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Abstract

Brain signatures of functional activity have shown promising results in both decoding brain
states, meaning distinguishing between different tasks, and fingerprinting, that is identifying
individuals within a large group. Importantly, these brain signatures do not account for the
underlying brain anatomy on which brain function takes place. Structure-function coupling
based on graph signal processing (GSP) has recently revealed a meaningful spatial gradient
from unimodal to transmodal regions, on average in healthy subjects during resting-state.
Here, we explore the potential of GSP to introduce new imaging-based biomarkers to
characterize tasks and individuals. We used multimodal magnetic resonance imaging of 100
unrelated healthy subjects from the Human Connectome Project both during rest and seven
different tasks and adopted a support vector machine classification approach for both
decoding and fingerprinting, with various cross-validation settings. We found that structure-
function coupling measures allow accurate classifications for both task decoding and
fingerprinting. In particular, key information for fingerprinting is found in the more liberal portion
of functional signals, that is the one decoupled from structure. A network mainly involving
cortico-subcortical connections showed the strongest correlation with cognitive traits,
assessed with partial least square analysis, corroborating its relevance for fingerprinting. By
introducing a new perspective on GSP-based signal filtering and FC decomposition, these
results show that brain structure-function coupling provides a new class of signatures of
cognition and individual brain organization at rest and during tasks. Further, they provide
insights on clarifying the role of low and high spatial frequencies of the structural connectome,
leading to new understanding of where key structure-function information for characterizing

individuals can be found across the structural connectome graph spectrum.
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Highlights
- The relation of brain function with the underlying structural wiring is complex
- We propose new structure-informed graph signal processing (GSP) of functional data
- GSP-derived features allow accurate task decoding and individual fingerprinting
- Functional connectivity from filtered data is more unique to subject and cognition

- The role of structurally aligned and liberal graph frequencies is elucidated
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1. Introduction

The existence of brain signatures based on functional magnetic resonance imaging (fMRI),
meaning specific features uniquely characterizing either tasks or individuals, has emerged
from the development of advanced data analysis methods in the last two decades. On the one
hand, the application of pattern recognition techniques to neuroimaging data proved the
capability of fMRI to decode task-specific brain activity (Gao et al., 2020; Haynes and Rees,
2006; Li and Fan, 2019; Richiardi et al., 2011; Wang et al., 2020). Significant progress in this
direction was made by the recent advent of deep learning (Gao et al., 2020; Li and Fan, 2019;
Wang et al., 2020), even if it remains nontrivial to interpret the biological meaning of the
learned features. On the other hand, similarly to a fingerprint, fMRI-based features can
accurately identify individuals from a large group (Amico and Goii, 2018a; Biazoli et al., 2017;
Finn et al., 2015; Mansour L et al., 2021; Van De Ville et al., 2021). In a seminal paper by Finn
and colleagues (Finn et al., 2015), functional connectivity (FC) profiles were used to
successfully classify subjects across resting state test-retest sessions, and even between task
and rest conditions. The fronto-parietal network emerged as the main contributor to subject
discrimination, and was shown to predict individual cognitive behavior (i.e., level of fluid
intelligence). In addition to functional activity, brain anatomical features, such as cortical
morphology and white-matter structural connectivity, were also proven useful for brain
fingerprinting (Kumar et al., 2017; Lin et al., 2020; Valizadeh et al., 2018; Wachinger et al.,
2015; Yeh et al., 2016).

In this context, a still unexplored brain feature, which could offer new insights into task
decoding, individual fingerprinting and behavioural correlates, is the degree of coupling
between function and structure, i.e., how brain functional activity and connectivity align to the
underlying structural connectivity architecture as measured with diffusion-weighted (DW) MRI.
Early attempts to investigate structure-function relationships in the brain spanned from simple
approaches, such as correlational analyses (Amico and Goni, 2018b; Gofi et al., 2014; Honey
et al., 2009; Misi¢ et al., 2016; Zhang et al., 2011), to more complex ones, like whole brain
computational and communication models (Amico et al., 2021; Avena-Koenigsberger et al.,
2018; Deco et al., 2011; Griffa et al., 2017; MiSi¢ et al., 2015; Seguin et al., 2020). More
recently, graph signal processing provided a novel framework for a combined structure-
function analysis (Huang et al., 2018; Medaglia et al., 2018; Preti and Van De Ville, 2019).
Within this setting, Preti and Van De Ville quantified the degree of structure-function
dependency for each brain region, by means of the newly introduced Structural-Decoupling
Index (SDI) (Preti and Van De Ville, 2019). This nodal metric quantifies the degree of local

(dis)alignment between structure and function, and it is obtained by decomposing the
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structural connectome into harmonics in the graph frequency domain, and projecting the
functional signals (fMRI frames at each timepoint) in the space spanned by the structural
harmonics. The functional signals are then filtered into low and high structural graph
frequencies, giving rise to coupled and decoupled signal components, respectively. The ratio
between the energy of these two signal portions yields the SDI of a brain region. During resting
state in healthy subjects, local structure-function (de)coupling showed a very characteristic
and behaviorally relevant spatial distribution, spanning from lower-order functional areas such
as visual and somatosensory cortices, with activity highly constrained by the structure
underneath, to higher-order ones, with activity more liberal. However, the extent to which this
configuration changes in different task-related states, or in different subjects, still remains
unexplored. Moreover, the quantification of the structure-function coupling at the level of single
brain connections may bring new insights into brain organization principles and their
uniqueness to brain states and individuals. In particular, do structure-function dependency
patterns represent a signature of a particular task-related state? Can they act as a brain
fingerprint uniquely identifying individuals? And which structure-function dependency features
are more relevant to task decoding, subject fingerprinting, and inter-individual cognitive

variability?

To answer these open questions, we analysed the structural and functional data during resting
state and seven different tasks of 100 unrelated healthy subjects from the Human Connectome
Project (HCP) (Van Essen et al., 2013), and obtained their structure-function signatures
quantified through: (i) the SDI, and (ii) a new GSP-based decomposition of the FC. The latter
is obtained by assessing the functional connectivity between fMRI signal components that are
more coupled or decoupled to the underlying structure, named coupled-FC (c-FC) and
decoupled-FC (d-FC), respectively. These GSP-derived features quantify brain structure-
function coupling at the level of either single brain regions (SDI) or single brain connections
(c-FC, d-FC) and were used to classify different tasks and individuals. In both cases, the
classification showed high accuracy for all the three structure-function coupling measures,
across various cross-validation settings. Two specific networks including regions that are key
to either task decoding or individual fingerprinting based on structure-function coupling
emerged. Results were then compared with the classification performances obtained with
conventional nodal (node strength) and edgewise measures of FC, without knowledge from
the underlying structure. Finally, nodewise and edgewise structure-function couplings in
resting state were shown to correlate with individual cognitive traits including fluid intelligence
and sustained attention, particularly in the high-frequency FC components (d-FC) of the

structural connectome.
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2. Material and Methods

2.1 Methods Outline

The methodological pipeline is illustrated in Fig. 1. From the fMRI time courses (Fig. 1A) of
100 individuals during rest and seven tasks, conventional edgewise and nodal FC measures
(FC matrix and FC node strength) were computed (Fig. 1B). In parallel to that, the GSP
pipeline outlined in (Preti and Van De Ville, 2019) was implemented to decompose functional
signals at each timepoint onto the underlying structural bases and filter them in coupled (low-
frequency) and decoupled (high-frequency) portions (Fig. 1C). Structure-function coupling was
then evaluated at the level of connections and regions, by means of coupled and decoupled
FC and structural-decoupling indexes, respectively (Fig. 1D). c-FC and d-FC are FC matrices
derived from the coupled and decoupled portions of fMRI time courses. The SDI quantifies
instead the amount of local alignment between brain functional signals and the underlying
structural connectivity network at the nodal level. Next, the task decoding and individual
fingerprinting accuracy obtained from the nodal and edgewise structure-function coupling
features (SDI, c-FC and d-FC, Fig. 1D), as well as from corresponding nodal and edgewise
measures of FC not taking into account the underlying brain structure (Fig. 1B), were assessed
with Support Vector Machine (SVM) classification (Fig. 1E) and compared. Finally, multivariate
relationships between the different nodal and edgewise features and individual cognitive traits

were assessed with partial least square correlation (PLSC) analyses.
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Figure 1. Method workflow. From fMRI nodal signals at each timepoint (A), functional
connectivity (FC) is evaluated through conventional edgewise (FC matrix) and nodewise (FC
node strength) measures (B). The graph signal processing (GSP) pipeline is applied to
decompose functional signals into the structural harmonics obtained from the

eigendecomposition of the structural connectome (SC) Laplacian (C). Functional signals are
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then filtered into two components; i.e., one coupled and one decoupled from structure, by
applying ideal low pass (light blue) and high pass (pink) filters in the graph spectral domain
(C). Edgewise and nodewise metrics evaluating structure-function coupling are obtained by
computing FC matrices from coupled and decoupled signals (coupled and decoupled FC (c-
FC and d-FC), respectively), and the structural decoupling index (SDI). Edgewise and nodal
measures of both FC (B) and structure-function coupling (D) enter separate support vector
machine (SVM) classifications with various cross validation settings to test their task decoding

and fingerprinting value, quantified by task and subject identification accuracies (E).

2.2 Data & Preprocessing

The N; = 100 unrelated healthy subjects of the HCP dataset U100 - HCP900 data release (54
females, 64 males, mean age = 29.1 £ 3.7 years) were included in the study. Ethical approval
was obtained within the HCP. Analyses were restricted to these 100 subjects to ensure
absence of any family relationship which may influence fingerprinting results. fMRI acquired
with Ny = 8 different task conditions (resting state and 7 tasks: emotion, gambling, language,
motor, relation, social, working memory), each recorded with Ny =2 phase encoding
directions (right-left and left-right), as well as DW-MRI sequences were pre-processed with
state-of-the-art pipelines, in order to obtain regional functional time courses and their structural
connections, based on a parcellation with Nzo; = 379 regions (360 cortical areas (Glasser et
al., 2016) and 19 subcortical ones as provided by the HCP release (Fischl et al., 2002; Glasser
et al., 2013)). Each cortical area was assigned to one of the 7 Yeo networks through majority
voting procedure for post hoc analyses (Yeo et al., 2011). Minimally preprocessed data from
the HCP were selected (Glasser et al.,, 2013; Van Essen et al., 2013) and the following
additional pre-processing steps were performed. Nuisance signals were removed from voxel
fMRI time courses (linear and quadratic trends, six motion parameters and their first
derivatives, average white matter and cerebrospinal fluid signals and their first derivatives)
and average time courses were computed in each region of the parcellation, previously
resampled to the functional resolution, and z-scored. To remove the effect of the paradigm on
task data, only for task classification, paradigms were regressed out trial by trial from functional
time courses (a separate regressor for each task trial was included in the model). Functional
connectomes were obtained as Pearson’s correlation between pairwise time courses and FC
nodal strength was computed for each region as the sum of absolute values of all the
connections of that region (Fig. 1B).

The same DW-MRI processing pipeline detailed in (Preti and Van De Ville, 2019) was used to
reconstruct whole brain tractograms including 2 million fibers, using a spherical deconvolution

approach and the Spherical-deconvolution Informed Filtering of Tractograms 2 (SIFT2 (Smith
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et al., 2015), https://www.mrtrix.org/). Structural connectomes were then obtained, after
resampling of the same parcellation to diffusion space, as the number of tracts connecting two
regions, normalized by the sum of the two regions’ volumes. An average structural connectivity
(SC) matrix, representative of the whole population, was obtained by averaging the structural

connectivity values across subjects.

2.3 Structure-function coupling features

The graph signal processing framework detailed in (Preti and Van De Ville, 2019) was adopted
to obtain structure-function signatures (the SDI and the newly introduced c-FC and d-FC) for
each subject and acquisition. In brief, the average SC across the population is decomposed
into structural harmonics u, by eigendecomposition of the SC Laplacian L = I — Agym (given

the identity matrix I and the symmetrically normalized adjacency matrix Ay, of the SC):

LU =UA,

where each eigenvalue [A],, =4, can be interpreted as spatial frequency of the
corresponding structural harmonic (eigenvector) u;. For each subject, functional data at each
timepoint s; is then projected onto the structural harmonics by assessing spectral coefficients
§; = UTs,, and filtered into two components with ideal low- and high-pass filters (Fig. 1C). A
fixed value of ¢ = 50 spectral components were chosen, to be common to all acquisitions, and
avoid task- or individual- biases that could affect the following classification. The filtering
operation yielded a low-frequency functional activity component s,¢ = U™ UTs,, which is
coupled to the structure, and a high-frequency one s> = U™ yTs, more decoupled from
the structure (where U°") and UM9M are Ng,; X Nyo;matrices with the ¢ first eigenvectors
complemented by zeros, and with ¢ first columns of zeros followed by the Nyo; — clast
eigenvectors, respectively). Pairwise Pearson’s correlations of s¢ and s” time courses were
computed to obtain ¢c-FC and d-FC matrices, respectively. The L2 norm across time of s¢ and
sP yielded instead a general measure of coupling and decoupling for each node, and the ratio

between the two corresponds to the SDI (Fig. 1D).

2.4 Decoding and fingerprinting networks of the SDI
A two-factor ANOVA with regional SDI values as dependent factor, and subject and task as
independent factors was performed to identify brain patterns of task and subject main effects

(decoding and fingerprinting patterns, respectively; significant F-values with p < .05,
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accounting for Bonferroni correction across regions). To assess the relative value of SDI and
FC nodal strength for task decoding and individual fingerprinting, an additional three-factor
(subject, task and measure type; i.e., SDI or FC strength) ANOVA on concatenated regional
SDI and FC strength values was performed. The interaction terms [task*measure] and
[subject*measure] indicate whether the effect of task or subject on brain patterns depends on
the way such patterns are quantified,; i.e., structure-function coupling or functional connectivity

alone.

2.5 Task decoding

Prior to task classification, task paradigms were regressed out from functional time courses to
minimize confounds from paradigm-imposed timings, aiming at keeping only differences due
to the specific task-related states. Five SVM analyses with Nz = 8 classes were performed
to classify a brain state bs (bs = 1,..., Ngg; i.€., resting state or one of the 7 tasks) based on
the Ngg; X Ny Ngs:-Ng = 379 x 1600 nodal feature matrices of (1) FC nodal strength and
(2) SDI patterns, as well as based on the (Ngo; - (Ngor —1)/2) X Ng-Ngg-Ns =
71631 x 1600 edgewise feature matrices of (3) FC, (4) c-FC and (5) d-FC values, from all
subjects and acquisitions. A 100-fold (leave-one-subject-out) cross-validation was
implemented, where the Ny - Ngg = 16 acquisitions from one subject were excluded for each
training fold and used as test data. For each training-test loop, a one-versus-one multiclass
linear SVM classifier with error-correcting output codes modelling was trained on standardized
training data (i.e., each predictor variable was centred and scaled to unit variance) using the
fitcecoc MATLAB v.R2019b function and used to predict the task in the test data (Allwein et
al., 2000; Furnkranz, 2002).

2.6 Individual fingerprinting

A second set of SVM classifications, with the same five sets of features (see paragraph 2.6),
but with Ny = 100 classes, was performed to identify individuals based on their functional or
structure-function coupling characteristics. Two different classification and cross-validation
settings were explored, considering data obtained from matching or discordant tasks: (1)
identification of a subject s doing a specific task bs, based on all other tasks and individuals.
This was implemented with a 800-fold (leave-one-subject’s-task-out) cross-validation, where
the Ng entries (two different encoding directions) of subject s doing task bs were excluded for
each fold; (2) identification of a subject s doing a specific task bs, from entries related to only

one other different task (all pairwise combinations explored). This was implemented with a set
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of leave-one-subject-and-task-out cross-validation analyses on data subsets including only
entries from a specific task and subject in the test fold, and only entries from a specific different
task (all subjects, Ng data points) in the training fold. For each training-test loop, a one-versus-
all multiclass linear SVM classifier with output codes modelling was trained on standardized

training data and used to predict the subject in the test data (Allwein et al., 2000).

2.7 Multivariate correlation with cognition

PLSC analyses (Krishnan et al., 2011) were performed to assess the presence of multivariate
correlation patterns between the five sets of nodal and edgewise brain features and 10
cognitive scores across subjects. For the cognitive scores, the 10 cognitive subdomains tested
in the HCP were considered, namely, episodic memory, executive functions, fluid intelligence,
language, processing speed, self-regulation/impulsivity, spatial orientation, sustained visual
attention, verbal episodic memory and working memory (Barch et al., 2013). For subdomains
for which more than one unadjusted raw score was available, a single score was obtained by
data projection onto the first component from a principal component analysis (Supplementary
Fig. 3). For each brain feature, PLSC was repeated Ny times, each time considering only
brain values (FC nodal strength, SDI, FC, c-FC, or d-FC) obtained during one task. Given the
dimensionality of the data, each PLSC analysis outputs 10 pairs of so-called brain-cognitive
saliences corresponding to the left and right singular vectors of the data covariance matrix; 10
singular values indicating the amount of explained covariance; and 10 sets of brain and
cognitive latent scores corresponding to data projections onto the brain and cognitive
saliences, respectively. Statistical significance of multivariate correlation patterns was
assessed with permutation testing (1000 permutations) for testing 10 singular values
(Mclntosh and Lobaugh, 2004; Zdller et al., 2017). Reliability of nonzero salience values was
assessed with bootstrapping procedure (1000 random samples) and computing standard
scores with respect to the bootstrap distributions (salience values were considered reliable for
absolute standard score > 3) (Mclntosh and Lobaugh, 2004; Zéller et al., 2017). Moreover, the
generalizability of the multivariate correlation patterns obtained with each PLSC analysis was
assessed with a 10-fold cross-validation procedure in the following way: first, 10 test subjects
were removed from the dataset; second, brain and cognitive saliences were estimated from
the remaining data (i.e., from the training set which includes Ng — 10 = 90 subjects); third, test-
subject data were projected onto the saliences obtained from the training set to obtain the test
latent scores; fourth, the correlation between original and test latent scores was evaluated. In
case of generalizable multivariate correlation patterns, one would expect that original and test
latent scores align along the identity line (Loukas et al., 2021). Finally, the r-squared (squared

Pearson’s correlation) between the latent scores was used to quantify the amounts of cognitive
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traits’ variance explained by the five different brain features. For the edgewise brain features
(FC, c-FC, d-FC), a cortical summary of the edgewise saliences was obtained by summing

the salience weights of all the edges attached to the individual brain regions.

10


https://doi.org/10.1101/2021.04.19.440314
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.19.440314; this version posted November 14, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

3. Results

3.1 Group-level structure-function coupling patterns are consistent across tasks

The structure-function coupling assessed with SDI at the nodal level, and with c-FC and d-FC
and the edge level, yielded brain patterns of regional and edgewise values for each subject
and run which were consistent across tasks (resting state and seven tasks: emotion, gambling,
language, motor, relational, social, working memory; each acquired with 2 phase encoding
directions). Average SDI, c-FC, and d-FC profiles across subjects for each state are reported
in Supplementary Fig. 1 and Supplementary Fig. 2. Consistently with previous work (Preti and
Van De Ville, 2019), we observed relatively strong structure-function nodal coupling (lower
SDI) in sensory and particularly in visual areas, and relatively strong nodal decoupling (higher
SDI) in high-level cognitive networks (Supplementary Fig. 1). Functional connectivity
information extracted from the low spatial frequencies of the structural connectome (c-FC) was
qualitatively similar to classical functional connectivity (FC), with strong connectivity within
visual and somatosensory networks, and low functional connectivity between the default mode
(DMN) and limbic networks, and the other brain circuits. Conversely, functional connectivity
matrices obtained from high spatial frequencies of the structural connectome (d-FC) were
sparser and displayed both anti-correlation and positive-correlation patterns within and
between resting state networks. Subcortical regions mainly showed d-FC anti-correlation

patterns with cortical circuits (Supplementary Fig. 2).

3.2 SDI task decoding and fingerprinting patterns are spatially distinct

As a first step, we investigated the existence of possibly distinct brain patterns of structure-
function coupling associated with inter-task and inter-individual variability, respectively. To this
end, a two-factor ANOVA assessing differences of nodal SDIs across subjects and tasks
yielded two spatially distinct whole-brain patterns, characterized by a significant effect for
either task or subject. In Fig. 2, nodes with significant F-values are visualized as non-zeros,
with p<.05, Bonferroni-corrected for the number of brain regions. The task decoding pattern
(Fig. 2A) clearly involves more prominently regions belonging to unimodal brain circuits, in
particular parts of the visual, somatomotor, and auditory networks. On the contrary, the
fingerprinting pattern (Fig. 2B) was spatially more distributed, and concerned posterior parietal
regions, including fronto-parietal and transmodal cortices that have been consistently reported
to contribute to subject identification from functional connectivity (Finn et al., 2015), and to a
lesser extent visual, somatomotor, and auditory networks with lower contributions form the
anterior DMN and limbic system. Moreover, combined ANOVA analyses including both SDI

and FC nodal strength, with subject, task, measure (SDI or FC nodal strength), and first order
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interactions as explanatory factors, show a significant combined effect of both task and
measure (task-measure interaction), and subject and measure (subject-measure interaction)
for all brain regions (p<.05, Bonferroni-corrected for the number of brain regions), indicating

that SDI and FC nodal strength contribute differently to both task and subject identification.

A Task decoding B Subject fingerprinting
brain pattern g 7 > e Prain pattern g

5 percentile W 95 percentile 5 percentile W 95 percentile

Fig. 2. Brain patterns of task (decoding effect) and subject (fingerprinting effect) main
effects on nodal structure-function coupling. Two-Factors ANOVA, significant F-values
(p<.05 Bonferroni corrected) with colormap scaled between the 5th and 95th percentiles

across brain regions (task effect: F 20.7-130.0; subject effect: F 6.6-15.8, respectively).

3.3 Structure-function coupling is able to decode task-related brain states

SVM was used to classify different task-related states (resting state and seven tasks) based
on nodewise or edgewise values of functional connectivity as well as structure-function
coupling, where task paradigms were regressed out from functional time courses.

For the nodewise metrics, task-classification based on nodal structure-function coupling (SDI)
reached an accuracy of 0.703 (chance level = 0.125), higher than the one based on FC nodal
strength (0.544), showing that SDI is able to outperform a nodal measure (i.e., with equal
dimensionality) based on functional data only (Table 1, first column). When keeping the full
dimensionality of connections (71’631 features), accuracy for GSP-derived FC values reached
0.893 for c-FC and 0.873 for d-FC, comparable to conventional FC (0.919), showing that
structure-function dependencies alone, analogously to FC, are able to well characterize

resting state and the different task conditions.

Task Decoding Subject Fingerprinting | Brain-Cognition

accuracy accuracy r?
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FC nodal strength 0.544 0.984 0.211
nodal SDI 0.703 0.999 0.180

FC 0.919 0.964 0.224

c-FC 0.893 0.972 0.209

d-FC 0.873 1.000 0.654

Table 1. Task decoding, subject fingerprinting, and brain-cognition relationships. First
column: task decoding accuracies for nodewise (FC nodal strength; SDI) and edgewise (FC,
c-FC, d-FC) functional and structure-function coupling measures estimated with 100-fold
leave-one-subject-out cross-validation and once-versus-one multiclass linear SVM classifier.
Second column: subject fingerprinting accuracies estimated with 800-fold leave-one-subject’s-
task-out cross-validation and one-versus-all multiclass SVM classifier. Third column: brain-
cognition r-squared (r?) computed as the squared Pearson’s correlation coefficient between
the brain and cognition latent scores obtained from significant partial least squares correlation
(PLSC) components. The brain-cognition r? quantifies the amount of inter-individual cognitive

traits’ variance explained by the five different brain features, respectively.

3.4 Structure-function decoupling represents an individual fingerprint of brain
organization

In addition to characterizing different task-related states, structure-function coupling measures
also revealed to be highly specific to different individuals, which was also the case for
functional connectivity. Accuracies for the identification of subjects ranged in fact from 0.964
for edgewise FC to about 1 for nodewise SDI and edgewise d-FC (chance level = 0.010) as
assessed with 800-fold /eave-one-subject’s-task-out cross-validation setting (Table 1). Both
nodewise and edgewise structure-function coupling measures performed slightly better than
their counterparts based on functional connectivity alone (Table 1). Next, we attempted to
identify individuals based on training the SVM classifier on only one task and testing it on
another task (all task combinations explored; [leave-one-subject-and-task-out cross
validation). Our results show that even in this more challenging classification setting, subject
identification was possible for all functional and structure-function coupling measures, with
accuracies largely above chance level (Fig. 3). When considering nodewise measures,

fingerprinting accuracies were slightly higher for FC nodal strength compared to SDI in most
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task combinations (average accuracies = 0.752 / 0.663 for FC strength and SDI, respectively).
However, in this same cross-validation scenario, the performance of edgewise metrics was
particularly interesting to observe. The best (near-perfect) accuracies, in fact, were reached
by the decoupled FC, largely outperforming both conventional FC and, in particular, coupled
FC (average accuracies = 0.897 / 0.428 / 0.997 for FC, c-FC and d-FC, respectively). In
general, predicting the subject from resting state data (training fold) to task data (test fold),
and from any task to resting state data, was slightly more difficult than cross-task prediction,
although there was not a particular pairwise task combination consistently outperforming the

other task combinations (Fig. 3).

FC nodal strength nodal SDI
RS Emo Gam Lan Mot Rel Soc WM RS Emo Gam Llan Mot Rel Soc WM
RS 0.760

Emo

o
-
Q Gam LEISEND 820 subject fingerprinting accuracy
) Lan 0.750 I bject-and-task-out cross-validati
g Mot EE0 05 I
< Rel
o
= Soc
edgewise FC edgewise coupled FC edgewise decoupled FC
Emo Gam Lan Mot RS Emo Gam Llan Mot Rel Soc WM Emo Gam Llan Mot Rel Soc WM
RS 0.805 0.860 0.830 0.915 | 0.755 1 0980 1
A Emo 0965 0.945 0.915 0995 1 1
-
8 Gam | - 0.960 0.980 m 1
[0) Lan 0.915 - 0.915 i
= Mot [k 0.885 0.975 0.930 0990 1 0.995- 0985 1
Z
§ Rel 0.935 0960 0.955 | 0.845 1 1 1 1 - il
= Soc 0.865 o.szo 0.930 0.995 0.975 0.995 0.980 o.sss- 0.975
WM 0.965 1 0955 0.995 0.980 ) 1 1 1
TEST FOLD TEST FOLD TEST FOLD

Fig. 3. Cross-task fingerprinting accuracies for functional and structure-function
coupling measures. Subject classification accuracies when using only one condition -task or
resting state- for training (matrices’ rows) and one for testing (matrices’ columns), with all
pairwise task combinations explored and for all nodewise (FC nodal strength; SDI) and
edgewise (FC, c-FC, d-FC) measures. Classification accuracies were assessed with leave-
one-subject-and-task-out cross-validation and one-versus-all multiclass SVM classifiers.
RS=resting state; Emo=emotion; Gam=gambling; Lan=language; Mot=motor; Rel=relational;

Soc=social; WM=working memory.

3.5 Structure-function decoupling explains cognitive traits

Finally, functional and structure-function coupling measures explained inter-individual
variations of cognitive traits, particularly sustained attention and fluid intelligence scores.
Multivariate correlations between subject-specific brain measures (FC nodal strength, nodal
SDI, FC, c-FC, and d-FC) in the different tasks (resting state and seven tasks) and 10 scores
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measuring cognitive subdomains were assessed with PLSC analyses (one PLSC per task and
per brain measure). PLSC identifies linear combinations of brain measures that maximally
covary with linear combinations of cognitive scores. PLSC analyses revealed significant
multivariate correlation patterns between cognitive traits and all five functional and structure-
function coupling measures mainly during resting state (p<.05; Supplementary Table S1).
During tasks, brain-cognition multivariate correlations were not statistically significant or
statistically significant but weaker compared to resting state, as indicated by lower brain-
cognition r-squared values (Supplementary Table S1). When comparing the amount of inter-
individual cognitive traits’ variance explained by the five different brain features, we found that
resting state FC nodal strength, nodal SDI, edgewise FC, and c-FC had similar r-squared
values, ranging from 0.180 for SDI to 0.224 for FC (i.e., 18 to 22%, Table 1). However,
edgewise d-FC explained a larger amount of inter-individual cognitive variance, reaching 65%
(Table 1). In particular, stronger resting state d-FC in regions belonging to the fronto-parietal
network (including the bilateral posterior superior-frontal gyri, dorsolateral frontal cortices,
intraparietal sulci, and inferior temporal gyri), and weaker resting state d-FC in somatosensory,
limbic and middle temporal regions, were associated with better sustained attention
performances, as shown by the d-FC and cognitive saliences that weigh the contribution of
individual variables to the overall multivariate pattern (Fig. 4C). Conversely, larger resting state
FC nodal strength, SDI, FC, and c-FC specifically related to a cognitive profile characterized
by higher fluid intelligence and spatial orientation, and lower, sustained attention and verbal
episodic memory scores (Fig. 4A-B and Supplementary Fig. S4). The FC nodal strength, SDI,
FC, and c-FC cortical patterns relating to cognition were spatially similar and mainly involved
somatosensory, association, and temporo-parietal brain regions. 10-fold cross-validation
analyses indicated good brain and cognitive patterns generalizability, with Pearson’s
correlation values between original and test latent scores ranging from 0.78 to 0.99

(Supplementary Fig. 5).
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A cognitive salience FC salience

5 perc. N 95 perc.

B cognitive salience coupled-FC salience

Sperc. WM 95 perc.

C cognitive salience decoupled-FC salience

Fig. 4. Multivariate correlation patterns between classical, coupled-, and decoupled
functional connectivity during rest and cognitive traits. Significant Partial Least Square
Correlation (PLSC) patterns between cognitive traits (first column) and resting state FC (A), c-
FC (B), and d-FC (C) (second column). First column: cognitive saliences. Bars and single dots
represent the salience average and dispersion over 1000 bootstraps; yellow shading indicates
cognitive salience weights significantly different from zero. Second column: brain saliences
plotted on the cortical surface. For FC and c-FC (A, B) the significant salience weights were
positive, as represented by the yellow-to-red colormap. For d-FC (C) the significant salience

weights ranged from negative to positive values, as represented by the blue-to-red colormap.
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4. Discussion

Functional neuroimaging data have shown to provide measures of activity and connectivity
with the ability to predict brain states in relation to task execution, as well as to identify
individual subjects in a group (Finn et al., 2015; Haynes and Rees, 2006; Richiardi et al., 2011,
Van De Ville et al., 2021). In parallel, brain morphology (Wachinger et al., 2015) and structural
connectivity (Kumar et al., 2017; Yeh et al., 2016) revealed as well the capability of uniquely
identifying individuals. However, brain function and structure are conventionally considered
separately and the potential of structure-function coupling in state prediction (task decoding)

and subject identification (individual fingerprinting) remains unexplored.

In relation to the first, the way brain function couples to the underlying structure is likely to
adapt to the demands of the task. In line with this, task-related functional activity was shown
to be well predicted from structure only in selected brain regions, different for each task (Wu
et al., 2020). However, how this structure-function relationship depends on external
stimulation, cognitive engagement, and affective state, and whether this can be useful to
decode different brain states is still an open question (Suarez et al., 2020). Concerning
individual fingerprinting, given the high reliability of both structural and functional brain features
in subject identification, we could expect structure-function coupling profiles to also uniquely
characterize individuals, providing a new dimension of inter-individual differences in brain
organization. In line with this hypothesis, a recent study showed that the extent of alignment
between structure and function correlates with individual differences in cognitive flexibility
(Medaglia et al., 2018).

With these premises, we expanded here previous research by introducing new measures of
structure-function coupling at the level of single brain connections (c-FC, d-FC) and by
identifying the task decoding and individual fingerprinting potential of such structure-function
nodal and edgewise patterns. Specifically, our work shows that the structure-function coupling
can predict brain states with high accuracy. The Structural-Decoupling Index and the function
connectivity component decoupled from structure (d-FC) revealed able to identify individual
subjects in a group with near-perfect accuracy (Table 1), indicating that the pattern of
structure-function coupling is an intrinsic feature (or fingerprint) of an individual’s brain
organization. The idea of a ‘deep’ functional fingerprint, independent from brain state
configuration, is consistent with recent works reporting good cross-task subject identification
from FC data (Abbas et al., 2020; Amico and Goni, 2018b; Finn et al., 2015) and moderate

state-dependency (compared to high subject-dependency) of functional networks (Gratton et
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al., 2018). Here, we demonstrate that the way brain function aligns (or misaligns) with the

underlying structural connectivity provides additional clues on this functional fingerprint.

Therefore, while it is true that structure-function dependencies are sufficiently different across
tasks to allow a reliable decoding of brain states, a strong structure-function individual
fingerprint exists independently from the task during which brain function is measured. In fact,
this fingerprint appears robust to brain state changes, since even a stringent cross-validation
setting with pairwise cross-task predictions delivers high fingerprinting accuracies, in particular
related to functional connectivity patterns decoupled from structure. This shows, notably, that
a great deal of information specific to the individual is present in the high spatial frequencies
of the structural decomposition, that is in the portion of functional signals which is more liberal
with respect to brain structure. Notably, this finding could be particularly useful in the context
of clinical studies (Itani and Thanou, 2021): the information contained in the high frequencies
of the structural connectome, which is shown here to distinguish very well among individuals,
could in this case represent features characterizing individual patients and reflecting their
specific pathological traits. This consideration is reinforced by the PLSC results which indicate
that the FC components decoupled from structure explain a significant percentage of inter-
individual cognitive traits’ variability, at a level that exceeds the performances of other

functional and structure-function coupling measures.

As mentioned, structure-function dependencies also deliver high accuracy (0.75 for SDI, 0.89
for c-FC, and 0.87 for d-FC, against a 0.125 chance-level) when decoding task-related states.
It is important to remark here that, having regressed out task paradigms, task decoding can
still detect differences due to task, but not “artificially” induced ones, dependent on the
paradigm timing, which prevents biases due to task particularities. Recent studies have shown
that the cortical macro-scale gradient of structure-function coupling found at rest, opposing
primary sensory and association cortices (Preti and Van De Ville, 2019; Vazquez-Rodriguez
et al., 2019), can be retrieved from task data as well (Baum et al., 2020; Wu et al., 2020),
suggesting similar coupling patterns both in intrinsic (rest) and extrinsic brain states. We can
indeed observe the same, when comparing average SDI patterns (across subjects) among
task conditions. Nonetheless, specific and non-trivial differences across tasks, not clearly
visible at the population level (average maps in Supplementary Fig. 1), exist and allow

accurate task decoding.

Contributions of brain regions to task and subject identification are in fact not uniformly
distributed across the cortex: two clearly distinct maps were highlighted, one for task decoding

and one for individual fingerprinting (see Fig. 1). Interestingly, these two maps group brain
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regions with distinct structure-function coupling properties. The task pattern mainly involved
lower-order regions whose functional activity significantly couples with the structural
connectome (Supplementary Fig. 1), including somatomotor, visual and auditory cortices
(Preti and Van De Ville, 2019). This means that between-task variations of structure-function
coupling mainly occur in regions whose functional activity is on average more constrained by
the underlying structure. Conversely, the fingerprinting pattern was spatially more spread and
extended to frontal and transmodal association cortices whose functional activity tends to
decouple from structure (Preti and Van De Ville, 2019). This difference hints at a
neurobiological relevance of the way brain activity (tightly or loosely) couples with the
anatomical connectivity substrate, both in regard to the mechanisms underlying brain state
reconfiguration across tasks, and to how individual uniqueness is expressed in the brain. In
addition, a joint analysis of SDI and FC strength indicated that individual levels of region-wise
structure-function coupling and of local functional connectivity strength contribute differently
to task and subject identification. At the edge level, structure-function coupling, and particularly
the functional connectivity component decoupled from structure, outperforms classical whole-
brain functional connectivity in a challenging cross-task subject classification setting. These
results suggest that the alignment of function with structure reveals additional information with
respect to the functional connectivity alone. Future work should be done to consolidate and
extend these considerations, for example by including subject-specific structural connectivity
information -a non-trivial operation that would lead to the definition of multiple spectral domains
for brain signals, but opens the perspective of incorporating inter-subject structural variability

in the analysis of functional brain signatures.

Differently from previous work that mainly focused on fingerprint patterns and single cognitive
domains such as fluid intelligence, here we explored multivariate correlations between
functional and structure-function coupling features, and multiple cognitive traits. We show that
inter-individual variations of (nodewise and edgewise) functional connectivity and local
structure-function coupling (SDI) during rest consistently explain traits of complex cognition
(fluid intelligence, spatial orientation), executive function (sustained attention) and episodic
memory (Moore et al., 2015), resembling descriptions of a general intelligence g-factor
previously associated with functional connectivity of the default mode network (S. M. Smith et
al., 2015). In particular, a relatively stronger nodal structure-function coupling (lower SDI) was
associated with better complex cognition, in line with previous work demonstrating a link
between less liberal structure-function alignment during task switching and concomitant
cognitive flexibility performances (Medaglia et al., 2018). Nonetheless, relatively weaker nodal
structure-function coupling was associated with better executive and memory abilities. It might

be that certain brain functions, such as complex reasoning, may benefit from more reliable
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and consolidated brain communication pathways, possibly expressed in a stronger structure-
function alignment (Finn et al., 2017; Medaglia et al., 2018; Suarez et al., 2020). Other
functions, such as verbal learning and retrieval or attention maintenance, may conversely
benefit from a less constrained structure-function alignment, a configuration that might
predispose the individual to the integration of new information. On this line, stronger functional
connectivity components decoupled from structure, mainly in fronto-parietal areas, were
strongly associated with better sustained attention performances. While speculative, these
considerations and research in this direction, particularly investigating the role of the medium
and high frequencies of the structural connectome, may offer a new understanding of cognitive
control mechanisms (Lerman-Sinkoff et al., 2017). Furthermore, in our analyses the
relationship between brain features and cognitive traits was predominant in the resting
condition, suggesting that intrinsic rather than extrinsic brain states might better reflect general
cognitive abilities. Meanwhile, this observation does not exclude that temporal fluctuations of
structure-function coupling levels during tasks or rest might tap into specific cognitive-
behavioral subdomains and hence improve the prediction of task performance or cognitive

traits, which is another avenue for future research (Van De Ville et al., 2021).

Finally, the spatial patterns of structure-function coupling relating to cognition presented
similarities both with the task decoding map in lower-order somatomotor and association
cortices, intrinsically characterized by stronger structure-function coupling, as well as with the
fingerprinting map in fronto-parietal regions, characterized by more liberal structure-function
coupling (Preti and Van De Ville, 2019) (Fig. 2, 4; Supplementary Fig. 1). Recent work showed
that structural and functional connectivity present distinct patterns of inter-individual variance
as they relate to cognition (Rasero et al., 2021; Zimmermann et al., 2018). Intriguingly, our
results extend these findings identifying in the structure-function coupling a possible link
between divergent structural and functional connectivity patterns in predicting behavior. In this
respect, both the nodewise SDI and the edgewise d-FC capture inter-subject cognitive
variability, but along two different axes. Compared to the functional connectivity component
decoupled from structure, the coupled component (c-FC) preserves task- and subject-specific
information, but to a lesser extent, showing lower fingerprinting accuracies in the cross-task
classification setting and weaker brain-cognition relationship. The coupled functional
connectivity component may contain large-scale patterns common to individuals in a group,
as suggested by its similarity with the classic functional connectivity organization into well-
established resting state networks (Supplementary Fig. 2), while the decoupled component
may contain a larger proportion of subject-specific information. A further exploration of the full
structural connectome spectrum and of its derived functional connectivity components is

warranted.
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This study has a number of limitations and possible developments. First, the usage of a grey
matter parcellation as opposed to a voxel-based analysis impedes a fine-grained
characterization of functional territories that can vary across subjects and tasks (Laumann et
al., 2015; Salehi et al., 2020; Wang et al., 2015), with possible impact on the quantification of
nodewise and edgewise structure-function coupling features. Nevertheless, a parcellation-
based approach facilitates inter-subject comparisons, improves the signal-to-noise ratio of the
estimated structural and functional measures, and enables a compact representation of brain
fingerprints and decoding patterns. Second, group-level structural connectivity information
was used for the computation of GSP-derived metrics. While this choice is convenient since it
defines a common spectral domain across subjects and tasks, ways to integrate inter-subject
structural variability could be explored in the future. Third, this study does not consider time-
varying aspects of structure-function dependency (Cabral et al., 2017; Fukushima et al., 2018;
Van De Ville et al., 2021): their exploration in the future might provide insight particularly in
relation to task decoding and cognitive control mechanisms. Fourth, our analyses are limited
to slow temporal scales accessible with fMRI. Previous studies had attempted brain
fingerprinting using electrophysiological recordings (Fraschini et al., 2015; Marcel and Millan,
2007; Sareen et al., 2021), but the link between faster brain dynamics and structural topology
remains poorly understood (Finger et al., 2016; Glomb et al., 2020). Future research may
address how the hierarchy of structure-function dependencies vary at faster temporal scales,
possibly carrying distinct fingerprinting and decoding information. Finally, our multivariate
correlation analyses explore possible brain patterns relating to cognitive traits, including
bootstrap and cross-validation procedure for generalizability assessment. Nonetheless,
feature importance in multivariate predictive models of cognition remains difficult to reliably
estimate and different machine learning approaches are under investigation (Tian and
Zalesky, 2021).

In conclusion, this work demonstrates that structure-function dependencies quantified both at
the level of single brain regions and connections form prominent signatures of individual
brains’ organization reflecting cognitive and behavioural correlates, while at the same time
preserving task-dependent information. In particular, the high spatial frequencies of the
structural connectome may contain relevant subject-specific information which deserves

further attention in the future.
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