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Abstract 

  

Brain signatures of functional activity have shown promising results in both decoding brain 

states, meaning distinguishing between different tasks, and fingerprinting, that is identifying 

individuals within a large group. Importantly, these brain signatures do not account for the 

underlying brain anatomy on which brain function takes place. Structure-function coupling 

based on graph signal processing (GSP) has recently revealed a meaningful spatial gradient 

from unimodal to transmodal regions, on average in healthy subjects during resting-state. 

Here, we explore the potential of GSP to introduce new imaging-based biomarkers to 

characterize tasks and individuals. We used multimodal magnetic resonance imaging of 100 

unrelated healthy subjects from the Human Connectome Project both during rest and seven 

different tasks and adopted a support vector machine classification approach for both 

decoding and fingerprinting, with various cross-validation settings. We found that structure-

function coupling measures allow accurate classifications for both task decoding and 

fingerprinting. In particular, key information for fingerprinting is found in the more liberal portion 

of functional signals, that is the one decoupled from structure. A network mainly involving 

cortico-subcortical connections showed the strongest correlation with cognitive traits, 

assessed with partial least square analysis, corroborating its relevance for fingerprinting. By 

introducing a new perspective on GSP-based signal filtering and FC decomposition, these 

results show that brain structure-function coupling provides a new class of signatures of 

cognition and individual brain organization at rest and during tasks. Further, they provide 

insights on clarifying the role of low and high spatial frequencies of the structural connectome, 

leading to new understanding of where key structure-function information for characterizing 

individuals can be found across the structural connectome graph spectrum. 
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Highlights 

- The relation of brain function with the underlying structural wiring is complex 

- We propose new structure-informed graph signal processing (GSP) of functional data 

- GSP-derived features allow accurate task decoding and individual fingerprinting 

- Functional connectivity from filtered data is more unique to subject and cognition 

- The role of structurally aligned and liberal graph frequencies is elucidated 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.04.19.440314doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440314
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

1. Introduction 

  

The existence of brain signatures based on functional magnetic resonance imaging (fMRI), 

meaning specific features uniquely characterizing either tasks or individuals, has emerged 

from the development of advanced data analysis methods in the last two decades. On the one 

hand, the application of pattern recognition techniques to neuroimaging data proved the 

capability of fMRI to decode task-specific brain activity (Gao et al., 2020; Haynes and Rees, 

2006; Li and Fan, 2019; Richiardi et al., 2011; Wang et al., 2020). Significant progress in this 

direction was made by the recent advent of deep learning (Gao et al., 2020; Li and Fan, 2019; 

Wang et al., 2020), even if it remains nontrivial to interpret the biological meaning of the 

learned features. On the other hand, similarly to a fingerprint, fMRI-based features can 

accurately identify individuals from a large group (Amico and Goñi, 2018a; Biazoli et al., 2017; 

Finn et al., 2015; Mansour L et al., 2021; Van De Ville et al., 2021). In a seminal paper by Finn 

and colleagues (Finn et al., 2015), functional connectivity (FC) profiles were used to 

successfully classify subjects across resting state test-retest sessions, and even between task 

and rest conditions. The fronto-parietal network emerged as the main contributor to subject 

discrimination, and was shown to predict individual cognitive behavior (i.e., level of fluid 

intelligence). In addition to functional activity, brain anatomical features, such as cortical 

morphology and white-matter structural connectivity, were also proven useful for brain 

fingerprinting (Kumar et al., 2017; Lin et al., 2020; Valizadeh et al., 2018; Wachinger et al., 

2015; Yeh et al., 2016). 

  

In this context, a still unexplored brain feature, which could offer new insights into task 

decoding, individual fingerprinting and behavioural correlates, is the degree of coupling 

between function and structure, i.e., how brain functional activity and connectivity align to the 

underlying structural connectivity architecture as measured with diffusion-weighted (DW) MRI. 

Early attempts to investigate structure-function relationships in the brain spanned from simple 

approaches, such as correlational analyses (Amico and Goñi, 2018b; Goñi et al., 2014; Honey 

et al., 2009; Miai� et al., 2016; Zhang et al., 2011), to more complex ones, like whole brain 

computational and communication models (Amico et al., 2021; Avena-Koenigsberger et al., 

2018; Deco et al., 2011; Griffa et al., 2017; Miai� et al., 2015; Seguin et al., 2020). More 

recently, graph signal processing provided a novel framework for a combined structure-

function analysis (Huang et al., 2018; Medaglia et al., 2018; Preti and Van De Ville, 2019). 

Within this setting, Preti and Van De Ville quantified the degree of structure-function 

dependency for each brain region, by means of the newly introduced Structural-Decoupling 

Index (SDI) (Preti and Van De Ville, 2019). This nodal metric quantifies the degree of local 

(dis)alignment between structure and function, and it is obtained by decomposing the 
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structural connectome into harmonics in the graph frequency domain, and projecting the 

functional signals (fMRI frames at each timepoint) in the space spanned by the structural 

harmonics. The functional signals are then filtered into low and high structural graph 

frequencies, giving rise to coupled and decoupled signal components, respectively. The ratio 

between the energy of these two signal portions yields the SDI of a brain region. During resting 

state in healthy subjects, local structure-function (de)coupling showed a very characteristic 

and behaviorally relevant spatial distribution, spanning from lower-order functional areas such 

as visual and somatosensory cortices, with activity highly constrained by the structure 

underneath, to higher-order ones, with activity more liberal. However, the extent to which this 

configuration changes in different task-related states, or in different subjects, still remains 

unexplored. Moreover, the quantification of the structure-function coupling at the level of single 

brain connections may bring new insights into brain organization principles and their 

uniqueness to brain states and individuals. In particular, do structure-function dependency 

patterns represent a signature of a particular task-related state? Can they act as a brain 

fingerprint uniquely identifying individuals? And which structure-function dependency features 

are more relevant to task decoding, subject fingerprinting, and inter-individual cognitive 

variability?  

  

To answer these open questions, we analysed the structural and functional data during resting 

state and seven different tasks of 100 unrelated healthy subjects from the Human Connectome 

Project (HCP) (Van Essen et al., 2013), and obtained their structure-function signatures 

quantified through: (i) the SDI, and (ii) a new GSP-based decomposition of the FC. The latter 

is obtained by assessing the functional connectivity between fMRI signal components that are 

more coupled or decoupled to the underlying structure, named coupled-FC (c-FC) and 

decoupled-FC (d-FC), respectively. These GSP-derived features quantify brain structure-

function coupling at the level of either single brain regions (SDI) or single brain connections 

(c-FC, d-FC) and were used to classify different tasks and individuals. In both cases, the 

classification showed high accuracy for all the three structure-function coupling measures, 

across various cross-validation settings. Two specific networks including regions that are key 

to either task decoding or individual fingerprinting based on structure-function coupling 

emerged. Results were then compared with the classification performances obtained with 

conventional nodal (node strength) and edgewise measures of FC, without knowledge from 

the underlying structure. Finally, nodewise and edgewise structure-function couplings in 

resting state were shown to correlate with individual cognitive traits including fluid intelligence 

and sustained attention, particularly in the high-frequency FC components (d-FC) of the 

structural connectome. 
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2. Material and Methods 

 

2.1 Methods Outline 

The methodological pipeline is illustrated in Fig. 1. From the fMRI time courses (Fig. 1A) of 

100 individuals during rest and seven tasks, conventional edgewise and nodal FC measures 

(FC matrix and FC node strength) were computed (Fig. 1B). In parallel to that, the GSP 

pipeline outlined in (Preti and Van De Ville, 2019) was implemented to decompose functional 

signals at each timepoint onto the underlying structural bases and filter them in coupled (low-

frequency) and decoupled (high-frequency) portions (Fig. 1C). Structure-function coupling was 

then evaluated at the level of connections and regions, by means of coupled and decoupled 

FC and structural-decoupling indexes, respectively (Fig. 1D). c-FC and d-FC are FC matrices 

derived from the coupled and decoupled portions of fMRI time courses. The SDI quantifies 

instead the amount of local alignment between brain functional signals and the underlying 

structural connectivity network at the nodal level. Next, the task decoding and individual 

fingerprinting accuracy obtained from the nodal and edgewise structure-function coupling 

features (SDI, c-FC and d-FC, Fig. 1D), as well as from corresponding nodal and edgewise 

measures of FC not taking into account the underlying brain structure (Fig. 1B), were assessed 

with Support Vector Machine (SVM) classification (Fig. 1E) and compared. Finally, multivariate 

relationships between the different nodal and edgewise features and individual cognitive traits 

were assessed with partial least square correlation (PLSC) analyses. 

 

 

 Figure 1. Method workflow. From fMRI nodal signals at each timepoint (A), functional 

connectivity (FC) is evaluated through conventional edgewise (FC matrix) and nodewise (FC 

node strength) measures (B). The graph signal processing (GSP) pipeline is applied to 

decompose functional signals into the structural harmonics obtained from the 

eigendecomposition of the structural connectome (SC) Laplacian (C). Functional signals are 
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then filtered into two components; i.e., one coupled and one decoupled from structure, by 

applying ideal low pass (light blue) and high pass (pink) filters in the graph spectral domain 

(C). Edgewise and nodewise metrics evaluating structure-function coupling are obtained by 

computing FC matrices from coupled and decoupled signals (coupled and decoupled FC (c-

FC and d-FC), respectively), and the structural decoupling index (SDI). Edgewise and nodal 

measures of both FC (B) and structure-function coupling (D) enter separate support vector 

machine (SVM) classifications with various cross validation settings to test their task decoding 

and fingerprinting value, quantified by task and subject identification accuracies (E). 

 

 

2.2 Data & Preprocessing  

The �! = 100 unrelated healthy subjects of the HCP dataset U100 - HCP900 data release (54 

females, 64 males, mean age = 29.1 ± 3.7 years) were included in the study. Ethical approval 

was obtained within the HCP. Analyses were restricted to these 100 subjects to ensure 

absence of any family relationship which may influence fingerprinting results. fMRI acquired 

with �" = 8	different task conditions (resting state and 7 tasks: emotion, gambling, language, 

motor, relation, social, working memory), each recorded with �# = 2 phase encoding 

directions (right-left and left-right), as well as DW-MRI sequences were pre-processed with 

state-of-the-art pipelines, in order to obtain regional functional time courses and their structural 

connections, based on a parcellation with �$%& = 379 regions (360 cortical areas (Glasser et 

al., 2016) and 19 subcortical ones as provided by the HCP release (Fischl et al., 2002; Glasser 

et al., 2013)). Each cortical area was assigned to one of the 7 Yeo networks through majority 

voting procedure for post hoc analyses (Yeo et al., 2011). Minimally preprocessed data from 

the HCP were selected (Glasser et al., 2013; Van Essen et al., 2013) and the following 

additional pre-processing steps were performed. Nuisance signals were removed from voxel 

fMRI time courses (linear and quadratic trends, six motion parameters and their first 

derivatives, average white matter and cerebrospinal fluid signals and their first derivatives) 

and average time courses were computed in each region of the parcellation, previously 

resampled to the functional resolution, and z-scored. To remove the effect of the paradigm on 

task data, only for task classification, paradigms were regressed out trial by trial from functional 

time courses (a separate regressor for each task trial was included in the model). Functional 

connectomes were obtained as Pearson9s correlation between pairwise time courses and FC 

nodal strength was computed for each region as the sum of absolute values of all the 

connections of that region (Fig. 1B). 

The same DW-MRI processing pipeline detailed in (Preti and Van De Ville, 2019) was used to 

reconstruct whole brain tractograms including 2 million fibers, using a spherical deconvolution 

approach and the Spherical-deconvolution Informed Filtering of Tractograms 2 (SIFT2 (Smith 
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et al., 2015), https://www.mrtrix.org/). Structural connectomes were then obtained, after 

resampling of the same parcellation to diffusion space, as the number of tracts connecting two 

regions, normalized by the sum of the two regions9 volumes. An average structural connectivity 

(SC) matrix, representative of the whole population, was obtained by averaging the structural 

connectivity values across subjects.   

  

 

2.3 Structure-function coupling features  

The graph signal processing framework detailed in (Preti and Van De Ville, 2019) was adopted 

to obtain structure-function signatures (the SDI and the newly introduced c-FC and d-FC) for 

each subject and acquisition. In brief, the average SC across the population is decomposed 

into structural harmonics �' by eigendecomposition of the SC Laplacian � = 	� 2 �!()) (given 

the identity matrix � and the symmetrically normalized adjacency matrix �!()) of the SC): 

 

�� = ��, 

  

where each eigenvalue [�]',' = �' can be interpreted as spatial frequency of the 

corresponding structural harmonic (eigenvector) �' . For each subject, functional data at each 

timepoint �+	is then projected onto the structural harmonics by assessing spectral coefficients 

�+7 = �"�+, and filtered into two components with ideal low- and high-pass filters (Fig. 1C). A 

fixed value of � = 50 spectral components were chosen, to be common to all acquisitions, and 

avoid task- or individual- biases that could affect the following classification. The filtering 

operation yielded a low-frequency functional activity component �+
	- = �(/01)�"�+, which is 

coupled to the structure, and a high-frequency one �+
	3 = �(4564)�"�+, more decoupled from 

the structure (where �(/01) and �(4564) are �$%& × �$%&matrices with the � first eigenvectors 

complemented by zeros, and with � first columns of zeros followed by the �$%& 2 �	last 

eigenvectors, respectively). Pairwise Pearson9s correlations of �- and �3 time courses were 

computed to obtain c-FC and d-FC matrices, respectively. The L2 norm across time of �- and 

�3 yielded instead a general measure of coupling and decoupling for each node, and the ratio 

between the two corresponds to the SDI (Fig. 1D).  

 

 

2.4 Decoding and fingerprinting networks of the SDI 

A two-factor ANOVA with regional SDI values as dependent factor, and subject and task as 

independent factors was performed to identify brain patterns of task and subject main effects 

(decoding and fingerprinting patterns, respectively; significant F-values with � < .05, 
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accounting for Bonferroni correction across regions). To assess the relative value of SDI and 

FC nodal strength for task decoding and individual fingerprinting, an additional three-factor 

(subject, task and measure type; i.e., SDI or FC strength) ANOVA on concatenated regional 

SDI and FC strength values was performed. The interaction terms [task*measure] and 

[subject*measure] indicate whether the effect of task or subject on brain patterns depends on 

the way such patterns are quantified; i.e., structure-function coupling or functional connectivity 

alone. 

  

 

2.5 Task decoding 

Prior to task classification, task paradigms were regressed out from functional time courses to 

minimize confounds from paradigm-imposed timings, aiming at keeping only differences due 

to the specific task-related states. Five SVM analyses with �78 = 8 classes were performed 

to classify a brain state �� (�� = 1, . . . , �78; i.e., resting state or one of the 7 tasks) based on 

the �$%&	 ×	�# ç �78 ç �8 	= 	379	 × 1600	 nodal feature matrices of (1) FC nodal strength and 

(2) SDI patterns, as well as based on the  (�$%&	 ç (�$%&	 2 1)	/	2) 	×	�# ç �78 ç �8 =

71631 × 1600 edgewise feature matrices of (3) FC, (4) c-FC and (5) d-FC values, from all 

subjects and acquisitions. A 100-fold (leave-one-subject-out) cross-validation was 

implemented, where the �# ç �78 = 16 acquisitions from one subject were excluded for each 

training fold and used as test data. For each training-test loop, a one-versus-one multiclass 

linear SVM classifier with error-correcting output codes modelling was trained on standardized 

training data (i.e., each predictor variable was centred and scaled to unit variance) using the 

fitcecoc MATLAB v.R2019b function and used to predict the task in the test data (Allwein et 

al., 2000; Furnkranz, 2002).  

  

 

2.6 Individual fingerprinting 

A second set of SVM classifications, with the same five sets of features (see paragraph 2.6), 

but with �8 	= 	100 classes, was performed to identify individuals based on their functional or 

structure-function coupling characteristics. Two different classification and cross-validation 

settings were explored, considering data obtained from matching or discordant tasks: (1) 

identification of a subject � doing a specific task ��, based on all other tasks and individuals. 

This was implemented with a 800-fold (leave-one-subject9s-task-out) cross-validation, where 

the �# entries (two different encoding directions) of subject � doing task �� were excluded for 

each fold; (2) identification of a subject � doing a specific task ��, from entries related to only 

one other different task (all pairwise combinations explored). This was implemented with a set 
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of leave-one-subject-and-task-out cross-validation analyses on data subsets including only 

entries from a specific task and subject in the test fold, and only entries from a specific different 

task (all subjects, �8 data points) in the training fold. For each training-test loop, a one-versus-

all multiclass linear SVM classifier with output codes modelling was trained on standardized 

training data and used to predict the subject in the test data (Allwein et al., 2000).  

  

 

2.7 Multivariate correlation with cognition 

PLSC analyses (Krishnan et al., 2011) were performed to assess the presence of multivariate 

correlation patterns between the five sets of nodal and edgewise brain features and 10 

cognitive scores across subjects. For the cognitive scores, the 10 cognitive subdomains tested 

in the HCP were considered, namely, episodic memory, executive functions, fluid intelligence, 

language, processing speed, self-regulation/impulsivity, spatial orientation, sustained visual 

attention, verbal episodic memory and working memory (Barch et al., 2013). For subdomains 

for which more than one unadjusted raw score was available, a single score was obtained by 

data projection onto the first component from a principal component analysis (Supplementary 

Fig. 3). For each brain feature, PLSC was repeated �78 times, each time considering only 

brain values (FC nodal strength, SDI, FC, c-FC, or d-FC) obtained during one task. Given the 

dimensionality of the data, each PLSC analysis outputs 10 pairs of so-called brain-cognitive 

saliences corresponding to the left and right singular vectors of the data covariance matrix; 10 

singular values indicating the amount of explained covariance; and 10 sets of brain and 

cognitive latent scores corresponding to data projections onto the brain and cognitive 

saliences, respectively. Statistical significance of multivariate correlation patterns was 

assessed with permutation testing (1000 permutations) for testing 10 singular values 

(McIntosh and Lobaugh, 2004; Zöller et al., 2017). Reliability of nonzero salience values was 

assessed with bootstrapping procedure (1000 random samples) and computing standard 

scores with respect to the bootstrap distributions (salience values were considered reliable for 

absolute standard score > 3) (McIntosh and Lobaugh, 2004; Zöller et al., 2017). Moreover, the 

generalizability of the multivariate correlation patterns obtained with each PLSC analysis was 

assessed with a 10-fold cross-validation procedure in the following way: first, 10 test subjects 

were removed from the dataset; second, brain and cognitive saliences were estimated from 

the remaining data (i.e., from the training set which includes �8 2 10 = 90 subjects); third, test-

subject data were projected onto the saliences obtained from the training set to obtain the test 

latent scores; fourth, the correlation between original and test latent scores was evaluated. In 

case of generalizable multivariate correlation patterns, one would expect that original and test 

latent scores align along the identity line (Loukas et al., 2021). Finally, the r-squared (squared 

Pearson9s correlation) between the latent scores was used to quantify the amounts of cognitive 
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traits9 variance explained by the five different brain features. For the edgewise brain features 

(FC, c-FC, d-FC), a cortical summary of the edgewise saliences was obtained by summing 

the salience weights of all the edges attached to the individual brain regions.    
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3. Results 

 

3.1 Group-level structure-function coupling patterns are consistent across tasks 

The structure-function coupling assessed with SDI at the nodal level, and with c-FC and d-FC 

and the edge level, yielded brain patterns of regional and edgewise values for each subject 

and run which were consistent across tasks (resting state and seven tasks: emotion, gambling, 

language, motor, relational, social, working memory; each acquired with 2 phase encoding 

directions). Average SDI, c-FC, and d-FC profiles across subjects for each state are reported 

in Supplementary Fig. 1 and Supplementary Fig. 2. Consistently with previous work (Preti and 

Van De Ville, 2019), we observed relatively strong structure-function nodal coupling (lower 

SDI) in sensory and particularly in visual areas, and relatively strong nodal decoupling (higher 

SDI) in high-level cognitive networks (Supplementary Fig. 1). Functional connectivity 

information extracted from the low spatial frequencies of the structural connectome (c-FC) was 

qualitatively similar to classical functional connectivity (FC), with strong connectivity within 

visual and somatosensory networks, and low functional connectivity between the default mode 

(DMN) and limbic networks, and the other brain circuits. Conversely, functional connectivity 

matrices obtained from high spatial frequencies of the structural connectome (d-FC) were 

sparser and displayed both anti-correlation and positive-correlation patterns within and 

between resting state networks. Subcortical regions mainly showed d-FC anti-correlation 

patterns with cortical circuits (Supplementary Fig. 2).  

 

 

3.2 SDI task decoding and fingerprinting patterns are spatially distinct 

As a first step, we investigated the existence of possibly distinct brain patterns of structure-

function coupling associated with inter-task and inter-individual variability, respectively. To this 

end, a two-factor ANOVA assessing differences of nodal SDIs across subjects and tasks 

yielded two spatially distinct whole-brain patterns, characterized by a significant effect for 

either task or subject. In Fig. 2, nodes with significant F-values are visualized as non-zeros, 

with p<.05, Bonferroni-corrected for the number of brain regions. The task decoding pattern 

(Fig. 2A) clearly involves more prominently regions belonging to unimodal brain circuits, in 

particular parts of the visual, somatomotor, and auditory networks. On the contrary, the 

fingerprinting pattern (Fig. 2B) was spatially more distributed, and concerned posterior parietal 

regions, including fronto-parietal and transmodal cortices that have been consistently reported 

to contribute to subject identification from functional connectivity (Finn et al., 2015), and to a 

lesser extent visual, somatomotor, and auditory networks with lower contributions form the 

anterior DMN and limbic system. Moreover, combined ANOVA analyses including both SDI 

and FC nodal strength, with subject, task, measure (SDI or FC nodal strength), and first order 
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interactions as explanatory factors, show a significant combined effect of both task and 

measure (task-measure interaction), and subject and measure (subject-measure interaction) 

for all brain regions (p<.05, Bonferroni-corrected for the number of brain regions), indicating 

that SDI and FC nodal strength contribute differently to both task and subject identification. 

 

 

Fig. 2. Brain patterns of task (decoding effect) and subject (fingerprinting effect) main 

effects on nodal structure-function coupling. Two-Factors ANOVA, significant F-values 

(p<.05 Bonferroni corrected) with colormap scaled between the 5th and 95th percentiles 

across brain regions (task effect: F 20.7-130.0; subject effect: F 6.6-15.8, respectively). 

 

  

3.3 Structure-function coupling is able to decode task-related brain states  

SVM was used to classify different task-related states (resting state and seven tasks) based 

on nodewise or edgewise values of functional connectivity as well as structure-function 

coupling, where task paradigms were regressed out from functional time courses.  

For the nodewise metrics, task-classification based on nodal structure-function coupling (SDI) 

reached an accuracy of 0.703 (chance level = 0.125), higher than the one based on FC nodal 

strength (0.544), showing that SDI is able to outperform a nodal measure (i.e., with equal 

dimensionality) based on functional data only (Table 1, first column). When keeping the full 

dimensionality of connections (719631 features), accuracy for GSP-derived FC values reached 

0.893 for c-FC and 0.873 for d-FC, comparable to conventional FC (0.919), showing that 

structure-function dependencies alone, analogously to FC, are able to well characterize 

resting state and the different task conditions. 

 

  Task Decoding 

accuracy 

Subject Fingerprinting 

accuracy 

Brain-Cognition 

r
2 
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FC nodal strength 0.544 0.984 0.211 

nodal SDI 0.703 0.999 0.180 

FC 0.919 0.964 0.224 

c-FC 0.893 0.972 0.209 

d-FC 0.873 1.000 0.654 

 

Table 1. Task decoding, subject fingerprinting, and brain-cognition relationships. First 

column: task decoding accuracies for nodewise (FC nodal strength; SDI) and edgewise (FC, 

c-FC, d-FC) functional and structure-function coupling measures estimated with 100-fold 

leave-one-subject-out cross-validation and once-versus-one multiclass linear SVM classifier. 

Second column: subject fingerprinting accuracies estimated with 800-fold leave-one-subject9s-

task-out cross-validation and one-versus-all multiclass SVM classifier. Third column: brain-

cognition r-squared (r2) computed as the squared Pearson9s correlation coefficient between 

the brain and cognition latent scores obtained from significant partial least squares correlation 

(PLSC) components. The brain-cognition r2 quantifies the amount of inter-individual cognitive 

traits9 variance explained by the five different brain features, respectively.   

 

 

3.4 Structure-function decoupling represents an individual fingerprint of brain 

organization 

In addition to characterizing different task-related states, structure-function coupling measures 

also revealed to be highly specific to different individuals, which was also the case for 

functional connectivity. Accuracies for the identification of subjects ranged in fact from 0.964 

for edgewise FC to about 1 for nodewise SDI and edgewise d-FC (chance level = 0.010) as 

assessed with 800-fold leave-one-subject9s-task-out cross-validation setting (Table 1). Both 

nodewise and edgewise structure-function coupling measures performed slightly better than 

their counterparts based on functional connectivity alone (Table 1). Next, we attempted to 

identify individuals based on training the SVM classifier on only one task and testing it on 

another task (all task combinations explored; leave-one-subject-and-task-out cross 

validation). Our results show that even in this more challenging classification setting, subject 

identification was possible for all functional and structure-function coupling measures, with 

accuracies largely above chance level (Fig. 3). When considering nodewise measures, 

fingerprinting accuracies were slightly higher for FC nodal strength compared to SDI in most 
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task combinations (average accuracies = 0.752 / 0.663 for FC strength and SDI, respectively). 

However, in this same cross-validation scenario, the performance of edgewise metrics was 

particularly interesting to observe. The best (near-perfect) accuracies, in fact, were reached 

by the decoupled FC, largely outperforming both conventional FC and, in particular, coupled 

FC (average accuracies = 0.897 / 0.428 / 0.997 for FC, c-FC and d-FC, respectively). In 

general, predicting the subject from resting state data (training fold) to task data (test fold), 

and from any task to resting state data, was slightly more difficult than cross-task prediction, 

although there was not a particular pairwise task combination consistently outperforming the 

other task combinations (Fig. 3). 

 

 

Fig. 3. Cross-task fingerprinting accuracies for functional and structure-function 

coupling measures. Subject classification accuracies when using only one condition -task or 

resting state- for training (matrices9 rows) and one for testing (matrices9 columns), with all 

pairwise task combinations explored and for all nodewise (FC nodal strength; SDI) and 

edgewise (FC, c-FC, d-FC) measures. Classification accuracies were assessed with leave-

one-subject-and-task-out cross-validation and one-versus-all multiclass SVM classifiers. 

RS=resting state; Emo=emotion; Gam=gambling; Lan=language; Mot=motor; Rel=relational; 

Soc=social; WM=working memory.  

 

  

3.5 Structure-function decoupling explains cognitive traits 

Finally, functional and structure-function coupling measures explained inter-individual 

variations of cognitive traits, particularly sustained attention and fluid intelligence scores. 

Multivariate correlations between subject-specific brain measures (FC nodal strength, nodal 

SDI, FC, c-FC, and d-FC) in the different tasks (resting state and seven tasks) and 10 scores 
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measuring cognitive subdomains were assessed with PLSC analyses (one PLSC per task and 

per brain measure). PLSC identifies linear combinations of brain measures that maximally 

covary with linear combinations of cognitive scores. PLSC analyses revealed significant 

multivariate correlation patterns between cognitive traits and all five functional and structure-

function coupling measures mainly during resting state (p<.05; Supplementary Table S1). 

During tasks, brain-cognition multivariate correlations were not statistically significant or 

statistically significant but weaker compared to resting state, as indicated by lower brain-

cognition r-squared values (Supplementary Table S1). When comparing the amount of inter-

individual cognitive traits9 variance explained by the five different brain features, we found that 

resting state FC nodal strength, nodal SDI, edgewise FC, and c-FC had similar r-squared 

values, ranging from 0.180 for SDI to 0.224 for FC (i.e., 18 to 22%, Table 1). However, 

edgewise d-FC explained a larger amount of inter-individual cognitive variance, reaching 65% 

(Table 1). In particular, stronger resting state d-FC in regions belonging to the fronto-parietal 

network (including the bilateral posterior superior-frontal gyri, dorsolateral frontal cortices,  

intraparietal sulci, and inferior temporal gyri), and weaker resting state d-FC in somatosensory, 

limbic and middle temporal regions, were associated with better sustained attention 

performances, as shown by the d-FC and cognitive saliences that weigh the contribution of 

individual variables to the overall multivariate pattern (Fig. 4C). Conversely, larger resting state 

FC nodal strength, SDI, FC, and c-FC specifically related to a cognitive profile characterized 

by higher fluid intelligence and spatial orientation, and lower, sustained attention and verbal 

episodic memory scores (Fig. 4A-B and Supplementary Fig. S4). The FC nodal strength, SDI, 

FC, and c-FC cortical patterns relating to cognition were spatially similar and mainly involved 

somatosensory, association, and temporo-parietal brain regions. 10-fold cross-validation 

analyses indicated good brain and cognitive patterns generalizability, with Pearson9s 

correlation values between original and test latent scores ranging from 0.78 to 0.99 

(Supplementary Fig. 5). 
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Fig. 4. Multivariate correlation patterns between classical, coupled-, and decoupled 

functional connectivity during rest and cognitive traits. Significant Partial Least Square 

Correlation (PLSC) patterns between cognitive traits (first column) and resting state FC (A), c-

FC (B), and d-FC (C) (second column). First column: cognitive saliences. Bars and single dots 

represent the salience average and dispersion over 1000 bootstraps; yellow shading indicates 

cognitive salience weights significantly different from zero. Second column: brain saliences 

plotted on the cortical surface. For FC and c-FC (A, B) the significant salience weights were 

positive, as represented by the yellow-to-red colormap. For d-FC (C) the significant salience 

weights ranged from negative to positive values, as represented by the blue-to-red colormap.    
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4. Discussion 

  

Functional neuroimaging data have shown to provide measures of activity and connectivity 

with the ability to predict brain states in relation to task execution, as well as to identify 

individual subjects in a group (Finn et al., 2015; Haynes and Rees, 2006; Richiardi et al., 2011, 

Van De Ville et al., 2021). In parallel, brain morphology (Wachinger et al., 2015) and structural 

connectivity (Kumar et al., 2017; Yeh et al., 2016) revealed as well the capability of uniquely 

identifying individuals. However, brain function and structure are conventionally considered 

separately and the potential of structure-function coupling in state prediction (task decoding) 

and subject identification (individual fingerprinting) remains unexplored. 

  

In relation to the first, the way brain function couples to the underlying structure is likely to 

adapt to the demands of the task. In line with this, task-related functional activity was shown 

to be well predicted from structure only in selected brain regions, different for each task (Wu 

et al., 2020). However, how this structure-function relationship depends on external 

stimulation, cognitive engagement, and affective state, and whether this can be useful to 

decode different brain states is still an open question (Suárez et al., 2020). Concerning 

individual fingerprinting, given the high reliability of both structural and functional brain features 

in subject identification, we could expect structure-function coupling profiles to also uniquely 

characterize individuals, providing a new dimension of inter-individual differences in brain 

organization. In line with this hypothesis, a recent study showed that the extent of alignment 

between structure and function correlates with individual differences in cognitive flexibility 

(Medaglia et al., 2018). 

  

With these premises, we expanded here previous research by introducing new measures of 

structure-function coupling at the level of single brain connections (c-FC, d-FC) and by 

identifying the task decoding and individual fingerprinting potential of such structure-function 

nodal and edgewise patterns. Specifically, our work shows that the structure-function coupling 

can predict brain states with high accuracy. The Structural-Decoupling Index and the function 

connectivity component decoupled from structure (d-FC) revealed able to identify individual 

subjects in a group with near-perfect accuracy (Table 1), indicating that the pattern of 

structure-function coupling is an intrinsic feature (or fingerprint) of an individual9s brain 

organization. The idea of a 8deep9 functional fingerprint, independent from brain state 

configuration, is consistent with recent works reporting good cross-task subject identification 

from FC data (Abbas et al., 2020; Amico and Goñi, 2018b; Finn et al., 2015) and moderate 

state-dependency (compared to high subject-dependency) of functional networks (Gratton et 
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al., 2018). Here, we demonstrate that the way brain function aligns (or misaligns) with the 

underlying structural connectivity provides additional clues on this functional fingerprint. 

 

Therefore, while it is true that structure-function dependencies are sufficiently different across 

tasks to allow a reliable decoding of brain states, a strong structure-function individual 

fingerprint exists independently from the task during which brain function is measured. In fact, 

this fingerprint appears robust to brain state changes, since even a stringent cross-validation 

setting with pairwise cross-task predictions delivers high fingerprinting accuracies, in particular 

related to functional connectivity patterns decoupled from structure. This shows, notably, that 

a great deal of information specific to the individual is present in the high spatial frequencies 

of the structural decomposition, that is in the portion of functional signals which is more liberal 

with respect to brain structure. Notably, this finding could be particularly useful in the context 

of clinical studies (Itani and Thanou, 2021): the information contained in the high frequencies 

of the structural connectome, which is shown here to distinguish very well among individuals, 

could in this case represent features characterizing individual patients and reflecting their 

specific pathological traits. This consideration is reinforced by the PLSC results which indicate 

that the FC components decoupled from structure explain a significant percentage of inter-

individual cognitive traits9 variability, at a level that exceeds the performances of other 

functional and structure-function coupling measures.!!

  

As mentioned, structure-function dependencies also deliver high accuracy (0.75 for SDI, 0.89 

for c-FC, and 0.87 for d-FC,  against a 0.125 chance-level) when decoding task-related states. 

It is important to remark here that, having regressed out task paradigms, task decoding can 

still detect differences due to task, but not <artificially= induced ones, dependent on the 

paradigm timing, which prevents biases due to task particularities. Recent studies have shown 

that the cortical macro-scale gradient of structure-function coupling found at rest, opposing 

primary sensory and association cortices (Preti and Van De Ville, 2019; Vázquez-Rodríguez 

et al., 2019), can be retrieved from task data as well (Baum et al., 2020; Wu et al., 2020), 

suggesting similar coupling patterns both in intrinsic (rest) and extrinsic brain states. We can 

indeed observe the same, when comparing average SDI patterns (across subjects) among 

task conditions. Nonetheless, specific and non-trivial differences across tasks, not clearly 

visible at the population level (average maps in Supplementary Fig. 1), exist and allow 

accurate task decoding. 

  

Contributions of brain regions to task and subject identification are in fact not uniformly 

distributed across the cortex: two clearly distinct maps were highlighted, one for task decoding 

and one for individual fingerprinting (see Fig. 1). Interestingly, these two maps group brain 
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regions with distinct structure-function coupling properties. The task pattern mainly involved 

lower-order regions whose functional activity significantly couples with the structural 

connectome (Supplementary Fig. 1), including somatomotor, visual and auditory cortices 

(Preti and Van De Ville, 2019). This means that between-task variations of structure-function 

coupling mainly occur in regions whose functional activity is on average more constrained by 

the underlying structure. Conversely, the fingerprinting pattern was spatially more spread and 

extended to frontal and transmodal association cortices whose functional activity tends to 

decouple from structure (Preti and Van De Ville, 2019). This difference hints at a 

neurobiological relevance of the way brain activity (tightly or loosely) couples with the 

anatomical connectivity substrate, both in regard to the mechanisms underlying brain state 

reconfiguration across tasks, and to how individual uniqueness is expressed in the brain. In 

addition, a joint analysis of SDI and FC strength indicated that individual levels of region-wise 

structure-function coupling and of local functional connectivity strength contribute differently 

to task and subject identification. At the edge level, structure-function coupling, and particularly 

the functional connectivity component decoupled from structure, outperforms classical whole-

brain functional connectivity in a challenging cross-task subject classification setting. These 

results suggest that the alignment of function with structure reveals additional information with 

respect to the functional connectivity alone. Future work should be done to consolidate and 

extend these considerations, for example by including subject-specific structural connectivity 

information!-a non-trivial operation that would lead to the definition of multiple spectral domains 

for brain signals, but opens the perspective of incorporating inter-subject structural variability 

in the analysis of functional brain signatures. 

  

Differently from previous work that mainly focused on fingerprint patterns and single cognitive 

domains such as fluid intelligence, here we explored multivariate correlations between 

functional and structure-function coupling features, and multiple cognitive traits. We show that 

inter-individual variations of (nodewise and edgewise) functional connectivity and local 

structure-function coupling (SDI) during rest consistently explain traits of complex cognition 

(fluid intelligence, spatial orientation), executive function (sustained attention) and episodic 

memory (Moore et al., 2015), resembling descriptions of a general intelligence g-factor 

previously associated with functional connectivity of the default mode network (S. M. Smith et 

al., 2015). In particular, a relatively stronger nodal structure-function coupling (lower SDI) was 

associated with better complex cognition, in line with previous work demonstrating a link 

between less liberal structure-function alignment during task switching and concomitant 

cognitive flexibility performances (Medaglia et al., 2018). Nonetheless, relatively weaker nodal 

structure-function coupling was associated with better executive and memory abilities. It might 

be that certain brain functions, such as complex reasoning, may benefit from more reliable 
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and consolidated brain communication pathways, possibly expressed in a stronger structure-

function alignment (Finn et al., 2017; Medaglia et al., 2018; Suárez et al., 2020). Other 

functions, such as verbal learning and retrieval or attention maintenance, may conversely 

benefit from a less constrained structure-function alignment, a configuration that might 

predispose the individual to the integration of new information. On this line, stronger functional 

connectivity components decoupled from structure, mainly in fronto-parietal areas, were 

strongly associated with better sustained attention performances. While speculative, these 

considerations and research in this direction, particularly investigating the role of the medium 

and high frequencies of the structural connectome, may offer a new understanding of cognitive 

control mechanisms (Lerman-Sinkoff et al., 2017). Furthermore, in our analyses the 

relationship between brain features and cognitive traits was predominant in the resting 

condition, suggesting that intrinsic rather than extrinsic brain states might better reflect general 

cognitive abilities. Meanwhile, this observation does not exclude that temporal fluctuations of 

structure-function coupling levels during tasks or rest might tap into specific cognitive-

behavioral subdomains and hence improve the prediction of task performance or cognitive 

traits, which is another avenue for future research (Van De Ville et al., 2021).  

 

Finally, the spatial patterns of structure-function coupling relating to cognition presented 

similarities both with the task decoding map in lower-order somatomotor and association 

cortices, intrinsically characterized by stronger structure-function coupling, as well as with the 

fingerprinting map in fronto-parietal regions, characterized by more liberal structure-function 

coupling (Preti and Van De Ville, 2019) (Fig. 2, 4; Supplementary Fig. 1). Recent work showed 

that structural and functional connectivity present distinct patterns of inter-individual variance 

as they relate to cognition (Rasero et al., 2021; Zimmermann et al., 2018). Intriguingly, our 

results extend these findings identifying in the structure-function coupling a possible link 

between divergent structural and functional connectivity patterns in predicting behavior. In this 

respect, both the nodewise SDI and the edgewise d-FC capture inter-subject cognitive 

variability, but along two different axes. Compared to the functional connectivity component 

decoupled from structure, the coupled component (c-FC) preserves task- and subject-specific 

information, but to a lesser extent, showing lower fingerprinting accuracies in the cross-task 

classification setting and weaker brain-cognition relationship. The coupled functional 

connectivity component may contain large-scale patterns common to individuals in a group, 

as suggested by its similarity with the classic functional connectivity organization into well-

established resting state networks (Supplementary Fig. 2), while the decoupled component 

may contain a larger proportion of subject-specific information. A further exploration of the full 

structural connectome spectrum and of its derived functional connectivity components is 

warranted.     

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.04.19.440314doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440314
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

This study has a number of limitations and possible developments. First, the usage of a grey 

matter parcellation as opposed to a voxel-based analysis impedes a fine-grained 

characterization of functional territories that can vary across subjects and tasks (Laumann et 

al., 2015; Salehi et al., 2020; Wang et al., 2015), with possible impact on the quantification of 

nodewise and edgewise structure-function coupling features. Nevertheless, a parcellation-

based approach facilitates inter-subject comparisons, improves the signal-to-noise ratio of the 

estimated structural and functional measures, and enables a compact representation of brain 

fingerprints and decoding patterns. Second, group-level structural connectivity information 

was used for the computation of GSP-derived metrics. While this choice is convenient since it 

defines a common spectral domain across subjects and tasks, ways to integrate inter-subject 

structural variability could be explored in the future. Third, this study does not consider time-

varying aspects of structure-function dependency (Cabral et al., 2017; Fukushima et al., 2018; 

Van De Ville et al., 2021): their exploration in the future might provide insight particularly in 

relation to task decoding and cognitive control mechanisms. Fourth, our analyses are limited 

to slow temporal scales accessible with fMRI. Previous studies had attempted brain 

fingerprinting using electrophysiological recordings (Fraschini et al., 2015; Marcel and Millan, 

2007; Sareen et al., 2021), but the link between faster brain dynamics and structural topology 

remains poorly understood (Finger et al., 2016; Glomb et al., 2020). Future research may 

address how the hierarchy of structure-function dependencies vary at faster temporal scales, 

possibly carrying distinct fingerprinting and decoding information. Finally, our multivariate 

correlation analyses explore possible brain patterns relating to cognitive traits, including 

bootstrap and cross-validation procedure for generalizability assessment. Nonetheless, 

feature importance in multivariate predictive models of cognition remains difficult to reliably 

estimate and different machine learning approaches are under investigation (Tian and 

Zalesky, 2021).  

  

In conclusion, this work demonstrates that structure-function dependencies quantified both at 

the level of single brain regions and connections form prominent signatures of individual 

brains9 organization reflecting cognitive and behavioural correlates, while at the same time 

preserving task-dependent information. In particular, the high spatial frequencies of the 

structural connectome may contain relevant subject-specific information which deserves 

further attention in the future. 
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