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Summary

SARS-CoV-2 is a novel coronavirus that causes acute respiratory distress syndrome (ARDS), death and
long-term sequelae. Innate immune cells are critical for host defense but are also the primary drivers of
ARDS. The relationships between innate cellular responses in ARDS resulting from COVID-19
compared to other causes of ARDS, such as bacterial sepsis is unclear. Moreover, the beneficial effects of
dexamethasone therapy during severe COVID-19 remain speculative, but understanding the mechanistic
effects could improve evidence-based therapeutic interventions. To interrogate these relationships, we

developed an scRNA-Seq and plasma proteomics atlas (biernaskielab.ca/COVID_neutrophil). We

discovered that compared to bacterial ARDS, COVID-19 was associated with distinct neutrophil
polarization characterized by either interferon (IFN) or prostaglandin (PG) active states. Neutrophils from
bacterial ARDS had higher expression of antibacterial molecules such as PLACS and CDS3.
Dexamethasone therapy in COVID patients rapidly altered the IFN*"® state, downregulated interferon
responsive genes, and activated IL1IR2™ neutrophils. Dexamethasone also induced the emergence of
immature neutrophils expressing immunosuppressive molecules ARG1 and ANXA1, which were not
present in healthy controls. Moreover, dexamethasone remodeled global cellular interactions by changing
neutrophils from information receivers into information providers. Importantly, male patients had higher
proportions of IFN*¢ neutrophils, a greater degree of steroid-induced immature neutrophil expansion,
and increased mortality benefit compared to females in the dexamethasone era. Indeed, the highest
proportion of IEN*"¢ neutrophils was associated with mortality. These results define neutrophil states
unique to COVID-19 when contextualized to other life-threatening infections, thereby enhancing the
relevance of our findings at the bedside. Furthermore, the molecular benefits of dexamethasone therapy
are also defined, and the identified pathways and plasma proteins can now be targeted to develop

improved therapeutics.
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COVID-19 ARDS host responses contextualized to bacterial ARDS.

A broad array of infections including SARS-CoV-2 and bacterial sepsis can induce acute respiratory
distress syndrome (ARDS), respiratory failure and death'. Neutrophils are thought to be key drivers of
both COVID-19 and bacterial ARDS**, yet it is unclear if this is related to intrinsic and/or irreversible
cellular responses. While recent studies have leveraged single-cell transcriptomics to dissect peripheral”™
%and bronchoalveolar fluid '*'*immune landscapes driving COVID-19 pathogenesis, the protocols used
can inadvertently exclude the majority of polymorphonuclear granulocytes, including neutrophils, as they
are highly sensitive cells with low RNA (and high RNase) content. Here, we employ whole-blood-
preserving protocols that capture all major immune cell types from critically ill patients admitted to
intensive care units (ICUs) (Extended Fig 1). All samples taken from COVID-19 patients were assessed
by bacterial culture and tested negative. All COVID-19 patients tested positive by PCR for SARS-CoV-2,
and we previously confirmed an absence of viral mRNA in any circulating immune cells in a subset of
patients'>. However, a plasma proteomic screen for SARS-CoV-2 specific viral proteins in all samples
revealed detection of one or more viral proteins in COVID-19 patient serum (Extended Fig 2a).
Furthermore, we compared patient samples from COVID-19 ARDS to bacterial sepsis with ARDS
(herein referred to as bacterial ARDS) (Extended Fig 2b), as there were unusually low admissions to ICU

with viral pneumonias/ARDS during the period studied, likely due to COVID-19 public health measures.

Patient cohorts had comparable ages, sex, days on life support and time in hospital, but COVID-19
patients had broader racial diversity (Extended Fig 2c,d, Extended Data Table 1). Bacterial ARDS
induced significant neutrophilia, and relative thrombocytopenia compared to the near normal circulating
neutrophil numbers in COVID-19, while both had similar degrees of lymphopenia (Extended Fig 2e).
Both cohorts had comparable PaO2 / FiO2 (P/F) ratios, which is an indicator of the severity of ARDS',
but bacterial ARDS patients had significantly more kidney injury demonstrated by higher levels of serum
creatinine (Extended Fig 2f). We further compared families of soluble inflammatory markers (Extended

Fig 2g) used to distinguish prototypical states, including those identified during cytokine storm (Extended
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Fig 2h) and cytokine release syndrome (Extended Fig 2i)'°, which demonstrated similar soluble cytokine
and chemokine responses between the infections. Therefore, in the context of life-threatening bacterial
ARDS, COVID-19 ARDS patients had normal neutrophil counts, comparable IL-6 levels, and less organ
failure as indicated by serum creatinine levels, all of which have been previously proposed as markers of
COVID disease severity'®'”. This prompted us to further investigate immune states and composition in

response to COVID-19 compared to bacterial ARDS.

The online companion atlas (biernaskielab.ca/COVID_neutrophil) contains accessible scRNAseq data

performed on freshly obtained whole blood at timepoint 1 (t1, <72h after ICU admission) and at timepoint
2 (12, 7 days after t1) (Fig la). Cellular identity was mapped to 30 immune cell types/states using a
UMAP projection from 21 patients and 86,935 cells (Fig 1b, Extended Figure 3a). Global magnitude of
gene expression was directly compared between COVID-19 and bacterial ARDS patients (Extended Data
Table 3), which revealed a more globally altered distribution of differential expression at t1 than at t2.
Altered regulation of genes was most pronounced in neutrophils at t1, with lower neutrophil gene
expression in COVID-19 compared to bacterial ARDS (Fig 1c; Extended Fig 3b-c). At t2, the global
alterations in gene expression when comparing COVID-19 to bacterial ARDS were most pronounced in
plasmablasts (Fig 1d; Extended Fig 3d-e). We further compared and quantified the proportions of known
peripheral blood cellular constituents, which highlighted significant differences in CD4 T cells, CD8 T
cells and NK cells (Extended Fig 3f). These data highlight that significant global differences in immune

cell gene expression exist between COVID-19 ARDS and bacterial ARDS.
COVID-19 drives specific neutrophil maturation states.

Neutrophils are a primary participant in the development of ARDS'®; yet despite similar severity of
ARDS between our bacterial and COVID-19 cohorts, the numbers of circulating neutrophils from clinical
cell counts were significantly different (Extended Fig 2d). We hypothesized that neutrophil qualitative

1920 4o

states may be important determinants of disease. Neutrophils were subjected to velocity analysis
reconstruct maturation dynamics. Louvain clusters (Fig 1e), clinical cohort, individual patient, and

4
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97  velocity length were overlayed on velocity vector fields (Extended Fig 4a-d). The proportions of distinct
98  neutrophil states were compared at t1 and this revealed a divergent expansion of IFN**¢ neutrophils
99  (clusters 2, 4 and 5) marked by IFITM1 expression in COVID-19, which became similar to bacterial
100  ARDS at t7 (Fig 1f-h). Expression of IFITM1 in neutrophils from COVID-19 patients at t1 was
101  confirmed by immunofluorescent staining for IFITM1, colocalized with S100A8/9 and typical neutrophil
102 nuclear morphology. Relative to healthy donors, the IFN*"¢ population in both COVID-19 and bacterial
103  ARDS patients were elevated (Extended Fig 4h-k), suggesting that infections dramatically alter neutrophil
104  dynamics and that comparing COVID-19 neutrophils to healthy neutrophils may only reveal broad
105  features separating pathogen-challenged versus non-challenged (homeostatic) neutrophils. Hence, to map
106  pathogen-activated neutrophils dynamics with high resolution, subsequent analyses employ principal
107  components with top loading genes that distinguish different pathogen-activated states arising during

108  COVID-19 and bacterial sepsis for downstream dimensionality reduction.
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Figure 1 — COVID-19 alters neutrophil maturation. a. Schematic summarizing patients with COVID-
19 and bacterial sepsis profiled at t1 and t2. b. UMAP projection of 86,935 whole blood cells from 21
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112 patient samples, coloured by Azimuth reference-mapped immune cell states. e-d. Kernel density estimates
113  depicting magnitude of molecular response elicited by immune cell subsets during COVID-19 compared
114  to Bacterial ARDS at t1 (¢) and t2 (d) calculated by summing DEG fold changes for each cell state shown
115  in Panel a. e. UMAP plotting RNA velocity analysis of 29,653 subclustered neutrophils undergoing state
116  transitions, coloured by cluster ID. f. Stacked bar plot depicting cluster composition of clinical cohorts
117  examined. g. UMAP coloured by neutrophil clusters and overlaid with summary path curves based on
118  vector fields and neutrophil state compositions in Panel d and e, respectively to determine neutrophil

119  states. h. Immunocytochemistry for SI00A8/A9 (red) and IFITM1 (green) expression on leukocyte-rich
120  preparation from COVID-19 donor at tl. i-k. Transcriptional kinetics driving expansion of IFN*™** (i),
121 Bacterial ARDS-enriched (j), and PG*"* (k) neutrophils. Latent time distribution of trajectory-associated
122 louvain clusters (left), phase portraits with equilibrium slopes of spliced—unspliced ratios (center), and
123 RNA velocity and gene expression (right) of selected genes driving divergent maturation trajectories.

124  Phase portraits are coloured by clinical cohort.

125  Classically, peripheral neutrophils are considered terminally differentiated and non-dividing, however the
126  increase in velocity length suggested the ability to alter phenotypic states once in circulation along

127  specific paths or ‘lineages’. COVID-19 neutrophils followed unique maturation paths compared to

128  bacterial ARDS, culminating in three distinct terminal states: Interferon active (IFN*"*), prostaglandin
129  active (PG™"™) or bacterial ARDS enriched (Fig le-g; Extended Fig 4e). Interestingly, the apex of this
130  trajectory was marked by high velocity lengths, characteristic of cells undergoing differentiation

131  (Extended Fig 4c, d). COVID-19 neutrophils preferentially transitioned from the apex of the trajectory,
132 which was an immature state (TOP2A expressing; Extended Fig 4¢) to an IFN responsive state

133 characterized by IFITM1, IFITM2 and IFI6 expression (Cluster 1 to 4 and 5; Fig 1i; Online Atlas). This is
134  clearly illustrated in Extended Video 1. This immature state was not present in healthy controls, though it
135  is present in both comparator groups, suggesting these states are liberated into circulation upon pathogen
136  exposure (Extended Fig 4h-k). The lineage relationship was less clear for COVID-19 enriched PG
137  clusters defined by prostaglandin responsive genes (clusters 2, 6 and 8), with notable increases in

138  PTGER4 and PTGS2 (or COX2), a proposed therapeutic target in COVID-19*' (Fig 1k; Extended Fig 4f,
139 g, Online Atlas). The dominant conventional bacterial ARDS state was characterized by antibacterial

140  proteins CD83%, CD177, and PLACS8* (cluster 3 to 0; Fig 1j; Online Atlas). Taken together, this data
141  demonstrated that peripheral neutrophils have dynamic programming abilities which result in COVID-19

142  specific neutrophil polarization defined by the emergence of IFN*** and PG**** neutrophil states.
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143 Unique transcriptional regulatory pathways drive neutrophil maturation in COVID-19.

144  Rapid and robust IFN responses protect against COVID-19 severe disease, while delayed responses could
145  exacerbate systemic and pulmonary inflammation®***. Moreover, neutrophil IFN responses are not

146 traditionally considered during infections and neutrophils are generally considered to be homogenous,
147  with a uniform proinflammatory capacity. Global neutrophil expression aligned with neutrophil state

148  specific markers, such as interferon response genes (IFITM1, RSAD2, IF16, and ISG10), being more

149  highly expressed in COVID-19 neutrophils (Fig 2a; Extended Fig 4f). The inverse was the case for anti-
150  bacterial proteins like PLACS (Fig 2a; Online Atlas). However, the discovery of differential neutrophil
151  states prompted further exploration of the factors driving neutrophil state polarization. Gene regulatory
152 network reconstruction using SCENIC analysis®® revealed differentially activated transcription factors
153  STATI, IRF2 and PRDM1 in COVID-19 (Fig 2b), while bacterial ARDS neutrophils had increased

154  prototypical granulocyte transcription factors such as CEBPA, CEBPB, STATS5B and less defined factors
155  such as NFE2 (Fig 2b, Online Atlas). PRDM1 activation was most pronounced in the IFN*""* neutrophil
156  population and was likely responsible for driving expression of interferon response elements (IFIT1,

157  ISG15, IF16) and antiviral signaling, such as RSAD2 and STAT1 (Fig 2c; Online Atlas). A hallmark of
158 PG neutrophil polarization was the activation of an E2F4 pathway (Fig 2d), while neutrophil

159  programming during bacterial ARDS included STAT5B (Fig 2e). To summarize, in response to COVID-
160 19, neutrophils were polarized by unique transcriptional regulation towards one of two main populations,

161  either an IFN*™ population or a PG*"*¢ population (Fig 2f).
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166  (TFs) in neutrophils from patients with COVID-19 relative to bacterial ARDS at t1. Stacked bars depict
167  logFC contributions of each COVID-19 patient. c-e. Gene-regulatory networks preferentially driving
168  IFN*%"¢ (PRDMI, c), PG*"* (E2F4, d), and bacterial ARDS-enriched (STAT5B, ¢) neutrophil states.
169  Scale bars depict kernel density estimates approximating magnitude of TF activation inferred by

170  SCENIC-calculated AUCell scores. f. Schematic summarizing neutrophil fates favoured during COVID-
171 19 versus bacterial ARDS.

172

173  Dexamethasone alters immune cell dynamics and plasma proteomic milieu.

174  Conventional therapeutics have limited efficacy for COVID-19, and while dexamethasone offers a

175  moderate benefit, the RECOVERY trial reported the benefit was greatest in the most severely affected
176  patients?’. However, the mechanisms underlying this benefit are unclear and not universal, so opportunity
177  exists to optimize or better target this therapy. In our cohort, median time between dexamethasone

178  administration to t1 blood draw (within 72 hours of ICU admission) was 31 hours (Fig 3a, Extended

179  Figure 5a, Extended Table 1). Global differences in transcription were apparent at t1 with clear

180  upregulation of genes in neutrophils and some T cell subsets in COVID-19 patients treated with

181  dexamethasone versus those that were not treated (Fig 3b-d, Extended Figure 5b, Extended Data Table 4).
182  Dexamethasone globally downregulated genes at t1, including in naive B cells, plasmablasts and some T
183  cells (Extended Figure 5b-d). At t2 gene upregulation occurred in adaptive immune cells, including naive
184  and effector CD8 T cells, with limited alterations in the innate myeloid cell lineages including

185  neutrophils. However, neutrophils demonstrated clear down regulation of genes at t2, as did CD4 naive
186  and central memory T cells (Extended Figure Se, f). Proportionally, at t1, dexamethasone administration
187  was associated with an increase in cytotoxic CD4 T cells, naive B cells, plasmablasts, and decreased

188  proliferating NK cells, and CD4 effector memory cells (Extended Fig 5g). By t2, dexamethasone was

189  associated with suppressed neutrophil proportions in circulation compared to untreated controls (13% vs
190  41%, Extended Fig 5g). Plasma proteomics from the same cohort revealed that dexamethasone

191 suppressed 10 host proteins (S100AS8, S100A9, SERPINA1, SERPINA3, ORM1, LBP, VWF, PIGR,

192  AZGP1, CRP) that others have previously identified as biomarkers distinguishing severe COVID-19

193  cases from mild to moderate counterparts (full host proteome quarriable via Online Atlas; Extended Table

10
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194  2)®7!. Suppression of calprotectin (S100A8/S100A9) and neutrophil serine proteases (SERPINAI and
195  SERPINA3), paired with depletion of neutrophil proportions, implicates the modulation of neutrophil-

196 related inflammatory processes as a method of action for dexamethasone treatment.
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198  Figure 3 — Dexamethasone suppresses IFN programs and depletes IFN**** neutrophils in COVID-
199  19. a. Schematic summarizing COVID-19 patients treated with or without dexamethasone profiled at t1
200  and t2. b. UMAP projection of 80,994 whole blood cells from 21 patient samples, coloured by Azimuth
201  reference-mapped immune cell states. c-d. Kernel density estimates depicting magnitude of molecular
202  response elicited by immune cell subsets following Dexamethasone treatment t1 (c) and t2 (d) calculated
203 by summing DEG fold changes for each cell state shown in Panel A. e. Neutrophil states overlaid on a
204  UMAP of 23,193 subclustered neutrophils from Dexamethasone- and non-Dexamethasone-treated

205  COVID-19 patients, colored by cluster ID. f. Magnitude of molecular response elicited by each neutrophil
206  state post-Dexamethasone treatment calculated by summing DEG fold changes for each cell state shown
207  in Panel d. g. RNA velocity vector length (indicating rate of differentiation/state transition) in

208  Dexamethasone- and non-Dexamethasone-treated neutrophils at t1 and t2. h. Consensus neutrophil DEGs
209  upregulated (positive FC) or suppressed (negative FC) post-Dexamethasone in at least 3 of 6 COVID-19
210  patients at t1 relative to non-Dexamethasone COVID-19 controls. Stacked bars depict logFC contribution
211  of each Dexamethasone-treated patient. i-j. Differential splicing kinetics drives activation of IL1R2 (i)
212 and suppression of IFITM1 expression (j) post-Dexamethasone treatment. Phase portraits show

213 equilibrium slopes of spliced—unspliced mRNA ratios. Green denotes most upregulated and red denotes
214  most down regulated differentially expressed genes with COVID-19 (f).

215

216  Dexamethasone therapy restrains neutrophil IFN programs

217  Due to the early and sustained effects of dexamethasone on gene expression in neutrophils, the effects of
218  dexamethasone therapy on neutrophil functional states were evaluated. Neutrophil reclustering again
219  identified immature neutrophils at the apex of the maturation trajectory, accelerating and exhibiting

220  maximal divergence prior to PG*™® and IFN*" state commitments (Fig. 3 d, Extended Fig 6a-e).

221  Interestingly, we also identified IL7R™ neutrophils (comprising roughly 8% of total neutrophils) whose
222 trajectories remained completely separate (Fig. 3 d, Extended Fig 6g, j) suggesting an entirely distinct
223 neutrophil state. Initially, dexamethasone was associated with increased global transcription in PG
224 neutrophils, while ongoing therapy resulted in the emergence of a PG*™ neutrophils concomitant with
225  high IL1R2 expression (IL1IR27°) (Fig. 3 €). Conversely, dexamethasone had a pronounced attenuation of
226  global transcription of IFN*"¢ neutrophils at t1 and t2 (Fig 3 e, f). Remarkably, dexamethasone

227  administration at t1 halted dynamic state changes in IFN*** and IL7R"*® neutrophils, followed by

228  preferential depletion of IFN*™* subsets (Fig 3 g). Indeed, dexamethasone was associated with a

229  reduction in IFN**** neutrophils to a proportion more similar to that detected in healthy controls (9%
230  post-Dex at t2 versus 10% in healthy controls) (Fig. 4a, Extended Fig 4h-k). Although collection of

231  airway samples (i.e. bronchoalveolar lavage fluid; BALF) was not feasible at our institution, we leveraged
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232 two recent BALF scRNA-Seq datasets''** to assess whether IFN*"** neutrophils dominate the

233 bronchoalveolar landscape during severe COVID-19. Projection of CSF3R'S100A8"'S100A9" BALF
234 neutrophils onto our reference revealed: a. 1.5 FC expansion of IFN*'™ neutrophils in severe COVID-19
235  relative to moderate disease (77% vs 52%, Extended Fig 7a-b), b. preferential activation of IFN-

236  stimulated genes such as IFITM1, IFITM2, IF16, IRF7, and ISG20 in severe COVID-19 neutrophils

237  (Extended Fig 7c), and c. 4.7 FC greater IFN*"* neutrophils in COVID-19 relative to bacterial

238  pneumonia patients (14% vs 3%, Extended Fig 7d-f). Albeit anecdotal, in our whole blood cohort, the
239 IFN*"™* neutrophil state was dominant in patient S7 *%, an 80-year-old male with remarkably high viral

240 titers who succumbed to COVID-19 complications within 3-4 days of sampling (Extended Fig 7f).

241  Consensus DEG analysis highlighted that upregulation of IL1R2, a decoy receptor that sequesters IL-1,
242  and downregulation of IFITM1 were the most prominent discriminating features of treatment with

243 steroids (Fig. 3h). Additionally, dexamethasone attenuated neutrophil expression of IFN pathways more
244 broadly, including the reduction of IFITM1-3, IFIT1, ISG15 and RSAD2 (Fig 3h). Examination of

245  unspliced pre-mRNA to mature spliced mRNA ratios supported the notion that induction of

246  immunoregulatory systems (i.e., IL-1R2; Fig 3 i) and suppression of IFN (i.e., IFITM1; Fig 3 j) programs

247  were driven by differential splicing kinetics.
248  Dexamethasone therapy intensifies neutrophil immunosuppressive function

249  Corticosteroid therapy shifted neutrophil state compositions. While IFN**"*¢ neutrophils were significantly
250  depleted by seven days of therapy, there was >2-fold expansion in immature neutrophils relative to non-
251  treated COVID-19 controls (Fig 4a; Extended Fig 6 h, 1), which were absent in the healthy controls.

252 Albeit anecdotal, the dominance of IFN**™ neutrophils at t1 in the patient who succumbed to COVID-19
253 in the non-dexamethasone cohort further supports depletion of IFN*™* neutrophils as a mechanism by
254  which dexamethasone is protective (Extended Fig 8 g-j). Assessment of gene regulatory networks

255  demonstrated that IRF7 and MEF2A exhibited opposing activation patterns, with IRF7 being the most

256  suppressed and MEF2A the most enhanced transcription factors identified with dexamethasone, which
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257  correlates with the emergence of PG*™** and IL1R2"* states and attenuation of the IFN**"* neutrophil
258  states (Fig 4b, Extended Fig 6k-m). To assess the generalizability of the dexamethasone regulated DEGs
259  identified in our cohort, we asked whether they accurately predicted mortality due to COVID-19 in a
260  larger validation cohort. By leveraging a whole blood bulk RNA-Seq dataset from 103 COVID-19

3334 we scored each sample by the aggregated expression of dexamethasone suppressed DEGs at

261  patients
262  tl and t2 (Extended Data Table 3). Interestingly, suppressed DEGs at t2 (but not t1) proved to be a far
263 superior predictor of 28-day mortality (AUC: 0.78, CI: 0.67 -0.89) compared to clinical severity scales
264  such as sequential organ failure assessment (SOFA) (AUC: 0.67, CI: 0.51-0.82) across all classification

265  thresholds (Fig 4c).

266 Unexpectedly, steroid administration was associated with an increase in circulating immature neutrophils,
267  which highly expressed TOP2A, and activated ATF4 and JDP2, transcription factors seen in

268  undifferentiated cells or those undergoing nuclear reprogramming (Extended Fig 6h). Interestingly, these
269  immature neutrophils expressed high levels of ARG1, ANXAI1 (Fig 4d), and CD24 (both mRNA and

35,36,37-39

270  protein; Extended Fig 6 1), also suggesting an immunomodulatory role that was expanded with

271  dexamethasone treatment. Both ARG1 and ANXAT1 express glucocorticoid response elements, supporting

272 direct regulation by dexamethasone treatment***!.

273 To further understand the role of neutrophils during COVID-19 and the effects of dexamethasone, we
274  investigated cellular connectomes. Cellular interactions between many cell types (including highly

275  interactive neutrophils) were noted (Extended Fig 8a), and dexamethasone altered the globally predicted
276  interactions by suppressing intercellular signalling, in both number and strength of interactions (Extended
277  Fig 8b, c). Dexamethasone enhanced (Fig 4¢) and suppressed (Extended Fig 8d) a number of unique

278  neutrophil-driven signalling networks. Of note, annexin family signalling, which was enhanced in the
279  immature neutrophils and represent powerful immunomodulators, were augmented between neutrophils
280  and the other circulating immune cells when patients received dexamethasone (Fig 4¢). Of note is the

281  direction of annexin family signaling, which switched from incoming toward neutrophils without
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282  dexamethasone treatment to being almost entirely outgoing from neutrophils toward B intermediate and
283 memory cells and MAIT cells following dexamethasone (Fig 4f, g, Extended Fig 8e, f). Therefore,

284  dexamethasone directly altered neutrophil functional states, by promoting expansion of an

285  ARGI+/ANXA1+ immature state with immunosuppressive features and altered the global

286  communication structure such that neutrophils became active instructors of some peripheral immune

287  cells.
288  Neutrophil response to dexamethasone is sexually dimorphic

289  Given the apparent clinical benefit of dexamethasone is more evident in males®’, and since males are

290  predisposed to more severe COVID-19 presentations and outcomes*” , we surmised that dexamethasone
291  incites sexually dimorphic immunosuppressive effects. Our retrospective province-wide audit comparing
292 72 pre-dexamethasone (51 M, 21 F) versus 1,581 post-dexamethasone (1013 M, 568 F) treated ICU-

293  admitted patients confirmed a preferential mortality benefit in male COVID-19 patients (Extended Fig 9a,
294  b). While dexamethasone modulated 525 neutrophil DEGs across both sexes, while 892 were uniquely
295  modulated in either males or females (Extended Data Table 5). Amongst the jointly modulated DEGs, a
296  subset (24 of 525) exhibited statistically significant dimorphism in either magnitude or direction of

297  regulation (Extended Fig 9c, d). Interestingly, while neutrophils were depleted in both sexes post-

298  dexamethasone, this was particularly pronounced in males (1.9 FC higher in males at t1 and 3.4 FC

299  higher in males at t2, Extended Fig 9¢). Of the two salient neutrophil state alterations, an immature

300 (ARGI1™immunosuppressive) state was preferentially expanded with dexamethasone in males (Extended
301  Fig. 9e), whereas ISGs were preferentially suppressed (Extended Fig. 9f) and IFN*"** states were

302  depleted in females (Extended Fig. 9g-h) at both t1 and t2 (Fig 4h, i). Sexually dimorphic effects of

303  dexamethasone on neutrophil maturation kinetics may in part explain these state alterations. Dynamo-
304  reconstructed vector dynamics revealed that dexamethasone slowed IFN*"* transitions (Extended Fig. 9i)
305  whilst accelerating immature (ARG1™® immunosuppressive) neutrophil differentiation in females

306 (Extended Fig. 9j) ultimately leading to a diminished immature neutrophil progenitor pool.
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311  TFs activated or suppressed post-dexamethasone in at least 3 of 6 patients at t1 and predicted activity of
312 MEF2A and IRF7, two of the most differentially regulated TFs post-dexamethasone. ¢. Receiver

313  operating characteristic (ROC) curves assessing the discriminatory capacity of dexamethasone suppressed
314  DEGs at tl, t2, and sequential organ failure assessment (SOFA) scores for predicting 28-day mortality in
315  avalidation cohort of 103 bulk whole blood RNA-Seq samples where 17 cases were fatal. d. Immature
316  and IL1R2™ neutrophil subsets express high levels of immunosuppressive neutrophil marker ARG1 and
317  ANXAL. e. Neutrophil-driven signaling pathways induced post-dexamethasone, identified using CellChat
318  (MHC-I signalling filtered out). f, g. Topology of annexin signalling without (e) and with dexamethasone
319  (f) treatment (edges filtered to those where neutrophils function as senders or recipients of annexin

320  signals). h. Neutrophil state composition separated by sex and dexamethasone status at t1 and t2. i.

321  Schematic summarizing the effects of dexamethasone on neutrophil fates and function in COVID-19

322 following dexamethasone treatment.

323

324 Conclusions

325  Surviving SARS-CoV-2 infection depends on striking a temporal balance between inciting viral clearance
326  immune programs during the early stage and subsequently restraining those same programs at later stages
327  to limit immunity-induced tissue damage. IFN signaling stands at the nexus between antiviral immunity
328  and over active effector immune programs that inadvertently compromise tissue function and threaten
329  survival®. Our work uncovered downstream IFN signalling as a signature of a stable neutrophil state that
330 is selectively expanded during late stage COVID-19 infection from a common pool of immature

331  progenitors. Given that inborn errors ** and suppressed early stage ° IFN signalling predicts COVID-19
332 severity, increased IFN*""® neutrophils in females correlated with decreased mortality**, and early

45,46

333  initiation of IFN therapy has been suggested to mitigate disease severity *°, one may posit that IFN

334  activity in neutrophils represents a concerted host antiviral program.

335 Interestingly, immunosuppression with dexamethasone, a corticosteroid known to improve mortality in
336  hospitalized COVID-19 patients®’, was associated with suppressed COVID19-specific IFN regulatory
337  networks and depleted COVID19-enriched IFN**"* neutrophils in favour of expanding immature (ARG1"
338  immunosuppressive) neutrophils. These altered neutrophil states shared striking resemblances to bacterial
339  ARDS, suggesting installation of generalized microbicidal programs ameliorate the overzealous

340  neutrophil responses during COVID-19 (and perhaps during other viral infections). While neutrophil ISG

341  activation may promote anti-viral immunity during early stages of SARS-CoV-2 infection, sustained IFN
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342  activation during late stages (e.g., critically ill patients requiring intensive care) could drive

343  immunopathology of COVID-19. Indeed, positive correlation between neutrophil Type 1 IFN programs
344  and COVID-19 severity”*" paired with our observation that IFN*** neutrophils dominate the

345  bronchoalveolar microenvironment during severe COVID-19 ''directly support this view.

346  Immunotherapies that support the innate antiviral immune response by decoupling IFN-exaggerated

347  neutrophil response whilst reinforcing acquisition of suppressor states may limit the pathogenic potential

348  of neutrophils and provide tremendous clinical benefit for treating severe COVID-19.

349  There are three major limitations of our study. First, non-random group allocation (since the timing of the

350 RECOVERY trial made dexamethasone standard of care overnight) and small sample size may

351 inadvertently introduce selection bias and limit generalizability of dexamethasone findings. Second,

352  comparisons were against bacterial ARDS, and not related respiratory viral infections (i.e., HINI

353  influenza) since public health measures eradicated such cases; this precludes assessment of whether the
354  dynamics defined are specific to SARS-CoV-2. Finally, a subset of patients sampled at t1 were

355  discharged from ICU prior to t2 collection (non-random or non-ignorable missing data), precluding

356  unbiased estimation of temporal changes between timepoints.

357  Methods

358  Patient enrolment. All patients were enrolled following admission to any of the four adult intensive care
359  units at South Health Campus, Rockyview General Hospital, Foothills Medical Center or Peter Lougheed
360  Center in Calgary, Alberta, Canada (Extended Fig 1). Patient admission to the ICU was determined by the
361  attending ICU physician based on the need for life sustaining interventions, monitoring and life-support.
362  The research teams did not participate in clinical decisions. Study inclusion required a minimal age of 18,
363 the ability to provide consent, or for most participants, the ability of a surrogate decision maker to provide
364  regained capacity consent. All participants required an arterial catheter for blood draws, but the insertion
365  of this catheter was at the discretion of the attending medical team. Participants required a positive

366  clinical RNA COVID-19 test prior to enrolment, and evidence of bilateral lung infiltrates and hypoxemia
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367  consistent with ARDS. At the time of sample collections, all COVID-19" enrolled individuals were

368  culture negative for concurrent bacterial infections in the blood, urine, and sputum. The bacterial ARDS
369  cohort required a negative COVID-19 test and a definitive microbiological diagnosis of bacterial

370  pneumonia with chest imaging consistent with a diagnosis of ARDS. Patients were excluded from our
371  study if they: 1. were on immunosuppressive therapies, 2. had established autoimmune disease, or 3. had
372 active malignancy. Since tocilizumab or other immunomodulatory agents were not approved for use in
373  patients with severe COVID-19 in Alberta over the timespan of this study, none of them received these
374  medications. While bacterial sepsis patients received appropriate antibiotic treatments, none were

375  prescribed immunosuppressive or steroid therapy. All bacterial sepsis patients had lung infections caused
376 by gram-positive cocci (4 Staphylococcus aureus and 2 Streptococcus pneumoniae). Participants were
377  required to have a definitive diagnosis and appropriate consent and samples collected within 72hrs of
378  admission to the ICU in order to be included. Timepoint 1 (T1) refers to the first blood draw, while T2
379  was arepeat blood draw taken 7 days after T1, if the participant remained in the ICU, and had an arterial
380 catheter. For each participant, whole blood was collected via the arterial catheter and immediately

381  processed for analysis. Healthy blood donors were recruited by university-wide advertisement and

382  required that participants were: 1. not on immunomodulatory medications, 2. were asymptomatic for
383  SARS-CoV-2, 3. did not receive vaccination against SARS-CoV-2, and 4. did not have underlying

384 immune disorders.

385  Epidemiological analysis. We used the Alberta provincial eCRITICAL oracle-based analytics database
386  (Tracer) to query and extract Alberta COVID-19 ICU cases and volumes for this study*. Aggregate data
387  from sixteen individual adult ICUs was obtained over the study periods. The administration of

388  dexamethasone was not possible to capture at an aggregate level; therefore, we queried the database for
389  patients admitted to ICU prior to dexamethasone becoming standard of care in our Province (pre-

390  dexamethasone era; January 2020 till May 31%, 2020) versus dexamethasone as standard of care for

391  severe COVID-19 (June 1%, 2020, till May 31%, 2021). Tocilizumab was approved for use in Alberta

20


https://doi.org/10.1101/2021.04.18.440366
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440366; this version posted July 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

392  March 11 2021, and a small supply (150 doses) was obtained for severe COVID-19 patients after this

393 date.

394  Human Study Ethics. All work with humans was approved by the Conjoint Health Research Ethics
395  Board (CHREB) at the University of Calgary (Ethics ID: REB20-0481) and is consistent with the

396 Declaration of Helsinki.

397  Serum cytokine assessment. Cytokines, chemokines and soluble cytokine receptors were quantitated on
398 multiplex arrays that included a 65 MIIIiIPLEX cytokine/chemokine (6Ckine, BCA-1, CTACK, EGF,

399 ENA-78, Eotaxin, Eotaxin-2, Eotaxin-3, FGF-2, Flt-3L, Fractalkine, G-CSF, GM-CSF, GRO, 1-309,

400 IFNa2, IFNy, IL-1a, IL-1B, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p40), IL-
401 12 (p70), IL-13, IL-15, IL-16, IL-17A, IL-18, IL-20, IL-21, IL-23, IL-28a, IL-33, IP-10, LIF, MCP-1,
402  MCP-2, MCP-3, MCP-4, MDC, MIP-1a, MIP-13, MIP-1d, PDGF-AA, PDGF-AB/BB, RANTES, SDF-1
403  atb, sCD40L, SCF,TARC, TGFa, TNFa, TNFb, TPO, TRAIL, TSLP, VEGF) and a 14 MilliPLEX

404  soluble cytokine (sCD30, sEGFR, sgp130, sIL-1RI, sIL-1RII, sIL-2Ra, sIL-4R, sIL-6R, sSRAGE, sTNF
405  RI, sTNF RII, sVEGF R1, sVEGF R2, sVEGF R3) arrays (Millipore Sigma, Oakville, ON, Canada) on a
406  Luminex Model 200 Luminometer (Luminex Corporation, Austin, TX). EDTA-plasma samples were

407  collected from each patient by venipuncture following a standard operating protocol (SOP) and stored at -
408  80C until tested. Each run included a full range of calibrators. The Mann-Whitney U test was used to

409  compare groups and p-values were adjusted for multiple comparisons using Holm-Sidak stepdown

410  method with alpha set to 0.05.
411  Shotgun proteomics using Liquid Chromatography and Mass Spectrometry (LC-MS/MS)

412 The serum of COVID-19 patients (COVID-19 = 9, dexamethasone-treated = 4) and bacterial ARDS
413  controls (N = 6) were collected and subjected to quantitative proteomics. The total protein concentrations
414  were determined by Pierce™ BCA Protein Assay Kit (23225, ThermoFisher). A trichloroacetic acid

415  (TCA)/acetone protocol was used to pellet 100u g of proteins per sample. Samples were subjected to a
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416  quantitative proteomics workflow as per supplier (Thermo Fisher) recommendations. Samples were

417  reduced in 200mM tris(2-carboxyethyl)phosphine (TCEP), for 1h at 55°C, reduced cysteines were

418  alkylated by incubation with iodoacetamide solution (50mM) for 20min at room temperature. Samples
419  were precipitated by acetone/methanol, and 600pL ice-cold acetone was added followed by incubation at
420  -20°C overnight. A protein pellet was obtained by centrifugation (8,000g, 10min, 4°C) followed by

421  acetone drying (2min). Precipitated pellet was resuspended in100 puL of 5S0mM triethylammonium

422  bicarbonate (TEAB) buffer followed by tryptase digestion (Spg trypsin per 100pg of protein) overnight at
423  37°C. TMT-6plex™ Isobaric Labeling Reagents (90061, Thermo Fisher) were resuspended in anhydrous
424  acetonitrile and added to each sample (41puL. TMT-6plex™ per 100uL sample) and incubated at room
425  temperature for 1h. The TMT labeling reaction was quenched by 2.5% hydroxylamine for 15min at room
426  temperature. TMT labeled samples were combined and acidified in 100% trifluoroacetic acid to pH < 3.0
427  and subjected to C18 chromatography (Sep-Pak) according to manufacturer recommendations. Samples
428  were stored at -80°C before lyophilization, followed by resuspension in 1% formic acid before liquid

429  chromatography and tandem mass spectrometry analysis.

430  Tryptic peptides were analyzed on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo

431 Scientific) operated with Xcalibur (version 4.0.21.10) and coupled to a Thermo Scientific Easy-nL.C

432  (nanoflow liquid chromatography) 1200 System. Tryptic peptides (21g) were loaded onto a C18 trap
433  (75pm x 2cm; Acclaim PepMap 100, P/N 164946; ThermoFisher) at a flow rate of 2ul./min of solvent A
434  (0.1% formic acid in LC-MS grade H20). Peptides were eluted using a 120min gradient from 5 to 40%
435 (5% to 28% in 105min followed by an increase to 40% B in 15min) of solvent B (0.1% formic acid in
436  80% LC-MS grade acetonitrile) at a flow rate of 0.3puL/min and separated on a C18 analytical column
437  (75pm x 50cm; PepMap RSLC C18; P/N ES803A; ThermoScientific). Peptides were then electrosprayed
438  using 2.1kV voltage into the ion transfer tube (300°C) of the Orbitrap Lumos operating in positive mode.
439  For LC-MS/MS measurements with the FAIMS Pro (Thermo Fisher Scientific), multiple compensation
440  voltages (CV) were applied, -40V, -60V, and -80V with a cycle time of 1 second. FAIMS was used to
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441  generate technical replicates from plex 1 to 6. The Orbitrap first performed a full MS scan at a resolution
442  of 120,000 FWHM to detect the precursor ion having a m/z between 375 and 1,575 and a +2 to +4 charge.
443  The Orbitrap AGC (Auto Gain Control) and the maximum injection time were set at 4 x 10°> and 50ms,
444  respectively. The Orbitrap was operated using the top speed mode with a 3 second cycle time for

445  precursor selection. The most intense precursor ions presenting a peptidic isotopic profile and having an
446  intensity threshold of at least 2 x 10* were isolated using the quadrupole (Isolation window (m/z) of 0.7)
447  and fragmented using HCD (38% collision energy) in the ion routing multipole. The fragment ions (MS2)
448  were analyzed in the Orbitrap at a resolution of 15,000. The AGC and the maximum injection time were
449  setat 1 x 10° and 105ms, respectively. The first mass for the MS2 was set at 100 to acquire the TMT

450  reporter ions. Dynamic exclusion was enabled for 45 seconds to avoid of the acquisition of same

451  precursor ion having a similar m/z (plus or minus 10ppm).

452  Proteomic data and bioinformatics analysis

453  Spectral data acquired from the mass spectrometer were matched to peptide sequences using MaxQuant
454  software (v.1.6.14)*. Due to a lack of direct compatibility with Maxquant, spectra generated using the
455  FAIMS pro was first converted to MzXML using the FAIMS MzXML Generator from the Coon’s lab
456  (https://github.com/coongroup/FAIMS-MzXML-Generator). Next, peptide sequences from the human
457  proteome and Sars-CoV-2 proteins were obtained from the UniProt database (May 2021) and matched
458  using the Andromeda™ algorithm at a peptide-spectrum match false discovery rate (FDR) of 0.05. Search
459  parameters included a mass tolerance of 20 p.p.m. for the parent ion, 0.5 Da for the fragment ion,

460  carbamidomethylation of cysteine residues (+57.021464 Da), variable N-terminal modification by

461  acetylation (+42.010565 Da), and variable methionine oxidation (+15.994915 Da). Relative quantification
462  was set as TMT 6-plex labels 126 to 131. The cleavage site specificity was set to Trypsin/P, with up to
463  two missed cleavages allowed. Next, the evidence.txt and proteinGroups.txt were loaded into the R

464  software (v4.0.2) for statistical analysis. The normalization and identification of differentially expressed
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465  proteins was performed using the MSstatsTMT package’'. Multiple comparisons were corrected using the

466  Benjamini-Hochberg approach.

467  Leukocyte and lymphocyte isolation. For lymphocyte isolation, whole blood (2mL) was collected in
468  SmL polystyrene round-bottom heparinized vacutubes. To isolate lymphocytes by immunomagnetic

469  negative selection, 100uL of Isolation Cocktail and 100uL of Rapid Spheres (EasySep™ Direct Human
470  Total Lymphocytes Isolation Kit: 19655, StemCell Technologies) were added to 2 mL of whole blood.
471  After mixing and Smin incubation at RT, the sample volumes were topped up to 2.5mL with 0.04%

472  bovine serum albumin (BSA) in PBS. The diluted sample was incubated in the magnet without lid for
473  Smin, at RT and negatively selected lymphocytes were decanted into a new 5 mL polystyrene tube.

474  Except the addition of Isolation Cocktail, all steps were repeated once. The final lymphocyte cell

475  suspension was transferred to a 15 mL polypropylene tube and a volume of SmL 0.04% BSA in PBS was
476  added to the sample. Lymphocytes were precipitated by centrifugation for 5 min at 2000rpm, supernatant
477  was discarded, and cells were resuspended in 5 mL of 0.04% BSA in PBS. This last step was repeated
478  once, and cells were then resuspended in 100 pLL of PBS+0.04% BSA. Cell density was quantified with a
479  hemacytometer, cell viability was assessed with Trypan Blue staining (T8154; Sigma Aldrich), and 7500

480  live lymphocytes were transferred to a sterile 1.5 mL microcentrifuge tube.

481  For leukocyte isolation, 1 mL of whole blood from heparin containing vacutubes was transferred to 5 mL
482  polystyrene round-bottom tubes and 12uL of 0.5M EDTA was added. 2% FBS in PBS (ImL) and 50pL
483  of EasySep RBC Depletion spheres (EasySep™ RBC Depletion Reagent: 18170, Stem Cell

484  Technologies) were added to immunomagnetically deplete red blood cells. After 5 min of magnet

485  incubation at RT, cell suspension containing leukocytes was decanted into a new SmL polystyrene tube.
486  To ensure complete removal of red blood cells, RBC depletion was repeated, and cell suspension

487  containing leukocytes was decanted into a new 15mL polypropylene tube. Leukocytes were precipitated
488 by centrifugation at 2000rpm for 5 min at 20°C and resuspended in SmL of 0.04% BSA in PBS. This last

489  step was repeated once, and leukocytes were resuspended in 2 mL of 0.04% BSA in PBS. Cell viability
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490 and cell density were assessed, and 7500 live leukocytes were transferred to the microcentrifuge tube
491  containing the lymphocyte cell suspension. The volume of the cell suspension containing 7500

492  lymphocytes and 7500 leukocytes in a total of 50 pL of 0.04% BSA in PBS.
493  Immunocytochemistry and immunohistochemistry

494  Isolated leukocyte and lymphocyte samples were fixed in 4% paraformaldahyde in PBS (0.2mM and

495  pH7.4), and spun in a cytocentrifuge (8min at 300g) onto coated slides. Pathological lung sections (FFPE
496  fixed and sectioned at Sum) were deparaffinized in Slide Brite (Fisher Scientific NC968653) and

497  rehydrated. Slides were permeabilized and blocked with 10% normal donkey serum in PBS (with 0.5%
498  triton X-100), primary antibodies (SI00A8/9 Abcam ab22506; IFITM1 Abcam ab233545) were

499  incubated at 4°C overnight, followed by incubation with donkey anti-rabbit-Alexa488 (Invitrogen

500 A32790) or anti-mouse-Alexa555 (Invitrogen A31570) for 1h at room temperature (RT). Cytospun slides
501  were sequentially stained with CD24 (Abcam ab202073) on the same slides for 1h at RT, followed by
502  donkey anti-rabbit-Alexa647 (Invitrogen A31573). Imaging was done using a VS-120 slide scanner

503  (Olympus) and high resolution image imaging was done using an SP8 spectral confocal microscope

504  (Leica). Image processing was completed in Fiji *.

505  Single-cell RNA-Seq library construction, alignment, and quality control. A total of 15,000 single
506 cells (containing an equal proportion of leukocytes and lymphocytes) were loaded for partitioning using
507 10X Genomics NextGEM Gel Bead emulsions (Version 3.1). All samples were processed as per

508  manufacturer’s protocol (with both PCR amplification steps run 12X). Quality control of resulting

509 libararies and quantification was performed using TapeStation D1000 ScreenTape assay (Agilent).

510  Sequencing was performed using [llumina NovaSeq S2 and SP 100 cycle dual lane flow cells over

511  multiple rounds to ensure each sample received approximately 32,000 reads per cell. Sequencing reads
512  were aligned using CellRanger 3.1.0 pipeline®® to the standard pre-built GRCh38 reference genome.

513  Samples that passed alignment QC were aggregated into single datasets using CellRanger aggr with

514  between-sample normalization to ensure each sample received an equal number of mapped reads per cell.
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515  Aggregated non-dexamethasone-treated COVID-19 (n = 12) and bacterial ARDS (n = 9) samples

516  recovered 1,872,659 cells that were sequenced to 38,410 post-normalization reads per cell. Likewise,

517  aggregated COVID-19 samples with (n = 9) or without (n = 12) dexamethasone recovered 1,748,551

518  single cells sequenced to 51,415 post-normalization reads per cell. Aggregated healthy samples recovered

519 19,816 cells, including 1,912 post-QC neutrophils (n = 5).

520  Single-cell RNA-Seq computational analyses and workflows. Filtered feature-barcode HDF5 matrices
521  from aggregated datasets were imported into the R package Seurat v.3.9 for normalization, scaling,

522  integration, multi-modal reference mapping, louvain clustering, dimensionality reduction, differential

523  expression analysis, and visualization . Briefly, cells with abnormal transcriptional complexity (fewer
524 than 500 UMIs, greater than 25,000 UMIs, or greater than 25% of mitochondrial reads) were considered
525  artifacts and were removed from subsequent analysis. Since granulocytes have relatively low RNA

526  content (due to high levels of RNases), QC thresholds were informed by * as they recently defined several
527  rodent and human neutrophil subsets from scRNA-Seq samples. Cell identity was classified by mapping
528  single cell profiles to the recently published PBMC single-cell joint RNA/CITE-Seq multi-omic reference

529 %,

530 Annotation of neutrophil states. Since no published reference automates granulocyte annotations,

531  neutrophil clusters were manually annotated by querying known markers (i.e. CSF3R, S100A8, S100A9,
532  MMP8, MMP9, ELANE, MPO)’® and were corroborated using the R package SingleR>’. Neutrophil

533  states were defined by grouping unsupervised (louvain at default resolution) subclusters based on two
534  overlapping criteria: scVelo-inferred neutrophil maturity, and 2. by corroborating gene expression and
535  SCENIC-inferred GRN signatures with previous human and rodent neutrophil scRNA-Seq studies.

536  Immature neutrophils were defined as CD24" ARG1'ELANE "MPQ"ATF4RN-active ypp GRN-active

537  neutrophils 447

that were reproducibly assigned as ‘root cells’ in scVelo-based latent time pseudo-
538  ordering. IFN*" neutrophils were defined by preferential mRNA splicing (positive velocity) and

539  expression of IFN-stimulated genes such as IFITM1/2, IFIT1/2/3, ISG15/20, and IF16/27/44/44L 4%

26


https://doi.org/10.1101/2021.04.18.440366
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440366; this version posted July 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

540  PG™™* neutrophils were distinguished by preferential splicing of PTGS2/COX2 (as well as expression for
541  prostaglandin transport LST1) * and included a subset that expressed high levels of IL1p decoy receptor
542  ILIR2 *. Lastly, IL7R" neutrophils (a small but distinct subset that maybe of thymic origin ® expressed
543  high levels of ribosomal subunit genes (e.g. RPL5/7A/8/13/18/19/23/24/27/P0) that are highly

544  reminiscent of ‘ribosomal™-specific cluster 7’ identified previously *'..

545  Statistical approach for comparing cell proportions. To test whether cell composition was changed
546  due to infection type (COVID-19 versus Bacterial ARDS) or treatment group (dexamethasone versus

547  non-dexamethasone), a generalized linear mixed-effects model was employed where infection type and
548  treatment group were considered fixed and individual patients were considered random effect. Fitting was
549  done with Laplace approximation using the ‘glmer’ function in the ‘lme4’ R package ¢' and p-values were
550 calculated using the R package ‘car’. Boxplots comparing cell type composition were generated using the
551  ggplot2 package. Since a subset of patients sampled at t1 were discharged from ICU prior to t2 collection
552  (non-random or non-ignorable missing data), we limit statistical comparisons to between group

553  comparisons within one time point (e.g., COVID-19 72h vs Bacterial ARDS 72hr, dexamethasone-treated

554  72h vs non-dexamethasone-treated 72h) and do not estimate temporal differences across t1 and t2.

555  Inferring cell communication networks. Differential cell-cell interaction networks were reconstructed
556  using the Connectome R toolkit v0.2.2°* and CellChat v1.0.0 . Briefly, DifferentialConnectome queried
557  Seurat R objects housing datasets integrated by infection type and dexamethasone status to define nodes
558  and edges for downstream network analysis. Total number of interactions and interaction strengths were
559  calculated using CellChat’s comparelnteractions function. Differential edge list was passed through

560  CircosDiff (a wrapper around the R package ‘circlize’) and CellChat’s netVisual chord gene to filter

561  receptor-ligand edges and generate Circos plots.

562  Consensus DEGs and perturbation scores. Differentially expressed genes (DEGs) were those with an
563  average log fold change (FC) greater than 0.25 (p-adjusted < 0.05) as determined by Seurat’s Wilcoxon
564  rank-sum test. Consensus stacked bars showing cumulative log fold changes (colored by individual

27


https://doi.org/10.1101/2021.04.18.440366
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440366; this version posted July 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

565  sample contributions) were generated using constructConsensus function ’ for genes exhibiting

566  reproducible changes across patients (>3 for 72-hour comparisons, > 2 for 7-day comparisons). Gene Set
567  Enrichment analyses of consensus DEGs were performed using gProfiler’s g:GOSt (p-value cutoff

568  <0.05). A cell state-specific ‘perturbation score’ was calculated to reflect the magnitude of response

569 elicited by factoring in number and cumulative FC of consensus DEGs. Perturbation scores were

570  visualized using Nebulosa-generated density plots .

571  Constructing cellular trajectories using RNA velocity. Analysis of neutrophil trajectories was
572  performed by realigning CellRanger count-generated BAMs with RNA velocity command-line tool 2
573  using the runl0x command and human (GRCh38) annotations. The output loom files containing spliced
574  and unspliced counts were combined to compare neutrophils in COVID-19 with Bacterial ARDS controls
575 and dexamethasone-treated with non-treated COVID-19 patients. For both analyses, combined looms
576  were imported into Seurat v.3.9 using the ReadVelocity function in SeuratWrappers v.0.2.0, normalized
577  using SCTransform v.0.3.2 ® reduced and projected onto a UMAP, and exported as a .h5 file using the
578  SaveH5Seurat function. Counts stored in HS files were imported, filtered, and normalized as

579  recommended in the scVelo v.0.2.1 workflow '°. RNA velocities were estimated using stochastic and
580  dynamical models. Since both models yielded comparable results, stochastic model was used as default

581  for all subsequent analyses. Calculations stored in AnnData’s metadata were exported as CSVs and kernel

582  density lines depicting Velocity-inferred latent time distribution were plotted with ggplot2 v.3.1.1.

583  Gene Regulatory Network reconstruction. Single-cell regulatory network inference and clustering
584  (SCENIC)* was employed to infer regulatory interactions between transcription factors (TFs) and their
585  targetome by calculating and pruning co-expression modules. Briefly, neutrophils were subsetted from
586  scVelo-realigned Seurat object and processed using default and recommended parameters specified in
587  SCENIC’s vignette (https://github.com/aertslab/SCENIC) using the hg19 RcisTarget reference. Regulon
588 activity scores (in ‘3.4_regulonAUC.Rds’, an output of the SCENIC workflow) were added to scVelo

589  object (using CreateAssayObject function) to jointly project trajectory and TF activity onto the same
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590 UMAP embeddings. Consensus stacked bars showing cumulative logFC of AUCell scores for each TF
591  (colored by individual sample contributions) were generated by modifying the constructConsensus

592  function’ for SCENIC assay. Targetome of TFs predicted as drivers of neutrophil states (stored in

593 2.6 regulons asGeneSet.Rds’) was profiled using g:Profiler’s functional enrichment analysis and genes

594 intersecting with the Interferon pathway were plotted using iRegulon (Cytoscape plugin)®.

595  Comparing scRNA-Seq findings with published datasets. To test whether dexamethasone-suppressed
596  neutrophil genes at t1 and t2 (Extended Data Table 4) predicted COVID-19 mortality, we repurposed

597  methods described in ** and employed whole blood bulk RNA-Seq datasets generated by ** as a validation
598  cohort of 103 samples (where 17 were fatal). Briefly, each of the 103 samples were scored by the

599  aggregated expression of dexamethasone-suppressed neutrophil consensus genes at t1 and t2 using

600  Seurat’s AddModuleScore(). Dexamethasone-suppressed module scores were used as the predictor

601  variable and 28-day mortality was used as the response variable to construct an ROC curve using pROC’s
602  roc() function. To infer bronchoalveolar neutrophil composition in severe and moderate COVID-19 ''and
603  across bacterial pneumonia and COVID-19 *2, neutrophils (CSF3R", S100A8", S100A9") captured in

604  BALF scRNA-Seq datasets were projected onto our peripheral blood reference using mutual nearest

605  neighbor anchoring (FindTransferAnchors) and identity transferring (TransferData and AddMetaData)

606  strategy implemented in Seurat v4 **.

607  COVID Neutrophil Atlas. To enable intuitive exploration of single-cell datasets, a web portal

608 (http://biernaskielab.ca/covid_neutrophil or http://biernaskielab.com/covid neutrophil) was built using

609  RShiny v1.1.0, shinyLP v.1.1.2, and shinythemes v.1.1.2 packages.

610  Data availability. Single cell RNA-Seq datasets are available at NCBI GEO (which automatically makes
611  SRA deposit) at the following accession: GSE157789. Single-cell datasets can be further explored on our

612  companion portal at http://biernaskielab.ca/COVID_neutrophil or

613  http://biernaskielab.com/COVID_neutrophil. Velocyto-generated LOOM files and processed R objects

614  are available for reanalysis from: http://doi.org/10.6084/m9.figshare.14330795. Whole blood bulk RNA-
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615  Seq datasets employed as an independent validation cohort were downloaded from GSE157103. BALF
616  scRNA-Seq datasets from severe and moderate COVID-19 were downloaded from GSE145926.
617  Processed BALF scRNA-Seq objects from patients with bacterial pneumonia and COVID-19 (archived at

618  GSE167118) were downloaded from authors’ archive: https://figshare.com/articles/dataset/ /13608734.

619  Mass spectrometry datasets will be available via PRIDE Archive (http://www.ebi.ac.uk/pride/archive), it

620  has been submitted (submission #: 1-20210702-114055) and is pending accessioning.

621  Proteomics data will be available at PRIDE (https://www.ebi.ac.uk/pride/), it has been submitted

622  (submission #: 1-20210702-114055) and is pending accessioning.

623  Code availability. All analyses were performed using publicly available software as described in the

624  methods section. Raw scripts are available upon request.

625  Supplementary Information is available for this paper.
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