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Abstract

ePlant was introduced in 2017 for exploring large Arabidopsis thaliana data sets from the kilometre to
nanometre scales. In the past four years we have used the ePlant framework to develop ePlants for 15
agronomically-important species: maize, poplar, tomato, Camelina sativa, soybean, potato, barley,
Medicago truncatula, eucalyptus, rice, willow, sunflower, Cannabis sativa, wheat and sugarcane. We
also updated the interface to improve performance and accessibility, and added two new views to the
Arabidopsis ePlant — the Navigator and Pathways viewers. The former shows phylogenetic relationships
between homologs in other species and their expression pattern similarities, with links to view data for
those genes in the respective ePlants. The latter shows Plant Reactome metabolic reactions. We also
describe new Arabidopsis data sets including single cell RNA-seq data from roots, and how to embed
ePlant eFP expression pictographs into any web page.

Introduction

Vast amounts of biological data have been generated over the past 15 years. Traditional methods of
analyzing data in multiple formats can add a layer of friction to the creative processes of hypothesis
generation. We introduced ePlant four years ago to help plant biologists explore and make connections
between large Arabidopsis thaliana data sets for any given gene/gene product (Waese et al., 2017). It
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includes views for exploring expression differences in ecotypes at a kilometre scale, expression levels in
tissues and organs at the centimetre scale, sub-cellular localization at the millimetre scale, protein-DNA
and protein-protein interactions at the micrometre scale and, finally, the tertiary structure of the
molecule itself at the nanometre scale. Combining multiple views into one visual analytic platform
allows researchers to ask and answer complex biological questions about a gene of interest using a
single, user-friendly interface.

Development of ePlant has continued since the original paper was published. Several new views have
been added and the user interface has been updated to improve performance and accessibility. The new
views include a Navigator viewer, a Pathways viewer, and seven new eFP viewers based on RNA-seq
data. In addition, 15 new ePlants have been developed for agronomically-important species beyond
Arabidopsis thaliana. Last, we have made it easy to embed ePlant eFP images showing expression
patterns into any web page as a widget.

Results

New ePlant Design with Improved Accessibility and Performance

Since the original Waese et al. (2017) paper, ePlant interface has undergone a major update (see Figure
1). The colours have been updated to improve contrast, infrequently used features were removed to
reduce clutter, and animated page transitions were removed to eliminate negative experiences that
motion effects cause for some users. In addition, gene loading times have improved by up to 300% and
several bugs have been fixed that used to cause unpredictable behavior when asynchronous events did
not happen as expected.

Data visualization tools for multiple levels of plant data.
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Figure 1: The new ePlant home page.

To improve contrast, we swapped the background colours for darker ones, removed gradients and
changed text colours, making much of ePlant compatible with the higher WCAG “AAA” standard for


https://doi.org/10.1101/2021.04.28.441805
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.28.441805; this version posted April 29, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

enhanced contrast, which requires a ratio of at least 7:1. The original design did not meet the WCAG
“AA” standard. The new design uses the colours shown in Figure 2.

Figure 2: Original ePlant colours (left) #444444, #666666, #99CC00; new colours (right) #161616, #262626, #99CC00

We have maintained use of the “BAR green” as the highlight colour, despite darkening the background
colours. By swapping the background colours to darker alternatives and removing the use of white text
on a green background we were able to increase contrast significantly and create a more readable
design (Figure 3). We also removed the animated transitions between views to address concerns from
researchers with vestibular disorders?.
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Figure 3: Contrast of the original ePlant design versus the new design. The original design (left) does not meet the WCAG “AA”
level for contrast, while the new design (right) exceeds the “AAA” contrast level by a factor of more than two, as shown using
Chrome’s developer tools.

A Small Farm of ePlants

The original ePlant published by Waese et al. (2017) only supported data from Arabidopsis thaliana. We
now have ePlants for another 15 species: Arabidopsis thaliana, maize, poplar, tomato, Camelina sativa,
soybean, potato, barley, Medicago truncatula, eucalyptus, rice, willow, sunflower, Cannabis sativa,
wheat and sugarcane (see Figure 4 and Table 1).

L https://www.w3.org/TR/WCAG21/#contrast-minimum
2 https://alistapart.com/article/designing-safer-web-animation-for-motion-sensitivity/
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Figure 4: Accessing ePlants from the BAR homepage at http://bar.utoronto.ca.

Although they share a common interface, the ePlants are not all identical. The 16 ePlants draw data
from a variety of databases, and different species have different views based on data availability, as
shown in Table 1. The Arabidopsis ePlant continues to have the greatest number of views. We
developed a pipeline for creating a new ePlant of interest and this is available at
https://github.com/BioAnalyticResource/ePlant Pipeline. For several ePlants, we have predicted
“structure-omes” using Phyre2 (Kelley et al., 2015).
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Table 1: Overview of Data Available in each ePlant. Icons are defined in Figure 1, with the exception of the first 4: the ®icon denotes gene information, the € icon denotes publications,
icon denotes the Heatmap Viewer. A new icon is the Pathways Viewer < icon. ePlants are available at http://bar.utoronto.ca.

the Lc icon denotes ePlant Navigator, and the

ePlant\ Viewer IL_EI & I @ I 4 I o I g I S I b x Data references
Arabidopsis ePlant P PY P PY P P PY P PY P PY As in Waese et al. (2017) and as discussed in this paper
Downs et al. (2013), Opitz et al. (2014, 2016), (2016), Wang et
Mai Plant al. (2014), Li et al. (2010), Eveland et al. (2014) Hey et al. (2017),
alze eFlan o o o o ® Sekhon et al. (2011), Musungu et al. (2015), Goodstein et al.
(2011)
Pobl Plant Tuskan et al. (2006), Wilkins et al. (2009a, 2009b), Goodstein et
oplar ePlan ) ° ° ° ® al. (2011)
Tomato Genome Consortium (2012), Koening et al. (2013), Toal
Tomato ePlant ° ° Y ° Y et al. (2018), Kajala et al. (in press), Chitwood et al. (2013),
Matas et al. (2011), Hooper et al. (2020), Goodstein et al. (2011)
Camelina ePlant ° PY Kagale et al. (2016)
Libault et al. (2010a, 2010b), Severin et al. (2010), Goodstein et
Soybean ePlant ° ° ° ° °
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Massa et al. (2011), Potato Genome Sequecing Consortium
Potato ePlant o o o (2011), Goodstein et al. (2011)
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Two New Viewers for the Arabidopsis ePlant

Navigator Viewer

The Navigator Viewer as shown in Figure 5 provides a tree-based visualization of homologous genes in
other species. It uses data from the BAR’s Expressolog database (Patel et al., 2012) to construct a
phylogenetic tree with leaf nodes representing the homologs from different species. For each gene, its
species is reported along with the similarity at the sequence level and at the level of expression pattern
similarity, based on the expressolog method developed by Patel et al. (2012). In this way, genes that are
both sequence similar and have similar patterns of expression in equivalent tissues may be easily
identified. Link-outs are also provided to each gene’s corresponding ePlant and or eFP view. In addition,
dynamic links to genomevolution.org’s CoGe database (Lyons and Freeling, 2008) and to the Gramene
database (Tello-Ruiz et al., 2018) are provided so that a researcher can easily access further information
about syntenic relationships etc.

This tool was created with the goal of quickly and easily helping biologists find similar genes across the
various ePlant species. If a biologist studying one species is familiar with a gene in another, this view
allows them to make a connection between the two.

Navigator Viewer: AT2G06050 / AtOPR3, DDE1, OPR3
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Figure 5: ePlant Navigator Viewer

Pathways Viewer

The Pathways Viewer shown in Figure 6 displays metabolic pathways associated with the active gene. It
draws data from the Plant Reactome pathway database (Naithani et al., 2019) via application
programming interface (API) calls and generates a pathway diagram. This is done using Cytoscape.js, a
JavaScript-based graph theory library for network visualization and analysis (Franz et al., 2016). Nodes
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are laid out with a force directed layout known as CoSE Bilkent® and styled appropriately. All pathways
available for a given gene are displayed as selectable tabs and a direct link to the pathway in the Plant
Reactome pathway browser is provided for more information. In addition, hovering over the active gene
label, which is denoted by bold text, calls up a tooltip which contains the Klepikova Plant eFP view for
that gene, based on the Klepikova developmental atlas (Klepikova et al., 2016) — see the next section.
The Klepikova eFP view can be used to assess in which parts of the plant the gene is strongly expressed,
to help identify parts of the plant where the depicted reaction might be occurring.

The ePlant Pathways Viewer fills a gap in the conceptual hierarchy within ePlant, between the
Interaction Viewer and the Molecule Viewer. Currently this view is only available for the Arabidopsis
ePlant with data for over 236 pathways, 590 reactions and 1059 gene products and it is coming to the
other ePlants soon. Plotting these pathways enables researchers to understand the biological context of
the active gene product. The other views in ePlant show where in the cell the gene/macromolecule
exists and how it is expressed, but this view is what makes it possible to answer the question “what is
the gene doing in the cell” in a way that was not possible before.

Pathway Viewer: AT5G20980 / ATMS3, MS3
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Figure 6: ePlant Pathways Viewer

3 https://github.com/cytoscape/cytoscape.js-cose-bilkent
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Figure 7: Klepikova Plant eFP tooltip in ePlant’s Pathways Viewer, showing the expression pattern of At5g20980, ATMS3,
involved in the S-adenosyl-L-methionine cycle, showing strong expression (red colour) in young leaves, flower buds, stems, and
germinating seeds.

New Data Sets

The original ePlant publication introduced the Plant eFP Viewer and the Tissue and Experiment eFP
Viewers with more than 20 different views. They display pictographs representing the level of
expression of a queried gene in organs of the plant or in specific tissues or cell types, with intensity of
expression represented by a colour gradient. Since the original publication in 2017, a number of new
views have been added, with the Single Cell RNA Sequence eFP (Ryu et al., 2019) being one of six added
in this new update, as shown in Figure 8. Most of the newly added data are based on RNA sequencing
and include a new Plant eFP Viewer for the Klepikova RNA-seq-based developmental atlas shown in
Figure 7 (Klepikova et al., 2016), a Germination view (Narsai et al., 2011), a Shoot Apex view (Tian et al.,
2014), a Root Immunity Elicitation view (Rich-Griffin et al., 2020), and a Guard Cell Drought view (van
Weringh et al., 2021).

We also updated the non-synonymous single nucleotide polymorphism data source for the Arabidopsis
Molecule Viewer from the 1001 Proteomes site (Joshi et al., 2012), which had been deprecated, to the
1001 Genomes APl (1001 Genomes Consortium, 2016). The advantage of doing this, apart from having a
reliable data source, is that the 1001 Genomes APl is more comprehensive, containing polymorphism
data for almost twice as many Arabidopsis ecotypes.
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Single Cell eFP (RNA-Seq data): AT5G60200 / DOF5.3, TMO6
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Figure 8: Single Cell RNA-seq eFP View for the gene At5g60200

ePlant eFP Widgets

We have developed SVG-based ePlant Plant eFP widgets for use in any website, as shown in Figure 9.
See https://bar.utoronto.ca/~asullivan/ePlant Plant _eFP/example/ for how to use these. The widgets
behave similarly to the eFP views found within ePlant itself and are available for 88 different SVGs. They
function after the same paradigm, with a gradient showing intensity of gene expression in different
tissue regions or cell types taken from different parts of the plant.

Discussion

We present several useful updates to our ePlant tool. Improvements to the accessibility and
performance of the interface makes for a better user experience. Fifteen new ePlants permit easy
exploration of expression, interaction, subcellular localization and structure data across multiple
agronomically-important species. We hope that the research communities for these species will be
interested in adding data sets to these new ePlants in the future. Two new viewers, the Navigator and
Pathways viewers, permit genes/gene products to be explored in the context of their homologs and
biochemical pathways retrieved from Plant Reactome, respectively. A Plant eFP tooltip for the active
gene/gene product in the latter viewer can help highlight in which organ a pathway might be operating.
We have added new expression data sets based on RNA sequencing to the Tissue and Experiment
Viewers, increasing the breadth of transcriptomic data viewable in a pictographic manner. Last, ePlant
eFP widgets may be easily embedded in any webpage for any Arabidopsis gene with some
straightforward code.
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Figure 9: Seed ePlant eFP widget
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