

1 Sexual deprivation modulates social interaction and reproductive physiology

2
3 Liora Omesi¹, Mali Levi¹, Assa Bentzur¹, Yong-Kyu Kim^{2a}, Shir Ben-Shaanan¹, Reza Azanchi^{2b}, Ulrike
4 Heberlein² and Galit Shohat-Ophir^{1,3}

5

6

7 ¹The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary
8 Brain Research Center and The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002
9 Israel

10

11 ²Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA

12

13 ^aCurrent Address: Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA

14

15 ^bCurrent Address: Department of Neuroscience, Brown University, Providence, USA

16

17 ³Lead contact

18

19 Correspondence should be addressed to G.S.O. (galit.ophir@biu.ac.il)

20 **Abstract**

21

22 In highly polyandrous species, where females mate with multiple males within a single fertility
23 period, there is typically a high level of sperm competition. To cope with this challenge, males apply
24 various behavioral and physiological strategies to maximize their paternity rates. Previous studies in
25 *Drosophila melanogaster* established a link between the composition of the social environment and the
26 reproductive success of individual male flies. While most studies until now focused on the adaptive
27 responses of male flies to the presence of rival males, little is known about whether the outcomes of
28 sexual interactions with female partners affect male-male social interactions in a competitive
29 environment such as the social group. Here we show that repeated failures to mate promote a coordinated
30 physiological and behavioral responses that can serve to increase paternity chances over mating rivals.
31 We exposed male flies to sexual deprivation or successful mating and analyzed the behavioral repertoires
32 of individuals within groups and the structure of their emerging social networks. We discovered that
33 failures to mate and successful mating generate distinct emergent group interactions and structures,
34 where sexually deprived males form low density social networks and actively minimize their encounters
35 with other group members, while increasing their aggressive behavior. In addition, sexually deprived
36 male flies elevate the production of seminal fluid proteins (known to facilitate post-mating responses in
37 females) and extend mating duration upon mating with receptive females, altogether leading to reduced
38 re-mating rates. Our results demonstrate the existence of a flexible mating strategy that may provide a
39 short-term fitness advantage over competing rivals and pave the path for using simple model organisms
40 to dissect the neurobiology of social plasticity as coping strategy to living in a highly dynamic
41 environment as the social domain.

42

43

44 Introduction

45 The ability to adapt to environmental changes is an essential feature of biological systems,
46 achieved in multicellular organisms by a coordinated crosstalk between neuronal and hormonal programs
47 that generate plastic physiological and behavioral responses to environmental challenges^{1,2}. This is
48 particularly important in a dynamic, ever-changing and unpredictable environment, such as the social
49 domain composed of many behaving animals, the interaction with ultimately determines the reproductive
50 success of individuals²⁻⁴. The intricate nature of social interaction requires the ability to recognize other
51 members of the group in the right context, season, sex, age and reproductive state, and integrate this
52 information with prior experience to produce the appropriate and optimal behavioral response⁴. Plastic
53 social responses are seen in diverse animals, and include modulation of competitive sexual behaviors
54 such as mating preferences and aggressive displays, and also the regulation of social foraging and
55 parental care⁵⁻⁷. A remarkable example of social plasticity is evident in the African cichlid fish
56 *Astatotilapia burtoni*, which live in a highly complex social environment consisting of many rival males
57 that compete over limited food, territorial resources and female partners. Such a complex biotic and
58 social environment produces a small number of dominant male fish and a large number of submissive
59 males that closely monitor the social landscape in a constant search for opportunities to improve their
60 social status, taking over mating territories and females⁷.

61 As a species with sociable lifestyle, *Drosophila melanogaster* exhibit communal living around
62 freshly decaying fruits⁸ and engage in diverse forms of social interactions⁹. This includes courtship and
63 mating^{10,11}, fighting over resources¹², group interactions¹³, coordinated responses to threats¹⁴⁻¹⁶, cultural
64 transmission of complex behaviors¹⁷, learning from conspecifics^{18,19}, and synchronization of activity by
65 social cues²⁰. Although some of these behaviors are considered innate responses, there are striking
66 examples of the ability of fruit flies to exhibit social plasticity as they modulate their behavior and

67 physiology in response to changes in their social environment. This includes the ability of male flies to
68 change their aggressive behavior in response to prior fighting experience^{21–23}, regulate sperm
69 composition and the duration of copulation events in response to perceived competition^{24–26}, and suppress
70 courtship efforts towards non-receptive female flies^{27–29}.

71 Recent studies in *Drosophila* demonstrate that fruit flies generate complex and rich group
72 structures that are sensitive to the density of the group, its composition, as well as to the prior experience
73 of its members^{30–33}. We previously showed that sexual experience in male flies can modulate their
74 motivational state and, subsequently, their reward seeking behaviors^{34,35}. However less is known about
75 the way by which prior sexual interactions that are experienced as success or failure to mate shape social
76 interaction of male flies in a group context. Furthermore, it is not clear whether sexually deprived male
77 flies exhibit loser-like responses, as in the case of social defeat²³, or rather actively increase their
78 competitive behavior to cope with mating rivals. Here we explored the effects of success or failure to
79 mate on the dynamics of social interaction in groups of male flies. We discovered that sexual deprivation
80 and successful mating generate opposite emergent group interactions and structures, wherein sexually
81 deprived male flies actively minimize their interactions with group members. Moreover, sexual
82 deprivation enhances competitive behaviors and leads to changes in reproductive physiology, possibly
83 to increase paternity chances over mating rivals.

84 Results

85 Failure to mate modifies action selection upon encounters with rival male flies

86 We previously demonstrated that sexual experiences associated with different levels of mating
87 success, such as repeated events of successful mating, or sexual deprivation in the form of repeated
88 rejection events by non-receptive female flies, alter internal state and consequently motivational
89 responses^{34,35}. The negative valence of rejection, reflected by its capacity to induce courtship suppression
90 and increase the consumption of ethanol, prompted us to ask whether sexually deprived male flies exhibit
91 loser-like responses²³ or rather actively increase their competitive behavior to cope with mating rivals.
92 To this end, we generated two cohorts of male flies that were exposed to repeated encounters with either
93 receptive virgin female flies (mated-isolated) or non-receptive female flies (rejected-isolated), consisting
94 of 1h sessions 3 times a day for 4 days (Fig. 1A). At the end of this experience, their interactions in group
95 context were tested by introducing 10 flies from each cohort into a shallow arena in which they could
96 move and interact in two dimensions. Their behavior was recorded for 30 min and analyzed using the
97 FlyBowl suite of tracking and behavior analysis softwares^{32,36,37} (Fig. 1A). The tracking data obtained
98 was used to generate a comprehensive behavioral representation for each cohort composed of 60 distinct
99 features, including kinetic features, eight distinct complex behaviors, and six social network features
100 (Table 1)³². The overall differences between the two cohorts across all features are depicted in a scatter
101 plot of normalized differences and are divided into 4 main categories: activity-related features,
102 interaction-related features, coordination between individuals, and features associated with social
103 clustering (Fig. 1B). The two cohorts of male flies exhibited distinct repertoires of behavioral responses
104 upon first encounters with other male flies. Sexually deprived male flies exhibited increased activity
105 manifested as longer overall time spent walking, increased average velocity, and higher number of body-
106 turns (Fig. 1B, highlighted in pink, Supp Fig. 1A-C). When analyzing social-related behaviors, rejected
107 male flies exhibited lower rates of close touch encounters (Fig. 1B, highlighted in blue, Supp Figure 1D),

108 and while they displayed similar levels of active approaches towards other members of the group, the
109 duration of these encounters was significantly shorter (Fig. 1B, highlighted in blue, Supp. Fig. 1E,F). In
110 contrast, mated males exhibited long periods of quiescence (Fig. 2B, highlighted in blue, Supp. Fig. 1B),
111 and formed close-distance social (Fig. 1B, highlighted in blue, Supp Fig. 1G), reflected also by an
112 increase in the number of flies found in close proximity to one another (Fig. 1C).

113 **Failure to mate promotes social avoidance**

114 We next analyzed the properties of emerging social networks in both groups using weighted
115 networks as described by Bentzur et al.,³² (Fig. 2A). We calculated network weights according to the
116 overall duration of interactions (emphasizing long-lasting interactions) or the overall number of
117 interactions (emphasizing short interactions) between each pair of flies. Analysis by duration revealed
118 that social networks of rejected males are characterized by lower density (Fig. 2B), reduced modularity
119 (Fig. 2C), and reduced variation in individual strength levels across the group (SD strength, Fig. 2D).
120 These findings suggest that rejection promotes the formation of sparser groups containing fewer
121 subgroups and that individuals in those groups are more homogenous in the strength of their interactions.
122 Analysis by number of interactions revealed that, although rejected networks have lower modularity and
123 SD strength, there is no significant differences in the density of their networks, suggesting that they
124 maintain an overall similar number of interactions as mated male flies (Fig. 2E-G). Together, these
125 differences indicate that mated male flies form networks with higher-order structures compared to those
126 formed by rejected male flies. Notably, although rejected male flies participate in a similar number of
127 interactions, their networks are simpler and sparser. The apparent differences in the density of networks
128 measured by duration are consistent with significant differences between the two cohorts in the average
129 distance between the two closest flies in each frame (dcenter), which is considerably higher in rejected
130 males (Fig. 2H). More importantly, while in mated males the average distance between flies decreased
131 along the experiment as flies adapt to the arena, it remained constantly high in groups of rejected male

132 flies (Fig. 2H). Considering that the elevated activity of rejected male flies (Fig. 1B) is expected to
133 increase the opportunity to encounter others, the maintenance of a larger distance throughout the
134 experiment and the reduced density suggest that rejected individuals actively avoid social interactions
135 with other flies. Together, these experiments point to sexual deprivation as the major contributor to the
136 reduced social interaction. To further test the strength of this conclusion, we divided a cohort of rejected-
137 isolated males into two subgroups, one of which was left undisturbed, and the other subgroup was
138 allowed to mate with virgin females for 2.5 hours immediately before testing. The rejected, then mated
139 sub-group exhibited intermediate levels of activity related features such as walk, stop, turn and average
140 velocity when compared to subgroups that had only experienced rejection or successful mating (Fig. 2I).
141 The rejected and then mated subgroup exhibited also intermediate degrees of social interaction related
142 features such as social clustering, number of flies found in close proximity to one another, and the levels
143 of grooming behavior that is tightly associated with social clustering (Fig. 2I). The capacity of mating to
144 partially reverse the effects of sexual deprivation is consistent with sexual deprivation being the major
145 contributor to social avoidance.

146 **Sexual deprivation modulates competitive behaviors**

147 Considering the major differences in group behavior displayed by rejected and mated male flies,
148 we hypothesized that the responses exhibited by rejected males reflect behavioral adaptation to coping
149 with high sexual competition over mating partners, where repeated encounters with mated females are
150 indicative of high male to female sex ratio. If so, rejected male flies are expected to increase behaviors
151 that provide them with an adaptive competitive value over rival male flies. This prediction can be tested
152 by measuring their aggressive responses toward other males in the presence of limited food resources or
153 their mating behavior upon opportunities to mate with virgin female flies. Indeed, pairs of rejected male
154 flies exhibited significantly higher aggressive displays in comparison to pairs of mated male flies (Fig.
155 3A), and that in mixed pairs, rejected males exhibited greater numbers of lunges compared to their mated

156 counterparts (Fig. 3B,C). When allowed to mate with virgin female flies, rejected male flies extended
157 the duration of copulation events by 25% (3.5 minutes longer) compared to naïve males (Fig. 3D). Thus,
158 rejected male flies exhibited an overall increase in behaviors that can provide them with an adaptive
159 competitive value over rival male flies.

160 **Failure to mate induce changes in sperm and seminal fluid composition**

161 The act of mating alone does not guarantee fitness benefits including known strategies that reflect
162 male investment in sperm and non-sperm components, such as fecundity-enhancing seminal fluid
163 proteins^{38,39,40}. To determine whether prior rejection affects reproductive physiology in a manner that
164 may improve mating competitiveness, expression levels of genes related to sperm production and
165 reproduction were assessed. First, the expression of DON-JUAN (DJ), a protein that is specifically
166 expressed in mature male sperm cells^{32,33}, was measured using a GFP-based reporter line in which a GFP
167 sequence was inserted within the coding locus, so that the expression of GFP reflects the expression of
168 the endogenous DJ protein. The reliability of the DJ-GFP reporter as a sensitive measure for changes in
169 sperm production was first confirmed in male flies raised among a high number of rival males (5 flies
170 for 4 days), compared to the flies that were housed in pairs (Supp Fig.2), social conditions known to
171 affect the amount of mature sperm^{25,41} (Supp Fig.2). The relative levels of GFP were then measured in
172 rejected and naïve male flies (Fig. 4A-B). Surprisingly, there was a twofold decrease in the levels of GFP
173 in the rejected cohort compared to naïve males (with no prior sexual experience), suggesting that male
174 flies decrease their investment in sperm allocation in response to sexual deprivation (Fig. 4A-B). Next,
175 the relative expression of the following reproductive related genes was directly assessed in fly abdomens
176 by qRT-PCR. We measured the expression of *Sex-Peptide (Acp70A)*, *Acp63*, *Acp53*, *Ovulin (Acp26Aa)*,
177 which are responsible for the females' long-term post-mating responses and fertility³⁸. We also measured
178 the expression of genes encoding the *Ejaculatory bulb protein (Ebp)*, which is responsible for the

179 posterior mating plug formation at the end of mating⁴², *don-juan (dj)*⁴⁰, the *corazonin (Crz)* neuropeptide,
180 which promotes sperm and seminal fluid ejaculation in males and its receptor *Crz-receptor*^{35,43}, and
181 finally *Esterase 6 (est-6)*, an enzyme that is transferred to females during copulation and presumably
182 functions to degrade the pheromone cVA⁴⁴ (Fig. 4C). There was a two-fold increase in the levels of *Acp-*
183 *70A (Sex-Peptide)* and *Acp-63* in rejected male flies when compared to naïve males, suggesting that
184 rejected male flies increase their investment in the production of seminal fluid proteins that are
185 transferred to females flies during copulation (Fig. 4C). Nevertheless, in agreement with the observed
186 reduction in DJ-GFP reporter levels, there was a drastic decrease in the transcript levels of *don-Juan* in
187 rejected males. The transcript levels of *Ebp*, *Est-6*, *Crz* and its receptor were similar in both cohorts (Fig.
188 4C). Overall, these results suggest that rejected male flies respond to sexual deprivation by elevating
189 seminal fluid protein transcript levels, presumably to maximize their fitness. In addition to proteins
190 associated with the male reproductive system, levels of several genes expressed in the brain and antenna
191 were also assessed. These included the neuropeptides *Crz*, *Neuropeptide F (npf)* and its receptor (*npfr*),
192 and two olfactory related genes associated with aggression (the *Odorant binding protein 69a*⁴⁵, and
193 *Cyp6a20*⁴⁶). In agreement with previous studies, the levels of *npf* were significantly lower in sexually
194 deprived male flies³⁴; we also observed a reduction in *npfr* (Fig. 4D). Interestingly, sexually deprived
195 male flies also exhibited reduced levels of *Cyp6a20* in comparison to naïve male flies (Fig. 4D),
196 consistent with their enhanced aggression (Fig. 3 A-C).

197 Females that mate with rejected male flies exhibit reduced re-mating behavior

198 The molecular changes associated with the rejected condition support our initial hypothesis that
199 rejected male flies adjust their behavior and physiology to cope with high sexual competition. If this is
200 correct, the changes in seminal fluid composition and the extended copulation are expected to provide
201 rejected male flies with an advantage over rival male flies. To test this prediction, several aspects
202 associated with female fecundity were measured. First, the fertility of female flies was assessed by

203 counting the number of eggs they laid after one mating event with either rejected or naïve male flies.
204 There was no significant difference in the number of eggs laid across five days between the two cohorts
205 (Fig. 5A). The lack of difference in the amount of progeny suggested that lower sperm investment in
206 rejected males (as reflected by reduced DJ levels) does not affect the total offspring number, meaning
207 that there is no link between sperm investment and the number of offspring.

208 Next, we tested whether the increase in sex-peptide could facilitate enhanced post-mating
209 behavior (such as reduced receptivity) in females that mated with rejected male flies. Since the strongest
210 post-mating response is observed 24h post mating (data not shown), the proportion of female flies that
211 re-mated with new male flies 24h after they mated with either rejected or naïve male flies was measured.
212 A significant reduction was documented in the re-mating rates of females that mated initially with
213 rejected *versus* virgin male flies (Fig. 5B), suggesting that extended copulation time and increase in
214 seminal fluid proteins can lead to a stronger reduction in female receptivity.

215 During copulation, male flies transfer to female flies seminal fluid proteins and also anti-
216 aphrodisiac pheromones such as cVA²⁸. The extended copulation observed in rejected male flies may
217 facilitate the transfer of larger amounts of cVA as a means to delay further courtship and copulation
218 events by female flies. As an indirect measure for possible changes in the amount of transferred cVA,
219 we analyzed the courtship behavior of male flies towards females that previously mated with either
220 rejected or naive male flies 1h after the initial mating. No significant difference was observed in the
221 latency to court, i.e. the time it takes male flies to exhibit their first courtship action (wing vibration)
222 following introduction of the pair into the courtship arena (Fig. 5C). However, there was a significant
223 reduction in the number of male flies that courted females previously mated with rejected males than
224 those previously mated with naïve male flies (Fig. 5D), suggesting that mating with rejected male flies
225 results in females that are less attractive courtship targets.

226 Discussion

227 In this study we used the FlyBowl³⁷ as an agnostic tool to explore responses modulated by sexual
228 interaction and discovered that rejected male flies cope with their failures to mate by changing their
229 behavior and physiology to enhance their reproductive success. This is presumably achieved by avoiding
230 interaction with potential rival male flies and competing over mating partners via increased aggression
231 and prolonged copulation; this is known as mate guarding. The latter is strengthened by the increased
232 production of certain seminal fluid proteins that facilitate stronger post-mating responses in female flies.

233 The behavior of sexually deprived male flies was examined in this study under behavioral
234 contexts that illuminate different aspects of their action selection. Using the FlyBowl system, we
235 analyzed their emergent group interactions and social networks, and discovered that although rejected
236 males are highly active, they exhibit sparse networks and maintain large distance with other members,
237 as if they were actively minimizing or avoiding interaction with rival male flies. When tested in a social
238 context that promotes fighting over limited resources, rejected male flies exhibited enhanced aggression.

239 The increased aggression displayed by the rejected cohort is associated with a significant decrease
240 in the levels of *Cyp6a20*. This is consistent with a previous study showing that *Cyp6a20* levels are
241 reduced in social conditions that promote aggression and that this reduction is responsible for the
242 observed increase in aggression⁴⁶. Interestingly, exposure to female flies prior to male-male interactions
243 was previously shown to suppress aggression⁴⁷. However, our findings suggest that not all types of
244 interactions with female flies are sufficient for suppressing aggression, but rather that the quality of the
245 interactions (i.e., the male's sexual success) determines the resulting aggression levels when
246 encountering another male fly.

247 There are two possible explanations for the behavioral responses exhibited by rejected male flies.
248 First, failure to mate could enhance aggression to improve the chances of successful mating and, upon

249 eventual mating, the increased duration of copulation could increase the relative paternity share. Second,
250 repeated rejection experiences could be perceived by male flies as an indication for high density of sexual
251 competition over mating partners, where encountering mated females is suggestive of high male to
252 female sex ratio. Consistent with the second hypothesis, several studies have described a link between
253 pre-exposure to rival male flies and an extension of copulation events^{24,48}. One study also demonstrated
254 that male flies use multiple sensory cues such as auditory, olfactory and gustatory signals to estimate the
255 level of mating competition⁴⁸. Although rejected males were not exposed directly to other male flies
256 during the training phase, the observed extension of their copulation events suggests that they can assess
257 the level of competition by evaluating the quality of their sexual interaction with female flies. Studies
258 performed in *Pieris rapae* butterflies, in which virgin males were shown to allocate their sperm
259 investment by assessing not only the mating status of the female, but also her previous mating history⁴⁹,
260 are consistent with this hypothesis.

261 The behavioral responses to sexual deprivation were accompanied by changes in the repertoire
262 of genes expressed in the brain and reproductive system in the form of increased expression of several
263 accessory gland protein genes (*Acps*). This, together with the increased copulation duration, supports the
264 idea that the observed extension in mating duration serves to transfer a higher amount of *Acps* to intensify
265 the females' post- mating responses^{23,79}. Unlike previous studies that demonstrated a link between the
266 presence of rival male flies and an increase in both copulation duration and sperm allocation (measured
267 by increase number of sperm cells)²⁵, rejected male flies exhibited a significant reduction in the levels of
268 DJ, a protein expressed in mature sperm cells. Although this finding is limited to only one protein, this
269 is surprising in light of sperm competition theory, which predicts that males should strategically increase
270 their investment in sperm allocation when in competition⁵⁰. Furthermore, our findings are different from
271 studies in crickets, sunfish, birds and rats, which showed that the perceived risk of sperm competition, in
272 the form of the presence of rival males or their odors before and during mating, led to an increase in

273 sperm investment^{49,51,52}. The unexpected uncoupling between the investment in sperm and non-sperm
274 components and the regulation of investment in copulation time, demonstrates that sexually deprived
275 male flies regulate each of these processes independently.

276 Functionally, the observed decrease in sperm quantity with increasing seminal fluid protein (*Acp*)
277 expression in rejected males did not affect the amount of progeny produced in females. This observation
278 suggests that there is no link between the observed behavioral and physiological changes and the amount
279 of progeny. Nevertheless, females that mated with rejected males were less attractive to naïve male flies,
280 as reflected by the reduced number of male flies that courted these females. The combination of reduced
281 female attractiveness in subsequent mating encounters, and reduced motivation of the female to re-mate,
282 may reduce the odds for a second mating and thus increase the rejected male's paternity rate despite the
283 lack of an effect on progeny number.

284 In summary, our results demonstrate a plastic mating strategy by males that experienced repeated
285 events of rejection that gives them a short-term advantage, promoting reproductive fitness when
286 competing with rival male flies. We postulate that rejected males invest more energy in the production
287 of seminal fluid proteins over sperm; these Acp's are known to have important roles in modulating
288 different aspects of female mating physiology and behavior. Furthermore, at low population density, the
289 chances to meet a receptive female are low, therefore an investment in sperm ejaculate may be more
290 costly⁵³. Further research is needed to dissect the molecular and neuronal mechanisms that mediate these
291 adaptive responses, identify the sensory modalities that perceive failure to mate, which encode this
292 information within the nervous system leading to ejaculate plasticity.

293

294

295 **Acknowledgments:** We thank all members of the Shohat-Ophir lab for fruitful discussions and technical
296 support. We specially thank Kristin Branson and Alice Robie (HHMI Janelia research campus) for their
297 valuable advice and guidance with the experimental and computational design. This work was supported
298 by the Israel Science Foundation grant 384/14 and Israel Science Foundation grant 174/19.

299 **Materials and methods:**

300 Fly lines and culture

301 Canton S flies were used as the wild-type strain. Flies were raised at 25°C in a 12-h light/12-h dark cycle
302 in 60% relative humidity and maintained on cornmeal, yeast, molasses, and agar medium, and were tested
303 as 3–4-day old adults, unless otherwise specified. The DJ-GFP and White Berlin (WB) lines were
304 obtained from the HHMI Janelia Farm Research Campus.

305 Sexual experience paradigm

306 Male and female flies were anesthetized under CO₂ and isolated immediately after eclosion. Flies were
307 reared as single-housed in vials (23 mm by 94 mm) containing 7 ml of medium and were aged separately
308 for 3–4 day. Rejected and mated cohorts were generated as previously described³⁴. In the naïve cohort,
309 male flies were isolated for 4 days.

310

311 Social group interaction using the FlyBowl system

312 At the end of the sexual experience phase, rejected and mated male flies were inserted in groups of 10
313 into Fly Bowl arenas³⁶, and their behavior was recorded for 30 minutes and analyzed using CTRAX,
314 FixTrax³² and JAABA³⁶. For kinetic features, scripts were written in MATLAB to use the JAABA code
315 to generate the statistical features as specified in Kabra et al. ³⁶. Time series graphs (per frame) were
316 created using JAABA Plot³⁶. Quantification of complex behavios was done using JAABA Classifiers³⁶
317 to identify specific behaviors: Walk, Stop, Turn, Approach, Touch, Chase, Chain, Song, Social
318 Clustering and Grooming. Bar graphs were created using JAABA Plot³⁶. Network analysis was
319 performed using an interaction matrix according to the interaction parameters described previously³².
320 Two interaction matrices were created for each movie, one with the total number of frames each pair of
321 flies were interacting divided by the number of frames in the movie and another with the number of

322 separate interactions between each pair of flies divided by the maximum number of possible interactions,
323 calculated as:

324

325
$$\max \# \text{ of interaction possible} \frac{\# \text{ of frames} - \min \# \text{ of frames for interaction}}{\min \# \text{ of frames for interaction} + \min \# \text{ of gap frames}} + 1$$

326

327 The parameters to define an interaction are: angle subtended by the other fly > 0 , distance between the
328 nose of current fly to any point on the other fly ≤ 8 mm, number of frames for interaction ≥ 60 and
329 number of gap frames ≥ 120 . Interaction end is defined when distance or angle conditions are not
330 maintained for 4 seconds. Networks and their features were generated from the interaction matrix in R
331 using the igraph package. The function that was used to generate networks is
332 “graph_from_adjacency_matrix” with parameters “mode = undirected” and “weighted = TRUE”.

333 Density was calculated on all movies with the formula:

334

335
$$\text{density} = \frac{\text{sum of weights}}{[\text{number of vertices} * (\text{number of vertices} - 1)] * 0.5}$$

336

337 Modularity was calculated using the “modularity” function on output from the “cluster_walktrap”
338 function⁵⁴. Strength was calculated using “strength” function and SD Strength was calculated on all
339 movies using “sd” function on the strength value. Betweenness Centrality was calculated on all flies
340 using the “betweenness” function and SD Betweenness Centrality was calculated on all movies using
341 “sd” function on the Betweenness Centrality value. Box plots were created using R.

342

343 Each feature of the FlyBwol experiment was standardized according to all values calculated in our
344 experiments for that feature to generate a z-score. Scatter plots were created using R.

345

346 Aggression

347 Pairs of rejected or mated male flies were introduced into aggression arenas (circular chambers, about
348 0.08 cm³ in volume), which contained a mixture of agarose and apple juice (1% agarose, 50% apple
349 juice) that was placed in arenas to enhance aggressive behavior. Flies were filmed for 30 min with Point-
350 Grey Flea3 (1080×720 pixels) at 60 fps. Aggressive behavior was later quantified by counting the number
351 of lunges for each pair using CADABRA software (ref). The log₂ ratio between the number of lunges in
352 rejected and mated flies was calculated for each pair, and then a one-sample t-test was performed to test
353 whether the mean ratio is significantly different from 0.

354

355 Copulation duration

356 Rejected and naïve male flies were put into courtship arenas (circular chambers, about 0.04 cm³ in
357 volume) with virgin females and were allowed to mate for 1 hour. They were recorded for the whole
358 experiment using a Point-Grey firefly camera. Courtship arenas consist of 25 flat arenas each arena
359 containing only one pair of male-female flies. The copulation duration was measured from the moment
360 the mating began until it ended. We calculated the time in seconds for each fly and the average for each
361 group.

362

363 Egg laying assay

364 Egg production was determined for females that had been allowed to copulate with rejected or naive
365 males for 1 hour at the end of the conditioning (as described above). Every female was put in a glass vial
366 containing fresh food every day for 5 days in total and was kept in the incubator. Days 3 and 4 have
367 received approximated values since day 3 was Saturday and we couldn't replace the vail that day;
368 therefore, we tried to divide the number of eggs equally. Eggs can be spotted easily as circular white dots
369 on the surface of the medium. The sum of the number of eggs in the vials of each female was used for
370 analysis.

371 Receptivity assay

372 3-4-day old White Berlin (WB) females were allowed to mate once with rejected or naïve males at the
373 end of the conditioning for 1 h. After mating, the males were disposed and the mated females were kept
374 in the incubator for 24h. Afterward, the mated females were exposed to 5-day-old WT naïve males for 1
375 h to measure their receptivity to mate. Approximately 40 pairs of each group (rejected or naive) were set
376 up in every biological repeat.

377

378 Latency to court assay

379 1 hour after allowing WB females to mate with rejected or naïve males, we transferred the females into
380 courtship arenas and paired them with new WT naïve males. The pairs were recorded for 15 min to
381 measure courtship latency. Latency was defined as the time elapsing between the introduction of the pair
382 into the chamber and the first appearance of wing vibration made by the courting male fly. We also
383 quantified the number of males who did and did not try to court in this assay.

384

385 Courtship Index

386 Courtship index for a given male is the fraction of time a male fly spent in courtship activity in the 10
387 min observation period (600 sec). It is calculated by dividing the number of seconds the male courted
388 over the total observation time and is been exhibit in percentage ($CI = \text{courtship behavior [sec]} \cdot 100 / \text{total observation [sec]}$)).

390

391 Molecular methods

392 Western blot analysis: Sperm allocation in male flies carrying the DJ-GFP reporter was determined by
393 Western blotting. DJ protein size is ~29 kDa, and GFP size is ~25 kDa. We also determined the levels of
394 Sex-peptide (SP), a protein of size ~7 kDa, and the levels of Tubulin for normalization. The primary
395 antibodies used were mouse anti-GFP, rabbit anti-SP and rabbit anti-Tubulin, and the secondary

396 antibodies that were used are rabbit α -mouse HRP and mouse α -rabbit HRP, respectively. Virgin females
397 were used as negative controls.

398

399 Quantitative Real-Time PCR analysis

400 Frozen flies were placed on ice and decapitated using a scalpel. Total RNA was extracted from \sim 15
401 frozen heads and bodies (separately), using TRIZOL reagent according to the manufacturer's protocol.
402 mRNA was reverse transcribed using BIORAD cDNA synthesis kit. cDNA was analyzed by quantitative
403 real-time PCR (BIORAD CFX96) using specific primers for the head and for the body. Relative
404 expression was quantified by $\Delta\Delta CT$ method using RPL32⁵⁵ as a loading control. We run each sample in
405 triplicates. Each experiment was repeated four times using independent sets of experimental flies.

406

407 Statistical analysis

408 For each experiment, Shapiro–Wilk test was done on each experiment to test for normal distribution.
409 Statistical significance was determined by t-test for experiments that were distributed normally, and by
410 Wilcoxon test for experiments that were not distributed normally. For experiments with three or four
411 conditions: statistical significance determined by one-way ANOVA followed by Tukey's range test for
412 experiments that were distributed normally, and by Kruskal–Wallis test followed by Wilcoxon signed-
413 rank test for experiments that were not distributed normally.

414

415

416 **References**

417 1. Robinson, G.E., Fernald, R.D., and Clayton, D.F. (2008). Genes and Social Behavior. *Science* **322**,
418 896–900.

419 2. Oliveira, R.F. (2009). Social behavior in context: Hormonal modulation of behavioral plasticity and
420 social competence. *Integr. Comp. Biol.* **49**, 423–440.

421 3. Cardoso, S.D., Teles, M.C., and Oliveira, R.F. (2015). Neurogenomic mechanisms of social plasticity.
422 *J. Exp. Biol.* **218**, 140–149.

423 4. Taborsky, B., and Oliveira, R.F. (2012). Social competence: an evolutionary approach. *Trends Ecol.
424 Evol.* **27**, 679–688.

425 5. Jennions, M.D., and Petrie, M. (1997). Variation in Mate Choice and Mating Preferences: A Review
426 of Causes and Consequences. *Biol. Rev.* **72**, 283–327.

427 6. O’Connell, L.A., and Hofmann, H.A. (2012). Evolution of a Vertebrate Social Decision-Making
428 Network. *Science* **336**, 1154–1157.

429 7. Fernald, R.D. (2017). Cognitive skills and the evolution of social systems. *J. Exp. Biol.* **220**, 103–113.

430 8. Soto-Yéber, L., Soto-Ortiz, J., Godoy, P., and Godoy-Herrera, R. (2018). The behavior of adult
431 *Drosophila* in the wild. *PloS One* **13**, e0209917.

432 9. Sokolowski, M.B. (2010). Social interactions in “simple” model systems. *Neuron* **65**, 780–794.

433 10. Dickson, B.J. (2008). Wired for Sex: The Neurobiology of *Drosophila* Mating Decisions. *Science*
434 **322**, 904–909.

435 11. Anderson, D.J. (2016). Circuit modules linking internal states and social behaviour in flies and mice.
436 *Nat. Rev. Neurosci.* **17**, 692–704.

437 12. Wang, L., Han, X., Mehren, J., Hiroi, M., Billeter, J.-C., Miyamoto, T., Amrein, H., Levine, J.D.,
438 and Anderson, D.J. (2011). Hierarchical chemosensory regulation of male-male social interactions
439 in *Drosophila*. *Nat. Neurosci.* **14**, 757–762.

440 13. Ramdy, P., Schneider, J., and Levine, J.D. (2017). The neurogenetics of group behavior in
441 *Drosophila melanogaster*. *J. Exp. Biol.* **220**, 35–41.

442 14. Elliott, K.H., Betini, G.S., and Norris, D.R. (2017). Fear creates an Allee effect: experimental
443 evidence from seasonal populations. *Proc. Biol. Sci.* **284**.

444 15. Ramdy, P., Lichocki, P., Cruchet, S., Frisch, L., Tse, W., Floreano, D., and Benton, R. (2015).
445 Mechanosensory interactions drive collective behaviour in *Drosophila*. *Nature* **519**, 233–236.

446 16. Ferreira, C.H., and Moita, M.A. (2020). Behavioral and neuronal underpinnings of safety in numbers
447 in fruit flies. *Nat. Commun.* **11**, 4182.

448 17. Danchin, E., Nöbel, S., Pocheville, A., Dagaeff, A.-C., Demay, L., Alphand, M., Ranty-Roby, S.,
449 van Renssen, L., Monier, M., Gazagne, E., et al. (2018). Cultural flies: Conformist social learning in
450 fruitflies predicts long-lasting mate-choice traditions. *Science* *362*, 1025–1030.

451 18. Kacsoh, B.Z., Bozler, J., Ramaswami, M., and Bosco, G. (2015). Social communication of predator-
452 induced changes in *Drosophila* behavior and germ line physiology. *eLife* *4*.

453 19. Mery, F., Varela, S.A.M., Danchin, E., Blanchet, S., Parejo, D., Coolen, I., and Wagner, R.H. (2009).
454 Public versus personal information for mate copying in an invertebrate. *Curr. Biol. CB* *19*, 730–734.

455 20. Levine, J.D., Funes, P., Dowse, H.B., and Hall, J.C. (2002). Resetting the Circadian Clock by Social
456 Experience in *Drosophila melanogaster*. *Science* *298*, 2010–2012.

457 21. Yurkovic, A., Wang, O., Basu, A.C., and Kravitz, E.A. (2006). Learning and memory associated
458 with aggression in *Drosophila melanogaster*. *Proc. Natl. Acad. Sci. U. S. A.* *103*, 17519–17524.

459 22. Liu, W., Liang, X., Gong, J., Yang, Z., Zhang, Y.-H., Zhang, J.-X., and Rao, Y. (2011). Social
460 regulation of aggression by pheromonal activation of Or65a olfactory neurons in *Drosophila*. *Nat.*
461 *Neurosci.* *14*, 896–902.

462 23. Kim, Y.-K., Saver, M., Simon, J., Kent, C.F., Shao, L., Eddison, M., Agrawal, P., Texada, M.,
463 Truman, J.W., and Heberlein, U. (2018). Repetitive aggressive encounters generate a long-lasting
464 internal state in *Drosophila melanogaster* males. *Proc. Natl. Acad. Sci. U. S. A.* *115*, 1099–1104.

465 24. Kim, W.J., Jan, L.Y., and Jan, Y.N. (2013). A PDF/NPF neuropeptide signaling circuitry of male
466 *Drosophila melanogaster* controls rival-induced prolonged mating. *Neuron* *80*, 1190–1205.

467 25. Garbaczecka, M., Billeter, J.-C., and Levine, J.D. (2013). *Drosophila melanogaster* males increase
468 the number of sperm in their ejaculate when perceiving rival males. *J. Insect Physiol.* *59*, 306–310.

469 26. Hopkins, B.R., Sepil, I., Thézénas, M.-L., Craig, J.F., Miller, T., Charles, P.D., Fischer, R., Kessler,
470 B.M., Bretman, A., Pizzari, T., et al. (2019). Divergent allocation of sperm and the seminal proteome
471 along a competition gradient in *Drosophila melanogaster*. *Proc. Natl. Acad. Sci. U. S. A.* *116*, 17925–
472 17933.

473 27. Siegel, R.W., and Hall, J.C. (1979). Conditioned responses in courtship behavior of normal and
474 mutant *Drosophila*. *Proc. Natl. Acad. Sci. U. S. A.* *76*, 3430–3434.

475 28. Keleman, K., Vrontou, E., Krüttner, S., Yu, J.Y., Kurtovic-Kozaric, A., and Dickson, B.J. (2012).
476 Dopamine neurons modulate pheromone responses in *Drosophila* courtship learning. *Nature* *489*,
477 145–149.

478 29. Ejima, A., Smith, B.P.C., Lucas, C., van der Goes van Naters, W., Miller, C.J., Carlson, J.R., Levine,
479 J.D., and Griffith, L.C. (2007). Generalization of courtship learning in *Drosophila* is mediated by cis-
480 vaccenyl acetate. *Curr. Biol. CB* *17*, 599–605.

481 30. Rooke, R., Rasool, A., Schneider, J., and Levine, J.D. (2020). *Drosophila melanogaster* behaviour
482 changes in different social environments based on group size and density. *Commun. Biol.* *3*, 304.

483 31. Schneider, J., Dickinson, M.H., and Levine, J.D. (2012). Social structures depend on innate
484 determinants and chemosensory processing in *Drosophila*. *Proc. Natl. Acad. Sci. U. S. A.* *109 Suppl*
485 *2*, 17174–17179.

486 32. Bentzur, A., Ben-Shaanan, S., Benichou, J.I.C., Costi, E., Levi, M., Ilany, A., and Shohat-Ophir, G.
487 (2020). Early Life Experience Shapes Male Behavior and Social Networks in *Drosophila*. *Curr. Biol.*
488 *CB*.

489 33. Battesti, M., Pasquaretta, C., Moreno, C., Teseo, S., Joly, D., Klensch, E., Petit, O., Sueur, C., and
490 Mery, F. (2015). Ecology of information: social transmission dynamics within groups of non-social
491 insects. *Proc. Biol. Sci.* *282*, 20142480.

492 34. Shohat-Ophir, G., Kaun, K.R., Azanchi, R., Mohammed, H., and Heberlein, U. (2012). Sexual
493 deprivation increases ethanol intake in *Drosophila*. *Science* *335*, 1351–1355.

494 35. Zer-Krissipil, S., Zak, H., Shao, L., Ben-Shaanan, S., Tordjman, L., Bentzur, A., Shmueli, A., and
495 Shohat-Ophir, G. (2018). Ejaculation Induced by the Activation of Crz Neurons Is Rewarding to
496 *Drosophila* Males. *Curr. Biol. CB* *28*, 1445-1452.e3.

497 36. Kabra, M., Robie, A.A., Rivera-Alba, M., Branson, S., and Branson, K. (2012). JAABA: interactive
498 machine learning for automatic annotation of animal behavior. *Nat. Methods* *10*, 64–67.

499 37. Branson, K., Robie, A.A., Bender, J., Perona, P., and Dickinson, M.H. (2009). High-throughput
500 ethomics in large groups of *Drosophila*. *Nat. Methods* *6*, 451–457.

501 38. Sirot, L.K., LaFlamme, B.A., Sitnik, J.L., Rubinstein, C.D., Avila, F.W., Chow, C.Y., and Wolfner,
502 M.F. (2009). Molecular social interactions: *Drosophila melanogaster* seminal fluid proteins as a case
503 study. *Adv. Genet.* *68*, 23–56.

504 39. Wigby, S., Brown, N.C., Allen, S.E., Misra, S., Sitnik, J.L., Sepil, I., Clark, A.G., and Wolfner, M.F.
505 (2020). The *Drosophila* seminal proteome and its role in postcopulatory sexual selection. *Philos.*
506 *Trans. R. Soc. B Biol. Sci.* *375*, 20200072.

507 40. Santel, A., Winhauer, T., Blümer, N., and Renkawitz-Pohl, R. (1997). The *Drosophila* don juan (dj)
508 gene encodes a novel sperm specific protein component characterized by an unusual domain of a
509 repetitive amino acid motif. *Mech. Dev.* *64*, 19–30.

510 41. Moatt, J.P., Dytham, C., and Thom, M.D.F. (2014). Sperm production responds to perceived sperm
511 competition risk in male *Drosophila melanogaster*. *Physiol. Behav.* *131*, 111–114.

512 42. Avila, F.W., Cohen, A.B., Ameerudeen, F.S., Duneau, D., Suresh, S., Mattei, A.L., and Wolfner,
513 M.F. (2015). Retention of Ejaculate by *Drosophila melanogaster* Females Requires the Male-Derived
514 Mating Plug Protein PEBme. *Genetics* *200*, 1171–1179.

515 43. Tayler, T.D., Pacheco, D.A., Hergarden, A.C., Murthy, M., and Anderson, D.J. (2012). A
516 neuropeptide circuit that coordinates sperm transfer and copulation duration in *Drosophila*. *Proc.*
517 *Natl. Acad. Sci. U. S. A.* *109*, 20697–20702.

518 44. Chertemps, T., François, A., Durand, N., Rosell, G., Dekker, T., Lucas, P., and Maïbèche-Coisne,
519 M. (2012). A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response
520 dynamics to pheromone in *Drosophila*. *BMC Biol.* *10*, 56.

521 45. Bentzur, A., Shmueli, A., Omesi, L., Ryvkin, J., Knapp, J.-M., Parnas, M., Davis, F.P., and Shohat-
522 Ophir, G. (2018). Odorant binding protein 69a connects social interaction to modulation of social
523 responsiveness in *Drosophila*. *PLoS Genet.* *14*, e1007328.

524 46. Wang, L., Dankert, H., Perona, P., and Anderson, D.J. (2008). A common genetic target for
525 environmental and heritable influences on aggressiveness in *Drosophila*. *Proc. Natl. Acad. Sci. U. S.*
526 *A.* *105*, 5657–5663.

527 47. Yuan, Q., Song, Y., Yang, C.-H., Jan, L.Y., and Jan, Y.N. (2014). Female contact modulates male
528 aggression via a sexually dimorphic GABAergic circuit in *Drosophila*. *Nat. Neurosci.* *17*, 81–88.

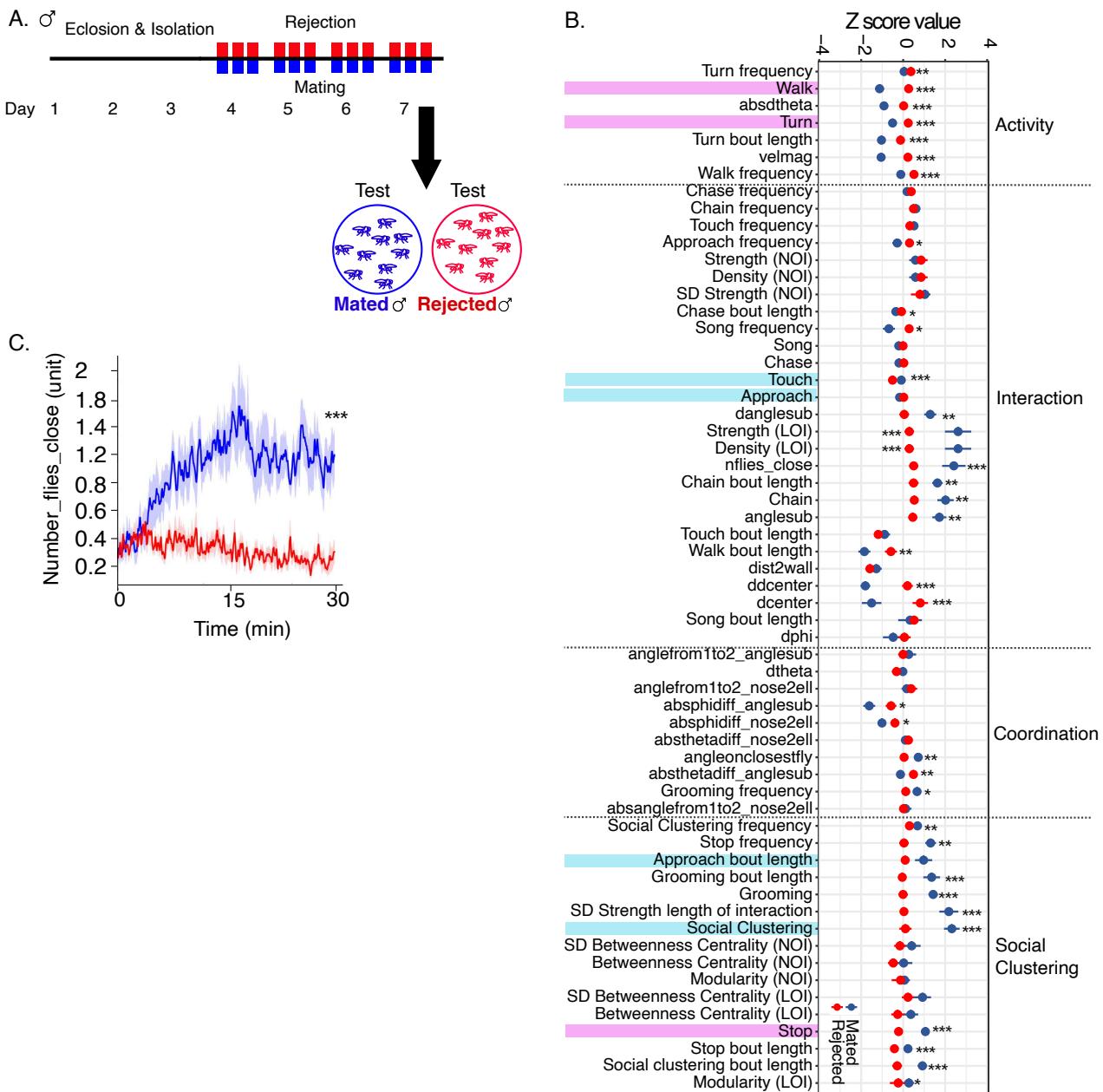
529 48. Bretman, A., Westmancoat, J.D., Gage, M.J.G., and Chapman, T. (2011). Males use multiple,
530 redundant cues to detect mating rivals. *Curr. Biol.* *21*, 617–622.

531 49. Wedell, N., and Cook, P.A. (1999). Butterflies tailor their ejaculate in response to sperm competition
532 risk and intensity. *Proc. R. Soc. Lond. B Biol. Sci.* *266*, 1033–1039.

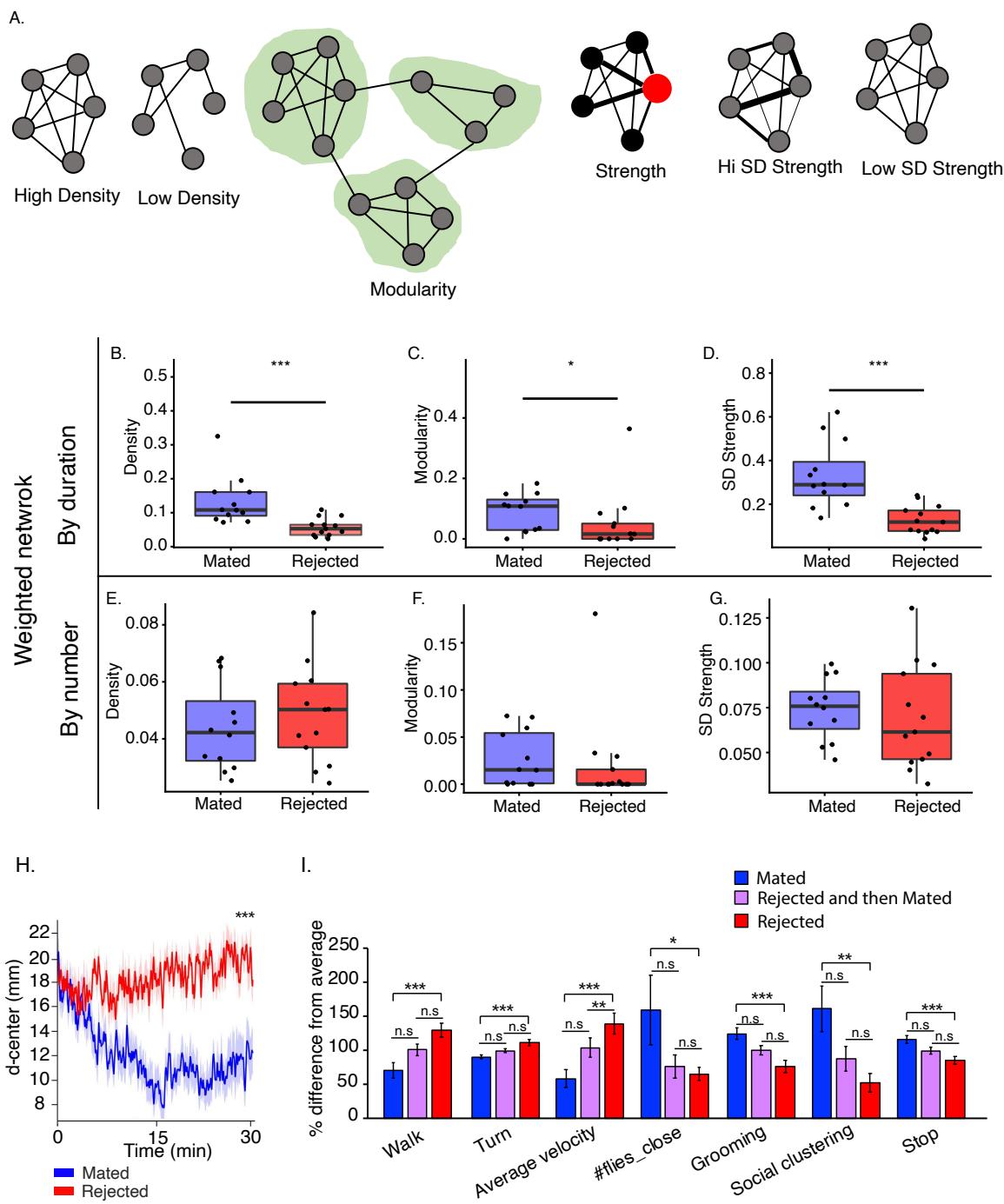
533 50. Parker, G.A., Ball, M.A., Stockley, P., and Gage, M.J. (1997). Sperm competition games: a
534 prospective analysis of risk assessment. *Proc. R. Soc. B Biol. Sci.* *264*, 1793–1802.

535 51. Gage, M.J.G. (1991). Risk of sperm competition directly affects ejaculate size in the Mediterranean
536 fruit fly. *Anim. Behav.* *42*, 1036–1037.

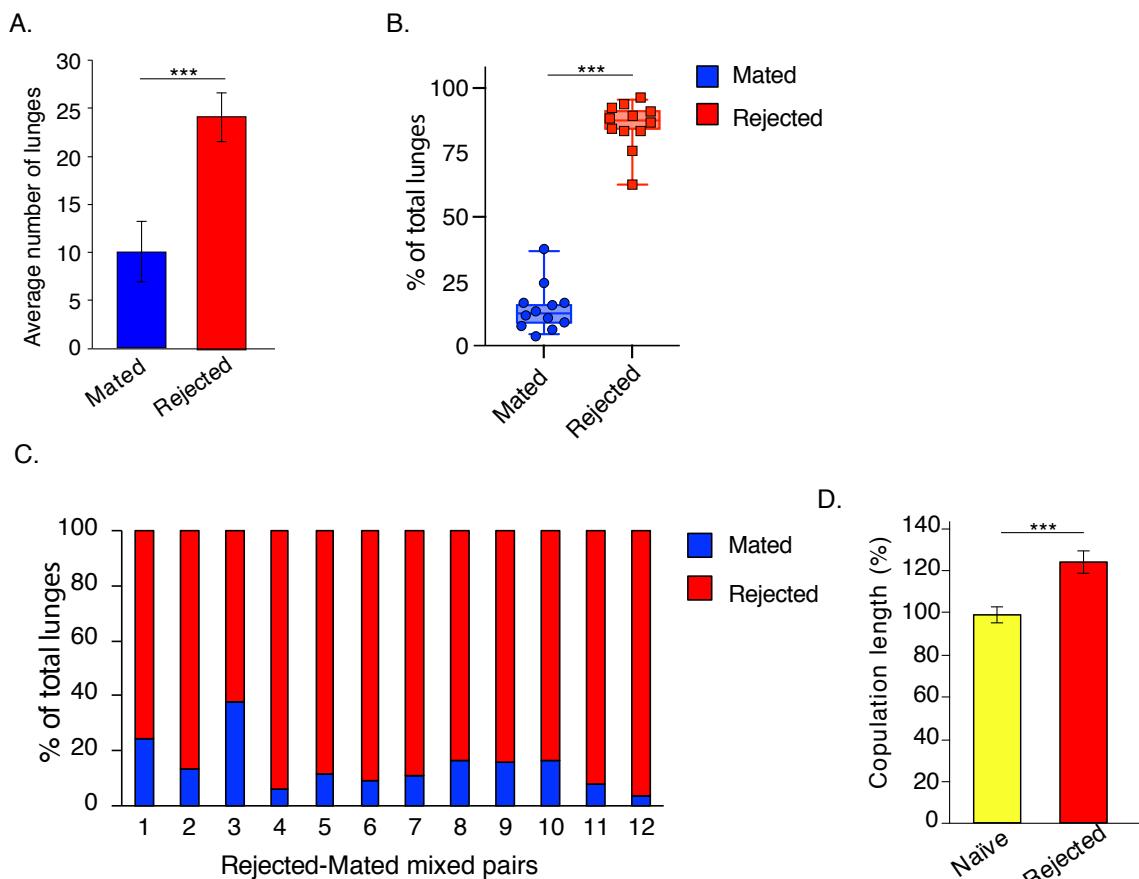
537 52. Nicholls, E.H., Burke, T., and Birkhead, T.R. (2001). Ejaculate Allocation by Male Sand Martins,
538 *Riparia riparia*. *Proc. Biol. Sci.* *268*, 1265–1270.


539 53. Parker, G.A., and Pizzari, T. (2010). Sperm competition and ejaculate economics. *Biol. Rev.* *85*,
540 897–934.

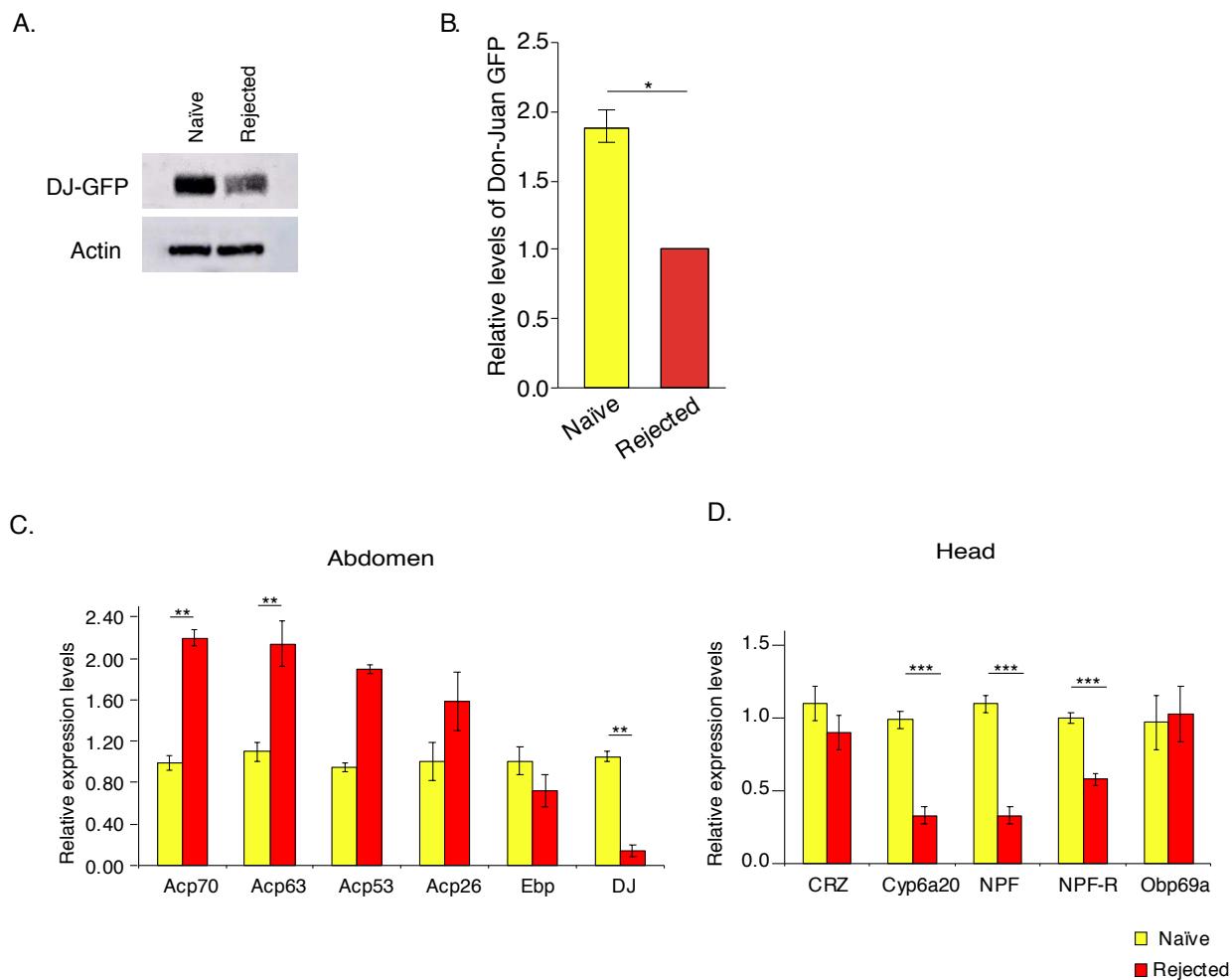
541 54. Pons, P., and Latapy, M. (2005). Computing communities in large networks using random walks. In
542 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
543 Lecture Notes in Bioinformatics) (Springer, Berlin, Heidelberg), pp. 284–293.


544 55. Zheng, Y.T., Li, H.B., Lu, M.X., and Du, Y.Z. (2014). Evaluation and validation of reference genes
545 for qRT-PCR normalization in *Frankliniella occidentalis* (Thysanoptera: Thripidae). *PLoS ONE* *9*.

546

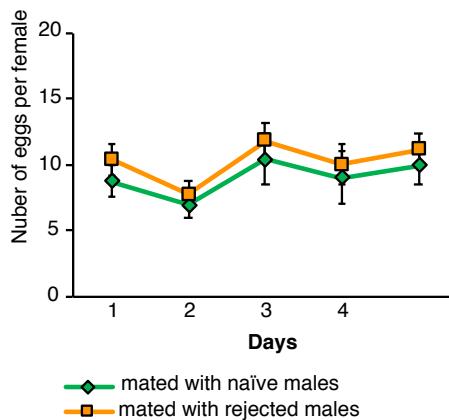

547

548 **Figure 1. Failure to mate modifies action selection upon encounters with rival male flies. A.** Schematic
549 representation of the behavioral paradigm. **B.** Behavioral signatures of mated versus rejected WT male flies. Data
550 is represented as normalized Z scores of 60 behavioral parameters, $n = 18$. Statistical significance was determined
551 by t-test for normally distributed parameters or Wilcoxon test for non-normally distributed parameters. LOI:
552 calculated according to the length of interactions. NOI: calculated according to the number of interactions. Features
553 mentioned in the results section are highlighted in pink and blue. **C.** Average number of flies close to any fly
554 (threshold ≤ 1.5 body length) along the experiment.
555



556 **Figure 2. Sexual deprivation promotes social avoidance. A.** Illustration of network parameters. Density of
557 networks represents how saturated they are compared to the maximum possible. Modularity is a measure of the
558 division of a network into sub-networks. Strength is proportional to vertex size (high in red individual). Standard
559 deviation (SD) strength is a measure of the heterogeneity of the connections between individuals. **B-G.** Social
560 network analysis of groups composed of rejected (red) and mated (blue) male flies. Network density, modularity,
561 and SD strength calculated by network weights according to duration (A-C) or number of interactions (D-F), $n =$
562 18. Statistical significance was determined by Wilcoxon test and FDR correction for multiple tests, $*p < 0.05$, $**p < 0.01$, $***p < 0.001$. Error bars signify SEM. **H.** Rejected male flies maintain large distances between flies along
563 time, $n=18$ Statistical significance was determined by Wilcoxon test. Data is presented as mean \pm SEM. **I.** Rejected
564 and then mated male flies depict intermediate levels of activity and social interaction features when compared to
565 rejected or mated cohorts. $n = 8$. Statistical significance was determined by Wilcoxon test and FDR correction for
566 multiple tests, $*p < 0.05$, $**p < 0.01$, $***p < 0.001$. Error bars signify SEM.

568
569
570
571
572
573
574
575
576


Figure 3. Sexual deprivation modulates competitive behaviors. **A.-C.** Aggression display (number of lunges) was compared between pairs of rejected and mated male flies (n=16, statistical significance determined by T-test, $p < 0.005$ (A), and mixed pairs (n=12) (B-C). The log2 ratio between the number of lunges in rejected and mated flies was calculated for each pair, and then a one-sample T-test was performed to test whether the mean ratio was significantly different than 0, $p < 0.005$. Data is presented as the mean \pm SEM. **D.** Duration of copulation in rejected vs. naïve male flies. Statistical significance was determined by T-test, $p < 0.001$. Data is presented as mean \pm SEM, n=25.

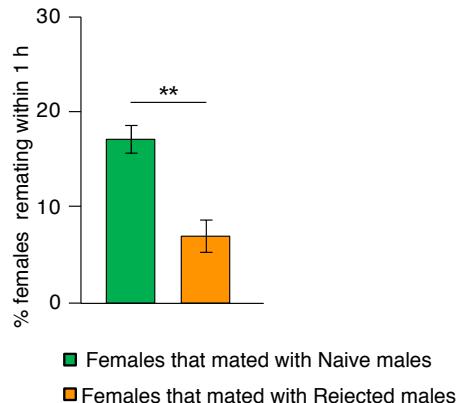
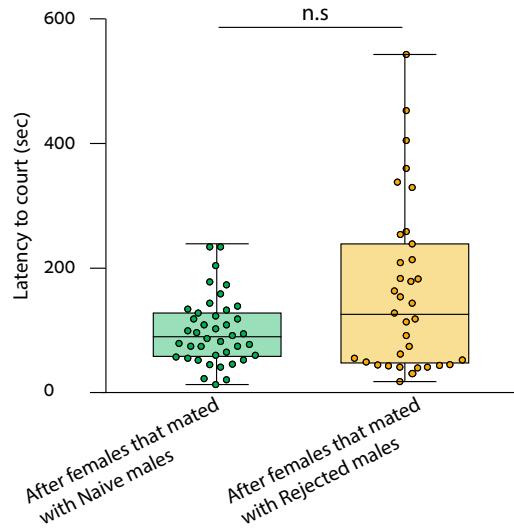
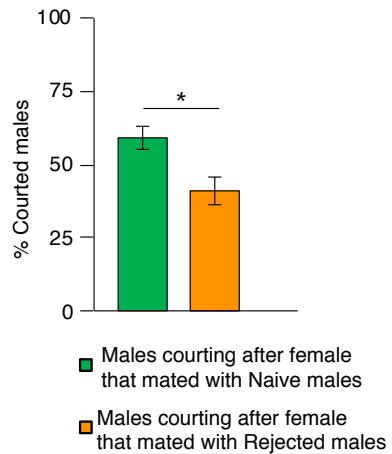

577
578
579
580
581
582
583
584
585

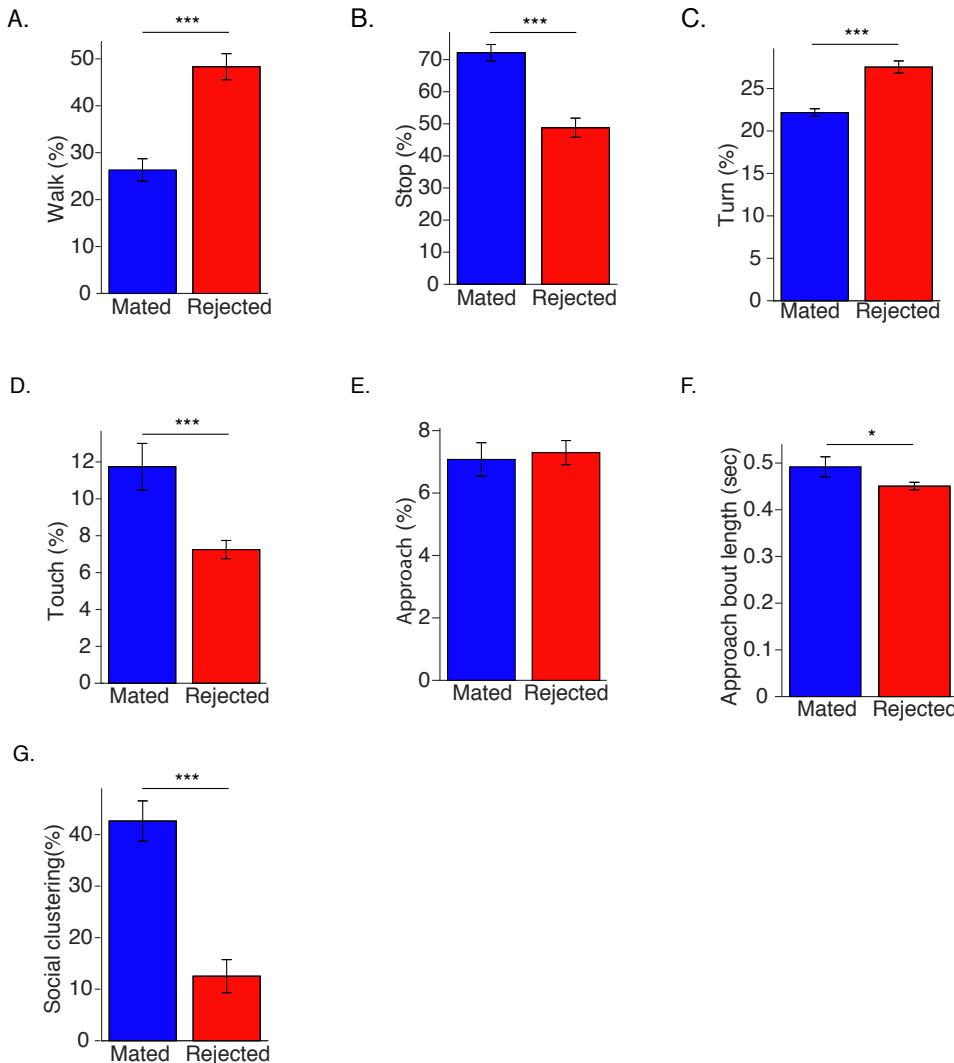
Figure 4. Failure to mate modulate sperm and seminal fluid composition. A,B. Protein lysates prepared from abdomen of rejected and naïve male flies and were analyzed for the relative levels of Don-Juan-GFP using western blot, actin was used as a loading control. Expression levels of Don-Juan-GFP protein were quantified and normalized to actin levels (n=3), Statistical significance was determined by T-test, $p < 0.05$ (F). **C,D.** Relative transcript levels of candidate genes expressed in abdomen (G) and heads (H) of rejected and naïve male flies were quantified by qRT-PCR, n = 6 independent experiments of 15–20 fly heads and abdomen. Statistical significance was determined by Student's T-test with Bonferroni correction for multiple comparisons. **, $p < 0.01$? ***, $p < 0.005$.


A.


B.

C.

D.



586

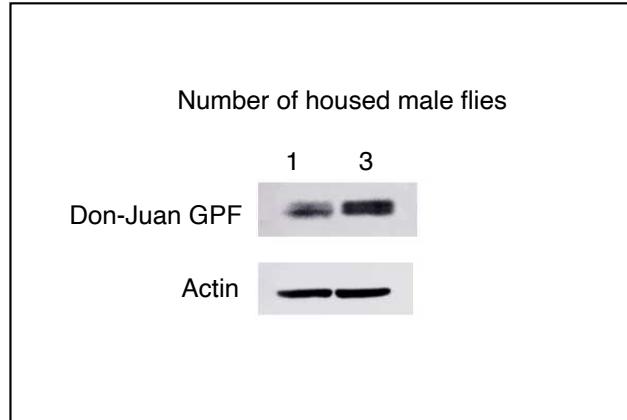

587
588
589
590
591
592
593
594
595
596

Figure 5. Effect of male rejection on female's fertility and remating tendencies. A. Number of eggs laid by females that copulated with rejected or naïve male flies over the course of 5 days. Statistical significance was determined using two-way ANOVA repeated measure, $n=28$ $p>0.05$. B. Female receptivity to re-mate with male flies 24h after the first mating with rejected or naïve male flies was scored by counting the percent of female flies that mated during 1 hour of test. Data is presented as the mean \pm SEM, $n=4$ repeats. Statistical significance was determined by Cochran-Mantel-Haenszel Chi-square test, $p<0.005$. C. Mean courtship latencies of rejected or naïve male flies towards mated female flies (24 hours post first mating), $n=25$. Statistical significance was determined by Mann-Whitney U-test, N.S., $p> 0.05$. D. Number of new males that courted females that were previously mated with rejected or naïve male flies, $n=25$. Statistical significance was determined by T-test, $p<0.05$.

Definition	Description	Definition	Description
dnose2ell	Minimum distance from any point of this animal nose to the ellipse of other flies.	Walk	Fly moves.
absanglefrom1to2nose2ell	Absolute difference between direction to closest animal based on dnose2ell and current animal's orientation (rad).	Stop	Fly is still.
absdtheta	Angular speed (rad/s).	Turn	Changes in fly's direction.
absphidiffanglesub	Absolute difference in velocity direction between current animal and closest animal based on anglesub (rad).	Touch	Fly actively touches another fly.
absphidiffnose2ell	Absolute difference in velocity direction between current animal and closest animal based on dnose2ell (rad).	Approach	Fly approaches another fly and perform interaction (active or passive).
absthetadiffanglesub	Absolute difference in orientation between current animal and closest animal based on anglesub (rad).	Aggregation	Fly sits in a group of 3 or more flies.
absthetadiffnose2ell	Absolute difference in orientation between this animal and closest animal based on dnose2ell (rad).	Grooming	Fly grooms.
anglefrom1to2anglesub	Angle to closest (based on angle subtended) animal's centroid in current animal's coordinate system (rad).	Chase	Fly chases another fly.
anglefrom1to2nose2ell	Angle to closest (based on distance from nose to ellipse) animal's centroid in current animal's coordinate system (rad).	Chain	Chase with 3 or more flies.
angleonclosestfly	Angle of the current animal's centroid in the closest (based on distance from nose to ellipse) animal's coordinate system (rad).	Song	Fly moves one wing next to another fly.
anglesub	Maximum total angle of animal's field of view (fov) occluded by another animal (rad).	Behavior bout length	Length of the longest sequence of frames in which the behavior occurred per fly.
danglesub	Change in maximum total angle of animal's view occluded by another animal (rad/s).	Behavior frequency	Length of the movie minus the length of the longest sequence of frames in which the behavior didn't occurred for each fly.
dcenter	Minimum distance from this animal's center to other animal's center (mm).	Density SD by length of interactions (LOI)	Accumulated interactions' length relative to the maximum interactions' length possible.
ddcenter	Change in minimum distance between this animal's center and other flies' centers (mm/s).	Modularity by length of interactions (LOI)	Representation of how much the network is divided into modules according to interactions' length.
dist2wall	Distance to the arena wall from the animal's center (mm).	Strength by length of interactions (LOI)	Length of interactions of a certain fly.
dphi	Change in the velocity direction (rad/s).	SD Strength according to length of interactions (LOI)	Standard deviation of the strengths according to interactions' length of flies from the same movie.
dtheta	Angular velocity (rad/s).	Betweenness Centrality by length of interactions (LOI)	A measure of centrality of a certain fly based on shortest paths according to interactions' length.
nflies_close	Number of flies within 2 body lengths (4a).	SD Betweenness Centrality by length of interactions (LOI)	Standard deviation of the betweenness centralities according to interactions' length of flies from the same movie.
velmag	Speed of the center of rotation (mm/s).	Modularity Strength by number of interactions (NOI)	Representation of how much the network is divided into modules according to interactions' number.
		Strength by number of interactions (NOI)	Number of interactions of a certain fly.
		SD Strength by number of interactions (NOI)	Standard deviation of the strengths according to interactions' number of flies from the same movie.
		Betweenness Centrality by number of interactions (NOI)	A measure of centrality of a certain fly based on shortest paths according to interactions' number.
		SD Betweenness centrality (by number of interactions (NOI)	Variance of the betweenness centralities according to interactions' number of flies from the same movie.

598 **Supplementary Figure 1.** Behavior classifier analysis depicts mean values of the behaviors averaged across the
599 experiment: walking (A), Stop (B) body turns (C), close touch behavior (D), approach, bout duration of approach
600 behavior (F) and social aggregation (G). n=18 t test for normally distributed parameters or Wilcoxon test for non-
601 normally distributed parameters.

602
603
604
605

Supplementary Figure 2. The expression of Don-Juan protein is sensitive to the presence of rival male flies.
Relative expression levels of Don-Juan-GFP in male flies in single or grouped housed male flies.