

1 ***Short-form paper***

2 **Niclosamide shows strong antiviral activity in a human airway model of SARS-CoV-2 infection and**
3 **a conserved potency against the UK B.1.1.7 and SA B.1.351 variant**

4 Anne Weiss ^{1,2,#}, Franck Touret ^{3,#}, Cecile Baronti ³, Magali Gilles ³, Bruno Hoen ⁴, Antoine Nougairède ³,
5 Xavier de Lamballerie ^{3,*}, Morten Otto Alexander Sommer ^{2,5,*}

6

7 **Affiliations**

8 ¹ UNION therapeutics Research Services, Tuborg Havnevej 18, 2900 Hellerup, Denmark

9 ² Novo Nordisk Center for Biosustainability, Technical University Denmark, Kemitorvet 220, Kongens
10 Lyngby, Denmark

11 ³ Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207-IHU Méditerranée,
12 Infection), Marseille, France

13 ⁴ Institute Pasteur, 25-28 rue du Docteur Roux, 75724 Paris Cedex 15, France

14 ⁵ UNION therapeutics, Tuborg Havnevej 18, 2900 Hellerup, Denmark

15

16 [#] Shared first authorship. Anne Weiss and Franck Touret contributed equally to this work. Author order was
17 determined based on original draft preparation.

18 ^{*} Shared last authorship: Xavier de Lamballerie (xavier.de-lamballerie@univ-amu.fr) and Morten Otto
19 Alexander (morten.sommer@uniontherapeutics.com and msom@biosustain.dtu.dk)

20

21 *Running title: Niclosamide is active against SARS-CoV-2 variants*

22

23

24

25 **Abstract**

26 SARS-CoV-2 variants are emerging with potential increased transmissibility highlighting the great unmet
27 medical need for new therapies. Niclosamide is a potent anti-SARS-CoV-2 agent that has advanced in
28 clinical development. We validate the potent antiviral efficacy of niclosamide in a SARS-CoV-2 human
29 airway model. Furthermore, niclosamide is effective against the D614G, B.1.1.7 and B.1.351 variants. Our
30 data further support the potent anti-SARS-CoV-2 properties of niclosamide and highlights its great potential
31 as a therapeutic agent for COVID-19.

32

33

34 **Keywords:** COVID-19, small molecule, niclosamide, HAE model, variants of concern, SARS-CoV-2

35

36 **Main Body**

37 Since its emerge in 2019, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
38 syndrome coronavirus 2 (SARS-CoV-2) led to over 3.1 million deaths worldwide as of April 26, 2021 (1).
39 A tremendous joint research effort led to the approval of several vaccines at unprecedented speed yet anti-
40 viral treatment options remain limited. At the same time, several viral variants harboring mutations in the
41 N-terminal (NTD) and receptor-binding domain (RBD) of the spike protein gene, such as the B.1.1.7 (also
42 named 20I/501Y.V1), B.1.351 (also named 20H/501Y.V2) variants, are causing global concern as they have
43 been associated with enhanced transmissibility and possible resistance to vaccines and antibody
44 neutralization (2–6). The B.1.1.7 and B.1.351 lineages have been linked to a ~50% increased transmission
45 of SARS-CoV-2 infection and the vaccine efficacy of ChAdOx1 nCoV-19 has been reported to be reduced
46 to 10.4% against the B.1.351 variant (6–9). Thus, despite the recent vaccine roll-out, there remains a high
47 unmet need for novel therapeutics against SARS-CoV-2, which should be effective against circulating and
48 potentially emerging variants of concern of SARS-CoV-2.

49
50 Niclosamide has been identified as a potent inhibitor of SARS-CoV-2 *in vitro* and *in vivo* and its optimized
51 formulation for intranasal application and inhalation, was well-tolerated in healthy volunteers in a Phase 1
52 trial (10–13). Herein, we sought to further characterize the anti-viral properties of niclosamide by
53 determining its potency in a human epithelial airway model of SARS-CoV-2 infection and tested its efficacy
54 against several variants of concern of SARS-CoV-2.

55
56 To strengthen the existing data on the potent antiviral activity of niclosamide with a preclinical model
57 resembling the human respiratory tract, we employed a trans-well bronchial human airway epithelium
58 (HAE) model infected with SARS-CoV-2. HAE cultured at an airway-liquid interface has been extensively
59 used as an *in vitro* physiological model mimicking the human mucociliary airway epithelium to validate the
60 effectivity of antivirals on infections in conducting airways (14–16). The effect of niclosamide on the

61 replication of SARS-CoV-2 in the HAE bronchial model (Eptihelix) was determined as previously described
62 by Touret *et al.* (17) and Pizzorno *et al.* (14).

63 Briefly, human bronchial epithelial cells were apically infected with the European D614G strain of SARS-
64 CoV-2 (BavPat1/2020; obtained from EVA-GLOBAL) at a MOI of 0.1 and cultivated in basolateral media
65 that contained different concentrations of niclosamide (in duplicates) or no drug (virus control) for up to 4
66 days. Media was renewed daily containing fresh niclosamide. Remdesivir was used as experimental positive
67 control and non-treated samples as negative control. On day 4, samples were collected at the apical side and
68 the viral titer was estimated with a TCID₅₀ assay. Then, cells were lysed, and the intracellular viral RNA
69 was extracted and quantified by qRT-PCR. The viral inhibition was calculated with the infectious titers by
70 normalizing the response, having the bottom value as 100% and top value as 0%. The IC₅₀ was determined
71 using logarithmic interpolation ($Y=100/(1+10^{((LogEC50-X)*HillSlope)})$ in GraphPad Prims 7. Statistical
72 analysis was performed using the Ordinary One-way Anova with Dunnett's multiple comparisons test.

73

74 Niclosamide exhibited anti-SARS-CoV-2 activity by reducing the infectious titer and intracellular RNA
75 levels in the HAE model in a dose-responsive manner. Niclosamide treatment with concentrations $\geq 1 \mu\text{M}$
76 significantly reduced the infectious titer to below the level of detection at Day 4 post-infection, yielding an
77 IC₅₀ of $0.96 \mu\text{M}$ (Fig. 1A and 1C). Furthermore, treatment with concentrations $\geq 1 \mu\text{M}$ of niclosamide
78 significantly reduced the intracellular viral RNA level reaching a maximum effect of a 3-fold reduction on
79 Day 4 (Fig. 1B). These data validate the substantial anti-SARS-CoV-2 effect of niclosamide in a
80 reconstituted human airway model.

81

82 We then tested the activity of niclosamide against several variants of concern of SARS-CoV-2, including
83 the BavPat1 strain (D614G), SARS-CoV-2 201/501YV.1 (UVE/SARS-CoV-2/2021/FR/7b; lineage
84 B.1.1.7, ex UK), SARS-CoV-2 Wuhan D614, and SARS CoV-2 SA lineage B.1.351 (UVE/SARS-CoV-
85 2/2021/FR/1299-ex SA) in VeroE6 TMPRSS2 cells (ID 100978, CFAR). All viruses were obtained through
86 EVA GLOBAL. The IC₅₀ were determined by RT-qPCR as previously described by Touret *et al.* (18).

87 Briefly, eight 2-fold serial dilutions of niclosamide in triplicate were added to the cells 15 min prior to viral
88 infection and incubated for 2 days at 37°C. Remdesivir was used as experimental positive control and non-
89 treated samples as negative control. The viral genome was quantified by real-time RT-qPCR from the cell
90 supernatant (17). The IC₅₀ was calculated as described above. All data associated with this study are present
91 in the paper.

92

93 Niclosamide inhibited replication of the SARS-CoV-2 original strain (Wuhan D614) in VeroE6 TMPRSS2
94 cells with an IC₅₀ of 0.13 μM and IC₉₀ of 0.16 μM which is in accordance with previous studies (10, 11).
95 Importantly, niclosamide also blocked the replication of the European BavPat D614G, UK B.1.1.7 and SA
96 B.1.351 variant with an IC₅₀ of 0.06 μM, 0.08 μM and 0.07 μM, respectively (Fig. 2). Thus, niclosamide is
97 effective against all tested variants of SARS-CoV-2 having a similar potency across the different strains
98 compared to the original Wuhan D614 strain.

99

100 These data are in line with the host-targeted mode of action of niclosamide, which has been described to
101 interfere with basic cellular mechanisms involved in SARS-CoV-2 replication, such as autophagy, the
102 endosomal pathway and the TMEM16A chloride channel (11, 19–21). Accordingly, niclosamide is a potent
103 antiviral therapeutic agent against SARS-CoV-2 and its variants. The molecule will also deserve further
104 investigations to assess its potential role in the chemotherapeutic armamentarium required for future
105 emerging infectious disease preparedness.

106

107 Taken together, our findings support niclosamide's therapeutic potential as a potent anti-viral agent against
108 SARS-CoV-2, including its variants of concern. Trials in patients with COVID-19 are needed to substantiate
109 future clinical use.

110

111 **Acknowledgments**

112 We are thankful for the support of Innovationsfonden Denmark (grant number: 0208-00081 and 0153-
113 00209) and The Novo Nordisk Foundation under NFF grant number: NNF20CC0035580. We would like to
114 thank Noemie Courtin (UVE) for her excellent technical assistance.

115 **References**

116 1. Dong E, Du H, Gardner L. 2020. An interactive web-based dashboard to track COVID-19 in real
117 time. *Lancet Infect Dis*.

118 2. Mahase E. 2021. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against
119 South African variant. *BMJ*. BMJ Publishing Group.

120 3. Johnson & Johnson Announces Single-Shot Janssen COVID-19 Vaccine Candidate Met Primary
121 Endpoints in Interim Analysis of its Phase 3 ENSEMBLE Trial | Janssen.

122 4. Wang P, Liu L, Iketani S, Luo Y, Guo Y, Wang M, Yu J, Zhang B, Kwong PD, Graham BS, Mascola
123 JR, Chang JY, Yin MT, Sobieszczky M, Kyratsous CA, Shapiro L, Sheng Z, Nair MS, Huang Y, Ho
124 DD. 2021. Increased Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 to Antibody
125 Neutralization. *bioRxiv Prepr Serv Biol* 2021.01.25.428137.

126 5. Xie X, Zou J, Fontes-Garfias CR, Xia H, Swanson KA, Cutler M, Cooper D, Menachery VD, Weaver
127 S, Dormitzer PR, Shi P-Y, Philip P. 2021. Neutralization of N501Y mutant SARS-CoV-2 by
128 BNT162b2 vaccine-elicited sera. *bioRxiv* 2021.01.07.425740.

129 6. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, Padayachee SD, Dheda K,
130 Barnabas SL, Bhorat QE, Briner C, Kwatra G, Ahmed K, Aley P, Bhikha S, Bhiman JN, Bhorat AE,
131 du Plessis J, Esmail A, Groenewald M, Horne E, Hwa S-H, Jose A, Lambe T, Laubscher M,
132 Malahleha M, Masenya M, Masilela M, McKenzie S, Molapo K, Moultrie A, Oelofse S, Patel F,
133 Pillay S, Rhead S, Rodel H, Rossouw L, Taoushanis C, Tegally H, Thombrayil A, van Eck S,
134 Wibmer CK, Durham NM, Kelly EJ, Villafana TL, Gilbert S, Pollard AJ, de Oliveira T, Moore PL,
135 Sigal A, Izu A. 2021. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351
136 Variant. *N Engl J Med* NEJMoa2102214.

137 7. Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Hopkins S, Gandy A, Rambaut A, Ferguson
138 NM. 2021. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking
139 epidemiological and genetic data. *medRxiv* 2020.12.30.20249034.

140 8. Davies NG, Barnard RC, Jarvis CI, Kucharski AJ, Munday J, Pearson CAB, Russell TW, Tully DC,

141 Abbott S, Gimma A, Waites W, Wong KLM, van Zandvoort K, Eggo RM, Funk S, Jit M, Atkins
142 KE, Edmunds WJ, Houben R, Meakin SR, Quilty BJ, Liu Y, Flasche S, Lei J, Sun FY, Krauer F,
143 Lowe R, Bosse NI, Nightingale ES, Sherratt K, Abbas K, O'Reilly K, Gibbs HP, Villabona-Arenas
144 CJ, Waterlow NR, Medley G, Brady O, Williams J, Rosello A, Klepac P, Koltai M, Sandmann FG,
145 Foss AM, Jafari Y, Prem K, Chan YWD, Hellewell J, Procter SR, Jombart T, Knight GM, Endo A,
146 Quaife M, Showering A, Clifford S. 2020. Estimated transmissibility and severity of novel SARS-
147 CoV-2 Variant of Concern 202012/01 in England. medRxiv. medRxiv.

148 9. Pearson CA. Estimates of severity and transmissibility of novel South Africa SARS-CoV-2 variant
149 501Y.V2.

150 10. Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, Shum D, Kim S. 2020. Identification of antiviral drug
151 candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother
152 <https://doi.org/10.1128/AAC.00819-20>.

153 11. Nils C. Gassen, Papies J, Bajaj T, Dethloff F, Emanuel J, Weckmann K, Heinz DE, Lennarz HM,
154 Richter A, Niemeyer D, Corman VM, Giavalisco P, Drosten C, Müller MA. 2020. Analysis of
155 SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative
156 antiviral therapeutics. bioRxiv.

157 12. Backer V, Sjöbring U, Sonne J, Weiss A, Hostrup M, Johansen HK, Becker V, Sonne DP, Balchen
158 T, Jellingsø M, Sommer MOA. 2021. A randomized, double-blind, placebo-controlled phase 1 trial
159 of inhaled and intranasal niclosamide: A broad spectrum antiviral candidate for treatment of COVID-
160 19. Lancet Reg Heal Eur 100084.

161 13. Brunaugh AD, Seo H, Warnken Z, Ding L, Seo SH, Smyth HDC. 2020. Broad-Spectrum, Patient-
162 Adaptable Inhaled Niclosamide-Lysozyme Particles are Efficacious Against Coronaviruses in Lethal
163 Murine Infection Models. bioRxiv.

164 14. Pizzorno A, Padey B, Julien T, Trouillet-Assant S, Traversier A, Errazuriz-Cerda E, Fouret J, Dubois
165 J, Gaymard A, Lescure FX, Dulière V, Brun P, Constant S, Poissy J, Lina B, Yazdanpanah Y, Terrier
166 O, Rosa-Calatrava M. 2020. Characterization and Treatment of SARS-CoV-2 in Nasal and Bronchial

167 Human Airway Epithelia. *Cell Reports Med* <https://doi.org/10.1016/j.xcrm.2020.100059>.

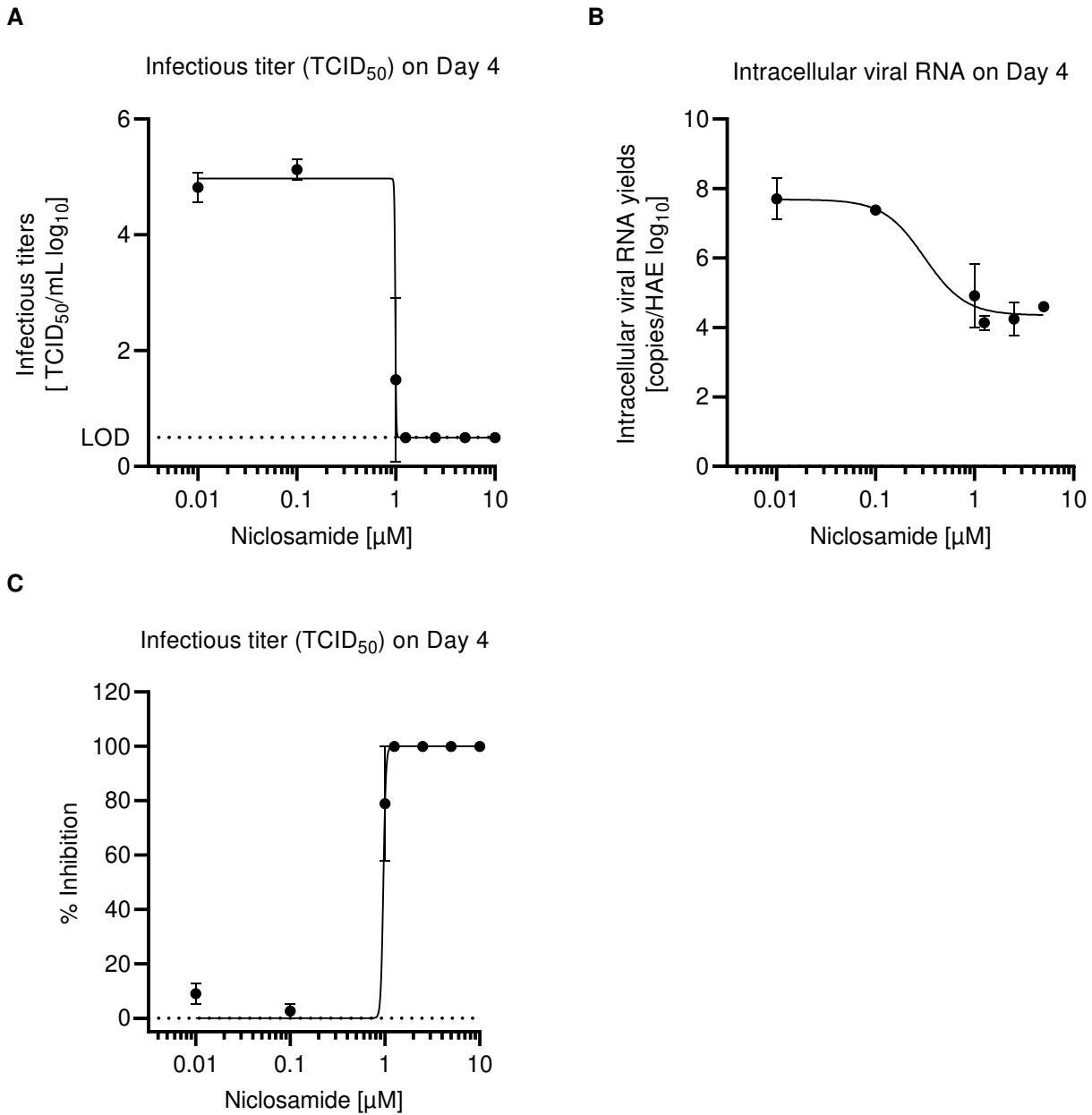
168 15. Boda B, Benaoudia S, Huang S, Bonfante R, Wiszniewski L, Tseligka ED, Tapparel C, Constant S.
169 2018. Antiviral drug screening by assessing epithelial functions and innate immune responses in
170 human 3D airway epithelium model. *Antiviral Res* <https://doi.org/10.1016/j.antiviral.2018.06.007>.

171 16. Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schafer A,
172 Dinnon KH, Stevens LJ, Chappell JD, Lu X, Hughes TM, George AS, Hill CS, Montgomery SA,
173 Brown AJ, Bluemling GR, Natchus MG, Saindane M, Kolykhalov AA, Painter G, Harcourt J, Tamin
174 A, Thornburg NJ, Swanstrom R, Denison MR, Baric RS. 2020. An orally bioavailable broad-
175 spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple
176 coronaviruses in mice. *Sci Transl Med* <https://doi.org/10.1126/SCITRANSLMED.ABB5883>.

177 17. Touret F, Driouich JS, Cochin M, Petit PR, Gilles M, Barthélémy K, Moureau G, Malvy D, Solas C,
178 de Lamballerie X, Nougairède A. 2020. Preclinical evaluation of Imatinib does not support its use
179 as an antiviral drug against SARS-CoV-2. *bioRxiv*.

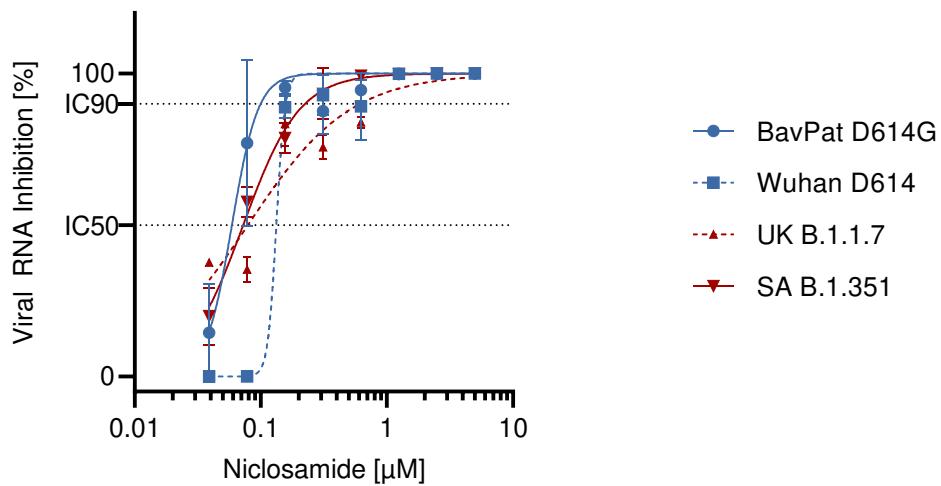
180 18. Touret F, Gilles M, Barral K, Nougairède A, van Helden J, Decroly E, de Lamballerie X, Coutard
181 B. 2020. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-
182 CoV-2 replication. *Sci Rep* 10:13093.

183 19. Braga L, Ali H, Secco I, Chiavacci E, Neves G, Goldhill D, Penn R, Jimenez-Guardeño JM, Ortega-
184 Prieto AM, Bussani R, Cannatà A, Rizzari G, Collesi C, Schneider E, Arosio D, Shah AM, Barclay
185 WS, Malim MH, Burrone J, Giacca M. 2021. Drugs that inhibit TMEM16 proteins block SARS-
186 CoV-2 Spike-induced syncytia. *Nature* 1–8.


187 20. Jurgeit A, McDowell R, Moese S, Meldrum E, Schwendener R, Greber UF. 2012. Niclosamide Is a
188 Proton Carrier and Targets Acidic Endosomes with Broad Antiviral Effects. *PLoS Pathog*
189 8:e1002976.

190 21. Xu J, Shi PY, Li H, Zhou J. 2020. Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic
191 Potential. *ACS Infect Dis* 6:909–15.

192


193 **Figures**

194

195
196 **Figure 1: Antiviral efficacy of niclosamide in a trans-well model of human bronchial epithelium**
197 **infected with SARS-CoV-2.** Dose-dependent effects of niclosamide on infectious titer of SARS-CoV-2
198 (A) and intracellular viral RNA levels (B) on Day 4 post-infection. The reduction of infectious titer and
199 intracellular RNA was significant for concentrations $\geq 1 \mu\text{M}$ niclosamide (infectious titer: 1 μM = $p < 0.05$,
200 1.25 – 10 μM = $p < 0.0001$; intracellular viral RNA: 1, 2.5, 5 μM = $p < 0.01$, 1.25 = $p < 0.001$ compared to

201 non-treated control; Ordinary One way Anova with Dunnett's multiple comparisons test). The IC₅₀ based on
202 the infectious titer on Day 4 was 0.96 μ M (C). N = 2

203
204 **Figure 2: Effect of niclosamide on SARS-CoV-2 variants, including UK B.1.1.7 and SA B.1.351 in**
205 **VeroE6 TMPRSS2 cells.** IC = Inhibitory concentration. The origin of the tested variants is available at
206 EVA-GLOBAL. N = 3