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Summary 22 

SARS-CoV-2 is a novel coronavirus that causes acute respiratory distress syndrome (ARDS), death and 23 

long-term sequelae. Innate immune cells are critical for host defense but are also the primary drivers of 24 

ARDS. The relationships between innate cellular responses in ARDS resulting from COVID-19 25 

compared to other causes of ARDS, such as bacterial sepsis is unclear. Moreover, the beneficial effects of 26 

dexamethasone therapy during severe COVID-19 remain speculative, but understanding the mechanistic 27 

effects could improve evidence-based therapeutic interventions. To interrogate these relationships, we 28 

developed an scRNA-Seq and plasma proteomics atlas (biernaskielab.ca/COVID_neutrophil). We 29 

discovered that compared to bacterial ARDS, COVID-19 was associated with distinct neutrophil 30 

polarization characterized by either interferon (IFN) or prostaglandin (PG) active states. Neutrophils from 31 

bacterial ARDS had higher expression of antibacterial molecules such as PLAC8 and CD83. 32 

Dexamethasone therapy in COVID patients rapidly altered the IFNactive state, downregulated interferon 33 

responsive genes, and activated IL1R2+ve neutrophils. Dexamethasone also induced the emergence of 34 

immature neutrophils expressing immunosuppressive molecules ARG1 and ANXA1, which were not 35 

present in healthy controls. Moreover, dexamethasone remodeled global cellular interactions by changing 36 

neutrophils from information receivers into information providers. Importantly, male patients had higher 37 

proportions of IFNactive neutrophils, a greater degree of steroid-induced immature neutrophil expansion, 38 

and increased mortality benefit compared to females in the dexamethasone era. Indeed, the highest 39 

proportion of IFNactive neutrophils was associated with mortality. These results define neutrophil states 40 

unique to COVID-19 when contextualized to other life-threatening infections, thereby enhancing the 41 

relevance of our findings at the bedside. Furthermore, the molecular benefits of dexamethasone therapy 42 

are also defined, and the identified pathways and plasma proteins can now be targeted to develop 43 

improved therapeutics.   44 

 45 
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COVID-19 ARDS host responses contextualized to bacterial ARDS. 47 

A broad array of infections including SARS-CoV-2 and bacterial sepsis can induce acute respiratory 48 

distress syndrome (ARDS), respiratory failure and death1-3. Neutrophils are thought to be key drivers of 49 

both COVID-19 and bacterial ARDS4-6, yet it is unclear if this is related to intrinsic and/or irreversible 50 

cellular responses. While recent studies have leveraged single-cell transcriptomics to dissect peripheral7-51 

9and bronchoalveolar fluid 10-12immune landscapes driving COVID-19 pathogenesis, the protocols used 52 

can inadvertently exclude the majority of polymorphonuclear granulocytes, including neutrophils, as they 53 

are highly sensitive cells with low RNA (and high RNase) content. Here, we employ whole-blood-54 

preserving protocols that capture all major immune cell types from critically ill patients admitted to 55 

intensive care units (ICUs) (Extended Fig 1). All samples taken from COVID-19 patients were assessed 56 

by bacterial culture and tested negative. All COVID-19 patients tested positive by PCR for SARS-CoV-2, 57 

and we previously confirmed an absence of viral mRNA in any circulating immune cells in a subset of 58 

patients13. However, a plasma proteomic screen for SARS-CoV-2 specific viral proteins in all samples 59 

revealed detection of one or more viral proteins in COVID-19 patient serum (Extended Fig 2a). 60 

Furthermore, we compared patient samples from COVID-19 ARDS to bacterial sepsis with ARDS 61 

(herein referred to as bacterial ARDS) (Extended Fig 2b), as there were unusually low admissions to ICU 62 

with viral pneumonias/ARDS during the period studied, likely due to COVID-19 public health measures.  63 

Patient cohorts had comparable ages, sex, days on life support and time in hospital, but COVID-19 64 

patients had broader racial diversity (Extended Fig 2c,d, Extended Data Table 1). Bacterial ARDS 65 

induced significant neutrophilia, and relative thrombocytopenia compared to the near normal circulating 66 

neutrophil numbers in COVID-19, while both had similar degrees of lymphopenia (Extended Fig 2e). 67 

Both cohorts had comparable PaO2 / FiO2 (P/F) ratios, which is an indicator of the severity of ARDS14, 68 

but bacterial ARDS patients had significantly more kidney injury demonstrated by higher levels of serum 69 

creatinine (Extended Fig 2f). We further compared families of soluble inflammatory markers (Extended 70 

Fig 2g) used to distinguish prototypical states, including those identified during cytokine storm (Extended 71 
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Fig 2h) and cytokine release syndrome (Extended Fig 2i)15, which demonstrated similar soluble cytokine 72 

and chemokine responses between the infections. Therefore, in the context of life-threatening bacterial 73 

ARDS, COVID-19 ARDS patients had normal neutrophil counts, comparable IL-6 levels, and less organ 74 

failure as indicated by serum creatinine levels, all of which have been previously proposed as markers of 75 

COVID disease severity16,17. This prompted us to further investigate immune states and composition in 76 

response to COVID-19 compared to bacterial ARDS. 77 

The online companion atlas (biernaskielab.ca/COVID_neutrophil) contains accessible scRNAseq data 78 

performed on freshly obtained whole blood at timepoint 1 (t1, <72h after ICU admission) and at timepoint 79 

2 (t2, 7 days after t1) (Fig 1a). Cellular identity was mapped to 30 immune cell types/states using a 80 

UMAP projection from 21 patients and 86,935 cells (Fig 1b, Extended Figure 3a). Global magnitude of 81 

gene expression was directly compared between COVID-19 and bacterial ARDS patients (Extended Data 82 

Table 3), which revealed a more globally altered distribution of differential expression at t1 than at t2. 83 

Altered regulation of genes was most pronounced in neutrophils at t1, with lower neutrophil gene 84 

expression in COVID-19 compared to bacterial ARDS (Fig 1c; Extended Fig 3b-c). At t2, the global 85 

alterations in gene expression when comparing COVID-19 to bacterial ARDS were most pronounced in 86 

plasmablasts (Fig 1d; Extended Fig 3d-e). We further compared and quantified the proportions of known 87 

peripheral blood cellular constituents, which highlighted significant differences in CD4 T cells, CD8 T 88 

cells and NK cells (Extended Fig 3f). These data highlight that significant global differences in immune 89 

cell gene expression exist between COVID-19 ARDS and bacterial ARDS. 90 

COVID-19 drives specific neutrophil maturation states.  91 

Neutrophils are a primary participant in the development of ARDS18; yet despite similar severity of 92 

ARDS between our bacterial and COVID-19 cohorts, the numbers of circulating neutrophils from clinical 93 

cell counts were significantly different (Extended Fig 2d). We hypothesized that neutrophil qualitative 94 

states may be important determinants of disease. Neutrophils were subjected to velocity analysis19,20 to 95 

reconstruct maturation dynamics. Louvain clusters (Fig 1e), clinical cohort, individual patient, and 96 
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velocity length were overlayed on velocity vector fields (Extended Fig 4a-d). The proportions of distinct 97 

neutrophil states were compared at t1 and this revealed a divergent expansion of IFNactive neutrophils 98 

(clusters 2, 4 and 5) marked by IFITM1 expression in COVID-19, which became similar to bacterial 99 

ARDS at t7 (Fig 1f-h). Expression of IFITM1 in neutrophils from COVID-19 patients at t1 was 100 

confirmed by immunofluorescent staining for IFITM1, colocalized with S100A8/9 and typical neutrophil 101 

nuclear morphology. Relative to healthy donors, the IFNactive population in both COVID-19 and bacterial 102 

ARDS patients were elevated (Extended Fig 4h-k), suggesting that infections dramatically alter neutrophil 103 

dynamics and that comparing COVID-19 neutrophils to healthy neutrophils may only reveal broad 104 

features separating pathogen-challenged versus non-challenged (homeostatic) neutrophils. Hence, to map 105 

pathogen-activated neutrophils dynamics with high resolution, subsequent analyses employ principal 106 

components with top loading genes that distinguish different pathogen-activated states arising during 107 

COVID-19 and bacterial sepsis for downstream dimensionality reduction. 108 
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 109 

Figure 1 3 COVID-19 alters neutrophil maturation. a. Schematic summarizing patients with COVID-110 

19 and bacterial sepsis profiled at t1 and t2. b. UMAP projection of 86,935 whole blood cells from 21 111 
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patient samples, coloured by Azimuth reference-mapped immune cell states. c-d. Kernel density estimates 112 

depicting magnitude of molecular response elicited by immune cell subsets during COVID-19 compared 113 

to Bacterial ARDS at t1 (c) and t2 (d) calculated by summing DEG fold changes for each cell state shown 114 

in Panel a. e. UMAP plotting RNA velocity analysis of 29,653 subclustered neutrophils undergoing state 115 

transitions, coloured by cluster ID. f. Stacked bar plot depicting cluster composition of clinical cohorts 116 

examined. g. UMAP coloured by neutrophil clusters and overlaid with summary path curves based on 117 

vector fields and neutrophil state compositions in Panel d and e, respectively to determine neutrophil 118 

states. h. Immunocytochemistry for S100A8/A9 (red) and IFITM1 (green) expression on leukocyte-rich 119 

preparation from COVID-19 donor at tl. i-k. Transcriptional kinetics driving expansion of IFNactive (i), 120 

Bacterial ARDS-enriched (j), and PGactive (k) neutrophils. Latent time distribution of trajectory-associated 121 

louvain clusters (left), phase portraits with equilibrium slopes of spliced3unspliced ratios (center), and 122 

RNA velocity and gene expression (right) of selected genes driving divergent maturation trajectories. 123 

Phase portraits are coloured by clinical cohort. 124 

Classically, peripheral neutrophils are considered terminally differentiated and non-dividing, however the 125 

increase in velocity length suggested the ability to alter phenotypic states once in circulation along 126 

specific paths or 8lineages9. COVID-19 neutrophils followed unique maturation paths compared to 127 

bacterial ARDS, culminating in three distinct terminal states: Interferon active (IFNactive), prostaglandin 128 

active (PGactive) or bacterial ARDS enriched (Fig 1e-g; Extended Fig 4e). Interestingly, the apex of this 129 

trajectory was marked by high velocity lengths, characteristic of cells undergoing differentiation 130 

(Extended Fig 4c, d). COVID-19 neutrophils preferentially transitioned from the apex of the trajectory, 131 

which was an immature state (TOP2A expressing; Extended Fig 4e) to an IFN responsive state 132 

characterized by IFITM1, IFITM2 and IFI6 expression (Cluster 1 to 4 and 5; Fig 1i; Online Atlas). This is 133 

clearly illustrated in Extended Video 1. This immature state was not present in healthy controls, though it 134 

is present in both comparator groups, suggesting these states are liberated into circulation upon pathogen 135 

exposure (Extended Fig 4h-k). The lineage relationship was less clear for COVID-19 enriched PGactive 136 

clusters defined by prostaglandin responsive genes (clusters 2, 6 and 8), with notable increases in 137 

PTGER4 and PTGS2 (or COX2), a proposed therapeutic target in COVID-1921 (Fig 1k; Extended Fig 4f, 138 

g, Online Atlas). The dominant conventional bacterial ARDS state was characterized by antibacterial 139 

proteins CD8322, CD177, and PLAC823 (cluster 3 to 0; Fig 1j; Online Atlas). Taken together, this data 140 

demonstrated that peripheral neutrophils have dynamic programming abilities which result in COVID-19 141 

specific neutrophil polarization defined by the emergence of IFNactive and PGactive neutrophil states.  142 
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Unique transcriptional regulatory pathways drive neutrophil maturation in COVID-19. 143 

Rapid and robust IFN responses protect against COVID-19 severe disease, while delayed responses could 144 

exacerbate systemic and pulmonary inflammation24,25. Moreover, neutrophil IFN responses are not 145 

traditionally considered during infections and neutrophils are generally considered to be homogenous, 146 

with a uniform proinflammatory capacity. Global neutrophil expression aligned with neutrophil state 147 

specific markers, such as interferon response genes (IFITM1, RSAD2, IFI6, and ISG10), being more 148 

highly expressed in COVID-19 neutrophils (Fig 2a; Extended Fig 4f). The inverse was the case for anti-149 

bacterial proteins like PLAC8 (Fig 2a; Online Atlas). However, the discovery of differential neutrophil 150 

states prompted further exploration of the factors driving neutrophil state polarization. Gene regulatory 151 

network reconstruction using SCENIC analysis26 revealed differentially activated transcription factors 152 

STAT1, IRF2 and PRDM1 in COVID-19 (Fig 2b), while bacterial ARDS neutrophils had increased 153 

prototypical granulocyte transcription factors such as CEBPA, CEBPB, STAT5B and less defined factors 154 

such as NFE2 (Fig 2b, Online Atlas). PRDM1 activation was most pronounced in the IFNactive neutrophil 155 

population and was likely responsible for driving expression of interferon response elements (IFIT1, 156 

ISG15, IFI6) and antiviral signaling, such as RSAD2 and STAT1 (Fig 2c; Online Atlas). A hallmark of 157 

PGactive neutrophil polarization was the activation of an E2F4 pathway (Fig 2d), while neutrophil 158 

programming during bacterial ARDS included STAT5B (Fig 2e). To summarize, in response to COVID-159 

19, neutrophils were polarized by unique transcriptional regulation towards one of two main populations, 160 

either an IFNactive population or a PGactive population (Fig 2f).  161 
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 162 

Figure 2 3 Distinct regulatory programs drive divergent neutrophil maturation. a. Consensus 163 

neutrophil DEGs upregulated (positive FC) or suppressed (negative FC) during COVID-19 in at least 3 of 164 

8 patients at t1 relative to Bacterial ARDS. b. Differentially activated consensus transcription factors 165 
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(TFs) in neutrophils from patients with COVID-19 relative to bacterial ARDS at t1. Stacked bars depict 166 

logFC contributions of each COVID-19 patient. c-e. Gene-regulatory networks preferentially driving 167 

IFNactive (PRDM1, c), PGactive (E2F4, d), and bacterial ARDS-enriched (STAT5B, e) neutrophil states. 168 

Scale bars depict kernel density estimates approximating magnitude of TF activation inferred by 169 

SCENIC-calculated AUCell scores. f. Schematic summarizing neutrophil fates favoured during COVID-170 

19 versus bacterial ARDS. 171 

 172 

Dexamethasone alters immune cell dynamics and plasma proteomic milieu. 173 

Conventional therapeutics have limited efficacy for COVID-19, and while dexamethasone offers a 174 

moderate benefit, the RECOVERY trial reported the benefit was greatest in the most severely affected 175 

patients27. However, the mechanisms underlying this benefit are unclear and not universal, so opportunity 176 

exists to optimize or better target this therapy. In our cohort, median time between dexamethasone 177 

administration to t1 blood draw (within 72 hours of ICU admission) was 31 hours (Fig 3a, Extended 178 

Figure 5a, Extended Table 1). Global differences in transcription were apparent at t1 with clear 179 

upregulation of genes in neutrophils and some T cell subsets in COVID-19 patients treated with 180 

dexamethasone versus those that were not treated (Fig 3b-d, Extended Figure 5b, Extended Data Table 4). 181 

Dexamethasone globally downregulated genes at t1, including in naïve B cells, plasmablasts and some T 182 

cells (Extended Figure 5b-d). At t2 gene upregulation occurred in adaptive immune cells, including naïve 183 

and effector CD8 T cells, with limited alterations in the innate myeloid cell lineages including 184 

neutrophils. However, neutrophils demonstrated clear down regulation of genes at t2, as did CD4 naïve 185 

and central memory T cells (Extended Figure 5e, f). Proportionally, at t1, dexamethasone administration 186 

was associated with an increase in cytotoxic CD4 T cells, naïve B cells, plasmablasts, and decreased 187 

proliferating NK cells, and CD4 effector memory cells (Extended Fig 5g). By t2, dexamethasone was 188 

associated with suppressed neutrophil proportions in circulation compared to untreated controls (13% vs 189 

41%, Extended Fig 5g). Plasma proteomics from the same cohort revealed that dexamethasone 190 

suppressed 10 host proteins (S100A8, S100A9, SERPINA1, SERPINA3, ORM1, LBP, VWF, PIGR, 191 

AZGP1, CRP) that others have previously identified as biomarkers distinguishing severe COVID-19 192 

cases from mild to moderate counterparts (full host proteome quarriable via Online Atlas; Extended Table 193 
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2)28-31. Suppression of calprotectin (S100A8/S100A9) and neutrophil serine proteases (SERPINA1 and 194 

SERPINA3), paired with depletion of neutrophil proportions, implicates the modulation of neutrophil-195 

related inflammatory processes as a method of action for dexamethasone treatment. 196 
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Figure 3 3 Dexamethasone suppresses IFN programs and depletes IFNactive neutrophils in COVID-198 

19. a. Schematic summarizing COVID-19 patients treated with or without dexamethasone profiled at t1 199 

and t2. b. UMAP projection of 80,994 whole blood cells from 21 patient samples, coloured by Azimuth 200 

reference-mapped immune cell states. c-d. Kernel density estimates depicting magnitude of molecular 201 

response elicited by immune cell subsets following Dexamethasone treatment t1 (c) and t2 (d) calculated 202 

by summing DEG fold changes for each cell state shown in Panel A. e. Neutrophil states overlaid on a 203 

UMAP of 23,193 subclustered neutrophils from Dexamethasone- and non-Dexamethasone-treated 204 

COVID-19 patients, colored by cluster ID. f. Magnitude of molecular response elicited by each neutrophil 205 

state post-Dexamethasone treatment calculated by summing DEG fold changes for each cell state shown 206 

in Panel d. g. RNA velocity vector length (indicating rate of differentiation/state transition) in 207 

Dexamethasone- and non-Dexamethasone-treated neutrophils at t1 and t2. h. Consensus neutrophil DEGs 208 

upregulated (positive FC) or suppressed (negative FC) post-Dexamethasone in at least 3 of 6 COVID-19 209 

patients at t1 relative to non-Dexamethasone COVID-19 controls. Stacked bars depict logFC contribution 210 

of each Dexamethasone-treated patient. i-j. Differential splicing kinetics drives activation of IL1R2 (i) 211 

and suppression of IFITM1 expression (j) post-Dexamethasone treatment. Phase portraits show 212 

equilibrium slopes of spliced3unspliced mRNA ratios. Green denotes most upregulated and red denotes 213 

most down regulated differentially expressed genes with COVID-19 (f). 214 

 215 

Dexamethasone therapy restrains neutrophil IFN programs 216 

Due to the early and sustained effects of dexamethasone on gene expression in neutrophils, the effects of 217 

dexamethasone therapy on neutrophil functional states were evaluated. Neutrophil reclustering again 218 

identified immature neutrophils at the apex of the maturation trajectory, accelerating and exhibiting 219 

maximal divergence prior to PGactive and IFNactive state commitments (Fig. 3 d, Extended Fig 6a-e). 220 

Interestingly, we also identified IL7R+ve neutrophils (comprising roughly 8% of total neutrophils) whose 221 

trajectories remained completely separate (Fig. 3 d, Extended Fig 6g, j) suggesting an entirely distinct 222 

neutrophil state. Initially, dexamethasone was associated with increased global transcription in PGactive 223 

neutrophils, while ongoing therapy resulted in the emergence of a PGactive neutrophils concomitant with 224 

high IL1R2 expression (IL1R2+ve) (Fig. 3 e). Conversely, dexamethasone had a pronounced attenuation of 225 

global transcription of IFNactive neutrophils at t1 and t2 (Fig 3 e, f). Remarkably, dexamethasone 226 

administration at t1 halted dynamic state changes in IFNactive and IL7R+ve neutrophils, followed by 227 

preferential depletion of IFNactive subsets (Fig 3 g).  Indeed, dexamethasone was associated with a 228 

reduction in IFNactive neutrophils to a proportion more similar to that detected in healthy controls (9% 229 

post-Dex at t2 versus 10% in healthy controls) (Fig. 4a, Extended Fig 4h-k). Although collection of 230 

airway samples (i.e. bronchoalveolar lavage fluid; BALF) was not feasible at our institution, we leveraged 231 
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two recent BALF scRNA-Seq datasets11,32 to assess whether IFNactive neutrophils dominate the 232 

bronchoalveolar landscape during severe COVID-19. Projection of CSF3R+S100A8+S100A9+ BALF 233 

neutrophils onto our reference revealed: a. 1.5 FC expansion of IFNactive neutrophils in severe COVID-19 234 

relative to moderate disease (77% vs 52%, Extended Fig 7a-b), b. preferential activation of IFN-235 

stimulated genes such as IFITM1, IFITM2, IFI6, IRF7, and ISG20 in severe COVID-19 neutrophils 236 

(Extended Fig 7c), and c. 4.7 FC greater IFNactive neutrophils in COVID-19 relative to bacterial 237 

pneumonia patients (14% vs 3%, Extended Fig 7d-f). Albeit anecdotal, in our whole blood cohort, the 238 

IFNactive neutrophil state was dominant in patient S7 32, an 80-year-old male with remarkably high viral 239 

titers who succumbed to COVID-19 complications within 3-4 days of sampling (Extended Fig 7f). 240 

Consensus DEG analysis highlighted that upregulation of IL1R2, a decoy receptor that sequesters IL-1, 241 

and downregulation of IFITM1 were the most prominent discriminating features of treatment with 242 

steroids (Fig. 3h). Additionally, dexamethasone attenuated neutrophil expression of IFN pathways more 243 

broadly, including the reduction of IFITM1-3, IFIT1, ISG15 and RSAD2 (Fig 3h). Examination of 244 

unspliced pre-mRNA to mature spliced mRNA ratios supported the notion that induction of 245 

immunoregulatory systems (i.e., IL-1R2; Fig 3 i) and suppression of IFN (i.e., IFITM1; Fig 3 j) programs 246 

were driven by differential splicing kinetics.  247 

Dexamethasone therapy intensifies neutrophil immunosuppressive function 248 

Corticosteroid therapy shifted neutrophil state compositions. While IFNactive neutrophils were significantly 249 

depleted by seven days of therapy, there was >2-fold expansion in immature neutrophils relative to non-250 

treated COVID-19 controls (Fig 4a; Extended Fig 6 h, i), which were absent in the healthy controls. 251 

Albeit anecdotal, the dominance of IFNactive neutrophils at t1 in the patient who succumbed to COVID-19 252 

in the non-dexamethasone cohort further supports depletion of IFNactive neutrophils as a mechanism by 253 

which dexamethasone is protective (Extended Fig 8 g-j). Assessment of gene regulatory networks 254 

demonstrated that IRF7 and MEF2A exhibited opposing activation patterns, with IRF7 being the most 255 

suppressed and MEF2A the most enhanced transcription factors identified with dexamethasone, which 256 
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correlates with the emergence of PGactive and IL1R2+ve states and attenuation of the IFNactive neutrophil 257 

states (Fig 4b, Extended Fig 6k-m). To assess the generalizability of the dexamethasone regulated DEGs 258 

identified in our cohort, we asked whether they accurately predicted mortality due to COVID-19 in a 259 

larger validation cohort. By leveraging a whole blood bulk RNA-Seq dataset from 103 COVID-19 260 

patients33 34, we scored each sample by the aggregated expression of dexamethasone suppressed DEGs at 261 

t1 and t2 (Extended Data Table 3). Interestingly, suppressed DEGs at t2 (but not t1) proved to be a far 262 

superior predictor of 28-day mortality (AUC: 0.78, CI: 0.67 -0.89) compared to clinical severity scales 263 

such as sequential organ failure assessment (SOFA) (AUC: 0.67, CI: 0.51-0.82) across all classification 264 

thresholds (Fig 4c).  265 

Unexpectedly, steroid administration was associated with an increase in circulating immature neutrophils, 266 

which highly expressed TOP2A, and activated ATF4 and JDP2, transcription factors seen in 267 

undifferentiated cells or those undergoing nuclear reprogramming (Extended Fig 6h). Interestingly, these 268 

immature neutrophils expressed high levels of ARG1, ANXA1 (Fig 4d), and CD24 (both mRNA and 269 

protein; Extended Fig 6 i), also suggesting an immunomodulatory role35,36,37-39 that was expanded with 270 

dexamethasone treatment. Both ARG1 and ANXA1 express glucocorticoid response elements, supporting 271 

direct regulation by dexamethasone treatment40,41.  272 

To further understand the role of neutrophils during COVID-19 and the effects of dexamethasone, we 273 

investigated cellular connectomes. Cellular interactions between many cell types (including highly 274 

interactive neutrophils) were noted (Extended Fig 8a), and dexamethasone altered the globally predicted 275 

interactions by suppressing intercellular signalling, in both number and strength of interactions (Extended 276 

Fig 8b, c). Dexamethasone enhanced (Fig 4e) and suppressed (Extended Fig 8d) a number of unique 277 

neutrophil-driven signalling networks. Of note, annexin family signalling, which was enhanced in the 278 

immature neutrophils and represent powerful immunomodulators, were augmented between neutrophils 279 

and the other circulating immune cells when patients received dexamethasone (Fig 4e). Of note is the 280 

direction of annexin family signaling, which switched from incoming toward neutrophils without 281 
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dexamethasone treatment to being almost entirely outgoing from neutrophils toward B intermediate and 282 

memory cells and MAIT cells following dexamethasone (Fig 4f, g, Extended Fig 8e, f). Therefore, 283 

dexamethasone directly altered neutrophil functional states, by promoting expansion of an 284 

ARG1+/ANXA1+ immature state with immunosuppressive features and altered the global 285 

communication structure such that neutrophils became active instructors of some peripheral immune 286 

cells. 287 

Neutrophil response to dexamethasone is sexually dimorphic 288 

Given the apparent clinical benefit of dexamethasone is more evident in males27, and since males are 289 

predisposed to more severe COVID-19 presentations and outcomes42 , we surmised that dexamethasone 290 

incites sexually dimorphic immunosuppressive effects. Our retrospective province-wide audit comparing 291 

72 pre-dexamethasone (51 M, 21 F) versus 1,581 post-dexamethasone (1013 M, 568 F) treated ICU-292 

admitted patients confirmed a preferential mortality benefit in male COVID-19 patients (Extended Fig 9a, 293 

b). While dexamethasone modulated 525 neutrophil DEGs across both sexes, while 892 were uniquely 294 

modulated in either males or females (Extended Data Table 5). Amongst the jointly modulated DEGs, a 295 

subset (24 of 525) exhibited statistically significant dimorphism in either magnitude or direction of 296 

regulation (Extended Fig 9c, d). Interestingly, while neutrophils were depleted in both sexes post-297 

dexamethasone, this was particularly pronounced in males (1.9 FC higher in males at t1 and 3.4 FC 298 

higher in males at t2, Extended Fig 9e). Of the two salient neutrophil state alterations, an immature 299 

(ARG1+ve immunosuppressive) state was preferentially expanded with dexamethasone in males (Extended 300 

Fig. 9e), whereas ISGs were preferentially suppressed (Extended Fig. 9f) and IFNactive states were 301 

depleted in females (Extended Fig. 9g-h) at both t1 and t2 (Fig 4h, i). Sexually dimorphic effects of 302 

dexamethasone on neutrophil maturation kinetics may in part explain these state alterations. Dynamo-303 

reconstructed vector dynamics revealed that dexamethasone slowed IFNactive transitions (Extended Fig. 9i) 304 

whilst accelerating immature (ARG1+ve immunosuppressive) neutrophil differentiation in females 305 

(Extended Fig. 9j) ultimately leading to a diminished immature neutrophil progenitor pool. 306 
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 307 

Figure 4 3 Dexamethasone expands immunosuppressive neutrophils and their interactions in 308 

COVID-19. a. Neutrophil states mapped onto Louvain-clustered UMAP, with comparison of neutrophil 309 

composition between dexamethasone- and non-dexamethasone-treated samples at t1 and t2. b. Consensus 310 
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TFs activated or suppressed post-dexamethasone in at least 3 of 6 patients at t1 and predicted activity of 311 

MEF2A and IRF7, two of the most differentially regulated TFs post-dexamethasone. c. Receiver 312 

operating characteristic (ROC) curves assessing the discriminatory capacity of dexamethasone suppressed 313 

DEGs at t1, t2, and sequential organ failure assessment (SOFA) scores for predicting 28-day mortality in 314 

a validation cohort of 103 bulk whole blood RNA-Seq samples where 17 cases were fatal. d. Immature 315 

and IL1R2+ve neutrophil subsets express high levels of immunosuppressive neutrophil marker ARG1 and 316 

ANXA1. e. Neutrophil-driven signaling pathways induced post-dexamethasone, identified using CellChat 317 

(MHC-I signalling filtered out). f, g. Topology of annexin signalling without (e) and with dexamethasone 318 

(f) treatment (edges filtered to those where neutrophils function as senders or recipients of annexin 319 

signals). h. Neutrophil state composition separated by sex and dexamethasone status at t1 and t2. i. 320 

Schematic summarizing the effects of dexamethasone on neutrophil fates and function in COVID-19 321 

following dexamethasone treatment. 322 

 323 

Conclusions 324 

Surviving SARS-CoV-2 infection depends on striking a temporal balance between inciting viral clearance 325 

immune programs during the early stage and subsequently restraining those same programs at later stages 326 

to limit immunity-induced tissue damage. IFN signaling stands at the nexus between antiviral immunity 327 

and over active effector immune programs that inadvertently compromise tissue function and threaten 328 

survival43. Our work uncovered downstream IFN signalling as a signature of a stable neutrophil state that 329 

is selectively expanded during late stage COVID-19 infection from a common pool of immature 330 

progenitors. Given that inborn errors 25 and suppressed early stage 6 IFN signalling predicts COVID-19 331 

severity, increased IFNactive neutrophils in females correlated with decreased mortality44, and early 332 

initiation of IFN therapy has been suggested to mitigate disease severity 45,46, one may posit that IFN 333 

activity in neutrophils represents a concerted host antiviral program.  334 

Interestingly, immunosuppression with dexamethasone, a corticosteroid known to improve mortality in 335 

hospitalized COVID-19 patients27, was associated with suppressed COVID19-specific IFN regulatory 336 

networks and depleted COVID19-enriched IFNactive neutrophils in favour of expanding immature (ARG1+ 337 

immunosuppressive) neutrophils. These altered neutrophil states shared striking resemblances to bacterial 338 

ARDS, suggesting installation of generalized microbicidal programs ameliorate the overzealous 339 

neutrophil responses during COVID-19 (and perhaps during other viral infections). While neutrophil ISG 340 

activation may promote anti-viral immunity during early stages of SARS-CoV-2 infection, sustained IFN 341 
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activation during late stages (e.g., critically ill patients requiring intensive care) could drive 342 

immunopathology of COVID-19. Indeed, positive correlation between neutrophil Type 1 IFN programs 343 

and COVID-19 severity7,47 paired with our observation that IFNactive neutrophils dominate the 344 

bronchoalveolar microenvironment during severe COVID-19 11directly support this view. 345 

Immunotherapies that support the innate antiviral immune response by decoupling IFN-exaggerated 346 

neutrophil response whilst reinforcing acquisition of suppressor states may limit the pathogenic potential 347 

of neutrophils and provide tremendous clinical benefit for treating severe COVID-19. 348 

There are three major limitations of our study. First, non-random group allocation (since the timing of the 349 

RECOVERY trial made dexamethasone standard of care overnight) and small sample size may 350 

inadvertently introduce selection bias and limit generalizability of dexamethasone findings. Second, 351 

comparisons were against bacterial ARDS, and not related respiratory viral infections (i.e., H1N1 352 

influenza) since public health measures eradicated such cases; this precludes assessment of whether the 353 

dynamics defined are specific to SARS-CoV-2. Finally, a subset of patients sampled at t1 were 354 

discharged from ICU prior to t2 collection (non-random or non-ignorable missing data), precluding 355 

unbiased estimation of temporal changes between timepoints. 356 

Methods 357 

Patient enrolment. All patients were enrolled following admission to any of the four adult intensive care 358 

units at South Health Campus, Rockyview General Hospital, Foothills Medical Center or Peter Lougheed 359 

Center in Calgary, Alberta, Canada (Extended Fig 1). Patient admission to the ICU was determined by the 360 

attending ICU physician based on the need for life sustaining interventions, monitoring and life-support. 361 

The research teams did not participate in clinical decisions. Study inclusion required a minimal age of 18, 362 

the ability to provide consent, or for most participants, the ability of a surrogate decision maker to provide 363 

regained capacity consent. All participants required an arterial catheter for blood draws, but the insertion 364 

of this catheter was at the discretion of the attending medical team. Participants required a positive 365 

clinical RNA COVID-19 test prior to enrolment, and evidence of bilateral lung infiltrates and hypoxemia 366 
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consistent with ARDS. At the time of sample collections, all COVID-19+ enrolled individuals were 367 

culture negative for concurrent bacterial infections in the blood, urine, and sputum. The bacterial ARDS 368 

cohort required a negative COVID-19 test and a definitive microbiological diagnosis of bacterial 369 

pneumonia with chest imaging consistent with a diagnosis of ARDS. Patients were excluded from our 370 

study if they: 1. were on immunosuppressive therapies, 2. had established autoimmune disease, or 3. had 371 

active malignancy. Since tocilizumab or other immunomodulatory agents were not approved for use in 372 

patients with severe COVID-19 in Alberta over the timespan of this study, none of them received these 373 

medications. While bacterial sepsis patients received appropriate antibiotic treatments, none were 374 

prescribed immunosuppressive or steroid therapy. All bacterial sepsis patients had lung infections caused 375 

by gram-positive cocci (4 Staphylococcus aureus and 2 Streptococcus pneumoniae). Participants were 376 

required to have a definitive diagnosis and appropriate consent and samples collected within 72hrs of 377 

admission to the ICU in order to be included. Timepoint 1 (T1) refers to the first blood draw, while T2 378 

was a repeat blood draw taken 7 days after T1, if the participant remained in the ICU, and had an arterial 379 

catheter. For each participant, whole blood was collected via the arterial catheter and immediately 380 

processed for analysis. Healthy blood donors were recruited by university-wide advertisement and 381 

required that participants were: 1. not on immunomodulatory medications, 2. were asymptomatic for 382 

SARS-CoV-2, 3. did not receive vaccination against SARS-CoV-2, and 4. did not have underlying 383 

immune disorders.  384 

Epidemiological analysis. We used the Alberta provincial eCRITICAL oracle-based analytics database 385 

(Tracer) to query and extract Alberta COVID-19 ICU cases and volumes for this study48. Aggregate data 386 

from sixteen individual adult ICUs was obtained over the study periods. The administration of 387 

dexamethasone was not possible to capture at an aggregate level; therefore, we queried the database for 388 

patients admitted to ICU prior to dexamethasone becoming standard of care in our Province (pre-389 

dexamethasone era; January 2020 till May 31st, 2020) versus dexamethasone as standard of care for 390 

severe COVID-19 (June 1st, 2020, till May 31st, 2021). Tocilizumab was approved for use in Alberta 391 
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March 11 2021, and a small supply (150 doses) was obtained for severe COVID-19 patients after this 392 

date.  393 

Human Study Ethics. All work with humans was approved by the Conjoint Health Research Ethics 394 

Board (CHREB) at the University of Calgary (Ethics ID: REB20-0481) and is consistent with the 395 

Declaration of Helsinki. 396 

Serum cytokine assessment. Cytokines, chemokines and soluble cytokine receptors were quantitated on 397 

multiplex arrays that included a 65 MIlliPLEX cytokine/chemokine (6Ckine, BCA-1, CTACK, EGF, 398 

ENA-78, Eotaxin, Eotaxin-2, Eotaxin-3, FGF-2, Flt-3L, Fractalkine, G-CSF, GM-CSF, GRO, I-309, 399 

IFNa2, IFNg, IL-1a, IL-1b, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p40), IL-400 

12 (p70), IL-13, IL-15, IL-16, IL-17A, IL-18, IL-20, IL-21, IL-23, IL-28a, IL-33, IP-10, LIF, MCP-1, 401 

MCP-2, MCP-3, MCP-4, MDC, MIP-1a, MIP-1b, MIP-1d, PDGF-AA, PDGF-AB/BB, RANTES, SDF-1 402 

a+b, sCD40L, SCF,TARC, TGFa, TNFa, TNFb, TPO, TRAIL, TSLP, VEGF) and a 14 MilliPLEX  403 

soluble cytokine  (sCD30, sEGFR, sgp130, sIL-1RI, sIL-1RII, sIL-2Ra, sIL-4R, sIL-6R, sRAGE, sTNF 404 

RI, sTNF RII, sVEGF R1, sVEGF R2, sVEGF R3) arrays (Millipore Sigma, Oakville, ON, Canada) on a 405 

Luminex Model 200 Luminometer (Luminex Corporation, Austin, TX). EDTA-plasma samples were 406 

collected from each patient by venipuncture following a standard operating protocol (SOP) and stored at -407 

80C until tested. Each run included a full range of calibrators. The Mann-Whitney U test was used to 408 

compare groups and p-values were adjusted for multiple comparisons using Holm-aídák stepdown 409 

method with alpha set to 0.05. 410 

Shotgun proteomics using Liquid Chromatography and Mass Spectrometry (LC-MS/MS) 411 

The serum of COVID-19 patients (COVID-19 = 9, dexamethasone-treated = 4) and bacterial ARDS 412 

controls (N = 6) were collected and subjected to quantitative proteomics. The total protein concentrations 413 

were determined by Pierce™ BCA Protein Assay Kit (23225, ThermoFisher). A trichloroacetic acid 414 

(TCA)/acetone protocol was used to pellet 100µg of proteins per sample. Samples were subjected to a 415 
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quantitative proteomics workflow as per supplier (Thermo Fisher) recommendations. Samples were 416 

reduced in 200mM tris(2-carboxyethyl)phosphine (TCEP), for 1h at 55°C, reduced cysteines were 417 

alkylated by incubation with iodoacetamide solution (50mM) for 20min at room temperature. Samples 418 

were precipitated by acetone/methanol, and 600µL ice-cold acetone was added followed by incubation at 419 

-20°C overnight. A protein pellet was obtained by centrifugation (8,000�, 10min, 4°C) followed by 420 

acetone drying (2min). Precipitated pellet was resuspended in100 µL of 50mM triethylammonium 421 

bicarbonate (TEAB) buffer followed by tryptase digestion (5µg trypsin per 100µg of protein) overnight at 422 

37°C. TMT-6plex™ Isobaric Labeling Reagents (90061, Thermo Fisher) were resuspended in anhydrous 423 

acetonitrile and added to each sample (41µL TMT-6plex™ per 100µL sample) and incubated at room 424 

temperature for 1h. The TMT labeling reaction was quenched by 2.5% hydroxylamine for 15min at room 425 

temperature. TMT labeled samples were combined and acidified in 100% trifluoroacetic acid to pH < 3.0 426 

and subjected to C18 chromatography (Sep-Pak) according to manufacturer recommendations. Samples 427 

were stored at -80°C before lyophilization, followed by resuspension in 1% formic acid before liquid 428 

chromatography and tandem mass spectrometry analysis. 429 

Tryptic peptides were analyzed on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo 430 

Scientific) operated with Xcalibur (version 4.0.21.10) and coupled to a Thermo Scientific Easy-nLC 431 

(nanoflow liquid chromatography) 1200 System. Tryptic peptides (2µg) were loaded onto a C18 trap 432 

(75µm x 2cm; Acclaim PepMap 100, P/N 164946; ThermoFisher) at a flow rate of 2µL/min of solvent A 433 

(0.1% formic acid in LC-MS grade H2O). Peptides were eluted using a 120min gradient from 5 to 40% 434 

(5% to 28% in 105min followed by an increase to 40% B in 15min) of solvent B (0.1% formic acid in 435 

80% LC-MS grade acetonitrile) at a flow rate of 0.3µL/min and separated on a C18 analytical column 436 

(75µm x 50cm; PepMap RSLC C18; P/N ES803A; ThermoScientific). Peptides were then electrosprayed 437 

using 2.1kV voltage into the ion transfer tube (300°C) of the Orbitrap Lumos operating in positive mode. 438 

For LC-MS/MS measurements with the FAIMS Pro (Thermo Fisher Scientific), multiple compensation 439 

voltages (CV) were applied, -40V, -60V, and -80V with a cycle time of 1 second. FAIMS was used to 440 
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generate technical replicates from plex 1 to 6. The Orbitrap first performed a full MS scan at a resolution 441 

of 120,000 FWHM to detect the precursor ion having a m/z between 375 and 1,575 and a +2 to +4 charge. 442 

The Orbitrap AGC (Auto Gain Control) and the maximum injection time were set at 4 x 105 and 50ms, 443 

respectively. The Orbitrap was operated using the top speed mode with a 3 second cycle time for 444 

precursor selection. The most intense precursor ions presenting a peptidic isotopic profile and having an 445 

intensity threshold of at least 2 x 104 were isolated using the quadrupole (Isolation window (m/z) of 0.7) 446 

and fragmented using HCD (38% collision energy) in the ion routing multipole. The fragment ions (MS2) 447 

were analyzed in the Orbitrap at a resolution of 15,000. The AGC and the maximum injection time were 448 

set at 1 x 105 and 105ms, respectively. The first mass for the MS2 was set at 100 to acquire the TMT 449 

reporter ions. Dynamic exclusion was enabled for 45 seconds to avoid of the acquisition of same 450 

precursor ion having a similar m/z (plus or minus 10ppm).  451 

Proteomic data and bioinformatics analysis 452 

Spectral data acquired from the mass spectrometer were matched to peptide sequences using MaxQuant 453 

software (v.1.6.14)49. Due to a lack of direct compatibility with Maxquant, spectra generated using the 454 

FAIMS pro was first converted to MzXML using the FAIMS MzXML Generator from the Coon9s lab 455 

(https://github.com/coongroup/FAIMS-MzXML-Generator). Next, peptide sequences from the human 456 

proteome and Sars-CoV-2 proteins were obtained from the UniProt database (May 2021) and matched 457 

using the Andromeda50 algorithm at a peptide-spectrum match false discovery rate (FDR) of 0.05. Search 458 

parameters included a mass tolerance of 20 p.p.m. for the parent ion, 0.5 Da for the fragment ion, 459 

carbamidomethylation of cysteine residues (+57.021464 Da), variable N-terminal modification by 460 

acetylation (+42.010565 Da), and variable methionine oxidation (+15.994915 Da). Relative quantification 461 

was set as TMT 6-plex labels 126 to 131. The cleavage site specificity was set to Trypsin/P, with up to 462 

two missed cleavages allowed. Next, the evidence.txt and proteinGroups.txt were loaded into the R 463 

software (v4.0.2) for statistical analysis. The normalization and identification of differentially expressed 464 
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proteins was performed using the MSstatsTMT package51. Multiple comparisons were corrected using the 465 

Benjamini-Hochberg approach. 466 

Leukocyte and lymphocyte isolation. For lymphocyte isolation, whole blood (2mL) was collected in 467 

5mL polystyrene round-bottom heparinized vacutubes. To isolate lymphocytes by immunomagnetic 468 

negative selection, 100µL of Isolation Cocktail and 100µL of Rapid Spheres (EasySepTM Direct Human 469 

Total Lymphocytes Isolation Kit: 19655, StemCell Technologies) were added to 2 mL of whole blood. 470 

After mixing and 5min incubation at RT, the sample volumes were topped up to 2.5mL with 0.04% 471 

bovine serum albumin (BSA) in PBS. The diluted sample was incubated in the magnet without lid for 472 

5min, at RT and negatively selected lymphocytes were decanted into a new 5 mL polystyrene tube. 473 

Except the addition of Isolation Cocktail, all steps were repeated once.  The final lymphocyte cell 474 

suspension was transferred to a 15 mL polypropylene tube and a volume of 5mL 0.04% BSA in PBS was 475 

added to the sample. Lymphocytes were precipitated by centrifugation for 5 min at 2000rpm, supernatant 476 

was discarded, and cells were resuspended in 5 mL of 0.04% BSA in PBS. This last step was repeated 477 

once, and cells were then resuspended in 100 µL of PBS+0.04% BSA. Cell density was quantified with a 478 

hemacytometer, cell viability was assessed with Trypan Blue staining (T8154; Sigma Aldrich), and 7500 479 

live lymphocytes were transferred to a sterile 1.5 mL microcentrifuge tube. 480 

For leukocyte isolation, 1 mL of whole blood from heparin containing vacutubes was transferred to 5 mL 481 

polystyrene round-bottom tubes and 12µL of 0.5M EDTA was added. 2% FBS in PBS (1mL) and 50µL 482 

of EasySep RBC Depletion spheres (EasySepTM RBC Depletion Reagent: 18170, Stem Cell 483 

Technologies) were added to immunomagnetically deplete red blood cells. After 5 min of magnet 484 

incubation at RT, cell suspension containing leukocytes was decanted into a new 5mL polystyrene tube. 485 

To ensure complete removal of red blood cells, RBC depletion was repeated, and cell suspension 486 

containing leukocytes was decanted into a new 15mL polypropylene tube. Leukocytes were precipitated 487 

by centrifugation at 2000rpm for 5 min at 20oC and resuspended in 5mL of 0.04% BSA in PBS. This last 488 

step was repeated once, and leukocytes were resuspended in 2 mL of 0.04% BSA in PBS. Cell viability 489 
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and cell density were assessed, and 7500 live leukocytes were transferred to the microcentrifuge tube 490 

containing the lymphocyte cell suspension. The volume of the cell suspension containing 7500 491 

lymphocytes and 7500 leukocytes in a total of 50 µL of 0.04% BSA in PBS.  492 

Immunocytochemistry and immunohistochemistry 493 

Isolated leukocyte and lymphocyte samples were fixed in 4% paraformaldahyde in PBS (0.2mM and 494 

pH7.4), and spun in a cytocentrifuge (8min at 300g) onto coated slides. Pathological lung sections (FFPE 495 

fixed and sectioned at 5um) were deparaffinized in Slide Brite (Fisher Scientific NC968653) and 496 

rehydrated. Slides were permeabilized and blocked with 10% normal donkey serum in PBS (with 0.5% 497 

triton X-100), primary antibodies (S100A8/9 Abcam ab22506; IFITM1 Abcam ab233545) were 498 

incubated at 4oC overnight, followed by incubation with donkey anti-rabbit-Alexa488 (Invitrogen 499 

A32790) or anti-mouse-Alexa555 (Invitrogen A31570) for 1h at room temperature (RT). Cytospun slides 500 

were sequentially stained with CD24 (Abcam ab202073) on the same slides for 1h at RT, followed by 501 

donkey anti-rabbit-Alexa647 (Invitrogen A31573). Imaging was done using a VS-120 slide scanner 502 

(Olympus) and high resolution image imaging was done using an SP8 spectral confocal microscope 503 

(Leica). Image processing was completed in Fiji 52. 504 

Single-cell RNA-Seq library construction, alignment, and quality control. A total of 15,000 single 505 

cells (containing an equal proportion of leukocytes and lymphocytes) were loaded for partitioning using 506 

10X Genomics NextGEM Gel Bead emulsions (Version 3.1). All samples were processed as per 507 

manufacturer9s protocol (with both PCR amplification steps run 12X). Quality control of resulting 508 

libararies and quantification was performed using TapeStation D1000 ScreenTape assay (Agilent). 509 

Sequencing was performed using Illumina NovaSeq S2 and SP 100 cycle dual lane flow cells over 510 

multiple rounds to ensure each sample received approximately 32,000 reads per cell. Sequencing reads 511 

were aligned using CellRanger 3.1.0 pipeline53 to the standard pre-built GRCh38 reference genome. 512 

Samples that passed alignment QC were aggregated into single datasets using CellRanger aggr with 513 

between-sample normalization to ensure each sample received an equal number of mapped reads per cell. 514 
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Aggregated non-dexamethasone-treated COVID-19 (n = 12) and bacterial ARDS (n = 9) samples 515 

recovered 1,872,659 cells that were sequenced to 38,410 post-normalization reads per cell. Likewise, 516 

aggregated COVID-19 samples with (n = 9) or without (n = 12) dexamethasone recovered 1,748,551 517 

single cells sequenced to 51,415 post-normalization reads per cell. Aggregated healthy samples recovered 518 

19,816 cells, including 1,912 post-QC neutrophils (n = 5). 519 

Single-cell RNA-Seq computational analyses and workflows. Filtered feature-barcode HDF5 matrices 520 

from aggregated datasets were imported into the R package Seurat v.3.9 for normalization, scaling, 521 

integration, multi-modal reference mapping, louvain clustering, dimensionality reduction, differential 522 

expression analysis, and visualization 54. Briefly, cells with abnormal transcriptional complexity (fewer 523 

than 500 UMIs, greater than 25,000 UMIs, or greater than 25% of mitochondrial reads) were considered 524 

artifacts and were removed from subsequent analysis. Since granulocytes have relatively low RNA 525 

content (due to high levels of RNases), QC thresholds were informed by 8 as they recently defined several 526 

rodent and human neutrophil subsets from scRNA-Seq samples. Cell identity was classified by mapping 527 

single cell profiles to the recently published PBMC single-cell joint RNA/CITE-Seq multi-omic reference 528 

55.  529 

Annotation of neutrophil states. Since no published reference automates granulocyte annotations, 530 

neutrophil clusters were manually annotated by querying known markers (i.e. CSF3R, S100A8, S100A9, 531 

MMP8, MMP9, ELANE, MPO)56 and were corroborated using the R package SingleR57. Neutrophil 532 

states were defined by grouping unsupervised (louvain at default resolution) subclusters based on two 533 

overlapping criteria: scVelo-inferred neutrophil maturity, and 2. by corroborating gene expression and 534 

SCENIC-inferred GRN signatures with previous human and rodent neutrophil scRNA-Seq studies. 535 

Immature neutrophils were defined as CD24+ARG1+ELANE+MPO+ATF4GRN-activeJDP2GRN-active 536 

neutrophils 7,8,47,58that were reproducibly assigned as 8root cells9 in scVelo-based latent time pseudo-537 

ordering. IFNactive neutrophils were defined by preferential mRNA splicing (positive velocity) and 538 

expression of IFN-stimulated genes such as IFITM1/2, IFIT1/2/3, ISG15/20, and IFI6/27/44/44L 6,44,59. 539 
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PGactive neutrophils were distinguished by preferential splicing of PTGS2/COX2 (as well as expression for 540 

prostaglandin transport LST1) 44 and included a subset that expressed high levels of IL1³ decoy receptor 541 

IL1R2 33. Lastly, IL7R+ neutrophils (a small but distinct subset that maybe of thymic origin 60 expressed 542 

high levels of ribosomal subunit genes (e.g. RPL5/7A/8/13/18/19/23/24/27/P0) that are highly 543 

reminiscent of 8ribosomalhi-specific cluster 79 identified previously 47.. 544 

Statistical approach for comparing cell proportions. To test whether cell composition was changed 545 

due to infection type (COVID-19 versus Bacterial ARDS) or treatment group (dexamethasone versus 546 

non-dexamethasone), a generalized linear mixed-effects model was employed where infection type and 547 

treatment group were considered fixed and individual patients were considered random effect. Fitting was 548 

done with Laplace approximation using the 8glmer9 function in the 8lme49 R package 61 and p-values were 549 

calculated using the R package 8car9. Boxplots comparing cell type composition were generated using the 550 

ggplot2 package. Since a subset of patients sampled at t1 were discharged from ICU prior to t2 collection 551 

(non-random or non-ignorable missing data), we limit statistical comparisons to between group 552 

comparisons within one time point (e.g., COVID-19 72h vs Bacterial ARDS 72hr, dexamethasone-treated 553 

72h vs non-dexamethasone-treated 72h) and do not estimate temporal differences across t1 and t2. 554 

Inferring cell communication networks. Differential cell-cell interaction networks were reconstructed 555 

using the Connectome R toolkit v0.2.262 and CellChat v1.0.0 63. Briefly, DifferentialConnectome queried 556 

Seurat R objects housing datasets integrated by infection type and dexamethasone status to define nodes 557 

and edges for downstream network analysis. Total number of interactions and interaction strengths were 558 

calculated using CellChat9s compareInteractions function. Differential edge list was passed through 559 

CircosDiff (a wrapper around the R package 8circlize9) and CellChat9s netVisual_chord_gene to filter 560 

receptor-ligand edges and generate Circos plots.  561 

Consensus DEGs and perturbation scores. Differentially expressed genes (DEGs) were those with an 562 

average log fold change (FC) greater than 0.25 (p-adjusted < 0.05) as determined by Seurat9s Wilcoxon 563 

rank-sum test. Consensus stacked bars showing cumulative log fold changes (colored by individual 564 
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sample contributions) were generated using constructConsensus function 7 for genes exhibiting 565 

reproducible changes across patients (>3 for 72-hour comparisons, > 2 for 7-day comparisons). Gene Set 566 

Enrichment analyses of consensus DEGs were performed using gProfiler9s g:GOSt (p-value cutoff 567 

<0.05). A cell state-specific 8perturbation score9 was calculated to reflect the magnitude of response 568 

elicited by factoring in number and cumulative FC of consensus DEGs. Perturbation scores were 569 

visualized using Nebulosa-generated density plots 64.  570 

Constructing cellular trajectories using RNA velocity. Analysis of neutrophil trajectories was 571 

performed by realigning CellRanger count-generated BAMs with RNA velocity command-line tool 20 572 

using the run10x command and human (GRCh38) annotations. The output loom files containing spliced 573 

and unspliced counts were combined to compare neutrophils in COVID-19 with Bacterial ARDS controls 574 

and dexamethasone-treated with non-treated COVID-19 patients. For both analyses, combined looms 575 

were imported into Seurat v.3.9 using the ReadVelocity function in SeuratWrappers v.0.2.0, normalized 576 

using SCTransform v.0.3.2 65, reduced and projected onto a UMAP, and exported as a .h5 file using the 577 

SaveH5Seurat function. Counts stored in H5 files were imported, filtered, and normalized as 578 

recommended in the scVelo v.0.2.1 workflow 19. RNA velocities were estimated using stochastic and 579 

dynamical models. Since both models yielded comparable results, stochastic model was used as default 580 

for all subsequent analyses. Calculations stored in AnnData9s metadata were exported as CSVs and kernel 581 

density lines depicting Velocity-inferred latent time distribution were plotted with ggplot2 v.3.1.1. 582 

Gene Regulatory Network reconstruction. Single-cell regulatory network inference and clustering 583 

(SCENIC)26 was employed to infer regulatory interactions between transcription factors (TFs) and their 584 

targetome by calculating and pruning co-expression modules. Briefly, neutrophils were subsetted from 585 

scVelo-realigned Seurat object and processed using default and recommended parameters specified in 586 

SCENIC9s vignette (https://github.com/aertslab/SCENIC) using the hg19 RcisTarget reference. Regulon 587 

activity scores (in 83.4_regulonAUC.Rds9, an output of the SCENIC workflow) were added to scVelo 588 

object (using CreateAssayObject function) to jointly project trajectory and TF activity onto the same 589 
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UMAP embeddings. Consensus stacked bars showing cumulative logFC of AUCell scores for each TF 590 

(colored by individual sample contributions) were generated by modifying the constructConsensus 591 

function7 for SCENIC assay. Targetome of TFs predicted as drivers of neutrophil states (stored in 592 

82.6_regulons_asGeneSet.Rds9) was profiled using g:Profiler9s functional enrichment analysis and genes 593 

intersecting with the Interferon pathway were plotted using iRegulon (Cytoscape plugin)66. 594 

Comparing scRNA-Seq findings with published datasets. To test whether dexamethasone-suppressed 595 

neutrophil genes at t1 and t2 (Extended Data Table 4) predicted COVID-19 mortality, we repurposed 596 

methods described in 33 and employed whole blood bulk RNA-Seq datasets generated by 34 as a validation 597 

cohort of 103 samples (where 17 were fatal). Briefly, each of the 103 samples were scored by the 598 

aggregated expression of dexamethasone-suppressed neutrophil consensus genes at t1 and t2 using 599 

Seurat9s AddModuleScore(). Dexamethasone-suppressed module scores were used as the predictor 600 

variable and 28-day mortality was used as the response variable to construct an ROC curve using pROC9s 601 

roc() function. To infer bronchoalveolar neutrophil composition in severe and moderate COVID-19 11and 602 

across bacterial pneumonia and COVID-19 32, neutrophils (CSF3R+, S100A8+, S100A9+) captured in 603 

BALF scRNA-Seq datasets were projected onto our peripheral blood reference using mutual nearest 604 

neighbor anchoring (FindTransferAnchors) and identity transferring (TransferData and AddMetaData) 605 

strategy implemented in Seurat v4 54. 606 

COVID Neutrophil Atlas. To enable intuitive exploration of single-cell datasets, a web portal 607 

(http://biernaskielab.ca/covid_neutrophil or http://biernaskielab.com/covid_neutrophil) was built using 608 

RShiny v1.1.0, shinyLP v.1.1.2, and shinythemes v.1.1.2 packages. 609 

Data availability. Single cell RNA-Seq datasets are available at NCBI GEO (which automatically makes 610 

SRA deposit) at the following accession: GSE157789. Single-cell datasets can be further explored on our 611 

companion portal at http://biernaskielab.ca/COVID_neutrophil or 612 

http://biernaskielab.com/COVID_neutrophil. Velocyto-generated LOOM files and processed R objects 613 

are available for reanalysis from: http://doi.org/10.6084/m9.figshare.14330795. Whole blood bulk RNA-614 
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Seq datasets employed as an independent validation cohort were downloaded from GSE157103. BALF 615 

scRNA-Seq datasets from severe and moderate COVID-19 were downloaded from GSE145926. 616 

Processed BALF scRNA-Seq objects from patients with bacterial pneumonia and COVID-19 (archived at 617 

GSE167118) were downloaded from authors9 archive: https://figshare.com/articles/dataset/_/13608734. 618 

Mass spectrometry datasets will be available via PRIDE Archive (http://www.ebi.ac.uk/pride/archive), it 619 

has been submitted (submission #: 1-20210702-114055) and is pending accessioning. 620 

Proteomics data will be available at PRIDE (https://www.ebi.ac.uk/pride/), it has been submitted 621 

(submission #: 1-20210702-114055) and is pending accessioning. 622 

Code availability. All analyses were performed using publicly available software as described in the 623 

methods section. Raw scripts are available upon request. 624 

Supplementary Information is available for this paper. 625 

Acknowledgements: This work was funded by a FastGrant from the Thistledown Foundation (JB and 626 

BY) and Calgary Firefighters Burn Treatment Society (JB). S Sinha received CIHR Vanier, Alberta 627 

Innovates, and Killam doctoral scholarships. E.L received an Alberta Children9s Hospital Research 628 

Institute postdoctoral fellowship. B.G.Y is a tier II Canada Research Chair in Pulmonary Immunology, 629 

Inflammation and Host Defence. We acknowledge the assistance of the nurse practitioners, Charissa 630 

Elton-Lacasse, Kirsten Deemer and Robert Ralph as well as the healthcare teams from the Calgary Adult 631 

ICU9s at South Health Campus, Rockyview General Hospital, Foothills Medical Center and Peter 632 

Lougheed Center. We thank Dr. Kirsten Fiest and the ICU study coordinators Cassidy Codan, Zdenka 633 

Slavikova and Olesya Dmitrieva. We acknowledge Dan Jones, Cathy Curr and the eCritical team (Alberta 634 

Health Services in Alberta, Canada) for their help in data acquisition and extraction via eCritical 635 

databases. Mortality predictions using dexamethasone-suppressed gene signatures were completed by 636 

repurposing computational workflows kindly shared by Aaron Wilk and Dr. Catherine Blish (Stanford 637 

University). 638 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.04.18.440366doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440366
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

31 

Author contributions:  SS performed scRNAseq analyses, figure preparation, and co-wrote the paper. 639 

NLR contributed to experimental design, performed scRNAseq experiments, figure preparation and co-640 

wrote the paper. AJ, RA, and LC performed bioinformatics and created the online atlas. EL, RF and APN 641 

contributed to sample preparation and scRNAseq processing. MG and BM contributed to patient consent 642 

and sample collection. LGA and AD conducted proteomics and related analyses. AB provided clinical 643 

biospecimens. MJF provided serum cytokine assays. JB and BY conceived of all experiments, 644 

experimental design, wrote the paper and supervised all experiments. 645 

The authors have no competing interests. 646 

647 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.04.18.440366doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440366
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

32 

References: 648 

1 Matthay, M. A. et al. Acute respiratory distress syndrome. Nat Rev Dis Primers 5, 18, 649 

doi:10.1038/s41572-019-0069-0 (2019). 650 

2 Wang, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel 651 

Coronavirus3Infected Pneumonia in Wuhan, China. JAMA 323, 1061-1069, 652 

doi:10.1001/jama.2020.1585 (2020). 653 

3 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 654 

382, 727-733, doi:10.1056/NEJMoa2001017 (2020). 655 

4 Middleton, E. A. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-656 

19 acute respiratory distress syndrome. Blood 136, 1169-1179, doi:10.1182/blood.2020007008 657 

(2020). 658 

5 Veras, F. P. et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 659 

pathology. J Exp Med 217, doi:10.1084/jem.20201129 (2020). 660 

6 Combes, A. J. et al. Global absence and targeting of protective immune states in severe COVID-661 

19. Nature, doi:10.1038/s41586-021-03234-7 (2021). 662 

7 Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe 663 

COVID-19. Nat Med 26, 1070-1076, doi:10.1038/s41591-020-0944-y (2020). 664 

8 Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis 665 

and infection. Nature Immunology 21, 1119-1133, doi:10.1038/s41590-020-0736-z (2020). 666 

9 Lee, J. S. et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I 667 

interferons in development of severe COVID-19. Science Immunology 5, eabd1554, 668 

doi:10.1126/sciimmunol.abd1554 (2020). 669 

10 Xu, G. et al. The differential immune responses to COVID-19 in peripheral and lung revealed by 670 

single-cell RNA sequencing. Cell Discovery 6, 73, doi:10.1038/s41421-020-00225-2 (2020). 671 

11 Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. 672 

Nature Medicine 26, 842-844, doi:10.1038/s41591-020-0901-9 (2020). 673 

12 Wauters, E. et al. Discriminating mild from critical COVID-19 by innate and adaptive immune 674 

single-cell profiling of bronchoalveolar lavages. Cell Research 31, 272-290, doi:10.1038/s41422-675 

020-00455-9 (2021). 676 

13 Rosin, N. L. et al. SARS-CoV-2 infection of circulating immune cells is not responsible for virus 677 

dissemination in severe COVID-19 patients. bioRxiv, 2021.2001.2019.427282, 678 

doi:10.1101/2021.01.19.427282 (2021). 679 

14 Ranieri, V. M. et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 307, 2526-680 

2533, doi:10.1001/jama.2012.5669 (2012). 681 

15 Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 682 

395, 1033-1034, doi:10.1016/s0140-6736(20)30628-0 (2020). 683 

16 Feng, Z. et al. Early prediction of disease progression in COVID-19 pneumonia patients with 684 

chest CT and clinical characteristics. Nat Commun 11, 4968, doi:10.1038/s41467-020-18786-x 685 

(2020). 686 

17 Wu, C. et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in 687 

Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med, 688 

doi:10.1001/jamainternmed.2020.0994 (2020). 689 

18 Barnes, B. J. et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp 690 

Med 217, doi:10.1084/jem.20200652 (2020). 691 

19 Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient 692 

cell states through dynamical modeling. Nature Biotechnology 38, 1408-1414, 693 

doi:10.1038/s41587-020-0591-3 (2020). 694 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.04.18.440366doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440366
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

33 

20 La Manno, G. et al. RNA velocity of single cells. Nature 560, 494-498, doi:10.1038/s41586-018-695 

0414-6 (2018). 696 

21 Chen, J. S. et al. Non-steroidal anti-inflammatory drugs dampen the cytokine and antibody 697 

response to SARS-CoV-2 infection. Journal of Virology, JVI.00014-00021, doi:10.1128/JVI.00014-698 

21 (2021). 699 

22 Takashima, A. & Yao, Y. Neutrophil plasticity: acquisition of phenotype and functionality of 700 

antigen-presenting cell. J Leukoc Biol, doi:10.1189/jlb.1MR1014-502R (2015). 701 

23 Ledford, J. G., Kovarova, M. & Koller, B. H. Impaired Host Defense in Mice Lacking ONZIN. The 702 

Journal of Immunology 178, 5132, doi:10.4049/jimmunol.178.8.5132 (2007). 703 

24 Zhang, Q. et al. in Med (N Y) Vol. 1    14-20 (© 2020 Elsevier Inc., 2020). 704 

25 Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. 705 

Science 370, doi:10.1126/science.abd4570 (2020). 706 

26 Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14, 707 

1083-1086, doi:10.1038/nmeth.4463 (2017). 708 

27 Horby, P. et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N 709 

Engl J Med, doi:10.1056/NEJMoa2021436 (2020). 710 

28 Mahler, M., Meroni, P. L., Infantino, M., Buhler, K. A. & Fritzler, M. J. Circulating Calprotectin as a 711 

Biomarker of COVID-19 Severity. Expert Rev Clin Immunol 17, 431-443, 712 

doi:10.1080/1744666X.2021.1905526 (2021). 713 

29 Demichev, V. et al. A time-resolved proteomic and prognostic map of COVID-19. Cell Syst, 714 

doi:10.1016/j.cels.2021.05.005 (2021). 715 

30 Park, J. et al. In-depth blood proteome profiling analysis revealed distinct functional 716 

characteristics of plasma proteins between severe and non-severe COVID-19 patients. Sci Rep 717 

10, 22418, doi:10.1038/s41598-020-80120-8 (2020). 718 

31 Shu, T. et al. Plasma Proteomics Identify Biomarkers and Pathogenesis of COVID-19. Immunity 719 

53, 1108-1122 e1105, doi:10.1016/j.immuni.2020.10.008 (2020). 720 

32 Zhao, Y. et al. Clonal expansion and activation of tissue-resident memory-like T<sub>H</sub>17 721 

cells expressing GM-CSF in the lungs of patients with severe COVID-19. Science Immunology 6, 722 

eabf6692, doi:10.1126/sciimmunol.abf6692 (2021). 723 

33 Wilk, A. J. et al. Multi-omic profiling reveals widespread dysregulation of innate immunity and 724 

hematopoiesis in COVID-19. Journal of Experimental Medicine 218, doi:10.1084/jem.20210582 725 

(2021). 726 

34 Overmyer, K. A. et al. Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Systems 12, 23-727 

40.e27, doi:https://doi.org/10.1016/j.cels.2020.10.003 (2021). 728 

35 Vago, J. P. et al. Annexin A1 modulates natural and glucocorticoid-induced resolution of 729 

inflammation by enhancing neutrophil apoptosis. Journal of Leukocyte Biology 92, 249-258, 730 

doi:https://doi.org/10.1189/jlb.0112008 (2012). 731 

36 Oliveira, L. G. et al. Annexin A1 Is Involved in the Resolution of Inflammatory Responses during 732 

<em>Leishmania braziliensis</em> Infection. The Journal of Immunology 198, 3227, 733 

doi:10.4049/jimmunol.1602028 (2017). 734 

37 Uhel, F. et al. Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells 735 

Predicts Development of Nosocomial Infections in Patients with Sepsis. Am J Respir Crit Care 736 

Med 196, 315-327, doi:10.1164/rccm.201606-1143OC (2017). 737 

38 Arlauckas, S. P. et al. Arg1 expression defines immunosuppressive subsets of tumor-associated 738 

macrophages. Theranostics 8, 5842-5854, doi:10.7150/thno.26888 (2018). 739 

39 Derakhshani, A. et al. Arginase 1 (Arg1) as an Up-Regulated Gene in COVID-19 Patients: A 740 

Promising Marker in COVID-19 Immunopathy. J Clin Med 10, doi:10.3390/jcm10051051 (2021). 741 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.04.18.440366doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440366
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

34 

40 Kelly-Scumpia, K. M. et al. ER Stress Regulates Immunosuppressive Function of Myeloid Derived 742 

Suppressor Cells in Leprosy that Can Be Overcome in the Presence of IFN-³. iScience 23, 101050, 743 

doi:https://doi.org/10.1016/j.isci.2020.101050 (2020). 744 

41 Okun, J. G. et al. Molecular regulation of urea cycle function by the liver glucocorticoid receptor. 745 

Mol Metab 4, 732-740, doi:10.1016/j.molmet.2015.07.006 (2015). 746 

42 Peckham, H. et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death 747 

and ITU admission. Nature Communications 11, 6317, doi:10.1038/s41467-020-19741-6 (2020). 748 

43 Park, A. & Iwasaki, A. Type I and Type III Interferons - Induction, Signaling, Evasion, and 749 

Application to Combat COVID-19. Cell host & microbe 27, 870-878, 750 

doi:10.1016/j.chom.2020.05.008 (2020). 751 

44 Gupta, S. et al. Sex differences in neutrophil biology modulate response to type I interferons and 752 

immunometabolism. Proceedings of the National Academy of Sciences 117, 16481, 753 

doi:10.1073/pnas.2003603117 (2020). 754 

45 Monk, P. D. et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for 755 

treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 756 

trial. The Lancet Respiratory Medicine 9, 196-206, doi:10.1016/S2213-2600(20)30511-7 (2021). 757 

46 Wang, N. et al. Retrospective Multicenter Cohort Study Shows Early Interferon Therapy Is 758 

Associated with Favorable Clinical Responses in COVID-19 Patients. Cell Host & Microbe 28, 455-759 

464.e452, doi:https://doi.org/10.1016/j.chom.2020.07.005 (2020). 760 

47 Schulte-Schrepping, J. et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell 761 

Compartment. Cell 182, 1419-1440.e1423, doi:10.1016/j.cell.2020.08.001 (2020). 762 

48 Brundin-Mather, R. et al. Secondary EMR data for quality improvement and research: A 763 

comparison of manual and electronic data collection from an integrated critical care electronic 764 

medical record system. J Crit Care 47, 295-301, doi:10.1016/j.jcrc.2018.07.021 (2018). 765 

49 Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-766 

range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367-767 

1372, doi:10.1038/nbt.1511 (2008). 768 

50 Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J 769 

Proteome Res 10, 1794-1805, doi:10.1021/pr101065j (2011). 770 

51 Huang, T. et al. MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in 771 

Experiments with Isobaric Labeling and Multiple Mixtures. Mol Cell Proteomics 19, 1706-1723, 772 

doi:10.1074/mcp.RA120.002105 (2020). 773 

52 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 774 

676-682, doi:10.1038/nmeth.2019 (2012). 775 

53 Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nature 776 

Communications 8, 14049, doi:10.1038/ncomms14049 (2017). 777 

54 Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e1821, 778 

doi:https://doi.org/10.1016/j.cell.2019.05.031 (2019). 779 

55 Hao, Y. et al. Integrated analysis of multimodal single-cell data. bioRxiv, 2020.2010.2012.335331, 780 

doi:10.1101/2020.10.12.335331 (2020). 781 

56 Zilionis, R. et al. Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals 782 

Conserved Myeloid Populations across Individuals and Species. Immunity 50, 1317-1334.e1310, 783 

doi:https://doi.org/10.1016/j.immuni.2019.03.009 (2019). 784 

57 Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional 785 

profibrotic macrophage. Nature Immunology 20, 163-172, doi:10.1038/s41590-018-0276-y 786 

(2019). 787 

58 Reusch, N. et al. Neutrophils in COVID-19. Frontiers in immunology 12, 652470-652470, 788 

doi:10.3389/fimmu.2021.652470 (2021). 789 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.04.18.440366doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440366
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

35 

59 Shaath, H., Vishnubalaji, R., Elkord, E. & Alajez, N. M. Single-Cell Transcriptome Analysis 790 

Highlights a Role for Neutrophils and Inflammatory Macrophages in the Pathogenesis of Severe 791 

COVID-19. Cells 9, doi:10.3390/cells9112374 (2020). 792 

60 Schlenner, S. M. et al. Fate Mapping Reveals Separate Origins of T Cells and Myeloid Lineages in 793 

the Thymus. Immunity 32, 426-436, doi:https://doi.org/10.1016/j.immuni.2010.03.005 (2010). 794 

61 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. 795 

Journal of Statistical Software; Vol 1, Issue 1 (2015), doi:10.18637/jss.v067.i01 (2015). 796 

62 Raredon, M. S. B. et al. <em>Connectome</em>: computation and visualization of cell-cell 797 

signaling topologies in single-cell systems data. bioRxiv, 2021.2001.2021.427529, 798 

doi:10.1101/2021.01.21.427529 (2021). 799 

63 Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nature 800 

Communications 12, 1088, doi:10.1038/s41467-021-21246-9 (2021). 801 

64 Alquicira-Hernandez, J. & Powell, J. E. Nebulosa recovers single-cell gene expression signals by 802 

kernel density estimation. Bioinformatics, doi:10.1093/bioinformatics/btab003 (2021). 803 

65 Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data 804 

using regularized negative binomial regression. Genome Biology 20, 296, doi:10.1186/s13059-805 

019-1874-1 (2019). 806 

66 Janky, R. s. et al. iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif 807 

and Track Collections. PLOS Computational Biology 10, e1003731, 808 

doi:10.1371/journal.pcbi.1003731 (2014). 809 

 810 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.04.18.440366doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440366
http://creativecommons.org/licenses/by-nc-nd/4.0/

