0.06	0.35 ± 0.05


526

527


528 **Fig. 1.** Identification of the CO₂-permeable aquaporin *SiPIP2;7* from *S. italica*. **a.** Expression atlas of the
529 *SiPIP* genes generated from Phytomine reported as Fragments Per Kilobase of transcript per Million
530 mapped reads (FPKM). House-keeping genes (HK) *PROTEIN PHOSPHATASE 2A* (*PP2A*) and *DUAL
531 SPECIFICITY PROTEIN* (*DUSP*) were included for reference. **b.** Localization of *SiPIP*-GFP fusions
532 expressed in yeast visualised with confocal microscopy; left panels – GFP fluorescence; right panels –
533 bright field overlaid with GFP fluorescence. Measured cell diameters are shown on Fig. S2. **c.** CO₂
534 permeability assay on yeast co-expressing *SiPIPs* and *human CARBONIC ANHYDRASE II* (*hCAII*) analyzed
535 by stopped flow spectrometry (see Fig. S2 for details). “*hCAII only*” expression was used as negative
536 control. Mean \pm SE, $n = 3$ biological replicates. Two independent experiments are presented. Asterisks

537 indicate statistically significant differences between yeast expressing *SiPIPs* and “hCAII only” control (*t*-
538 test, $P < 0.05$). **d.** Yeast water permeability assessed in the yeast aquaporin deletion background (*aqy1*
539 *aqy2*) by the cumulative growth between untreated and freeze-thawed cells and determined by the
540 percent area under the curve (% AUC). The yeast expressing the β -glucuronidase reporter gene
541 (515.GUS) was used as negative control. Mean \pm SE, $n = 4$ biological replicates. Asterisks indicate
542 statistically significant differences between yeast expressing *SiPIPs* and 515.GUS control (*t*-test, $P <$
543 0.01).


546 **Fig. 2.** Characterization of *S. viridis* plants expressing *SiPIP2;7-FLAG* in mesophyll cells. **a.**
547 Immunodetection of *SiPIP2;7-FLAG* and photosynthetic proteins in leaf protein samples loaded on leaf
548 area basis. Three plants from each of the three transgenic lines were analyzed and dilution series of
549 the control and line 44-3 samples were used for relative quantification. **b.** Protein abundances
550 calculated from the immunoblots relative to control plants. Mean \pm SE. No significant difference was
551 found between the transgenic and control plants (*t*-test, $P < 0.05$). **c.** Immunolocalisation of *SiPIP2;7-*
552 *FLAG* on leaf cross-sections visualized with confocal microscopy. Fluorescence signals are pseudo-
553 colored: green - *FLAG* antibodies labelled with secondary antibodies conjugated with Alexa Fluor 488;
554 red - chlorophyll autofluorescence. BS, bundle sheath cell; M, mesophyll cell. Scale bars = 20 μ m.
555 Azygous plants of line 44 were used as control.

557

558

559 **Fig. 3.** CO₂ response of CO₂ assimilation rate (a) and quantum yield of Photosystem II (b) in *S. viridis*
560 plants expressing *SiPIP2;7-FLAG* in mesophyll cells. Measurements were performed at the irradiance
561 of 1500 μmol m⁻² s⁻¹; azygous plants of line 44 were used as control. Mean ± SE, *n* = 4-5 biological
562 replicates. No significant difference was found between the transgenic and control plants (One-way
563 ANOVA, α = 0.05).

564

565 **Fig. 4.** Effect of the mesophyll conductance, g_m , on the initial slope of the CO_2 assimilation response
566 curve to the intercellular CO_2 partial pressure (AC_i curve) in leaves of *S. viridis* expressing *SiPIP2;7-FLAG*
567 in mesophyll cells. **a.** Mesophyll conductance, g_m , estimated by oxygen isotope discrimination assuming
568 full isotopic equilibrium²³. Measurements were made at ambient CO_2 and low O_2 . **b.** Initial slope of the
569 AC_i curves estimated by linear fitting of curves presented in Fig. 3a inset. **c.** Data from a and b compared
570 to the C_4 biochemical model predictions³⁶. The model relates the initial slope of the AC_i curve (dA/C_i)
571 to g_m by: $\frac{dA}{dC_i} = g_m V_{pmax} / (g_m K_p + V_{pmax})$, where V_{pmax} and K_p denote the maximum PEPC activity and
572 the Michaelis-Menten constant for CO_2 taken here as $250 \mu\text{mol m}^{-2} \text{s}^{-1}$ and $82 \mu\text{bar}$ ^{65,66}. Azygous plants
573 of line 44 were used as control. Letters indicate statistically significant differences between the groups
574 (One-way ANOVA with Tukey post-hoc test, $\alpha = 0.05$).

575