

1 **KMT2D haploinsufficiency in Kabuki syndrome disrupts neuronal**
2 **function through transcriptional and chromatin rewiring**
3 **independent of H3K4-monomethylation**

4

5 **AUTHORS**

6 Michele Gabriele^{1,2,3*}, Alessandro Vitriolo^{1,2,*}, Sara Cuvertino^{4,5*}, Marlene F Pereira^{1,2}, Celeste
7 Franconi², Pierre-Luc Germain^{1,2}, Daniele Capocefalo^{1,2}, Davide Castaldi^{1,2}, Erika Tenderini¹,
8 Nicholas Burdon Bèchet⁶, Catherine Millar⁴, Tom Koemans⁶, Nitin Sabherwal⁷, Connie
9 Stumpel⁸, Monica Frega⁶, Orazio Palumbo⁹, Massimo Carella⁹, Natascia Malerba¹⁰, Gabriella
10 Maria Squeo¹⁰, Tjitske Kleefstra^{6,11}, Hans van Bokhoven^{6,11}, Susan J. Kimber⁵, Siddharth
11 Banka^{4,12†}, Giuseppe Merla^{10,13†}, Nadif Kasri Nael^{6,11†}, and Giuseppe Testa^{1,2,14†}

12 1) Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS,
13 Milan, Italy
14 2) Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy;
15 3) Current affiliation: Department of Biological Engineering, Massachusetts Institute of
16 Technology, Cambridge, MA, USA
17 4) Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of
18 Biology, Medicine, and Health, The University of Manchester, Manchester, UK
19 5) Division of Cell Matrix Biology and Regenerative Medicine, School of Biological
20 Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester,
21 Manchester, UK
22 6) Department of Human Genetics, Radboud university medical center; Donders Institute
23 for Brain- Cognition and Behaviour, Nijmegen, The Netherlands;
24 7) Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty
25 of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
26 8) Department of Clinical Genetics and GROW-School for Oncology and Developmental
27 Biology, Maastricht University Medical Center, Maastricht, the Netherlands
28 9) Division of Medical Genetics, Fondazione IRCCS Casa Sollievo delle Sofferenza, San
29 Giovanni Rotondo (FG)
30 10) Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo
31 della Sofferenza, San Giovanni Rotondo (FG)
32 11) Department of Cognitive Neuroscience, Radboud university medical center; Donders
33 Institute for Brain- Cognition and Behaviour, Nijmegen, The Netherlands;
34 12) Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University
35 Foundation NHS Trust, Health Innovation Manchester, Manchester, UK
36 13) Department of Molecular Medicine and Medical Biotechnology, University of Naples
37 Federico II, 80131, Naples, Italy.
38 14) Human Technopole, Via Cristina Belgioioso 171, Milan, Italy

39 *These authors share first authorship

40 † Correspondence to: giuseppe.testa@ieo.it or giuseppe.testa@fht.org or
41 giuseppe.testa@unimi.it; giuseppe.merla@unina.it; siddharth.banka@manchester.ac.uk;
42 nael.nadifkasri@radboudumc.nl

43

44

45

1 **Abstract**

2 Kabuki syndrome (KS) is a rare multisystem disorder, characterized by intellectual disability,
3 growth delay, and distinctive craniofacial features. It is mostly caused by *de novo* mutations
4 of *KMT2D*, which is responsible for histone H3lysine 4 mono-methylation (H3K4me1) that
5 marks active and poised enhancers. We assessed the impact of *KMT2D* mutations on
6 chromatin and transcriptional regulation in a cohort of multiple KS1 tissues, including primary
7 patient samples and disease-relevant lineages, namely cortical neurons (iN), neural crest
8 stem cells (NCSC), and mesenchymal cells (MC). In parallel, we generated an isogenic line
9 derived from human embryonic stem cells (hESC) for the stepwise characterization of neural
10 precursors and mature neurons. We found that transcriptional dysregulation was particularly
11 pronounced in cortical neurons and widely affected synapse activity pathways. This was
12 consistent with highly specific alterations of spontaneous network-bursts patterns evidenced
13 by Micro-electrode-array (MEA)-based neural network. Profiling of H3K4me1 unveiled the
14 almost complete uncoupling between this chromatin mark and the effects on transcription,
15 which is instead reflected by defects in H3K27ac. Finally, we identified the direct targets of
16 *KMT2D* in mature cortical neurons, uncovering TEAD2 as the main mediator of *KMT2D*
17 haploinsufficiency. Our results uncover the multi-tissue architecture of KS1 dysregulation and
18 define a unique electrical phenotype and its molecular underpinnings for the cortical neuronal
19 lineage.

20 **INTRODUCTION**

21 Kabuki syndrome (KS) is a rare multisystem neurodevelopmental disorder (NDD)
22 mainly characterized by intellectual disability (ID) and craniofacial dysmorphism¹. About 60-
23 70% of cases are caused by loss-of-function variants in *KMT2D*² (previously known as MLL2
24 and ALR in human, and Mll4 in mouse) that are referred to as KS type 1 (KS1, OMIM:147920),
25 while about 10% of cases are caused by deleterious variants in *KDM6A*^{3,4} (KS2,
26 OMIM:300867). *KMT2D* is a histone 3 lysine 4 mono-methylase (H3K4me1)⁵, while *KDM6A*
27 encodes for one of the two histone 3 lysine 27 trimethyl (H3K27me3) demethylase^{6,7}. *KMT2D*
28 and *KDM6A* associate together in the *KMT2D*/COMPASS (COMplex of Proteins ASSociated
29 with Set1) complex, which also includes p300, responsible for H3K27 acetylation. The
30 H3K4me1 modification marks transcriptional enhancers, whose activity is scored by the
31 concurrent presence of H3K27ac^{8,9}. Transcriptional enhancers are functional units of the 3D
32 genome that are responsible for the activation of gene expression in time and tissue-specific
33 manner^{8,9}. The mechanism by which enhancers activate gene expression involves long-range
34 chromatin interaction and histone modifications but the precise mechanisms through which
35 enhancers make contact with promoters and induce gene expression are not fully elucidated¹⁰.
36 The interconnection between deposition of histone modification and the 3D genome
37 organization is indeed a topic of intense investigation, especially for understanding the
38 mechanism of neurodevelopmental disorders, since loss-of-function of these genes often
39 cause neurodevelopmental disorders^{11,12}. The importance of genes involved in enhancer
40 regulation is especially underscored by the fact that loss-of-function of p300 causes
41 Rubinstein-Taybi syndrome 2 (OMIM:613684), while loss-of-function of YY1, which is involved
42 in mediating the looping between promoters and enhancers^{13,14}, is responsible for Gabriele
43 de-Vries syndrome^{13,15} (OMIM:617557) and also features a defect in H3K27ac at enhancers
44¹³. Despite the crucial role of *KMT2D*/COMPASS complex in priming enhancers with
45 H3K4me1, and making H3K27 ready for acetylation by removing existing H3K27me3, recent
46 research showed that the catalytic activity of both *KMT2D* and *KDM6A* is not necessary for
47 transcriptional control¹⁶⁻¹⁹. Indeed, research underscored that different mechanisms other than
48 their catalytical activity are involved in their transcriptional regulation. For example, as
49

1 structural scaffolds of the COMPASS complex and by recruiting the histone acetylase p300
2²⁰.

3 Therefore, we hypothesized that KS1 etiology could be mainly traced back to an
4 altered stoichiometry of the KMT2D/COMPASS complex. Consequently, to accurately study
5 the molecular pathology of KS1 it is necessary to study the impact of heterozygous truncating
6 mutations in human cellular models. At the state of the art, the most robust attempt of model
7 KS1 was the employment of mouse model, in which *Kmt2d* has been engineered to carry a
8 β Geo cassette instead of the catalytical domain²². And could still exert its catalytically
9 independent function^{16,17}. Therefore, this model may fail to recapitulate the impact of truncating
10 mutation, leaving open the necessity of studying the impact of altered stoichiometry of
11 KMT2D/COMPASS complex. Moreover, given the lack of a human model to study the
12 molecular etiology of KS1, here we report a disease modeling strategy to identify the molecular
13 hubs downstream of KMT2D, to fully mimic its haploinsufficiency. We used patient-derived
14 tissues, and iPSCs and engineered hESC from which we differentiated disease-relevant
15 tissues mainly affected in KS1.

16 **RESULTS**

17 **An integrated KS1 cohort of primary tissues and iPSC-derived lineages**

18 Our multi-centric disease modeling cohort included the following disease-relevant
19 cross-tissue set of samples from KS1 individuals who were clinically diagnosed by
20 interdisciplinary teams and received a molecular diagnosis of protein-truncating mutations
21 (Fig.1A, Fig.1B): i) dermal fibroblasts from 7 individuals and 5 sex-matched unaffected
22 parents (Fig.1A); ii) peripheral blood mononuclear cells (PBMC) from 5 additional KS1
23 individuals and 3 unmatched controls; iii) induced pluripotent stem cells (iPSCs) from dermal
24 fibroblasts of 5 KS1 individuals plus 3 sex-matched unaffected parents; iv) iPSC-derived
25 neural crest stem cells and mesenchymal cells of 5 KS1 their sex-matched controls; v) iPSC-
26 derived Ngn2 from 5 KS1 individuals plus 3 sex-matched unaffected parents. Furthermore,
27 we generated an isogenic line representative of a *KMT2D* mutation by employing
28 CRISPR/Cas9 to engineer a frameshift mutation in exon 48 of the hESC MAN7 line. (Fig.1C).

29 **Dermal fibroblasts and peripheral blood samples show disease-relevant 30 dysregulations, minimally explained by vast changes in H3K4me1**

31 Analysis of the transcriptome of dermal fibroblasts detected 185 differentially
32 expressed genes (DEGs) (FC threshold=1.5, *FDR*=0.05). *KMT2D* levels were halved in most
33 KS1 lines ($FC=1.64$, *FDR*=0.08, Fig.2A). Among altered transcripts we found a large set of
34 genes (mostly upregulated) involved in neuron differentiation and related biological processes
35 (BP) (Fig.2B), suggesting the presence of a *KMT2D*-specific signature in differentiated non-
36 neural tissues, and allowing for the evaluation of patients' fibroblasts as a good source for
37 disease-relevant investigations. To identify those molecular hubs interposed between KMT2D
38 and affected genes we performed a master regulator analysis. We found *EZH2* as the most
39 enriched master regulator, accounting for 18.92% of DEGs, mostly upregulated ($p=1.36e^{-17}$).
40 Among enriched transcription factors (TF) we found *TEAD4*, which is upregulated in KS1
41 samples ($FC=1.51$, $p=0.002$) and it is found to be an upstream regulator for 58% of DEGs.
42

43 Next, to measure the impact of KMT2D haploinsufficiency in H3K4me1, we first probed
44 its alteration in the 5 half-matched KS1 lines and relative controls. Western blot analysis did
45 not reveal any difference in the bulk abundance of H3K4me1, H3H4me2, and H3K4me3
46 (Supplementary Fig.1A). Therefore, to identify local dysregulation, we performed H3K4me1
47 chromatin immunoprecipitation coupled with sequencing (ChIPseq). The principal component
48 analysis (PCA) of H3K4me1 ChIPseq separates the samples through the first principal
49 component (PC1) according to the genotype (Fig.2C). Overall, we detected a higher, albeit

1 not significant, number of H3K4me1 peaks in KS1 individuals. Then, to identify *bona fide*
2 gained and lost peaks in KS1 and to identify regions of the genome where the ChIPseq signal
3 was significantly different between controls and KS1 we performed a qualitative and
4 quantitative analysis, respectively.

5 Moreover, to compare our results with consolidated physiological datasets, we
6 compared our H3K4me1 signal with Roadmap Epigenomics ¹⁸ (Fig.2D) and crossed H3K4me1
7 with the DEGs list to identify the amount of association between H3K4me1 and transcriptional
8 dysregulation. The global distribution of H3K4me1 in our samples, as well as the differentially
9 mono-methylated regions greatly overlapped with H3K4me1 and H3K4me2 identified by
10 Roadmap Epigenomics (Fig.2D).

11 Regions with reduced H3K4me1 overlapped with H3K27ac regions, suggesting a loss
12 of H3K4me1 at active regulatory regions. Regions gaining peaks or higher H3K4me1 signal
13 largely overlapped H3K4me2 regions. Notably, only a fraction of downregulated DEGs (~14%)
14 was found to be affected by a change in H3K4me1 at regulatory regions (Fig.2E), while ~34%
15 of upregulated genes were affected ($p=2.18e^{-05}$), and the largest portion of increased
16 H3K4me1 signal was focused at promoters (Fig.2E).

17 In blood samples, we identified 193 DEGs ($FC>1.5$, $FDR<0.05$, Supplementary
18 Fig.1B). DEGs were enriched in 7 biological process categories composed mainly of
19 downregulated genes in KS cells (Supplementary Fig.1C). Remarkably, the “Cell fate
20 commitment” category included DEGs whose function is also involved in central nervous
21 system development (Supplementary Fig.1D).

22 **KS1 patient-derived induced pluripotent stem cells show only mild 23 transcriptional and chromatin dysregulation**

24 We reprogrammed eight fibroblast lines (5 from KS individuals and 3 from half-
25 matched controls) to induced pluripotent stem cells (iPSC). Multiple clones for each iPSC were
26 characterized for removal of reprogramming constructs and pluripotency marks
27 (Supplementary Fig.2A and B). RNAseq studies on iPSCs based on 3-4 biological replicates
28 reach the capacity to recapitulate differences between genotypes better than using multiple
29 clones from fewer individuals ²². For this reason, we selected a single iPSC clone from each
30 individual for the following experiments.

31 Differently from what was observed in fibroblasts, *KMT2D* expression in pluripotent
32 lines did not mirror haploinsufficiency (Fig.3A). Differential expression analysis (DEA) found a
33 largely reduced dysregulation compared to fibroblasts (63 DEGs with $FDR<=0.05$, $FC>=1.25$),
34 showing no significant enrichment in any GO categories. The top TF enrichments were
35 associated with SUZ12 and EZH2, consistent with the fibroblast data. These two proteins are
36 the main subunits of Polycomb Repressive Complex 2 (PRC2).

37 Given the enhancer-centric activity of KMT2D, we sought to assess the iPSC
38 chromatin landscape by profiling H3K4me1 and H3K27ac using ChIPseq. Both marks showed
39 a high inter-family variability on the PCA, with a mild but coherent intra-family shift, that could
40 be associated with disease-specific differences (Fig.3B). Notably, compared with Roadmap
41 Epigenomics data, our reference peaks completely included the equivalent marks (Fig.3D),
42 meaning that we are sampling a large and comprehensive portion of both histone marks
43 distribution. Moreover, H3K27ac peaks were completely included in our H3K4me1 locations,
44 confirming that most H3K27ac is deposited in mono-methylated regions. Both quantitative and
45 qualitative analyses revealed that most gains in H3K4me1 were found in regions that have
46 enhancer activation marks, such as H3K18Ac and H3K27ac, and promoters such as
47 H3K4me2 and H3K4me3 (Fig.3C). However, the extent of differentially H3K4me1 regions (15

1 regions passing $FDR=0.05$, 1667 passing $p=0.05$) in iPSCs was severely reduced compared
2 to fibroblasts (~10 thousand regions passing $FDR=0.05$), and no overlap can be found
3 between regions differentially marked with H3K4me1 and dH3K27ac even upon lowering our
4 significance threshold to $p=0.05$ (Fig.3D). To further verify the limited dysregulation observed
5 in iPSCs, we focused our attention on super-enhancers. They are clusters of distal regulatory
6 regions that can be identified for their high and broad H3K27ac enrichment, usually associated
7 with development regulation and cell-identity maintenance ²³. Given the role of H3K4me1 and
8 KMT2D in enhancer regulation, we hypothesized that super-enhancers could reveal a
9 developmentally relevant dysregulation. Interestingly, we identified ~10,000 super-enhancers.
10 Among super-enhancers, we found a subgroup that was enriched in KS1 lines and showed a
11 significant overlap with DEGs (Supplementary Fig.2D).

12 **The molecular disruptions of neurocristic axis caused by KS1 are evident only
13 through differentiation**

14
15 KS entails distinctive craniofacial traits ²⁴. During early embryonic development neural crest
16 stem cells (NCSC), migrate from the neural tube to populate the entire body, where they
17 differentiate into mesenchymal cells (MCs) and further, to give rise to structures such as
18 cartilages, bones, muscles, and secondary tissues, including those of the head ²⁵.
19 Consequently, we differentiated KS1 iPSC into NCSC and MCs.

20 RNAseq performed on both cell-types identified a dysregulation (27 genes in NCSC and 98 in
21 MC passing $FDR=0.05$) mildly altered in NCSC (only 3 and 5 regions respectively passing
22 $FDR=0.05$). Thus, we hypothesized that the subtle dysregulation observed at single
23 multipotent states could instead be masking a developmental process that unwinds through
24 differentiation. To answer this question, we designed a simple analytical strategy to apply to
25 RNAseq data. We considered each cell type (iPSC, NCSC, and MC) as one of three
26 consecutive stages of differentiation, dividing CTL and KS1 samples, and correcting by genetic
27 background (~individual + cell type).

28 This allowed us to identify the genes up or downregulated in most individuals, ~~as~~ consistent
29 with that of CTL lines. These two groups were defined as “failed-up” and “failed-down” since
30 they were not effectively up and downregulated in KS1 throughout simulated development
31 (Fig. 4C and D).

32 Notably, we identified a significant enrichment for genes whose regulatory regions are
33 bound by BAZ1B (Fig.4E), which is a master regulator of craniofacial development ²⁶. Finally,
34 we found two major enrichments for chromatin regulators in failed-up and failed-down genes,
35 respectively corresponding to *EZH2* and *CHD1* (Fig.4F). Notably, *CHD1* mutations are known
36 to cause Pilarowski-Bjornsson syndrome(OMIM: 617682), a neurodevelopmental disorder ²⁷,
37 exposing an interesting functional interaction with KMT2D.

38 **KS1 neurons have unique alterations in network activity**

39 Intellectual disability is a hallmark of KS and one of its greatest burdens²⁸. In order to
40 elucidate its molecular underpinnings, we hypothesized that cortical neurons could reveal
41 pathogenic vulnerabilities and differentiated iPSCs into excitatory cortical neurons through the
42 transposon-based inducible *Ngn2* overexpression²⁹ system that we recently validated³⁰
43 (hereafter iNeurons). We performed morphological reconstruction on control and KS1 patient-
44 derived iNeurons 23 days after *Ngn2* induction. Both control and KS1 neurons expressed
45 upper layer markers (Fig.5A) and showed the expected neuronal morphology in terms of
46 axonal and dendrite formation, as assessed by staining for AnkG and MAP2B (Fig.5B). To
47 further characterize neuronal architecture, we performed low-density transfections to stain

1 complete neuronal arborizations with dsRed and observed no morphological differences in
2 neuronal architecture between control and KS1 for the number of primary dendrites, nodes,
3 and dendritic endings (Supplementary Fig.3A-H).

4 To identify potential alterations in identity and degree of maturation, we selected a
5 curated panel of markers and analyzed their expression in KS1 compared to controls. We
6 confirmed the cortical glutamatergic neuronal identity, with high expression of upper layer and
7 mature neuronal markers (Supplementary Fig.4A). Next, we recorded the spontaneous
8 electrophysiological network activity of iNeurons of either genotype grown on microelectrode
9 arrays (MEAs) (Supplementary Fig.4B). Few days after plating, the neurons derived from
10 healthy subjects formed functionally active neuronal networks, showing spontaneous events
11 (i.e. spikes and bursts), as early as the second week of *in vitro* culture (Supplementary Fig.3J).
12 Later in development (i.e. fifth week *in vitro*), the neuronal network showed a high level of
13 spontaneous activity as well as regular network bursting pattern (i.e. synchronous events)
14 involving almost all channels of the MEAs, indicative of a mature network (highlighted in grey
15 in Fig.5C). KS1 iNeurons also established spiking activity during early network development
16 as well as network bursts involving most of the channels of the MEAs later in development
17 (Fig.5B). However, during the fifth *in vitro* week, KS1 patient-derived neuronal networks
18 exhibited, at the population level, a global degree of activity that was slightly higher than
19 controls (i.e. firing rate, Fig.5E, $p=0.049$). The level of synchronous activity exhibited by the
20 KS1-derived neuronal network was comparable to control (Fig.5D, $p=0.02$). Interestingly, the
21 pattern of activity exhibited by KS1 patient-derived neuronal networks was instead very
22 different from controls. First, the percentage of random spikes (i.e. action potential events not
23 organized within a burst³¹) was significantly lower in KS1-derived neuronal compared to
24 controls (Fig.5G, $p<0.00025$). Furthermore, the network bursts (i.e. synchronized trains of
25 action potentials involving the whole neuronal network³¹) appeared with longer durations
26 compared to controls (Fig.5H, $p<0.00025$). This suggests that most of the activity in KS1
27 networks was organized in network bursts. Concentrating on these network bursts (see raw
28 data highlighted in Fig.5C and D) we also found that the organization of the bursts within a
29 network burst was sharply different. Specifically, while control network bursts were composed
30 of single bursts appearing simultaneously in most of the channels, the KS1 network bursts
31 were composed of “mini-bursts” (i.e. 4 “mini-bursts”, see raw data highlighted in red in Fig.5D),
32 revealing an altered pattern of activity in KS1 excitatory neuronal networks. Together, these
33 alterations outline a KS-specific electrical phenotype that is distinct from other NDD probed at
34 the same resolution³².

35 **KS1 neurons have pervasive transcriptional dysregulation 36 consistent with their electrophysiological phenotype**

37 To identify the molecular underpinnings of the observed electrophysiological
38 phenotype, we performed transcriptomic analysis on KS1 and control iNeurons at the same
39 timepoint analyzed by MEA. By comparison to the other cell types, KS1 iNeurons showed a
40 major transcriptional dysregulation yielding 1,181 high confidence DEG (FDR=0.05), including
41 *KMT2D* itself that was precisely halved and *KDM6A* that was significantly upregulated
42 (Supplementary Fig.5A). GO enrichment of DEGs reported molecular functions (MF) related
43 to synaptic activity and ionic trafficking (Fig.6B), and biological processes (BP) involving
44 memory and neuronal development (Fig.6C). Genes enriched both for “neuron” and “synaptic”
45 categories, which might be responsible for the electrophysiological phenotype observed are
46 depicted in Fig.6D. Among DEGs, we found a significant overlap with genes whose expression
47 has been causally associated with several electrophysiological functions (EphysDEGs
48 hereafter) in mouse neurons³³ (Supplementary Fig.5B).

1 The most enriched master regulators we identified were *TEAD4*, *EZH2*, *REST*,
2 *BCL11A*, and *HDAC2* (Fig.6A). *TEAD1*, *TEAD2*, and *TEAD3* were found upregulated,
3 alongside *REST* and *VGLL4*, a partner of TEAD³⁴. *TEAD4*, while upregulated in fibroblasts,
4 was not expressed in iNeurons. Since TF target lists are mainly derived from motif enrichments
5 and ChIPseq data, and all TEAD TF (*TEAD1*, *TEAD2*, *TEAD3*, and *TEAD4*) share the same
6 DNA binding motif³⁵, we will generally refer to the TEAD family in our further analyses. .
7 Notably, *EZH2* targets are preferentially enriched in downregulated genes, as observed also
8 for the genes that failed to be up-regulated during differentiation down the neurocristic axis
9 (failed-up genes.) We thus intersected downregulated genes in iNeurons with known *EZH2*
10 targets, and genes whose promoters are bivalent in neural epithelium³⁶, finding a highly
11 significant intersection ($p=1.20e-59$, Fig.6E). Given the well-established role of *EZH2* in
12 neurogenesis and the bivalence characteristic of such DEGs promoters, this observation
13 suggests that most downregulated genes in KS1 neurons are regulated by *EZH2* and primarily
14 involved in neuronal maturation.

15 In line with the benchmarking criteria we had empirically established for transcriptional
16 endophenotypes scoring²², we pursued also an isogenic design to validate results obtained
17 from patient-derived samples, generating a *KMT2D* mutant in the hESC MAN7 line using
18 CRISPR/Cas9. We used this isogenic pair also to extend our results from *Ngn2*
19 overexpression, which bypasses the early steps of neuronal differentiation, to the more
20 developmental paradigm that generates cortical neurons by dual SMAD (DS) inhibition
21 recapitulating major developmental milestones³⁷. The isogenic mutant line and the matched
22 control were thus subjected to RNAseq in technical replicates prior to the onset of
23 differentiation and following, 18 and 31 days of dual SMAD differentiation and maturation,
24 respectively representative of neuronal progenitors and cortical neurons. In this isogenic
25 setting, KS1 transcriptional alterations were only noticeable at day 31, with the day 31 mutant
26 line clustering at an intermediate distance between the control line at day 31 and all lines at
27 day 18 (Supplementary Fig.5C). This separation in the principal component analysis suggests
28 a delay in maturation, concordant with the observation of *EZH2* downregulated targets in 5
29 weeks iNeurons and the mainly downregulated DEGs enriched GO developmental
30 categories. Cortical neurons at day 31, together with iNeurons, showed the largest
31 dysregulation across tissues (Fig.6F). The intersection of DEGs in iNeurons and DS
32 ($FDR<0.05$) was large and highly significant (195 genes, $p=3.46e-81$, Fig.6G), highlighting a
33 core set of KS1 dysregulated pathways in terminally differentiated cortical neurons regardless
34 of the protocol and/or developmental trajectory. Indeed, also in the isogenic line at day 31 of
35 DS differentiation, we found the halving of *KMT2D* expression and the upregulation of TEAD
36 genes and *REST*, corroborating the large overlap between the two neuronal models. *KDM6A*
37 was instead not differentially expressed (Supplementary table 1), an observation that strongly
38 down-plays the contribution of *KDM6A* upregulation to the transcriptional rewiring of KS1
39 iNeurons.

40 To further probe the altered maturation features of KS1 neurons, we performed a
41 differential analysis of DS lines with an analytical strategy analogous to the one pursued for
42 the neurocristic axis, i.e. using day 0, day 18, and day 31 as progressive stages, and
43 identifying “failed-up” and “failed-down” genes along a virtual neuronal maturation path. Then,
44 we intersected these genes with those physiologically upregulated during differentiation of
45 cortical brain organoids(CBO), or preferentially expressed in neurons with respect to other cell
46 types identified in the same CBOs³⁸. We thus identified a subset of approximately 250 genes
47 whose expression changed coherently as differentiation of neurons progressed in two different
48 human cellular models (CBO and DS). and found their regulation to be defective in *KMT2D*
49 mutants, in both DS and iNeuron paradigms (Supplementary Fig.5D, Supplementary table 1).
50 These genes, which constitute therefore the core subset disrupted in neuronal development

1 in KS1, are enriched in GO biological processes such as regulation of synaptic transmission,
2 molecular functions related to signaling and receptor activity, and cellular components such
3 as post-synaptic membrane. Of particular note, within these categories, we found *SHANK1*,
4 *GRIA2*, and *NEUROD1*, which have been respectively connected to autism spectrum
5 disorder, neuronal electrophysiological activity, and neural maturity. Finally, among genes
6 whose expression in CBO is directly correlated with *KMT2D* levels, we found two master
7 regulators of KS1 iNeurons differentially expressed genes: *TEAD2* and *REST* (Supplementary
8 table 1), corroborating the regulatory logic of KMTD2 observed in iNeurons.

9 **Alterations of H3K27ac largely explain transcriptional 10 changes in KS1 neuronal models**

11 Given the major transcriptional alterations identified in cortical neurons and the role of
12 KMT2D in regulating enhancers, we profiled H3K4me1 and H3K27ac occupancy to define the
13 impact of KMT2D haploinsufficiency on the enhancer regulome. Following the observations
14 on MEA and RNAseq, we found that the vast majority of genes enriching “synaptic” GO
15 categories were downregulated and hypo-acetylated at enhancers (Fig.7A).

16 Analysis of iNeuron chromatin marks revealed that changes in H3K27ac were larger
17 and better able than H3K4me1 to explain changes in gene expression (Fig.7B, Supplementary
18 Fig.6A). In particular, as expected from the H3K4me1 distribution prevalence at enhancers³⁹,
19 almost none of the DEGs had changes in H3K4me1 at the promoter region (only *CHRNG*,
20 *HHATL*, *PTGS1*, and *SNX33* with *FDR*<0.05). On the other hand, 17.79% of downregulated
21 DEGs showed a significant (*FDR*<0.05) decrease in H3K27ac at promoters and 13.79% at
22 enhancers. Strikingly, the number of hyper-acetylated regions (and associated genes) was
23 larger than that of the hypo-acetylated ones (Fig.7B and C), conceptually in agreement with
24 *KDM6A* upregulation. However, upregulated genes with increase H3K27ac at regulatory
25 regions did not show any GO enrichment (Supplementary Table 1). This contrasts with
26 downregulated genes with a concordant decrease in H3K27ac (Supplementary Table 1).
27 Indeed, hypoacetylated downregulated genes largely showed enrichments for categories such
28 as cell adhesion, neuronal differentiation, axon development, and neuronal migration
29 (Supplementary Fig.6B).

30 These genes included 17 EphysDEGs (*not significant*) and 37 genes previously
31 associated with ID ($p=1.52e^{-51}$, Fig.7D). Notably, most downregulated genes losing H3K27ac
32 at enhancers are known TEAD and EZH2 targets (77.19% and 30.99% respectively). Among
33 ID-associated DEGs, 33.95% are differentially acetylated at enhancers ($p=2.67e^{-29}$), and most
34 of them are TEAD targets (70.27%).

35 Given the large dysregulation observed of H3K27ac, we further investigated for
36 genomic locations that acquire or lose the status of “super-enhancers”, and identified DEGs
37 associated with those regions (Supplementary Fig.6C). The overlap between genes
38 associated with regions that lost the super-enhancer condition in KS1 and downregulated
39 genes was larger than the opposite upregulated genes gaining super-enhancers in KS1.
40 Notably, the downregulated subset included *KMT2D*, and the upregulated group included
41 *VGLL4*, reinforcing the observation of a cross-talk between KMT2D and master regulators.

42 **Rescue of KMT2D and its downstream master regulators expression buffers 43 KS1 transcriptional dysregulation in neurons**

44 Given the defect in neuronal and synaptic maturation revealed by the transcriptional
45 dysregulation observed in KS1 neurons, both in patient-derived samples and in the isogenic
46 setting, we sought to determine to which extent this delayed phenotype could be overridden
47 by accelerating neuronal differentiation through well-established media of defined composition
48 (Neurobasal Plus, hereafter referred to as iN2). We thus repeated the transcriptional and

1 chromatin analysis and found, as expected, that when compared to the iN1 condition, iN2
2 supplementation had a significant transcriptional impact on both controls and KS1 samples.
3 KS1 lines were however much more affected than controls (Supplementary Fig.7A), with the
4 number of genes differentially expressed in controls between the two conditions amounting to
5 only one-fifth (Supplementary table 1) of the genes dysregulated in KS1 between the two
6 conditions.

7 Notably, *KMT2D* was not downregulated in iN2. In addition, a significant subset of
8 genes affected by iN2 in both CTLs and KS1, were differentially expressed in iN1 (between
9 CTLs and KS1). This suggests that the majority of genes differentially expressed in iN1, as
10 tightly regulated by *KMT2D*, are largely sensitive to environmental conditions and tightly linked
11 to KMT2D genetic dosage (Supplementary Fig.7A, indicated as " \sim gt CM" in Venn diagram),
12 which ceased to be so in iN2 ($p < 0.01$).

13 Neuronal markers were similarly expressed across DS, iN1, and iN2 (Supplementary
14 Fig.7B, Supplementary Table 1), with few markers specifically expressed in iN2, and some
15 shared by iN2 and DS (Supplementary Fig.7C). GO enrichment for biological processes in iN2
16 DEGs referred to developmental processes not strictly linked to neuronal activity, while
17 molecular function enrichment pointed towards chromatin and transcriptional regulation
18 (Supplementary Table 1, GO tables), hinting at a dysregulation that does not pervade neuron-
19 specific domains of regulation. When we compare the genes differentially expressed between
20 KS1 and CTL lines across our neural models, we observed a strong overlap between DS and
21 iN1, and a milder dysregulation in iN2 (Fig.8A). The overlap between neuronal markers
22 expressed in the three different settings (iN1, iN2, and DS), is larger between DS and iN2.
23 Concurrently, the overlap between DEGs is larger between DS and iN1. Thus - in a continuum
24 of cell identities represented by iN1, iN2, and DS - being DS apparently more similar to iN2,
25 and being most DEGs of iN1 rescued in iN2, we can consider iN2 media to be capable of
26 rescuing most of DS dysregulations. Indeed, the expression of most master regulators
27 identified in iN1 was rescued or reverted in iN2 (Supplementary Table 1). Moreover, a large
28 portion of genes differentially expressed in DS and iN1 did not appear to be dysregulated in
29 iN2, including most of the DEGs associated with ID (Fig.8B). When we compared the
30 amplitude of dysregulation of DEGs ($FDR < 0.25$) in iN1 and iN2, 56% of genes showed the
31 same sign of dysregulation ($p = 0.007$), with very few DEGs bearing opposite significant fold-
32 changes (Fig.8C). Notably, iNeurons grown in iN2 showed a very mild dysregulation of genes
33 transcriptionally correlated with neuronal electrophysiological properties (Supplementary
34 Fig.7D), including the rescue of TEAD dependent dysregulation of EphysDEGs observed in
35 iN1. In general, TEAD targets were less enriched by DEGs of iN2, and the main master
36 regulators, whose targets were enriched, were *EZH2*, *CTBP2*, *SUZ12*, and *BCL11A*
37 ($FDR < 0.001$ and enrichment > 2).

38 To identify the alterations of H3K4me1, H3K27ac, and H3K27me3 in iN2 we performed
39 Cut&Run⁴⁰, which allows an input of lower number of cells and improved signal-to-background
40 ratio compared to classical ChIPseq. Notably, concordantly with the strong reduction of DEGs
41 number, we did not observe a large significant change in H3K27ac, while we observed a
42 higher dysregulation in H3K27me3 and an even larger dysregulation in H3K4me1
43 (Supplementary Fig.7D). H3K4me1 showed the largest dysregulation in fibroblasts and iN2
44 compared to H3K27ac, and the smallest in pluripotent and multipotent lineages, suggesting
45 that H3K4me1 might be more important in more terminally differentiated cell types. Besides
46 the numbers of H3K4me1 hyper- and hypomethylated regions were similar, the hypo-
47 methylated regions largely overlapped regulatory regions, while the hyper-methylated regions
48 could not be associated with genes. Moreover, as observed in the other tissues, the
49 association between differentially H3K4me1 regions and DEGs was limited (Fig.8D).

1 To identify the direct targets of KMT2D we performed Cut&Tag⁴¹, which is a more
2 sensitive variant of Cut&Run. Most KMT2D bound regions overlapped both H3K4me1 and
3 H3K27ac marks in both iN1 and iN2 (Supplementary Fig.7E). Most DEGs of both iN1 and iN2
4 were bound by KMT2D at enhancers (Fig.8E). Remarkably, we found KMT2D to bind its
5 regulatory region and *KMT2A*, *KMT2B*, *KMT2C*, and *KMT2E* regulatory regions, as well
6 (Supplementary Table 1).

7 Notably, we identified *EZH2* and *CTBP2* as master regulators associated with both
8 groups. REST was strongly associated with iN1 DEGs, while *TEAD4* appears to have a higher
9 enrichment in iN2 (Fig.8F and Supplementary Fig.8A). Interestingly, among genes bound by
10 KMT2D and differentially expressed in both iN groups, we found *TEAD2* (with opposite FC in
11 iN1 and iN2), which was also dysregulated in fibroblasts. Moreover, one-third (33,11%) of
12 KMT2D targets were bound by TEAD ($p=0.037$) (Supplementary Table 1). This elects TEAD2,
13 among other TEAD candidates, to be the main link between KMT2D and iN1 dysregulation
14 reverted in iN2.

15 Since we observed a major transcriptional dysregulation mostly in terminally
16 differentiated cell types (Fig.6F), we investigated whether the dysregulations found in
17 peripheral blood, fibroblasts, and neurons converged on a critical subset of genes. We did not
18 detect any overlap between differentially expressed genes in fibroblast and blood samples
19 (Supplementary Fig.8B). On the other hand, both tissues shared dysregulated genes with iN1.
20 Moreover, most of these genes dysregulated both in fibroblasts, blood, and iN1 were bound
21 by KMT2D at enhancers (Supplementary Fig.8C), uncovering a subset of genes whose tissue-
22 specific expression is vulnerable to *KMT2D* mutations (Fig.8F).

23 Finally, given the central role of both KMT2D and KDM6A in cancer^{42,43}, and the wide
24 dysregulation observed in KS1 neurons, we investigated the transcriptional status of
25 oncogenes⁴⁴ and tumor suppressors⁴⁵ (Supplementary Fig.8D). Intriguingly, we found a
26 significant overlap both for oncogenes ($p=0.005$), with 26 genes downregulated and 30
27 upregulated, and for tumor suppressors ($p=1.632e-06$), with 54 and 45 genes respectively
28 down and upregulated. Moreover, both sets of genes showed enrichment in upregulated
29 genes bound by KMT2D, which was significant with tumor suppressors ($p=0.04$).

30 Discussion

31 One of the major opportunities of iPSC-based disease modeling for human genetics is
32 the prospect of testing the impact of pathogenic mutations across multiple disease-relevant
33 cell lineages, including those for which primary biopsies would be otherwise inaccessible, so
34 as to define the multi-tissue molecular architecture that underlies multisystemic syndromes.
35 Here we have actualized this potential for KS through a comparative design of primary and
36 reprogrammed tissues, along with isogenic validation, to uncover the *KMT2D* dosage-
37 dependent alterations across multiple lineages.

38 We found that mutant pluripotent and multipotent cell types showed only mild and very
39 selective dysregulation. This is consistent with loss of function studies showing that KMT2D is
40 necessary only at relatively late developmental stages (embryonic day E9.5, a crucial stage
41 for brain and heart development⁴⁶), while also a murine model of KS1 showed the neural crest
42 to be affected only after migration, at a terminal stage of differentiation⁴⁷. Amongst those we
43 tested, cortical excitatory neurons were the most vulnerable cell type, with a major
44 transcriptional dysregulation reflected in a prominent alteration of spontaneous synchronized
45 electrical activity. Specifically, in KS1 neuronal networks, whose morphology and architecture
46 were indistinguishable from controls, we identified prolonged and irregular network bursts
47 when compared with both half-matched and independent controls. Accordingly, pervasive
48 transcriptional dysregulation converged on electrical activity-critical pathways, as exemplified
49

1 by *GRIA2* and *GRIA4*, respectively encoding AMPAR subunits 2 and 4, whose downregulation
2 is consistent with the longer burst duration given the well-established properties of AMPA
3 versus NMDA glutamate receptors-driven bursts (short and long, respectively)⁴⁸. Interestingly,
4 the neuronal network phenotype included unique features (atypical burst shape consisting of
5 many mini bursts) that distinguish KS1 from other neurodevelopmental disorders analyzed at
6 equivalent functional resolution, as well as other properties (network burst rate and random
7 spiking) that were similar to those observed in Kleefstra syndrome, a closely related
8 neurodevelopmental disorder³², pointing to partially convergent mechanisms between the two
9 disorders. As bona fide pathogenic endophenotype, such robust KS1-specific neuronal
10 network properties are ideally suited for middle-to-high-throughput drug screenings. Given the
11 major neuronal defect in H3K27ac deposition, these could be productively oriented towards
12 histone deacetylase inhibitors, which have already proven valuable for a condition with a
13 similar degree of intellectual disability (7q11.23 duplication syndrome, OMIM 609757)³⁰.
14

15 At the chromatin level, transcriptional defects were aligned to the loss of H3K27ac, as
16 we previously observed also in the context of Gabriele de-Vries syndrome, in which loss-of-
17 function YY1 mutations caused transcriptional alterations that matched loss of H3K27ac¹³.
18 These results underscore, in the context of human KS tissues, the importance of the previously
19 described coordinated action of the KMT2D-KDM6A-p300²⁰ complex. Furthermore, we also
20 confirm in the human setting previous observations^{16,49} showing that KMT2D controls
21 transcription independent of its catalytic activity. Indeed, we found the deposition of H3K4me1
22 mediated by KMT2D did not significantly overlap with transcriptional dysregulation, while the
23 indirect impact on the histone mark for active enhancer H3K27ac was highly concordant with
24 transcriptional deficits. By integrating transcriptomic and chromatin profiling alongside the
25 genome-wide occupancy of KMT2D in the haploinsufficient setting, we can draw the following
26 conclusions. First, we found KMT2D to bind the regulatory regions of the KMT2 family of
27 methyltransferases commonly known as COMPASS complexes, as well as those of other key
28 chromatin regulators and transcription factors, providing the molecular logic that explains the
29 ramified gene network dysregulation caused by its decreased dosage. Indeed, KMT2D binds
30 its own regulatory region and those of *KMT2A*, *KMT2B*, *KMT2C*, and *KMT2E*, highlighting a
31 potential network of reciprocal regulation that becomes salient in light of the fact that mutations
32 in all of them cause neurodevelopmental disorders with several shared features⁵⁰⁻⁵².
33 Second, our master regulator analysis revealed that *KMT2D* haploinsufficiency triggers
34 precocious down-regulation of EZH2 targets. As EZH2, mutated in Weaver
35 syndrome⁵³ (OMIM: 277590), catalyzes H3K27me3, which is responsible for selective gene
36 down-regulation to modulate neurogenesis at precise developmental stages⁴⁹, the
37 observations that most down-regulated genes in all KS1 tissues we enriched in PRC2 targets
38 hints at a dynamic competition between EZH2 and KMT2D for gene regulation during
39 development. Third, one-third of KMT2D targets contained a TEAD binding site, pointing to an
40 interplay between KMT2D/COMPASS complex and TEAD. This hypothesis is supported by
41 the recent evidence of interaction between KMT2D and YAP/TAZ⁵⁴, a known interactor of the
42 TEAD family⁵⁵. In particular, we found TEAD2 dysregulated both in fibroblasts and neurons,
43 where it emerged as *KMT2D* direct target responsible for a vast portion of transcriptional
44 dysregulation. Therefore, we suggest that the two proteins could act as complex, with TEAD
45 driving DNA biding recognition of KMT2D. While the large size of KMT2D represents a
46 challenge for interaction studies, our results ground the future investigation of a potential new
47 regulatory axis in which TEAD2 is a partner of KMT2D/COMPASS and also regulated by it in
48 a feedback loop. In such a scenario, the TEAD family could become a target for tackling
49 KS1 manifestations as well as those cancer types in which KMT2D expression is altered.
50 Indeed, given the importance of KMT2D in tumor biology^{56,57}, we specifically focused on
51 alterations in oncogenic pathways and found that in neurons several oncogenes and tumor
52 suppressors were dysregulated by KMT2D haploinsufficiency, highlighting its central control
53 of cancer-relevant cell identity across disease domains.

54 Finally, our characterization of the neurocristic axis allowed the identification of
55 dosage-sensitive genes associated with craniofacial development²⁶, which is critically and

1 specifically affected in KS to the point of having originated its name. By placing the three
2 multipotent lineages (iPSC, NCSC, and MC) on a virtual temporal axis we found that KMT2D
3 haploinsufficiency resulted in subtle dysregulation that accumulated during development.
4 Interestingly, however, while in animal models KMT2D was shown to be necessary for NCSCs
5 formation and migration^{58,59}, we did not detect a major defect in this cell type, underscoring
6 the value of iPSC-based modeling for defining the developmental stages of human-specific
7 pathogenic significance.

8 In sum, our study elucidates across tissues then transcriptional and chromatin
9 alterations of KS1, uncovering a major functional phenotype in neurons and defining the
10 KMT2D dosage-dependent direct targets and intermediate effectors that underlie it. The
11 combination, in this ample disease modeling cohort, of endophenotypes that are highly
12 specific at the functional level and actionable at the molecular level, lays the foundation for
13 rational drug screening studies. Finally, considering the KS1 enhancer dysregulation in light
14 of the increasing relevance of long-range enhancer-promoter interactions¹⁰, future studies
15 should focus on unveiling the impact of KMT2D loss-of-function on 3D genome organization,
16 also in the context of the emerging potential of genome organization engineering for the
17 treatment of human diseases⁶⁰.

18 MATERIAL AND METHODS

19 Human samples

20 Participation in this study by patients and their relatives along with skin biopsy donations and
21 informed consent procedures were approved by the ethics committee of Casa Sollievo della
22 Sofferenza, San Giovanni Rotondo, Italy, protocol N.107/CE.

23 Cell culture

24 Mycoplasma tests were performed routinely. Fibroblasts were cultured in RPMI 1640, 15%
25 FBS , 1% L-Glutamine , 1% Penicillin-Streptomycin. Trypsin was used to passage fibroblasts.
26 iPSCs were cultured with TeSR™-E8™ (Stem cell technologies) in feeder-free conditions on
27 hES-qualified Matrigel (BD Biosciences) diluted 1:40. Three iPSCs clones were found
28 mycoplasma positive and cleaned with Mycoplasma Removal Agent (Euroclone) prior
29 differentiation. iPSCs were splitted with ReLSR (StemCell Technologies) or Accutase (Sigma)
30 when single cells needed, supplementing the medium with rock inhibitor 5 μ M Y-27632
31 (Sigma). NCSC were cultured following Menendez et al., 2013⁶¹. Cortical Neurons were
32 induced and cultured as described elsewhere²⁹ with minor modifications. Cortical neuron
33 maintenance was done with neurobasal medium fully complemented²⁹ and conditioned
34 overnight on mouse astrocytes, or with Neurobasal Plus (Thermoscientific).

35 Isogenic line generation by CRISPR/Cas9

36 Cell culture

37 hESC (MAN7_ctrl⁶², MAN7_KMT2D-) were grown on Vitronectin (Life Technologies) using
38 mTeSr1 medium (StemCELL Technologies). Cells were routinely passaged when 75-80%
39 confluent using 0.1% EDTA-PBS without Ca²⁺ and Mg and were cultured at 37°C in a
40 humidified 5% CO₂ incubator.

41 CRISPR-Cas9 gene editing

42 gRNAs (F: caccgCTATTGGTGAGAACACGGG; R: aaacCCCGTTGTTCTACCAATAGc)
43 were designed to target exon 48 of human KMT2D using the Benchling software and cloned
44 into pSpCas9(BB) vector. hESC cells (MAN7) were transfected with either KMT2D CRISPR-
45 Cas9 vector or CRISPR-Cas9 empty vector together with GFP plasmid using P3 Primary Cell
46 4D-Nucleofector X kit (V4XP-3024, Lonza). Three days after transfection, GFP+ cells were
47 sorted and plated on inactivated MEF cells. Colonies were then cut and passaged on feeder-

1 free culture for amplification and subsequent analysis. Correct mutations were confirmed by
2 Sanger sequencing.

3 **Dual SMAD differentiation protocol**

4 hESCs were grown on Vitronectin (ThermoFisher Scientific). At the start of the protocol
5 (adapted from ⁶³) on Day 0 cells were plated on Matrigel (Corning) and cultured using mTESR1
6 medium (StemCell Technologies) supplemented by FGF2 (10ng/ml). On Day 1 neuronal
7 differentiation was undertaken using neuronal induction medium supplemented by SMAD
8 signaling inhibitors, Noggin and SD43154. On Day 10 cells were passaged and plated on a
9 poly-l-ornithine and laminin (Sigma) substrate for neuronal maintenance and maturation. On
10 Day 12 small-elongated cells generate rosette structures resembling early neuronal tubes and
11 were propagated in culture using FGF2 (20ng/ml) for about 3 days. On Day 15-18 cells were
12 passaged using Dispase (StemCell Technologies) and plated on a poly-l-ornithine and laminin
13 substrate for neuronal maturation and cultured up to Day 31.
14 Cells used for RNAseq were sorted for CD44⁻ CD24⁺ and CD184⁺ for the progenitor stage at
15 Day 18 and for CD44⁻ CD24⁺ and CD184⁻ (BD Bioscience) for neurons at Day 31.

16

17 **Reprogramming into iPSCs**

18 Samples KS01, KS04, KS05, CTL_5, CTL_6, and CTL_7 were reprogrammed with self-
19 replicating mRNA Simplicon™ RNA Reprogramming Technology (Millipore) according to the
20 manufacturer's protocol. Clones were tested by RT-qPCR for mRNA reprogramming construct
21 removal ⁶⁴ after B18R withdrawal. Samples KAB_3 and KAB_7 were reprogrammed using
22 Sendai virus (CytoTune™-iPS 2.0 Sendai Reprogramming Kit, ThermoFisher Scientific)
23 according to the manufacturer's protocol. Sendai virus depletion was checked by RT-qPCR
24 according to manufacturer's instructions.

25 **SNP array**

26 All fibroblast samples and iPSCs clones were subjected to SNP array for detection of
27 genomic instability (Supplementary Table 2). High-resolution SNP-array analysis was carried
28 out by using the CytoScan HD array (Thermo Fisher Scientific, Waltham, MA, USA) as
29 previously described ⁶⁵. Data analysis was performed using the Chromosome Analysis Suite
30 Software version 4.1 (Thermo Fisher Scientific, Waltham, MA, USA) following a standardized
31 pipeline described in literature ⁶⁶. The clinical significance of each rearrangement detected
32 has been assessed following the American College of Medical Genetics (ACMG) guidelines.
33 Base pair positions, information about genomic regions and genes affected by copy number
34 variations (CNVs), and known associated disease have been derived from the University of
35 California Santa Cruz (UCSC) Genome Browser, build GRCh37 (hg19).

36

37 **iPSCs differentiation into NCSC, MCs, and cortical neurons**

38 NCSC differentiation was performed by treating iPSCs with small molecules GSK inhibitor and
39 SB431542 as already described and further differentiated into MCs ⁶¹. NCSC differentiation
40 was checked by fluorescence-activated cell sorting (FACS) using antibodies against NK-1 and
41 NGFR, as previously described ⁶⁷. MCs identity was verified by FACS analysis: CD44 (BD
42 pharmingen, cat. No. 560531) and CD73 (BD pharmingen, cat. No. 344015) as previously
43 described ⁶⁷.

44 **iPSCs differentiation into cortical neurons – iNeuron protocol**

45 Cortical excitatory neurons were obtained by *Ngn2* overexpression in iPSCs. Pluripotent cells
46 were engineered using an all-in-one ePiggyBac (ePB) transposon. We cloned the sequence
47 of *Ngn2* – P2A – EGFP – T2A – PuroR ²⁹ sequence into an ePB backbone containing a

1 blasticidin resistance cassette and doxycycline responsive element under the control of hUbC
2 promoter ³⁰. iPSCs were electroporated with the Neon system (ThermoFisher) with the
3 following parameters: 1200V, 30 ms, 1 pulse using 0,5 µg of a helper plasmid expressing a
4 transposase and 4,5 µg of donor plasmid with a transposable element. Electroporated cells
5 were plated in presence of rock inhibitor 5 µM Y-27632 (Sigma). To isolate stably engineered
6 lines, from the day following electroporation, cells were selected by the administration of
7 blasticidin 5µg/mL. Neuronal differentiation was achieved by *Ngn2* overexpression, driven by
8 doxycycline administration. Differentiation was performed as already described with minor
9 modifications ³². Neuronal maturation was protracted up to five weeks. Stainings on neurons
10 were performed using coverslips nitric acid-treated and coated overnight with poly-L-Lysine at
11 37°C, following human laminin coating (LN511-02 Biolamina), 3 hours at 4°C.

12 **Immuno-fluorescence stainings**

13 Prior RNAseq, Pluripotency of reprogrammed samples was addressed by TRA-1-60 live-cell
14 imaging DyLight 488 conjugated (Stemgent, 09-0068), and NANOG (Everest Biotech,
15 EB06860) in fixed cells. Stainings on fixed cells were performed as follows. Samples were
16 washed with PBS and treated for 10 minutes with 4% Paraformaldehyde/4% sucrose, washed
17 twice with PBS, and permeabilized with 0.2% Triton X-100 in PBS. One hour of blocking was
18 performed in serum matched with secondary antibody specie. Following PBS washing,
19 samples were incubated 2 hours at room temperature or overnight at 4°C with the primary
20 antibody diluted in blocking buffer. Primary antibodies were removed by washing three times
21 with PBS, and secondary antibodies were incubated for 1 hour at room temperature.
22 Secondary antibodies were washed out with PBS. Samples were then treated for five minutes
23 with DAPI, washed with water, and mounted on cover slides with Moviol mounting medium.
24 Neuronal stainings were performed using, MAP2B (Abcam, Ab32454) and Ankyrin-G
25 (N106/36, Millipore, MABN466).

26 **Protein extraction and immunoblotting**

27 RIPA buffer (150 mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate, Protease inhibitor
28 cocktail (Sigma), 0.1% SDS and 50 mM Tris, pH 8.0) was used to lysate cells. Lysates were
29 sonicated using the Bioruptor Sonication System (UCD200) for three cycles of 30 seconds at
30 high power with 30 seconds pauses and centrifuged at 13,000g for 15 min. Bradford protein
31 assay (Bio-Rad) was employed to quantify proteins. SDS-PAGE for histone modifications was
32 performed loading 20–40 µg of protein extracts in home-made 10% polyacrylamide gels.
33 Protein transfer was performed for 1 hour at 120V onto nitrocellulose membranes, which were
34 blocked in 5% milk-TBS-T (50 mM Tris, pH 7.5, 150 mM NaCl, and 0.2% Tween-20).
35 Antibodies were diluted in blocking buffer. Protein signal was quantified using the Odyssey
36 Infrared Imaging System (LI-COR Biosciences). Densitometry was performed using ImageJ⁶⁸.
37 Secondary antibodies were α-rabbit IRdye680LT and α-mouse IRdye800LT (LI-COR
38 Biosciences).

39 **RNAseq analysis**

40 Expression levels for each RNAseq experiment were measured by quantifying reads with
41 Salmon 1.0 quasi-mapping approach on a hg38 human transcriptome as done previously ²⁶.
42 Differential expression analysis (DEA) was performed with edgeR using the edg1 function
43 described in (BAZ1B ref) when dealing with less than 3 individuals per genotype, edg2 was
44 used in the other conditions. In the iPSC case, we aggregated reads, by sum, by individual, to
45 obtain the 3 vs 3 setting described in the results section.

46 Neurocristic Axis DEA. To identify genes which activation or downregulation along
47 development failed we separated iPSC, NSCS, and MC data by genotype, creating two
48 separate RNAseq datasets. Then we performed a DEA using edg2, with ~individual+celltype

1 as model matrix. This allowed measuring gene expression fold-changes going from iPSC to
2 MC. First, we identified genes whose expression changed along NCA only in KS1 lines
3 (showing $FC \leq 1.5$ and $FDR \geq 0.25$ in CTL lines; Fig.4B). Failed up-regulation was identified
4 for genes whose FC was significantly positive ($FDR \leq 0.05$, and $FC \geq 1.5$) along the
5 Neurocristic Axis (NCA) in CTL lines, while having a positive FC and $FDR \geq 0.25$, neutral or
6 negative FC in KS1 lines (Fig.4C). Failed downregulation was identified for genes who had
7 opposite behavior (significant negative FC in CTL, n.s. positive, neutral, or positive FC in KS1;
8 Fig4D).

9 Cerebral Brain Organoids single-cell data analysis: Raw data was aligned with CellRanger
10 v3.0 and only barcodes of cells that were assigned to one of the 15 cell-types identified in the
11 original paper were retained. First, we aggregated counts by individual, excluding the
12 “unknown” and “choroid” clusters. Taking into account gene-signatures and cluster
13 coordinates into the UMAP of the original paper, we built 3 individual-specific mini-bulk
14 datasets by summing read-counts of i) cluster 0,1, and 5 (Neurons and Early Neurons), ii)
15 cluster 2,4,7,12 (Intermediate Progenitors and Outer Radial Glia) and iii) cluster 8,13,14
16 (Radial Glia). Thus, we obtained a dataset with 4 biological replicates of 3 virtual
17 developmental stages. DEA analysis was performed using edg2, testing different stages as
18 factors and correcting by individual (~individual+stage).

19 **ChIPseq epigenomic analysis**

20 ChIPseq was performed as previously described ¹³. Briefly, Chromatin cross-linking was
21 performed using 1% formaldehyde in PBS and quenched adding glycine to the final
22 concentration of 125mM. Cells were collected with ChIP SDS buffer (0.5% SDS, 5 mM EDTA,
23 100mM NaCl and 50 mM Tris-HCl at pH 8.1), centrifuged 400g for 30 min and resuspended
24 in IP buffer (0.5% SDS, 5 mM EDTA, 100mM NaCl and 50 mM Tris-HCl at pH 8.6, 1,5% Triton
25 X-100). Chromatin was sonicated with Branson digital sonifier (Emerson Industrial
26 Automation) to obtain bulk DNA fragments of 300 bp. Chromatin for ChIP was quantified using
27 Bradford protein assay (Bio-Rad). Immunoprecipitations were performed using 100 µg of
28 chromatin. Antibodies used were: Ab8580 (H3K4me3), Ab8895 (H3K4me1), Ab4729
29 (H3K27ac), 9733B (H3K27me3). Libraries were prepared as already described ⁶⁹ with
30 adaptations for the automated system Biomek FX.

31 We performed ChIPseq reads alignment on the human hg38 genome using Bowtie 1.0 (-v 2 -
32 m 1). Peak calling was performed with MACS2, using broad parameters (--broad --broad-cutoff
33 0.1 -q 0.1). To perform ChIPseq quantitative analysis, including PCA, we selected the peaks
34 of each mark identified in at least two samples (independently of their genotype) and measure
35 read-counts per peak in each sample with DeepTools multiBamSummary. On the resulting
36 count data, we performed differential analysis with edgeR, normalizing on library size (number
37 of reads mapped on the entire genome per samples), as previously described (ref BAZ1B).
38 Differentially marked locations passing $p=0.05$ and $FC=1.5$ thresholds were considered
39 significant in all tissues but fibroblasts and mature neurons, where we could found the largest
40 differences by genotype, and we applied an $FDR=0.05$ significance threshold. To perform
41 qualitative analyses we grouped i) peaks found in all samples of a certain genotype (e.g. KS1),
42 that were present in at most 1 sample of the other genotype with ii) peaks found in at least $n-1$
43 samples of a certain genotype and not present in any of the other genotype samples. Both
44 groupings were performed with BedTools (version 2.26) multilIntersect function.

45 **Roadmap Epigenomics comparison**

46 We selected representative tissues and gathered all peaks passing FDR 0.1, for all marks,
47 excluding those showing less than 500 peaks in a certain cell type. Specifically, we used

1 E126 to compare with dermal fibroblasts, E003 for iPSC, E007 for NPC, E009 for neuronal
2 progenitors, E071 for cortical neurons.

3 **Identification of regulatory regions**

4 Promoters were defined as regions laying at -500/+250bp distance from transcription start
5 sites (TSS). Enhancers were defined as regions showing H3K4me1 and H3K27ac signals,
6 missing H3K27me3 and H3K4me3 signals devoid of TSS, as previously published ²⁶ when in-
7 house data or Roadmap Epigenomics ⁷⁰ data were available, or downloaded from 4DGenome
8 ⁷¹ and Psychencode ⁷², as indicated in the text.

9 **Identification of super-enhancers**

10 Super-enhancers were identified following the ROSE code. We identified KS1 and CTL
11 specific super-enhancers by selecting those found in all samples of each genotype, and then
12 identified overlaps and enrichments by intersecting them with a set of super-enhancers found
13 in at least two samples (independently of their genotype). Genes were associated with super-
14 enhancers if their promoter was included or their enhancers were intersecting SE locations
15 ^{73,74}.

16 iNeurons super-enhancers definition: First, we relied on the ROSE pipeline as per the other
17 tissues, to label H3K27ac regions in each sample as classic “enhancer” and “super-enhancer”.
18 CTL-specific super-enhancers (CTL SuperEnh) were initially defined as regions called “super-
19 enhancer” in at least 2 CTL samples (n-1), while KS1-specific ones (KS1 SuperEnh) were
20 similarly defined as regions called “super-enhancer” in at least 3 KS1 (n-1) samples. Then we
21 associated genes with CTL- and KS1-superenhancers, and removed genes spuriously
22 associated with both groups.

23 **CUT&RUN and CUT&TAG**

24 CUT&RUN and CUT&TAG were performed as previously described ^{40,41} with minor
25 modifications. In particular, CUT&TAG in neuronal samples was performed by dissociating
26 neuronal culture with Accutase for 10 minutes followed by vigorous mechanical dissociation.
27 Clumps were removed with a cell strainer and samples were centrifuged at 100g to remove
28 debris, and at 200g to isolate the pellet enriched for nuclei. KMT2D antibody was donated by
29 Kai Ge. CUT&RUN reads were aligned with Bowtie2 v2.2.5 as in ^{40,41}. Peak calling has been
30 performed with Seacr 1.1 using relaxed threshold against IgG.

31 **Differential expression analyses**

32 Differential expression analyses (DEA) were performed with EdgeR ⁷⁵ with the parameter
33 “estimateGLMRobustDisp”, taking into account genotypes, sex, family (when possible), and
34 batches when present. Gene ontology analyses were performed by Goseq ⁷⁶, Ingenuity
35 pathway analysis (IPA, Qiagen), and the online tool webgestalt¹, which permits to load a
36 custom universe of genes as background (taking in account the expressed genes for each
37 specific cell type) selecting Over-Representation Analysis.

38 **Microelectrode arrays recordings and neuronal network analysis**

39 **Neuronal differentiation**

40 Eight iPSCs (4 lines reprogrammed from somatic cells of healthy subjects and 4 lines from
41 KS1 patients) were directly derived into upper-layer excitatory cortical neurons by
42 overexpressing the neuronal determinant neurogenin 2 (*Ngn2*) upon doxycycline treatment.
43 The derived neurons were plated onto MEAs or glass coverslips pre-coated with adhesion-
44 promoting factors (50 µg/mL Poly-L-Ornithine and 20 µg/mL Laminin) at a final density of 100

¹ <http://www.webgestalt.org>

1 and 600 cells/mm² respectively. Two days after plating, glia cells were also added to the
2 culture at the same density. Differentiation was completed as described above.

3 **Morphology analysis**

4 Cells plated on coverslips were transfected with plasmids housing Discosoma species red
5 (dsRED) fluorescent protein 7 days after plating. After 23 days *in vitro*, cells plated on cover
6 slips were fixed and mounted for imaging. Neurons were imaged using an Axio Imager Z1 with
7 568nm laser light and a Axiocam 506 mono. Neurons were digitally reconstructed using
8 Neurolucida 360 software (MBF–Bioscience, Williston, ND, USA).

9 **Micro-electrode array recordings**

10 Recordings of the spontaneous activity of hiPSCs-derived neuronal networks were performed
11 during the fifth week *in vitro*. All recordings were performed using the 24-well MEA system
12 (Multichannel Systems, MCS GmbH, Reutlingen, Germany). MEAs devices are composed by
13 24 independent wells with embedded micro-electrodes (i.e. 12 electrodes/well, 80 µm in
14 diameter and spaced 300 µm apart). Spontaneous electrophysiological activity of hiPSC-
15 derived neuronal network grown on MEAs was recorded for 20 min. During the recording, the
16 temperature was maintained constant at 37 °C, and the evaporation and pH changes of the
17 medium was prevented by inflating a constant, slow flow of humidified gas (5% CO₂, 20% O₂,
18 75% N₂) onto the MEA. The signal was sampled at 10 KHz, filtered with a high-pass filter (i.e.
19 butterworth, 100 Hz cutoff frequency) and the noise threshold was set at ±4.5 standard
20 deviations. Data analysis was performed off-line by using a custom software package named
21 SPYCODE2 developed in MATLAB (The Mathworks, Natick, MA, USA), which allows the
22 extraction of parameters describing the network activity.

23 **Data Availability**

24 Quantified gene expression information from the RNAseq data, as described in the 'gene
25 expression' heading, is available in the ArrayExpress database under accession number E-
26 MTAB-10244. Additional intermediate data (such as tables of differential expression analysis,
27 differentially marked genes, GO enrichments) can be found in Supplementary table 1.

28 **Acknowledgments**

29 This work was funded by the Telethon Foundation (grant number GGP13231B to G.T. and
30 GGP13231A to G.M.), the EPIGEN Flagship Project of the Italian National Research Council
31 (to G.T.), the European Research Council (consolidator grant number 616441-
32 DISEASEAVATARS to G.T.), the Horizon 2020 Innovative Training Network EpiSyStem (to
33 G.T.), Ricerca Corrente granted by the Italian Ministry of Health (to G.T., G.M., and M.C.)
34 Giovani Ricercatori granted by the Italian Ministry of Health (to G.T.), Fondazione Umberto
35 Veronesi (to P.-L.G.), Associazione Italiana per la Ricerca sul Cancro (investigator grant to
36 G.T. and AIRC "Fellowships for Italy" to M.G.), the Foundation IEO-CCM (fellowship to A.V.),
37 EMBO (EMBO Short-Term Fellowship ASTF 613-2016 to M.G), the Umberto Veronesi
38 Foundation (P.-L.G.), the Italian Ministry of Health (ERANET-Neuron grant to P.-L.G. and
39 Ricerca Corrente grant to G.T.). This work was supported by the Netherlands Organization for
40 Health Research and Development ZonMw grant 91217055 (to H.v.B and N.N.K), E-Rare
41 IMPACT consortium (G.T and H.v.B) and from the Simons Foundation (SFARI grant 610264
42 to N.N.K.). This research was funded by the Italian Ministry of Health, Jerome Lejeune
43 Foundation, and Daunia Plast to G.M. S.B., S.J.K., C.M. and N.S. acknowledge the support
44 of Newlife Charity (Grant reference 16-17/10) and Manchester University Hospitals NHS
45 Foundation Trust, Kabuki Research Fund no. 629396. We thank the Genomic Technologies
46 Core facility and Ian Donaldson from the Bioinformatic Core facility at the University of
47 Manchester. We thank Kai Ge (National Institutes of Health, Bethesda, MD 20892, USA.) for
48 sending KMT2D antibody as a gift. We are grateful to the Genomic Disorder Biobank and

1 Telethon Network of Genetic Biobanks (Telethon Italy grant GTB12001G) and EuroBioBank
2 (EBB) Network for banking of biospecimens and AISK (Associazione Italiana Sindrome
3 Kabuki) for continue inspiration.

4

5 **Authors contribution**

6 M.G. initiated this project, performed fibroblast culture, human iPSCs reprogramming, iPSCs
7 differentiation into NCSCs, MCs. Engineered the iPSCs with *Ngn2* ePB vector and
8 differentiation into *Ngn2* neurons, stainings for neuronal network reconstructions and MEA
9 recordings. Performed all the immunostainings and characterization of all cell types, western
10 blotting, and performed transcriptomic and genomic experiments in all the mentioned cell
11 types and participated in data analysis. A.V. performed bioinformatics analysis of
12 transcriptomic and epigenomic data of all aforementioned cell types, plus blood samples, dual
13 SMAD samples, devised and supervised further bioinformatic analyses conducted by D.
14 Castaldi and D. Capocefalo. S.C. produced the isogenic line and performed differentiation of
15 dual SMAD neurons and their RNAseq library preparation. M.F.P and C.F. contributed to cell
16 culture and cell differentiation of iPSCs, and M.F.P contributed to imaging and figure drawing.
17 PL. G. initiated the bioinformatic analysis, and supervised A.V. during the first half of the
18 project. D. Castaldi implemented CUT&RUN and CUT&Tag pipelines and genomics data
19 analyses. D. Capocefalo performed re-analysis of scRNAseq of cortical brain organoids. E.T.
20 contributed to line management and NGS library preparation. N.B.B. contributed to neuronal
21 architecture analysis. M.F. and N.B.B. completed MEA recordings and analyzed MEA data.
22 H.V.B., T.KL., C.S., and T.K. provided blood samples data. G.M. coordinates Telethon biobank
23 and provided fibroblasts biopsies. N.M and G.M.S. prepared the biopsies samples for shipping
24 to Milan. M.C and O.P. performed and analyzed SNP arrays in fibroblasts and iPSCs lines.
25 N.N.K. supervised electrophysiological recordings and analyzed their data. S.B. and S.J.K.
26 conceived, and along with, C.M. and N.S. designed the hESC part of the study. S.B. and S.J.K.
27 supervised isogenic line production and dual SMAD differentiation and RNASeq data
28 generation. G.T. supervised the whole study. M.G. and A.V. equally contributed. G.T. and G.M
29 conceived the preliminary draft of the study, G.T., M.G., and A.V. conceived the study,
30 interpreted data, and drafted the manuscript. All authors contributed to the final manuscript.

31

32 **REFERENCES**

33

- 34 1. Adam, M. P. *et al.* Kabuki syndrome: international consensus diagnostic criteria. *J. Med. Genet.* **56**, 89–95 (2019).
- 35 2. Ng, S. B. *et al.* Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. *Nat. Genet.* **42**, 790–793 (2010).
- 36 3. Banka, S. *et al.* Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2). *Clin. Genet.* **87**, 252–258 (2015).
- 37 4. Miyake, N. *et al.* KDM6A point mutations cause Kabuki syndrome. *Hum. Mutat.* **34**, 108–110 (2013).

- 1 5. Lee, J.-E. *et al.* H3K4 mono- and di-methyltransferase MLL4 is required for enhancer
- 2 activation during cell differentiation. *eLife* **2**, e01503 (2013).
- 3 6. Agger, K. *et al.* UTX and JMJD3 are histone H3K27 demethylases involved in *HOX* gene
- 4 regulation and development. *Nature* **449**, 731–734 (2007).
- 5 7. Lan, F. *et al.* A histone H3 lysine 27 demethylase regulates animal posterior development.
- 6 *Nature* **449**, 689–694 (2007).
- 7 8. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene
- 8 expression control. *Nat. Rev. Genet.* **1** (2019) doi:10.1038/s41576-019-0128-0.
- 9 9. Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how and why? *Mol. Cell*
- 10 **49**, (2013).
- 11 10. Brandão, H. B., Gabriele, M. & Hansen, A. S. Tracking and interpreting long-range
- 12 chromatin interactions with super-resolution live-cell imaging. *Curr. Opin. Cell Biol.* **70**, 18–
- 13 26 (2020).
- 14 11. Gabriele, M., Lopez Tobon, A., D'Agostino, G. & Testa, G. The chromatin basis of
- 15 neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal
- 16 axes. *Prog. Neuropsychopharmacol. Biol. Psychiatry* (2018)
- 17 doi:10.1016/j.pnpbp.2017.12.013.
- 18 12. Mossink, B., Negwer, M., Schubert, D. & Nadif Kasri, N. The emerging role of chromatin
- 19 remodelers in neurodevelopmental disorders: a developmental perspective. *Cell. Mol. Life*
- 20 *Sci.* (2020) doi:10.1007/s00018-020-03714-5.
- 21 13. Gabriele, M. *et al.* YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome
- 22 Featuring Transcriptional and Chromatin Dysfunction. *Am. J. Hum. Genet.* **100**, 907–925
- 23 (2017).
- 24 14. Weintraub, A. S. *et al.* YY1 Is a Structural Regulator of Enhancer–Promoter Loops. *Cell*
- 25 **171**, 1573–1588.e28 (2017).
- 26 15. Sá, M. J. N., Gabriele, M., Testa, G. & Vries, B. B. de. *Gabriele-de Vries Syndrome*.
- 27 (University of Washington, Seattle, 2019).

- 1 16. Dorighi, K. M. *et al.* *MII3 and MII4 Facilitate Enhancer RNA Synthesis and Transcription*
2 *from Promoters Independently of H3K4 Monomethylation.* *Molecular Cell* vol. 66 (2017).
- 3 17. Rickels, R. *et al.* Histone H3K4 monomethylation catalyzed by Trr and mammalian
4 COMPASS-like proteins at enhancers is dispensable for development and viability. *Nat.*
5 *Genet.* (2017) doi:10.1038/ng.3965.
- 6 18. Vandamme, J. *et al.* The C. elegans H3K27 Demethylase UTX-1 Is Essential for Normal
7 Development, Independent of Its Enzymatic Activity. *PLoS Genet.* 8, e1002647 (2012).
- 8 19. Yoo, K. H. *et al.* Histone Demethylase KDM6A Controls the Mammary Luminal Lineage
9 through Enzyme-Independent Mechanisms. *Mol. Cell. Biol.* 36, 2108–20 (2016).
- 10 20. Wang, S.-P. *et al.* A UTX-MLL4-p300 Transcriptional Regulatory Network Coordinately
11 Shapes Active Enhancer Landscapes for Eliciting Transcription. *Mol. Cell* 67, 308-321.e6
12 (2017).
- 13 21. Bjornsson, H. T. *et al.* Histone deacetylase inhibition rescues structural and functional
14 brain deficits in a mouse model of Kabuki syndrome. *Sci. Transl. Med.* 6, 256ra135 (2014).
- 15 22. Germain, P.-L. & Testa, G. Taming Human Genetic Variability: Transcriptomic Meta-
16 Analysis Guides the Experimental Design and Interpretation of iPSC-Based Disease
17 Modeling. *Stem Cell Rep.* 8, 1784–1796 (2017).
- 18 23. Pott, S. & Lieb, J. D. What are super-enhancers? *Nat. Genet.* 47, 8–12 (2015).
- 19 24. Banka, S. *et al.* How genetically heterogeneous is Kabuki syndrome?: MLL2 testing in 116
20 patients, review and analyses of mutation and phenotypic spectrum. *Eur. J. Hum. Genet.*
21 *EJHG* 20, 381–388 (2012).
- 22 25. Dupin, E., Calloni, G. W., Coelho-Aguiar, J. M. & Le Douarin, N. M. The issue of the
23 multipotency of the neural crest cells. *Dev. Biol.* 444 Suppl 1, S47–S59 (2018).
- 24 26. Zanella, M. *et al.* Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a
25 major human gene patterning the modern human face and underlying self-domestication.
26 *Sci. Adv.* 5, (2019).
- 27 27. Pilarowski, G. O. *et al.* Missense variants in the chromatin remodeler CHD1 are associated
28 with neurodevelopmental disability. *J. Med. Genet.* 55, 561–566 (2018).

1 28. Niikawa, N., Matsuura, N., Fukushima, Y., Ohsawa, T. & Kajii, T. Kabuki make-up
2 syndrome: a syndrome of mental retardation, unusual facies, large and protruding ears,
3 and postnatal growth deficiency. *TL* - 99. *J. Pediatr.* **99** VN-r, 565–569 (1981).

4 29. Zhang, Y. *et al.* Rapid single-step induction of functional neurons from human pluripotent
5 stem cells. *TL* - 78. *Neuron* **78** VN-r, 785–798 (2013).

6 30. Cavallo, F. *et al.* High-throughput screening identifies histone deacetylase inhibitors that
7 modulate GTF2I expression in 7q11.23 microduplication autism spectrum disorder
8 patient-derived cortical neurons. *Mol. Autism* **11**, 88 (2020).

9 31. Fardet, T., Ballandras, M., Bottani, S., Métens, S. & Monceau, P. Understanding the
10 Generation of Network Bursts by Adaptive Oscillatory Neurons. *Front. Neurosci.* **12**,
11 (2018).

12 32. Frega, M. *et al.* Neuronal network dysfunction in a model for Kleefstra syndrome mediated
13 by enhanced NMDAR signaling. *Nat. Commun.* **10**, 4928 (2019).

14 33. Tripathy, S. J. *et al.* Transcriptomic correlates of neuron electrophysiological diversity.
15 *PLoS Comput. Biol.* **13**, e1005814 (2017).

16 34. Lin, K. C., Park, H. W. & Guan, K.-L. Regulation of the Hippo Pathway Transcription Factor
17 TEAD. *Trends Biochem. Sci.* **42**, 862–872 (2017).

18 35. Kaneko, K. J. & DePamphilis, M. L. Regulation of gene expression at the beginning of
19 mammalian development and the TEAD family of transcription factors. *Dev. Genet.* **22**,
20 43–55 (1998).

21 36. Ziller, M. J. *et al.* Dissecting neural differentiation regulatory networks through epigenetic
22 footprinting. *Nature* **518**, 355–359 (2015).

23 37. Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. C. & Livesey, F. J. Human cerebral cortex
24 development from pluripotent stem cells to functional excitatory synapses. *Nat. Neurosci.*
25 **15**, 477–486, S1 (2012).

26 38. López-Tobón, A. *et al.* Human Cortical Organoids Expose a Differential Function of GSK3
27 on Cortical Neurogenesis. *Stem Cell Rep.* **13**, 847–861 (2019).

1 39. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-Changing Landscapes: Transcriptional
2 Enhancers in Development and Evolution. *Cell* **167**, 1170–1187 (2016).

3 40. Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted *in situ* genome-wide profiling with
4 high efficiency for low cell numbers. *Nat. Protoc.* **13**, 1006–1019 (2018).

5 41. Kaya-Okur, H. S. *et al.* CUT&Tag for efficient epigenomic profiling of small samples and
6 single cells. *Nat. Commun.* **10**, 1–10 (2019).

7 42. Kim, H. & Kim, Y.-M. Pan-cancer analysis of somatic mutations and transcriptomes
8 reveals common functional gene clusters shared by multiple cancer types. *Sci. Rep.* **8**,
9 (2018).

10 43. Ler, L. D. *et al.* Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional
11 repression in bladder cancer and can be targeted through inhibition of EZH2. *Sci. Transl.
12 Med.* **9**, (2017).

13 44. Liu, Y., Sun, J. & Zhao, M. ONGene: A literature-based database for human oncogenes.
14 *J. Genet. Genomics Yi Chuan Xue Bao* **44**, 119–121 (2017).

15 45. Zhao, M., Kim, P., Mitra, R., Zhao, J. & Zhao, Z. TSGene 2.0: an updated literature-based
16 knowledgebase for tumor suppressor genes. *Nucleic Acids Res.* **44**, D1023–D1031
17 (2016).

18 46. Ang, S.-Y. *et al.* KMT2D regulates specific programs in heart development via histone H3
19 lysine 4 di-methylation. *Dev. Camb. Engl.* **143**, 810–21 (2016).

20 47. Shpargel, K. B., Starmer, J., Wang, C., Ge, K. & Magnuson, T. UTX-guided neural crest
21 function underlies craniofacial features of Kabuki syndrome. *Proc. Natl. Acad. Sci.* **114**,
22 E9046–E9055 (2017).

23 48. Suresh, J. *et al.* Network burst activity in hippocampal neuronal cultures: the role of
24 synaptic and intrinsic currents. *J. Neurophysiol.* **115**, 3073–3089 (2016).

25 49. Rickels, R. *et al.* Histone H3K4 monomethylation catalyzed by Trr and mammalian
26 COMPASS-like proteins at enhancers is dispensable for development and viability. *Nat.
27 Genet.* (2017) doi:10.1038/ng.3965.

1 50. Koemans, T. S. *et al.* Functional convergence of histone methyltransferases EHMT1 and
2 KMT2C involved in intellectual disability and autism spectrum disorder. *PLoS Genet.* **13**,
3 (2017).

4 51. Faundes, V. *et al.* Histone Lysine Methylases and Demethylases in the Landscape of
5 Human Developmental Disorders. *Am. J. Hum. Genet.* **102**, 175–187 (2018).

6 52. O'Donnell-Luria, A. H. *et al.* Heterozygous Variants in KMT2E Cause a Spectrum of
7 Neurodevelopmental Disorders and Epilepsy. *Am. J. Hum. Genet.* **104**, 1210–1222
8 (2019).

9 53. Choufani, S. *et al.* DNA Methylation Signature for EZH2 Functionally Classifies Sequence
10 Variants in Three PRC2 Complex Genes. *Am. J. Hum. Genet.* **106**, 596–610 (2020).

11 54. Fasciani, A. *et al.* MLL4-associated condensates counterbalance Polycomb-mediated
12 nuclear mechanical stress in Kabuki syndrome. *Nat. Genet.* **52**, 1397–1411 (2020).

13 55. Yuan, Y. *et al.* YAP1/TAZ-TEAD transcriptional networks maintain skin homeostasis by
14 regulating cell proliferation and limiting KLF4 activity. *Nat. Commun.* **11**, 1472 (2020).

15 56. Bossi, D. *et al.* In Vivo Genetic Screens of Patient-Derived Tumors Revealed Unexpected
16 Frailty of the Transformed Phenotype. *Cancer Discov.* **6**, 650–663 (2016).

17 57. Kandoth, C. *et al.* Mutational landscape and significance across 12 major cancer types.
18 *Nature* **502**, 333–339 (2013).

19 58. Schwenty-Lara, J., Nehl, D. & Borchers, A. The histone methyltransferase KMT2D,
20 mutated in Kabuki syndrome patients, is required for neural crest cell formation and
21 migration. *Hum. Mol. Genet.* **29**, 305–319 (2020).

22 59. Shpargel, K. B., Mangini, C. L., Xie, G., Ge, K. & Magnuson, T. The KMT2D Kabuki
23 syndrome histone methylase controls neural crest cell differentiation and facial
24 morphology. *Development* **147**, (2020).

25 60. Wang, H., Han, M. & Qi, L. S. Engineering 3D genome organization. *Nat. Rev. Genet.* 1–
26 18 (2021) doi:10.1038/s41576-020-00325-5.

27 61. Menendez, L. *et al.* Directed differentiation of human pluripotent cells to neural crest stem
28 cells. TL - 8. *Nat. Protoc.* **8** VN-re, 203–212 (2013).

- 1 62. Cheng, A. *et al.* Cartilage repair using human embryonic stem cell-derived
- 2 chondroprogenitors. *Stem Cells Transl. Med.* **3**, 1287–1294 (2014).
- 3 63. Shi, Y., Kirwan, P. & Livesey, F. J. Directed differentiation of human pluripotent stem cells
- 4 to cerebral cortex neurons and neural networks. *Nat. Protoc.* **7**, 1836–1846 (2012).
- 5 64. Yoshioka, N. *et al.* Efficient generation of human iPSCs by a synthetic self-replicative
- 6 RNA. *Cell Stem Cell* **13**, 246–254 (2013).
- 7 65. Palumbo, O. *et al.* TBR1 is the candidate gene for intellectual disability in patients with a
- 8 2q24.2 interstitial deletion. *Am. J. Med. Genet. A.* **164A**, 828–833 (2014).
- 9 66. Palumbo, O. *et al.* A Private 16q24.2q24.3 Microduplication in a Boy with Intellectual
- 10 Disability, Speech Delay and Mild Dysmorphic Features. *Genes* **11**, (2020).
- 11 67. Adamo, A. *et al.* 7q11.23 dosage-dependent dysregulation in human pluripotent stem cells
- 12 affects transcriptional programs in disease-relevant lineages TL - 47. *Nat. Genet.* **47** VN-
- 13 r, 132–41 (2015).
- 14 68. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image
- 15 analysis. *Nat. Methods* **9**, 671–675 (2012).
- 16 69. Blecher-Gonen, R. *et al.* High-throughput chromatin immunoprecipitation for genome-wide
- 17 mapping of in vivo protein-DNA interactions and epigenomic states. *Nat. Protoc.* **8**, 539–
- 18 554 (2013).
- 19 70. Kundaje, A. *et al.* Integrative analysis of 111 reference human epigenomes. *Nature* **518**,
- 20 317–330 (2015).
- 21 71. Dekker, J. *et al.* The 4D nucleome project. *Nature* **549**, 219–226 (2017).
- 22 72. Akbarian, S. *et al.* The PsychENCODE project. *Nat. Neurosci.* **18**, 1707–1712 (2015).
- 23 73. Whyte, W. A. *et al.* Master Transcription Factors and Mediator Establish Super-Enhancers
- 24 at Key Cell Identity Genes. *Cell* **153**, 307–319 (2013).
- 25 74. Lovén, J. *et al.* Selective Inhibition of Tumor Oncogenes by Disruption of Super-
- 26 Enhancers. *Cell* **153**, 320–334 (2013).

1 75. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
2 differential expression analysis of digital gene expression data. *Bioinforma. Oxf. Engl.* **26**,
3 139–40 (2010).

4 76. Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for
5 RNA-seq: accounting for selection bias. *Genome Biol.* **11**, R14 (2010).

6

7

8

9

10

11

12

13

14

15

16

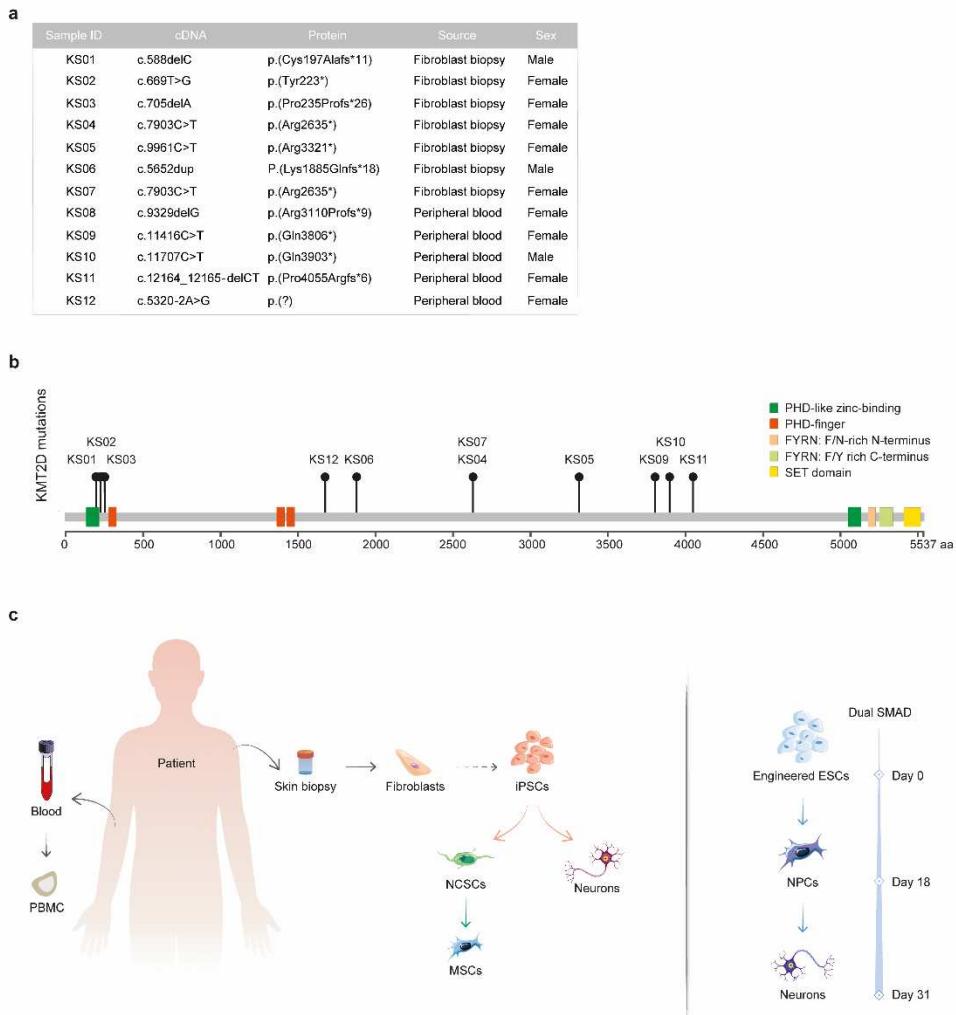
17

18

19

20

21

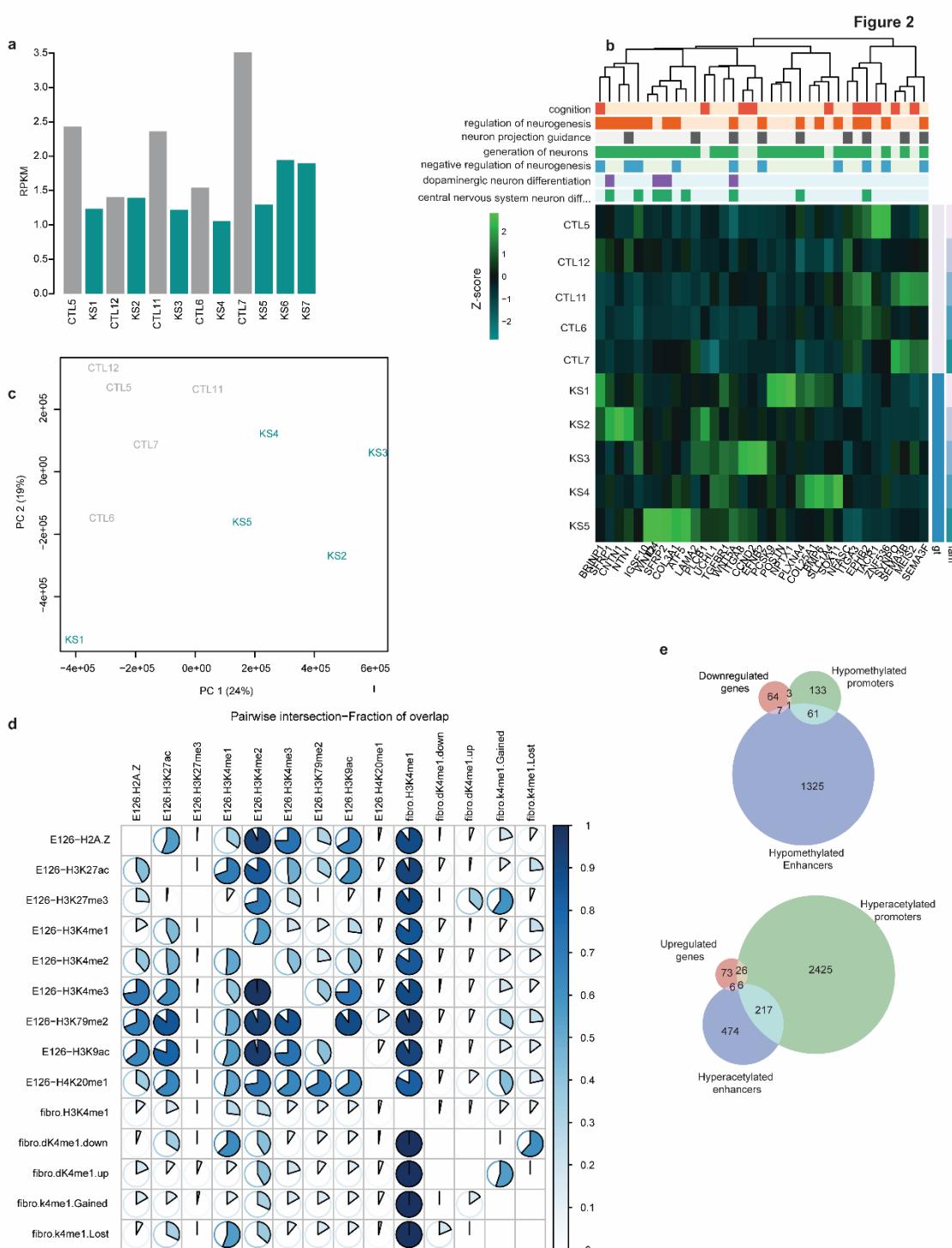

22

23

24

1 FIGURES

Figure 1



2

3 Fig.1

4 A) List of KMT2D mutations in KS1 individuals ([NM_003482](#)).
 5 B) Depiction of cohort mutations positions along *KMT2D*.
 6 C) Schematic drawing of our experimental design.

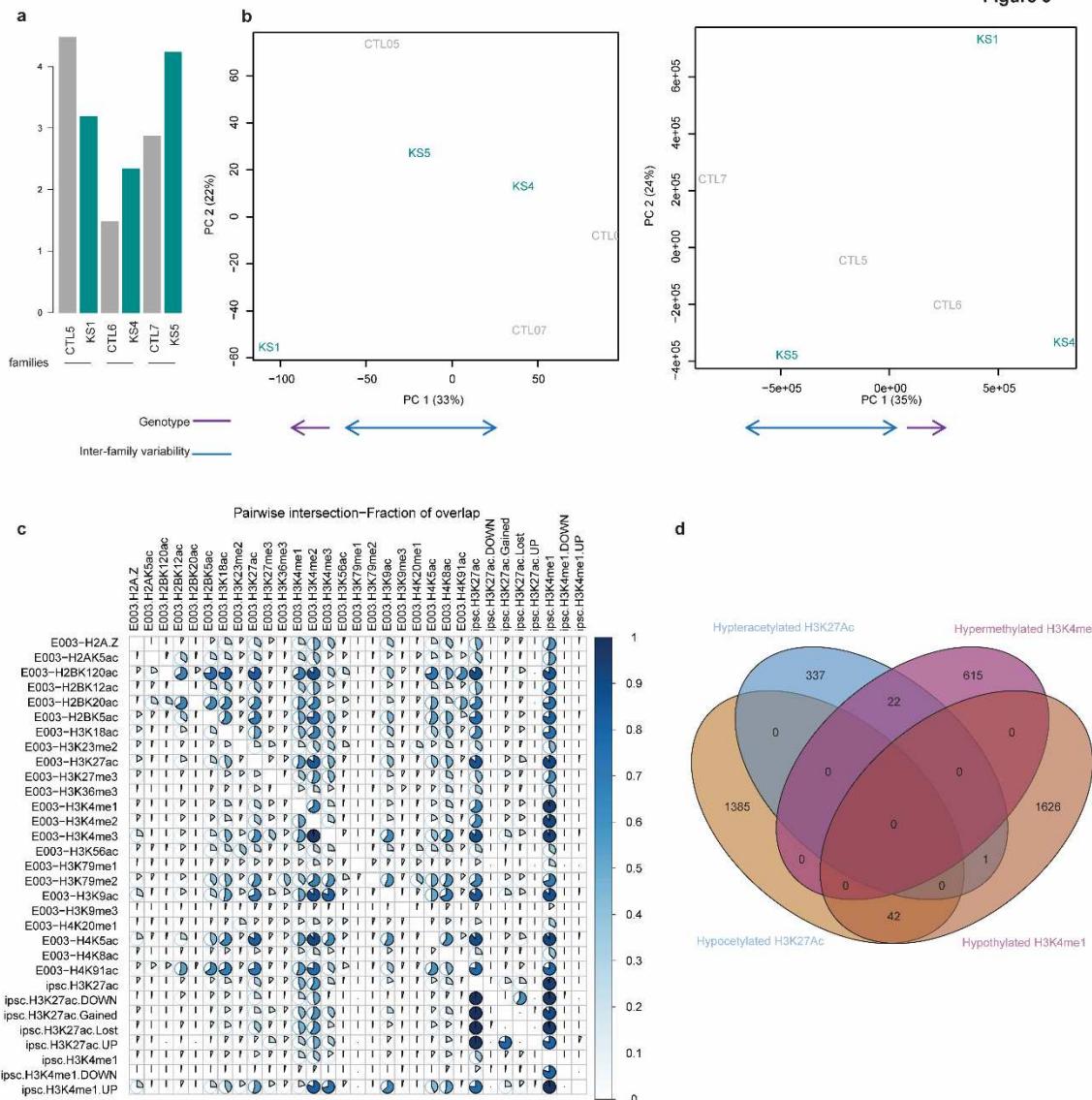
7

1

2 **Fig.2**

3 A) Barplot of *KMT2D* levels (RPKM); samples are coupled by family; controls are depicted
4 in grey, KS1 in dark cyan.

5 B) Heatmap of DEGs enriching GO categories (BP) associated with cognition and
6 neurodevelopment; GO-categories are annotated on top of gene expression levels,
7 reported as logTMM scaled by gene (z-score); family and genotype are annotated on
8 the right.

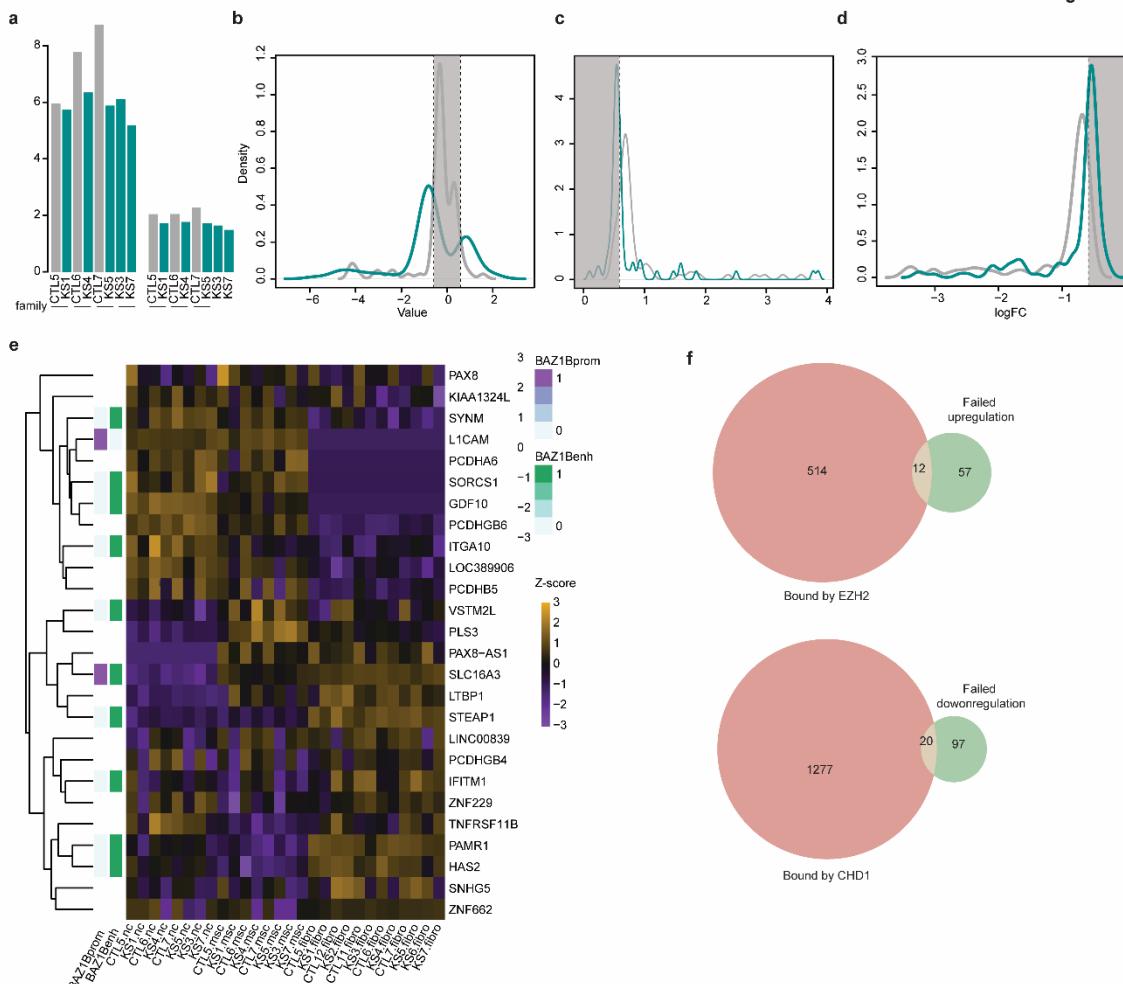

9 C) Principal component analysis of H3K4me1 read-counts (normalized on library size);
10 points for control samples are labeled in black, KS1 in dark cyan.

1 D) Pairwise intersection of diff-H3K4me1 regions with Roadmap Epigenomics; the
2 fraction of overlap between couples of chromosomal location sets is reported as a
3 circled heatmap; The last 5 sets identify regions that preferentially show H3K4me1 in
4 KS1 (Gained), regions that do not show H3K4me1 in most KS1 (Lost), our reference
5 of fibroblasts H3K4me1 peaks (fibro.H3K4me1), regions that show a stronger
6 H3K4me1 signal in KS1 (fibro.dK4me1.up), regions that show a reduced H3K4me1
7 signal in KS (fibro.dK4me1.down). E126: adult dermal fibroblasts primary cells from
8 Roadmap Epigenomics.

9 E) Venn diagrams of DEGs and differentially methylated regions; upregulated and
10 downregulated genes are divided, and respectively compared with hyper and
11 hypomethylated genes; hypermethylated and hypomethylated enhancers refer to
12 genes whose enhancers are quantitatively hyper or hypomethylated, the same logic
13 was followed for hyper and hypomethylated promoters.

14

Figure 3


15

1 **Fig.3**

2 A) *KMT2D* is not differentially expressed in iPSCs. Barplot of *KMT2D* expression in our
 3 cohort (RPKM). CTL (grey) and KS1 (dark cyan) samples are coupled by family.
 4 B) PCA of H3K4me1 and H3K27ac (log-counts normalized on library size). A blue arrow
 5 depicts the observed inter-family variability, and a purple arrow depicts apparent intra-
 6 family genotype-dependent drifts.
 7 C) Pairwise intersection of iPSC reference (ipsc.H3K4me1 and ipsc.H3K27ac),
 8 differentially marked regions (.UP and .DOWN suffix), qualitative changes (.Gained
 9 and .Lost suffix) regions with Roadmap Epigenomics (E003- prefix); the fraction of
 10 overlap between couples of chromosomal location sets is reported with pie heatmaps.
 11 D) Venn diagram representing the intersection between iPSC differentially methylated
 12 (H3K4me1) and differentially acetylated (H3K27ac) regions; hyperacetylated regions
 13 are indicated in blue, hypoacetylated regions in yellow, hypomethylated in purple,
 14 hypermethylated in brown.

15

Figure 4

16

17

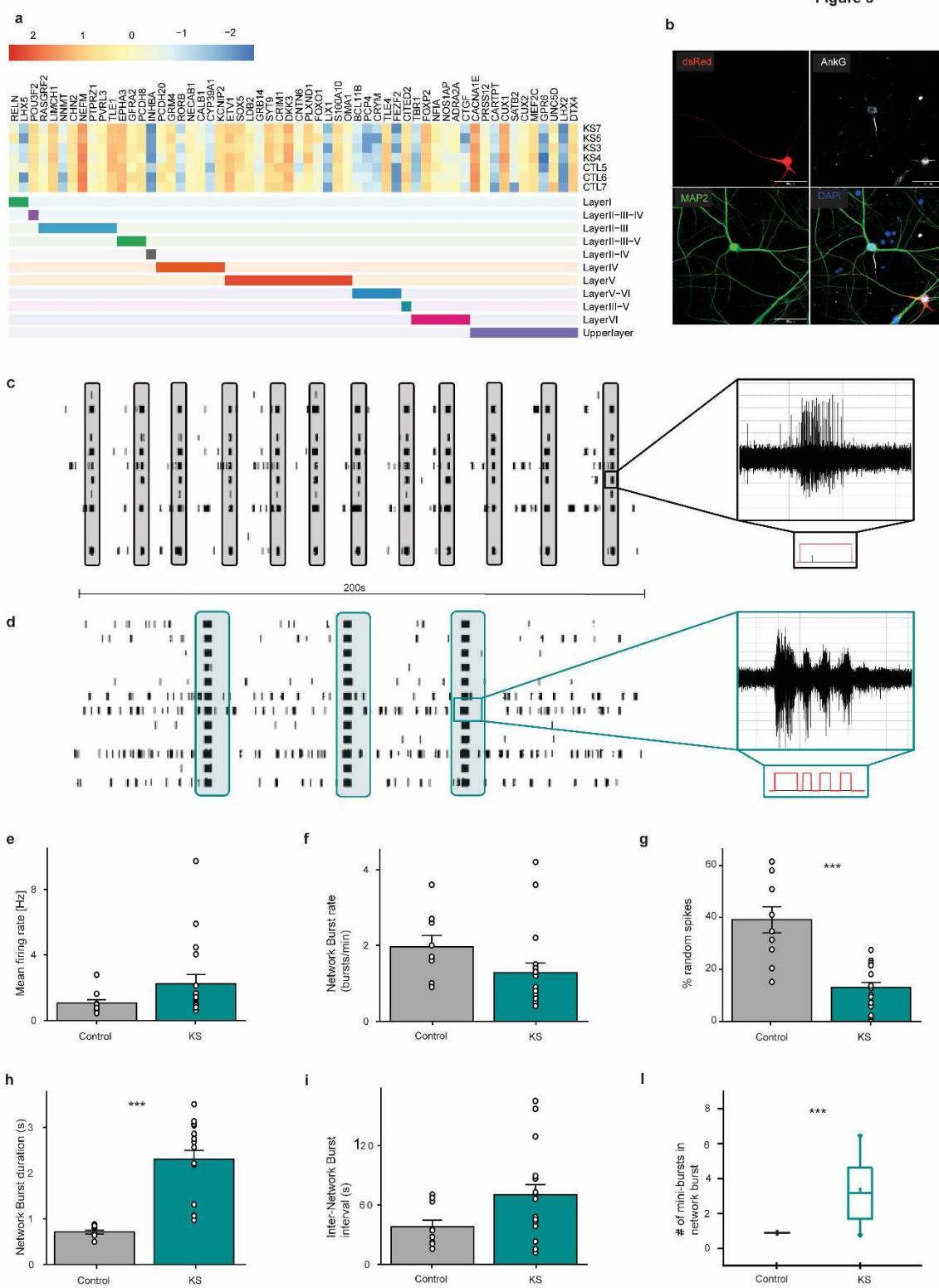
18 **Fig.4**

19 A) Barplot of *KMT2D* expression in both NCSC and MC. CTL (grey) and KS1 (dark cyan)
 20 samples are coupled by family.

1 B) Kernel density distribution of logFC of genes differentially expressed along
2 differentiation only in KS1 lines (darkcyan line and grey line respectively show KS1
3 and CTL logFC distribution for the same set of genes); a dashed vertical line reports
4 FC=1.5.

5 C) Kernel density distribution of logFC of genes upregulated along differentiation only in
6 CTL lines («failed up» in the text; darkcyan line and grey line respectively show KS1
7 and CTL logFC distribution for the same set of genes); a dashed vertical line reports
8 FC = 1.5

9 D) Kernel density distribution of logFC of genes downregulated along differentiation only
10 in CTL lines («failed down» in the text; darkcyan line and grey line respectively show
11 KS1 and CTL logFC distribution for the same set of genes); a dashed vertical line reports
12 FC=1.5.


13 E) Genes differentially expressed in at least two of the 3 neurocristic-axis cell-types;
14 Heatmap of log-TMM scaled by row; Fibroblasts expression levels are also reported
15 for comparison; row annotation reports known BAZ1B interaction with regulatory
16 regions associated to the reported genes; BAZ1BProm refers to promoters bound by
17 BAZ1B; BAZ1Benh refers to bound enhancers.

18 F) Venn diagrams of the intersection between those genes that failed to increase the
19 expression and those that failed to decrease the expression along the virtual
20 development and known targets of the enriched master regulators.

21

22

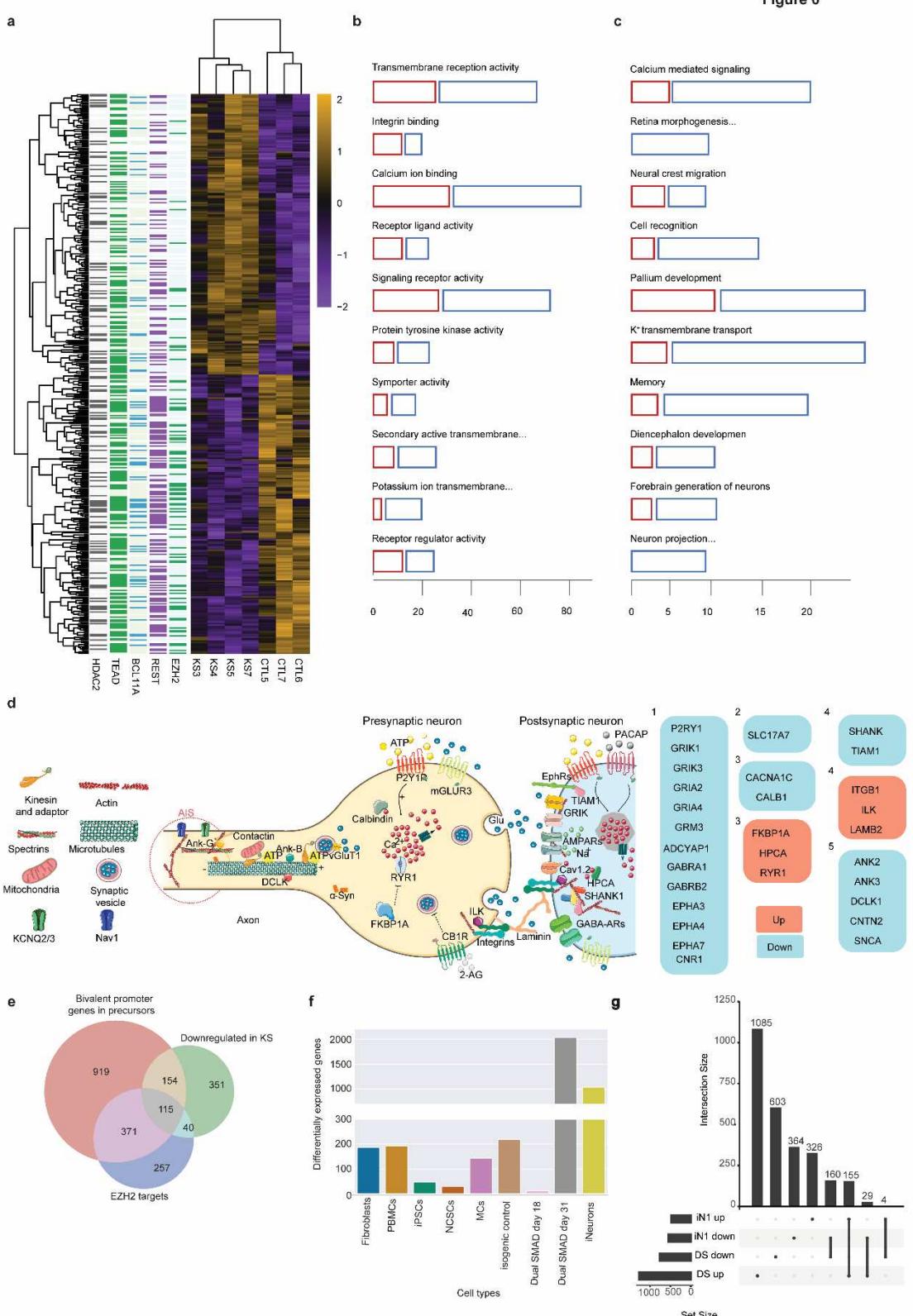
Figure 5

1

2 **Fig.5**

3 A) Characterization of neuronal identity. Expression profile of cortical layers markers.

1 B) Neuronal architecture quality control. Representative image of immunostaining for AnkG
2 (initial axon segment), MAP2 (dendrites), DAPI (nuclei), dsRed (entire neuronal structure).

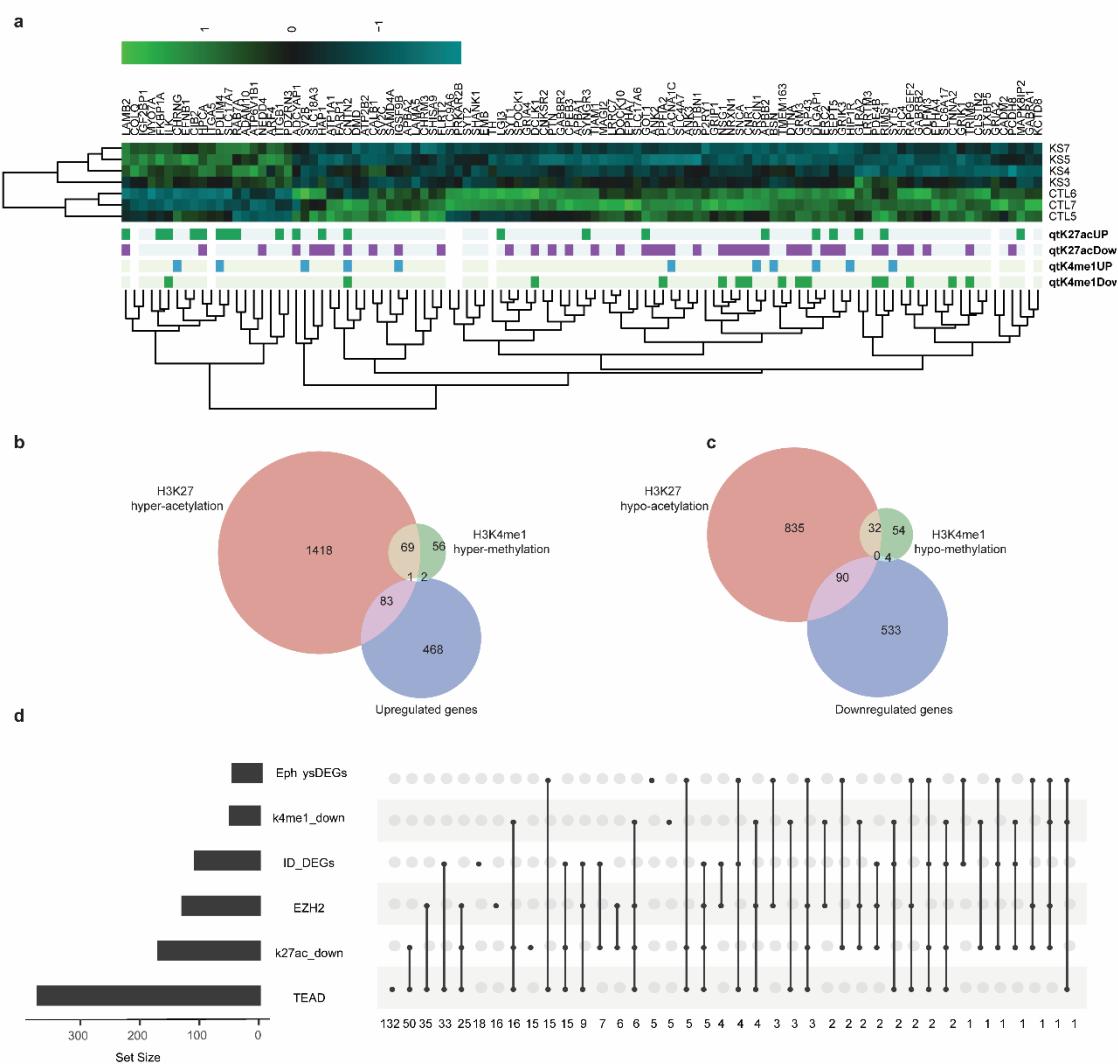

3 C) Representative raster plots showing 200 s recording of the spontaneous activity exhibited
4 by control-derived neuronal networks during the fifth week *in vitro*. Network burst exhibited by
5 the culture are highlighted in black. On the right panel, a representative single channel burst
6 forming the network burst generated by control-derived neuronal network is shown (i.e. raw
7 data of 3 s).

8 D) Representative raster plots showing 200 s recording of the spontaneous activity exhibited
9 by patient-derived neuronal networks during the fifth week *in vitro*. Network burst exhibited by
10 the culture are highlighted in red. On the right panel, “mini-bursts” detected from a
11 representative channel forming the network burst are shown (i.e. raw data of 3 s).

12 E-L) Graphs respectively showing E) frequency of spikes (spike/s), F) frequency of the network
13 burst, G) percentage of random spike, H) duration of the network burst, I) interval between
14 consecutive network burst and L) number of “mini-burst” composing a network burst for
15 neuronal networks derived from 4 control (n=10) and 4 KS1 patients (n=18) hiPSCs lines. Data
16 represent means \pm SEM. Statistics: two sample t-test, Kruskal-Wallis test, Bonferroni
17 correction, p-values: *** = p<0.00025.

18

Figure 6


1

2 **Fig.6**

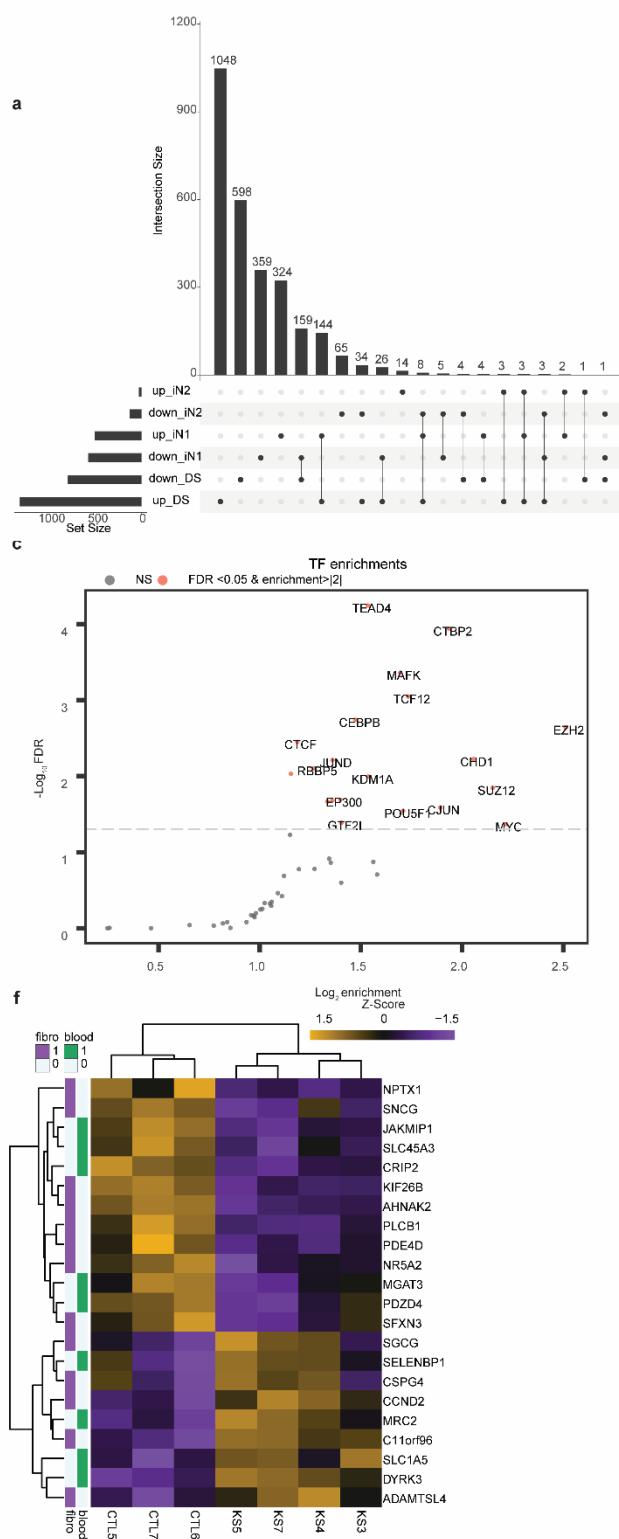
3 A) Heatmap of iNeurons (iN) differentially expressed genes (DEGs); logTMM scaled by
4 row; targets of significant master regulators are annotated by row on the left.

1 B) Molecular Function GO enrichments of iN DEGs; the horizontal axis represents the
 2 size (number of genes) of the enrichments, divided by sign of differential expression
 3 (blue for down and red for upregulated genes).
 4 C) Biological Process GO enrichments of iN DEGs; the horizontal axis represents the size
 5 (number of genes) of the enrichments, divided by sign of differential expression (blue
 6 for down and red for upregulated genes).
 7 D) Schematic depiction of iN DEGs enriching «neuron» and «synaptic» related GO
 8 categories.
 9 E) Venn diagram representing the overlap between genes bearing a bivalent promoter in
 10 NPC, genes downregulated in iN, and known targets of EZH2.
 11 F) Depiction of number of differentially expressed genes across analyzed tissues. In the
 12 isogenic setting and dual SMAD differentiation we identified the highest number of
 13 genes, followed by iNeurons.
 14 G) Representation of upregulated and downregulated genes both in DS and iN1, and
 15 corresponding intersections.

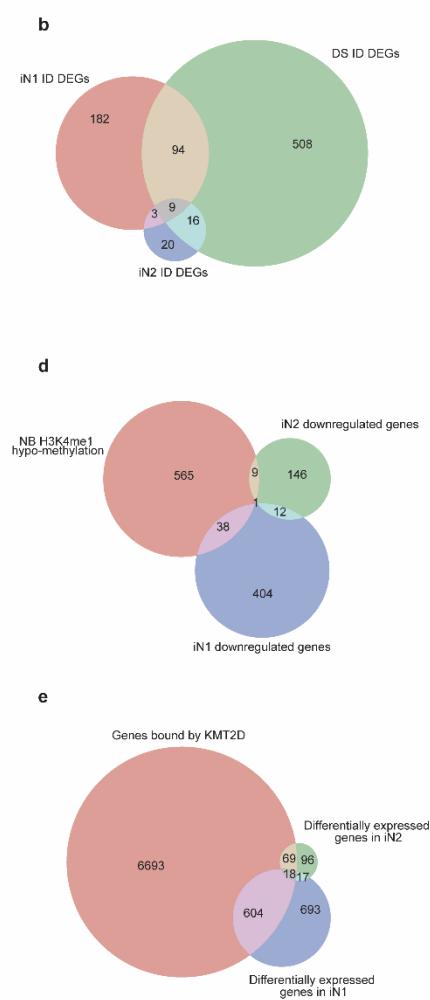
Figure 7

16 H)
 17

1 **Fig.7**


2 A) Heatmap of synaptic genes (logTMM scaled by column); differentially marked genes
3 are annotated below; .UP and .DOWN suffix represent the direction of the
4 dysregulation associated to enhancers of each gene.

5 B) Venn diagrams showing the intersection between upregulated genes, and genes
6 whose regulatory regions are hypermethylated or hyperacetylated (each list was
7 filtered by FDR<0.05).


8 C) Venn diagrams showing the intersection between downregulated genes, and genes
9 whose regulatory regions are hypomethylated or hypoacetylated (each list was filtered
10 by FDR<0.05).

11 D) Simplified upset graph showing intersection of DEGs associated with ID (ID_DEGs),
12 correlated with electrophysiological traits (EphysDEGs), regulated by EZH2 or TEAD,
13 whose enhancers are hypomethylated (k4me1_down) or hypoacetylated
14 (k27ac_down); number of genes accounting for each group is reported on the left;
15 number of genes composing intersection of multiple groups are reported below each
16 column.

17
18

Figure 8

1 **Fig.8**

2 A) Upset diagram representing the number of genes differentially expressed in each
3 neuronal differentiation culture.

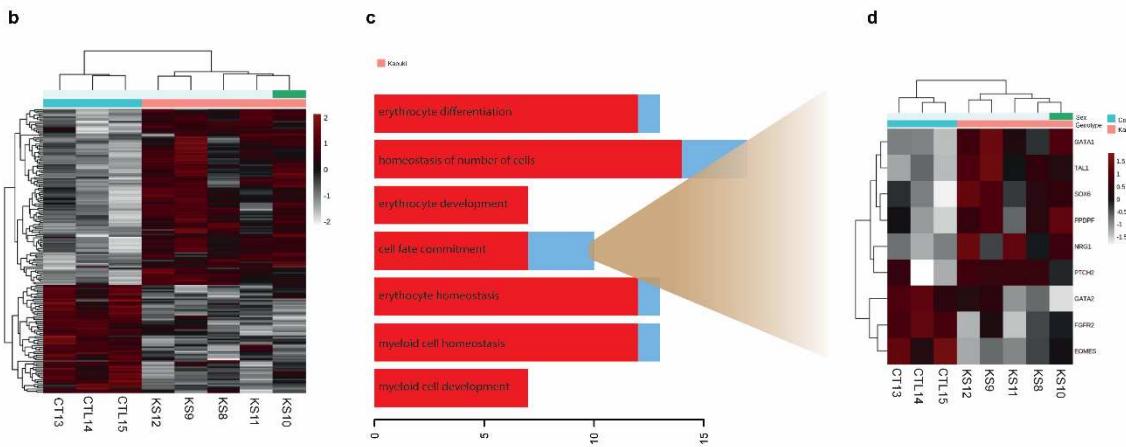
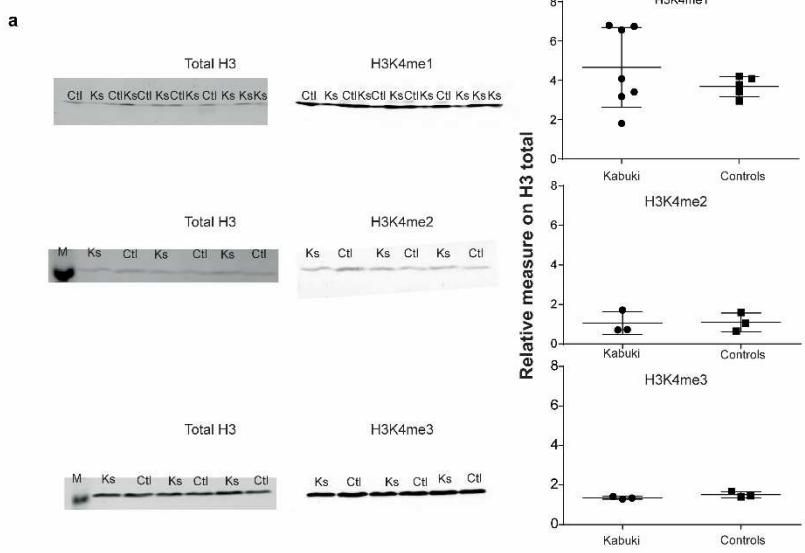
4 B) Venn diagrams representing the number of differentially expressed genes associated
5 to ID in each neuronal differentiation culture.

6 C) Transcription factors enrichments plot; TF whose targets are significantly enriched by
7 DEGs bound by KMT2D at their enhancers in iN2.

8 D) Venn diagram intersecting hypomethylated enhancers and genes downregulated in
9 iN1 and iN2.

10 E) Venn diagram intersecting genes bound by KMT2D at enhancers, with iN1 and iN2
11 DEGs.

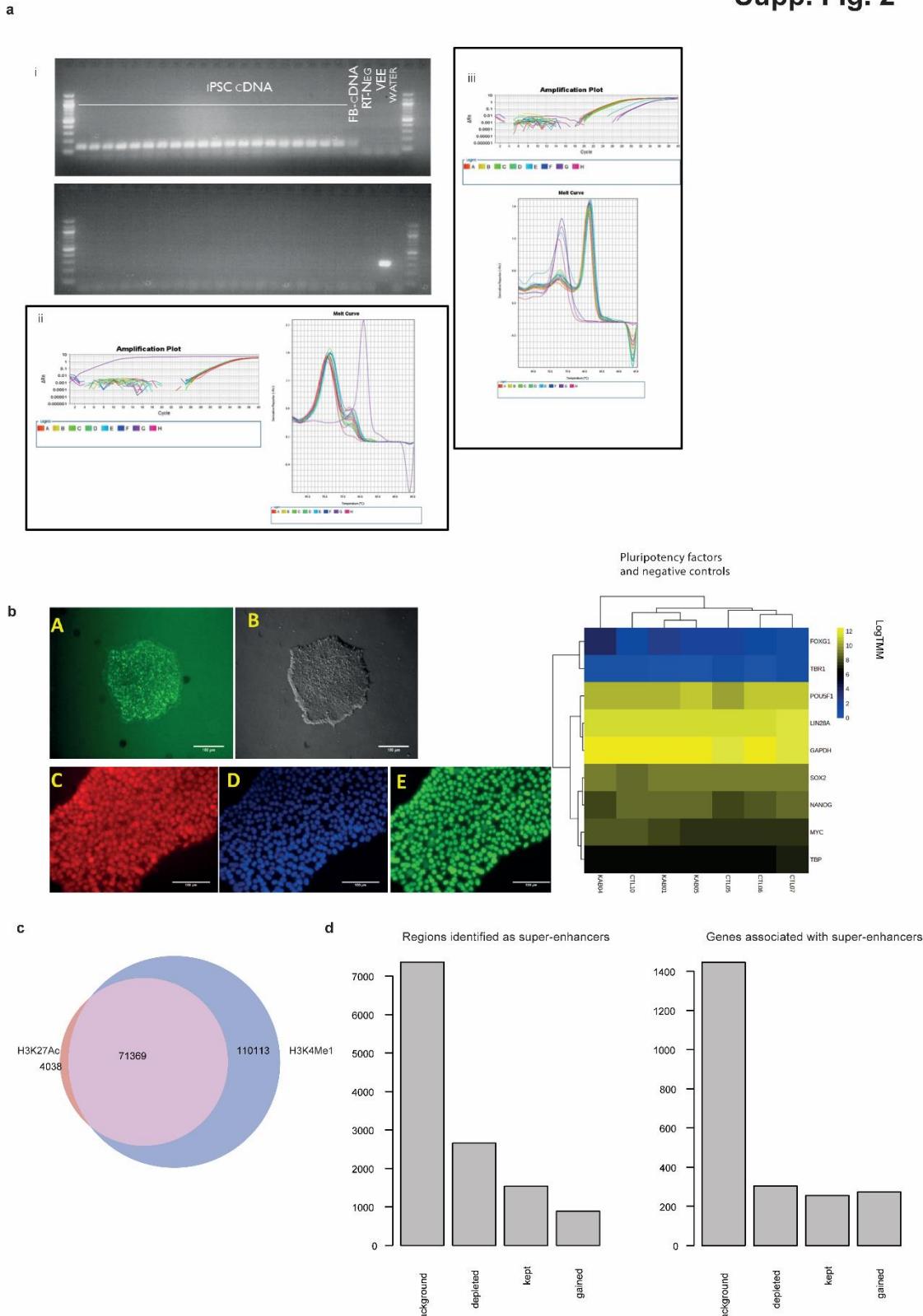
12 F) Heatmap of genes differentially expressed in iN1, which are also DEGs in fibroblasts
13 or blood samples. Relative expression is expressed as z-scores of iN1 TMM levels.
14 Rows are annotated on the left of the heatmap, to report the somatic tissues in which
15 they are differentially expressed.



16

17

18

19


Supp. Fig 1

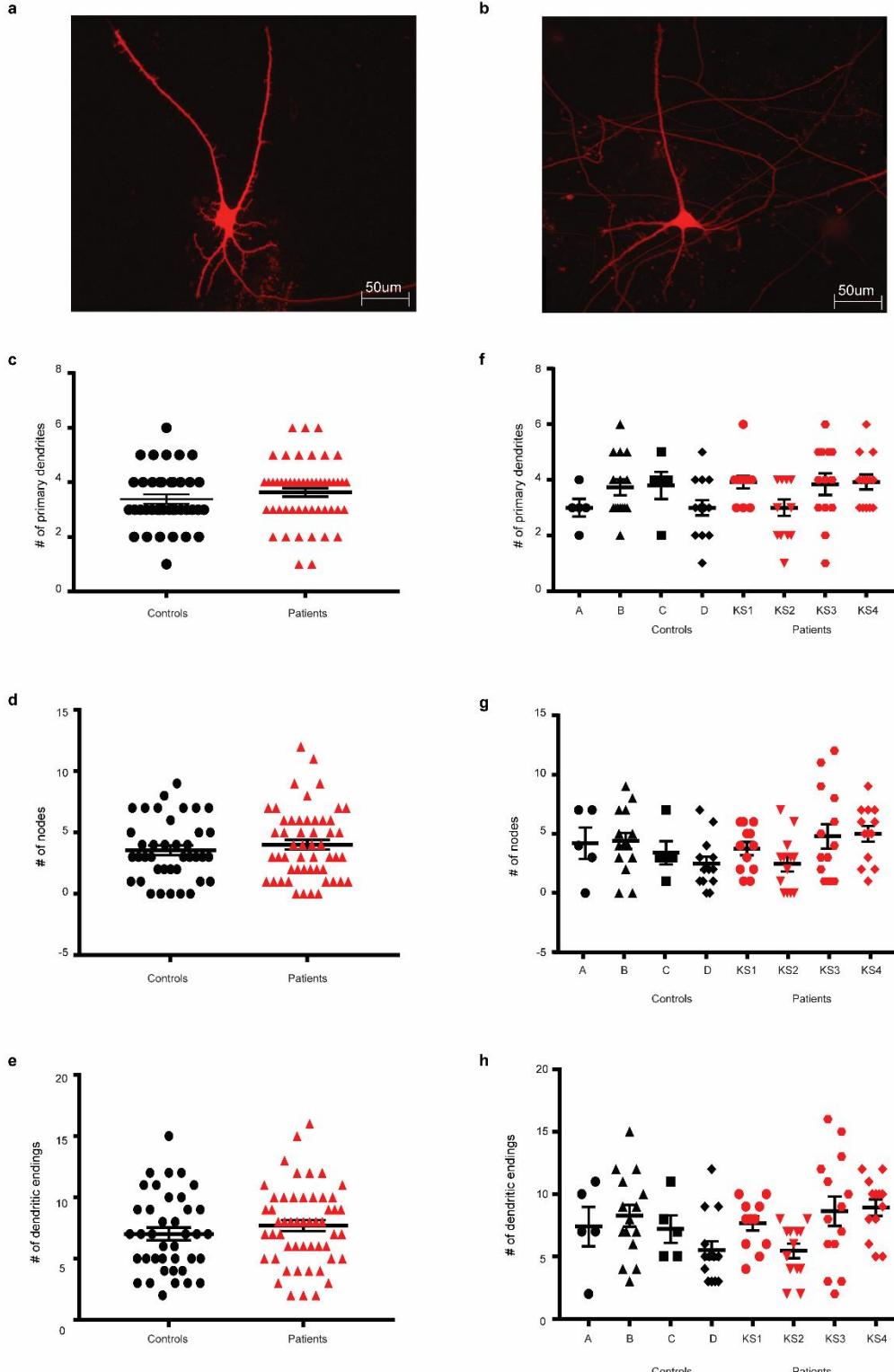
Supplementary Figure 1

- A) Western blots of bulk H3K4 mono- di- and three-methylation in KS1 fibroblasts.
- B) Heatmap of DEGs found in blood KS1 samples; Z-scores (log-TMM scaled by row).
- C) Biological Process GO enrichments of DEGs, ordered by FDR from the top; the x axis represent the number of genes; red and blue colors proportionally represent the number of up- and down-regulated genes enriching each GO term.
- D) Heatmap of DEGs enriching the "cell fate commitment" GO term.

Supp. Fig. 2

1

2 Supplementary Figure 2


3 A) qPCR validation of removal for VEE: i) Upper gel: *TBP*, lower gel *VEE*; ii) Melt curve
4 for *TBP*; iii) Melt curve for *VEE*.

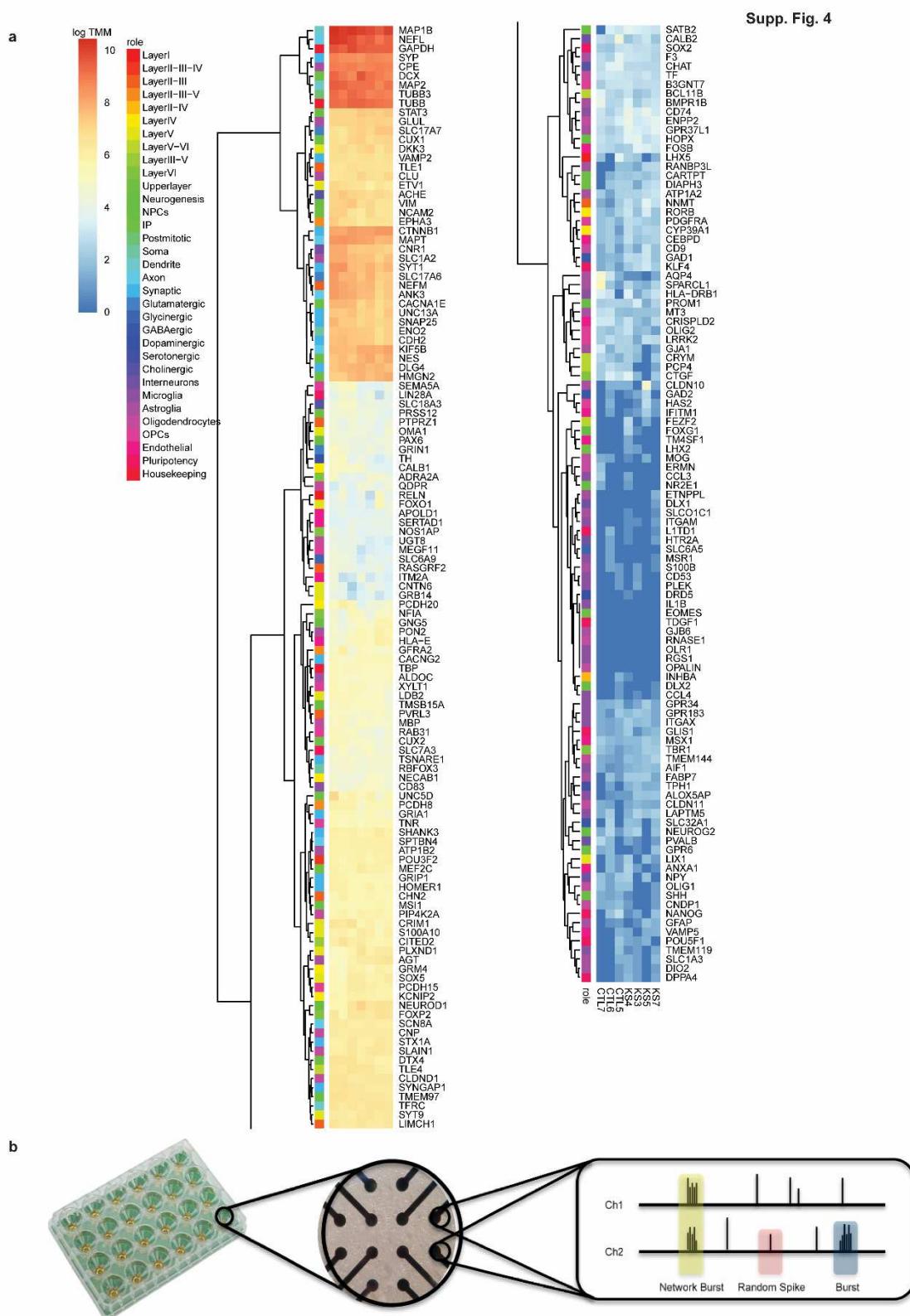
1 B) On the left: stainings of pluripotency marker in a representative iPSC colony; on the
2 right: logTMM expression levels of pluripotency markers and negative control genes
3 (FOXG1 and TBR1).

4 C) Venn diagram of H3K4me1 and H3K27ac regions found in at least two samples per
5 marker.

6 D) Barplots of regions that show super-enhancer features in iPSCs. Background
7 represent super-enhancers found in at least 2 samples; depleted are SE found in all
8 CTLs and not in KS1. Kept are SE found in all CTL and all KS1. Gained are SE
9 preferentially found in KS1. On the left: Schematics of the intersection between iPSC
10 super-enhancer and genotype specific subsets; on the right: schematic of the
11 intersection between genes associated to SE subsets.

Supp. Fig. 3

1

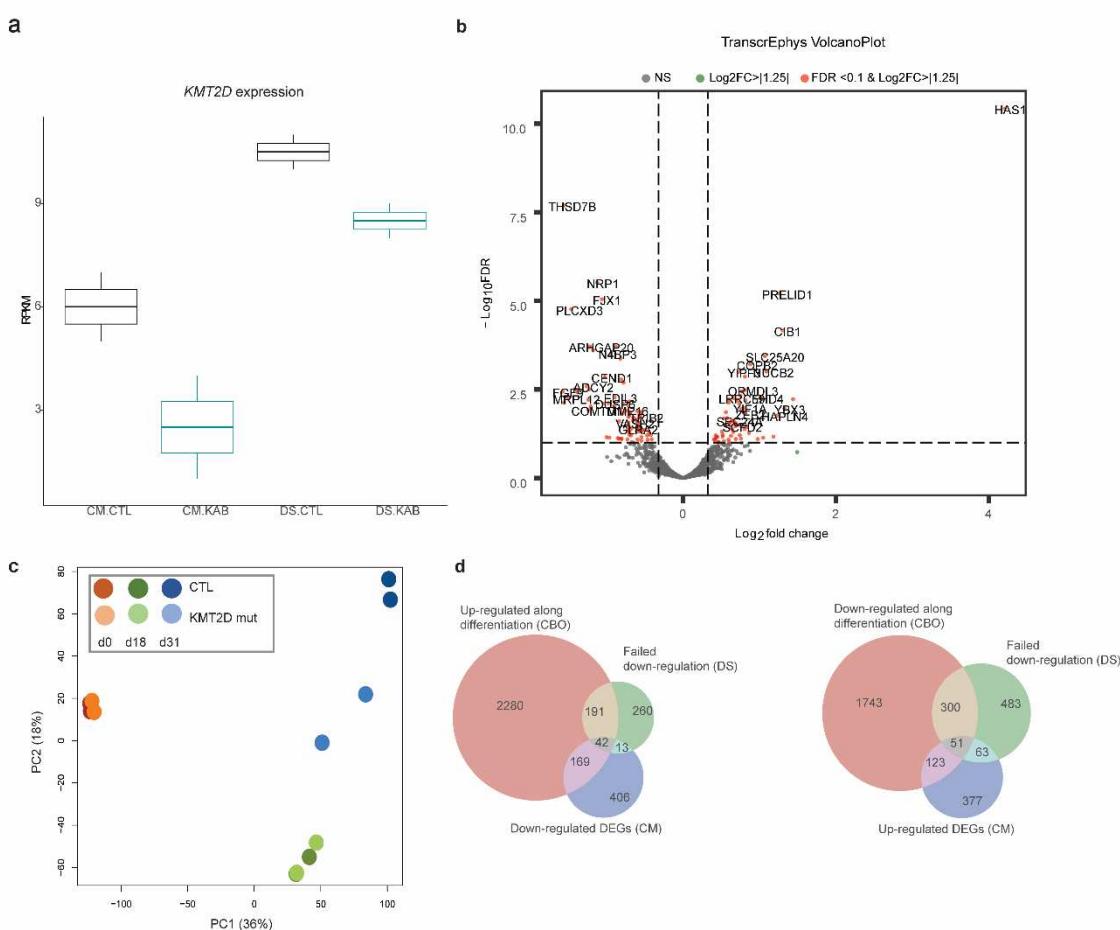

2 **Supplementary Figure 3. Dendritic complexity in KS1 and control neurons.**

3 A-B) Representative images of A) control and B) KS1 neurons transfected with dsRed (scale:
4 50 μm).

1 C-E) Graphs showing the C) number of primary dendrites, D) nodes and E) dendritic endings
2 in control (black, n=39) and KS1 neurons (red, n=52) derived from hiPSCs (i.e. pooled results).

3 F-H) Graphs respectively showing differences in F) number of primary dendrites, G) nodes
4 and H) endings in neurons derived from 4 control (black, C1 n=5, C2 n=15, C3 n=5, C4 n=14)
5 and 4 KS1 (red, KS1 n=12, KS2 n=13, KS3 n=14, KS4 n=13) hiPSCs lines. Data represent
6 means ± SEM. Statistics: normality test, Kruskal-Walis Test, post-hoc Bonferroni correction.

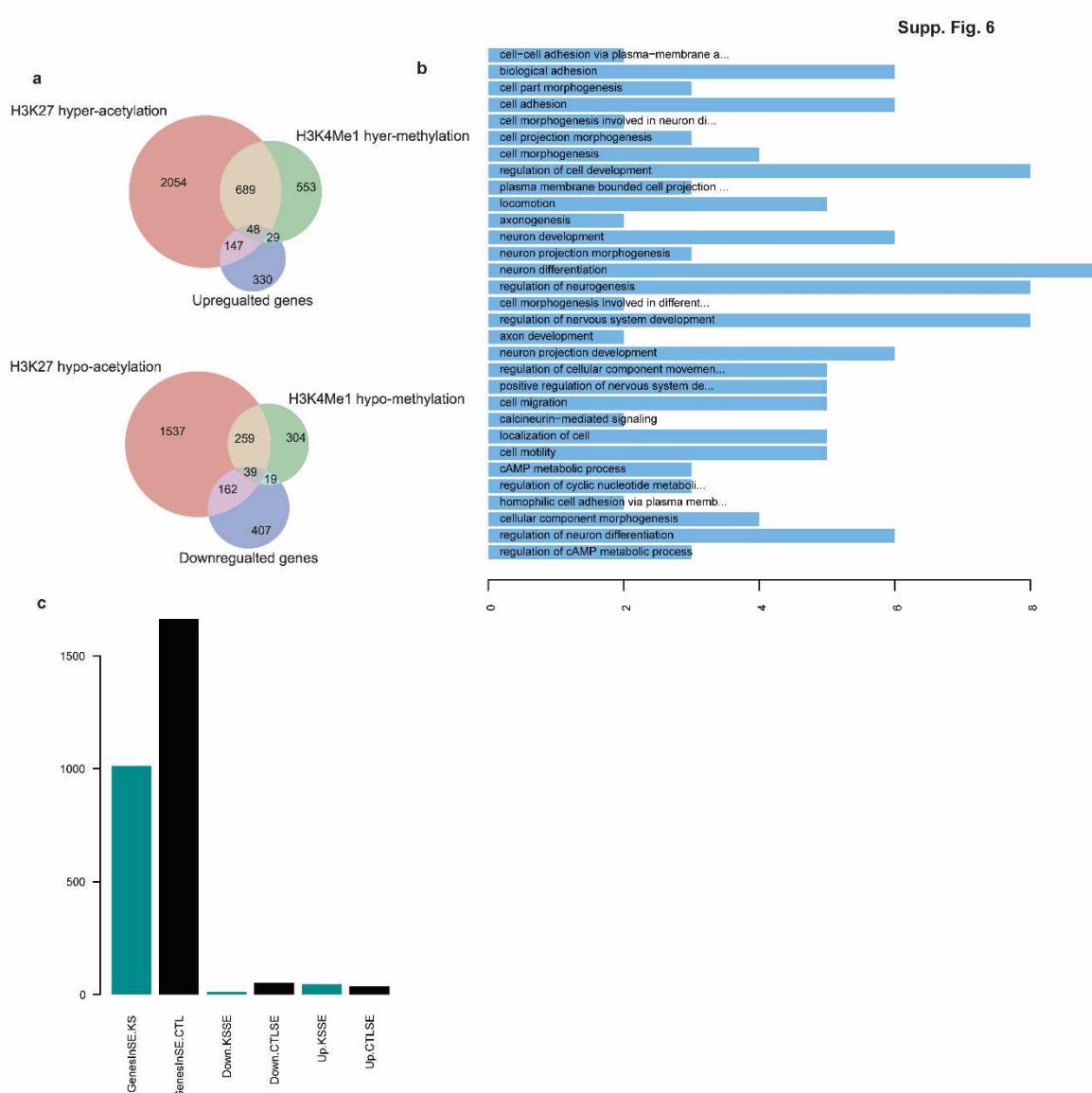
Supp. Fig. 4


1

2 **Supplementary Figure 4**

3 A) Expression levels (logTMM) of genes associated to different categories as markers of
4 differentiation and neuronal development.

1 B) Schematic of MEA logics and output.
2
3


Supp. Fig. 5

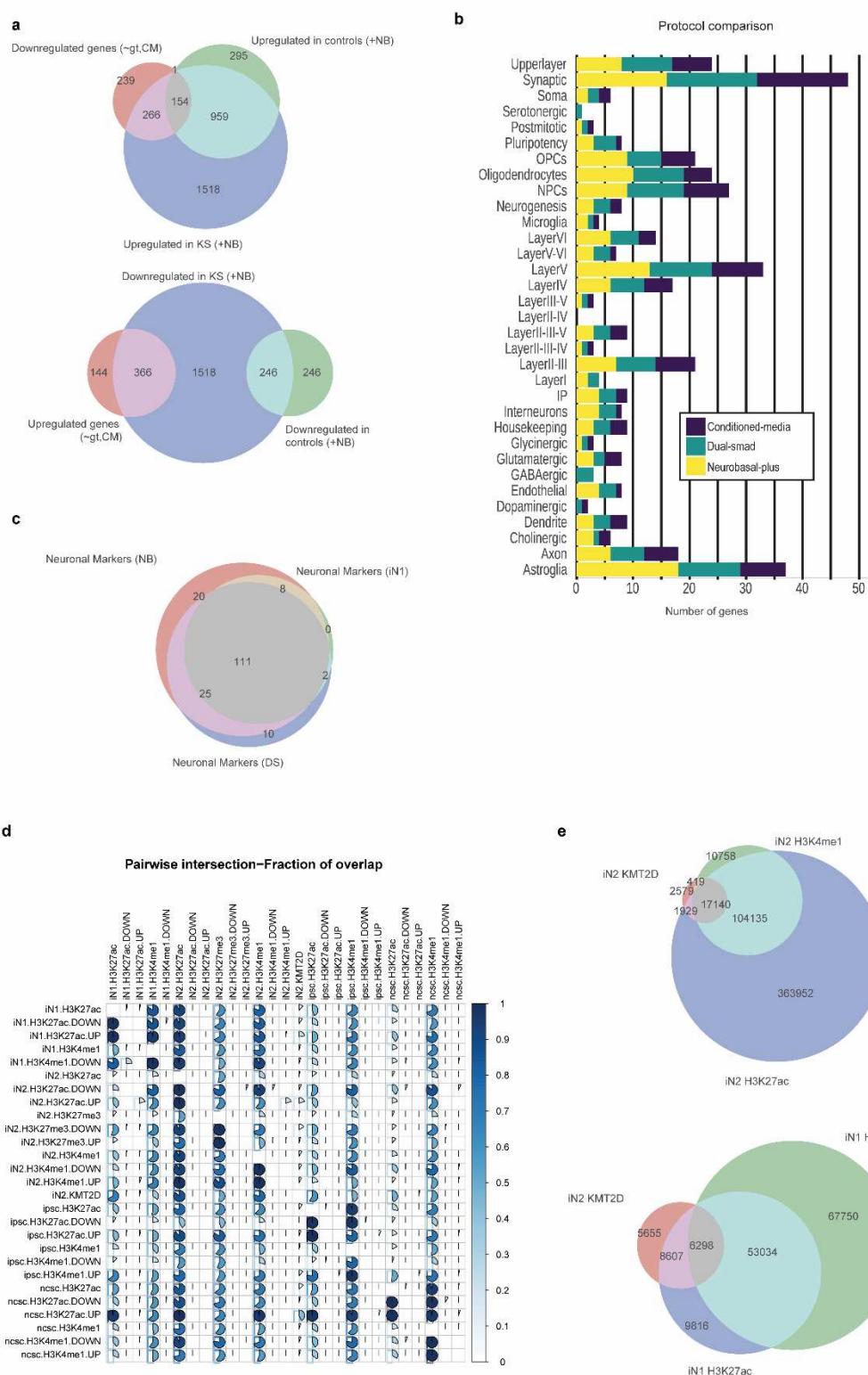
4
5
6 **Supplementary Figure 5. Functional and developmental dysregulation of KS1
7 iNeurons**

8 A) Boxplot of *KMT2D* levels (RPKM) in CM and DS.
9
10 B) Volcano plot of transcriptional correlates of neural electrophysiology in mice, converted
11 to human genes; log2FC and FDR measured in KS1 iNeurons.
12
13 C) Principal component analysis of DS data; KS1 neurons show a day18/day31
14 intermediate profile; day and genotype are reported by colour as per legend; neurons
15 (light and dark blue) show the highest inter-genotype distance.
16
17 D) Venn diagrams intersecting genes whose up or downregulation failed in DS, with iN
18 DEGs, and genes whose expression is higher (up in CBO) or lower (down in CBO) in
19 neurons, with respect to neural precursors and radial glia, identified in single-cell
20 RNAseq from CTL organoids.

1

2

3 Supplementary Figure 6


4 A) Venn diagrams showing the intersection between iN DEGs, and genes whose
 5 regulatory regions are differentially methylated (H3K4me1) or acetylated (H3K27ac)
 6 using $p < 0.05$ as threshold for differentially marked regions.

7 B) Barplots of GO enrichments for genes downregulated and hypoacetylated in KS1 iN.

8 C) Barplots respectively depict i) genes whose regulatory regions lay within super-
 9 enhancers identified in KS1 iNeurons; ii) genes whose regulatory regions lay within
 10 super-enhancers identified in CTL iNeurons; iii) downregulated genes whose
 11 regulatory regions lay within KS1 super-enhancers; iv) downregulated genes whose
 12 regulatory regions lay within CTL super-enhancers; v) upregulated genes whose
 13 regulatory regions lay within KS1 super-enhancers; vi) upregulated genes whose
 14 regulatory regions lay within CTL super-enhancers.

15

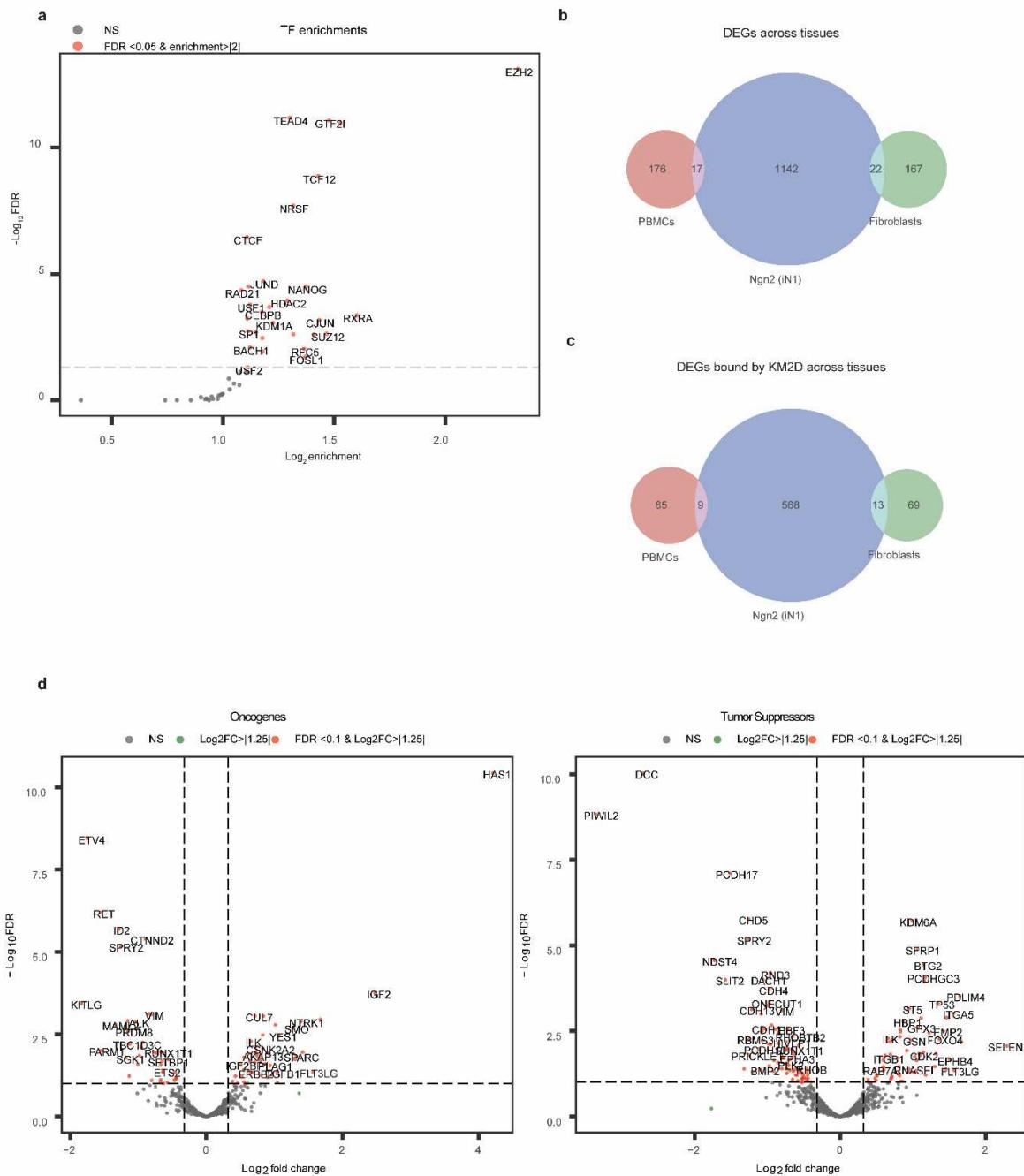
Supp. Fig 7

1
2

3 **Supplementary Figure 7**

1 A) Venn diagram comparing genes differentially expressed in KS1 iN1 (~gt, iN1), and genes
2 up or downregulated in the presence of NB+ in CTL or KS1 lines.

3 B) Stacked barplot; qualitative comparison of neuronal markers expressed in each culture
4 condition (DS, iN1, iN2); x axis report the number of genes; each row represent a subgroup of
5 genes.


6 C) Venn diagram comparing neuronal markers expression in each culture condition.

7 D) Pie heatmap of pairwise comparison between regions differentially methylated or
8 acetylated in all tissues analyzed.

9 E) Venn diagrams comparing genes whose enhancers are bound by KMT2D with regions
10 marked with H3K4me1 or H3K27ac in iN2 (above) and iN1 (below).

11

Supp. Fig. 8

1

2 Supplementary Figure 8

3 A) TF enrichment graph of differentially expressed genes in iN1 which are also bound by
4 KMT2D at enhancers.

- 1 B) Venn diagram comparing DEGs in differentiated KS1 tissues (blood, fibroblasts and iN1).
- 2 C) Venn diagram comparing DEGs in differentiated KS1 tissues (blood, fibroblasts and iN1)
- 3 bound by KMT2D at enhancers.
- 4 D) Volcano plot of oncogenes (on the left) and tumor suppressors (on the right) differentially expressed in KS1 iNeurons.