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Summary

The convergent evolution of the fly and mouse olfactory system led us to ask whether the anatomic connectivity and
functional logic of olfactory circuits would evolve in artificial neural networks trained to perform olfactory tasks. Atrtificial
networks trained to classify odor identity recapitulate the connectivity inherent in the olfactory system. Input units are
driven by a single receptor type, and units driven by the same receptor converge to form a glomerulus. Glomeruli exhibit
sparse, unstructured connectivity to a larger, expansion layer of Kenyon cells. When trained to both classify odor identity
and to impart innate valence onto odors, the network develops independent pathways for identity and valence
classification. Thus, the defining features of fly and mouse olfactory systems also evolved in artificial neural networks
trained to perform olfactory tasks. This implies that convergent evolution reflects an underlying logic rather than shared

developmental principles.

Introduction
The anatomic organization and functional logic of the
olfactory systems of flies and mice are remarkably similar
despite the 500 million years of evolution separating the
two organisms. Flies and mice have evolved odorant
receptors from different gene families and employ distinct
developmental pathways to construct a similar neural
architecture for olfaction, suggesting that the similarity
between the two olfactory systems emerged by
convergent evolution. The sensory neurons in each
organism express only one of multiple odor receptors.
This singularity is maintained with the convergence of like
neurons to form glomeruli so that mixing of olfactory
information occurs only later in the processing pathway.
Convergent evolution of the olfactory system may reflect
the independent acquisition of an efficient solution to the
problems of olfactory perception. We asked whether
networks constructed by machine learning to perform
olfactory tasks share the organizational principles of
biological olfactory systems.

Artificial neural networks (ANNs) (Lecun, Bengio, &
Hinton, 2015) capable of performing complex tasks

provide a novel approach to modeling neural circuits
(Mante, Sussillo, Shenoy, & Newsome, 2013; Yamins &
DiCarlo, 2016). Neural activity patterns from higher visual
areas of monkeys viewing natural images resemble
activity patterns from neural networks trained to classify
large numbers of visual images (Yamins & DiCarlo, 2016).
These results reveal a correspondence between the
artificial and biological visually driven responses. However,
it has been difficult to determine to what extent the
connectivity of ANNs recapitulates the connectivity of the
visual brain. Multiple circuit architectures can be
constructed by machine-learning methods to achieve
similar task performance, and details of connectivity that
might resolve this ambiguity remain unknown for most
mammalian neural circuits. In contrast, the precise
knowledge of the connectivity of the fly olfactory circuit
affords a unique opportunity to determine whether ANNs
and biological circuits converge to the same neural
architecture for solving olfactory tasks. In essence, we
have used machine learning to 'replay' evolution, to
explore the rationale for the evolutionary convergence of
biological olfactory circuits.
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In fruit flies, olfactory perception is initiated by the
binding of odorants to olfactory receptors on the surface
of sensory neurons on the antennae (Figure 1a).
Individual olfactory receptor neurons (ORNs) express one
of 50 different olfactory receptors (ORs), and all receptor
neurons that express the same receptor converge onto an
anatomically invariant locus, a glomerulus within the
antennal lobe of the fly brain (Vosshall, Amrein, Morozov,
Rzhetsky, & Axel, 1999; Vosshall, Wong, & Axel, 2000a).
Most projection neurons (PNs) innervate a single
glomerulus and send axons to neurons in the lateral horn
of the protocerebrum (LHNs) and to Kenyon cells (KCs) in
the mushroom body (MB) (Jefferis et al., 2007; Marin,
Jefferis, Komiyama, Zhu, & Luo, 2002; Wong, Wang, &
Axel, 2002). The invariant circuitry of the lateral horn
mediates innate behaviors (Datta et al., 2008; Jefferis et
al.,, 2007; Tanaka, Awasaki, Shimada, & Ito, 2004),
whereas the MB translates olfactory sensory information
into associative memories and learned behaviors (De
Belle & Heisenberg, 1994; Dubnau, Grady, Kitamoto, &
Tully, 2001; Heisenberg, Borst, Wagner, & Byers, 1985;
McGuire, Le, & Davis, 2001).

Individual Kenyon cells, the intrinsic neurons of the MB,
receive unstructured input from ~4-10 PNs (Caron, Ruta,
Abbott, & Axel, 2013; Li et al., 2020; Zheng et al., 2018)
and densely innervate MBONSs, the extrinsic output
neurons of the mushroom body (Aso et al., 2014b; Caron
et al., 2013; Chia & Scott, 2019; Hattori et al., 2017; Li et
al,, 2020; Tanaka et al., 2004; Zheng et al., 2018).
Synaptic plasticity at the KC-MBON synapse results in
olfactory conditioning and mediates learned behaviors
(Cohn, Morantte, & Ruta, 2015; Felsenberg et al., 2018;
Handler et al., 2019; Hige, Aso, Rubin, & Turner, 2015).

The anatomic organization and functional logic of the
mouse olfactory system is remarkably similar to the fly
olfactory circuit. Sensory neurons in the mouse express
only 1 of ~1000 odorant receptors (Buck & Axel, 1991;
Godfrey, Malnic, & Buck, 2004; Zhang & Firestein, 2002).
Neurons expressing a given receptor converge onto
topographically fixed glomeruli in the olfactory bulb, the
vertebrate equivalent of the antennal lobe (Mombaerts et
al., 1996; Ressler, Sullivan, & Buck, 1993, 1994; Vassar
et al.,, 1994). The mouse projection neurons, mitral and
tufted cells, project to primary olfactory cortex where they
synapse onto ~1 million piriform neurons (Price & Powell,
1970). Piriform neurons receive roughly 30-100 inputs
from an apparently random collection of glomeruli
(Davison & Ehlers, 2011; Miyamichi et al., 2011). The
hemi-brain connectome of the fly brain (Scheffer et al.,
2020) reports numerous axonal-axonal synapses
between Kenyon cells in the mushroom body, but these
are not believed to be functional (Li et al., 2020). In
contrast, pyramidal cells of the piriform cortex make
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functional recurrent connections with other excitatory
neurons (Franks et al., 2011). These recurrent
connections are important for concentration-invariant odor
coding (Bolding & Franks, 2018; Stern, Bolding, Abbott, &
Franks, 2018) and may shape odor tuning during passive
odor experience and learning (Pashkovski et al., 2020;
Schoonover, Ohashi, Axel, & Fink, 2021).

The convergent evolution of the fly and mouse
olfactory systems led us to ask whether the anatomic
connectivity and functional logic of olfactory circuits would
evolve in artificial neural networks constructed to perform
olfactory tasks. We used stochastic gradient descent
(Bottou, 2010; Kingma & Ba, 2014; Lecun et al., 2015;
Rumelhart, Hinton, & Williams, 1986) to construct artificial
neural networks that classify odors. In trained networks,
we found singularity of receptor expression, convergence
to form glomeruli, and divergence to generate sparse
unstructured connectivity that recapitulate the circuit
organization in flies and mice. We found that a three-layer
input-convergence-expansion structure is both necessary
and sufficient for the odor classification tasks we have
considered. We also trained neural networks to classify
both odor class and odor valence. After training, an initially
homogeneous population of neurons segregated into two
populations with distinct input and output connections,
resembling learned and innate pathways. These studies
provide a logic for the functional connectivity of the
olfactory systems in evolutionarily distant organisms.

Results
Artificial
structures
We designed a family of odor classification tasks that
mimic the ability of animals to distinguish between odor
classes and to generalize within classes. In the model,
each odor elicits a unique pattern of activation across the
ORs. Odors are assigned to 100 classes that are defined
by odor prototypes. Specifically, each odor belongs to the
class of its nearest prototype, measured by the Euclidean
distance between receptor activations (Figure 1b). Using
only a single prototype to define each class results in a
relatively simple olfactory task that can be solved without
using the layers of olfactory processing that we wish to
explore (Figure S2a-d). Thus, we consider classes that
are defined by multiple prototypes, predominantly using
two prototypes per class. This means that an odor class
corresponds to an association involving multiple different
types of odors. We used a training set of a million
randomly sampled odors to construct the networks and
assessed generalization performance with a test set of
8192 = 23 additional odors.

We first modeled the olfactory pathway as a
feedforward network with layers representing 50 ORs, 500

neural networks converge to biological
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Fig. 1 | Artificial neural network evolves the connectivity of the fly olfactory system.

a. The fly olfactory system. b. lllustration of the task. Every odor (a million in total, 100 shown) is a point in the space of ORN activity
(50 dimensions, 2 dimensions shown) and is classified based on the closest prototype odor (triangles, 100 in total, 4 shown). Each
class is defined by two prototype odors. c. Architecture of the artificial neural network. The expression profile of ORs in every ORN as
well as all other connection weights are trained. d. OR-ORN expression profile after training. ORNs are sorted by the strongest
projecting OR. e. ORN-PN mapping after training. Each PN type is sorted by the strongest projecting ORN. f. Effective connectivity
from OR to PN type, produced by multiplying the matrices in (d) and (e). g. PN-KC connectivity after training, only showing 20 KCs
(2500 total). h. Distribution of PN-KC connection weights after training showing the split into strong and weak groups. Connections
weaker than a set threshold (dotted gray line) are pruned to zero (left peak). i. Distribution of KC input degree after training. Text near
peak shows mean and standard deviation. K is the average number of PN inputs per KC. j, Distribution of PN-KC synapse counts
from the fly hemibrain connectome (Li et al., 2020). k, Distribution of KC input degree from the connectome data. Left peak corresponds
to connections with one synapse. I. Average cosine similarity between the weights of all pairs of KCs during training. At every epoch,
the cosine similarity was also computed after shuffling the PN-KC connectivity matrix. This shuffling preserves the number of
connections each KC receives but eliminates any potential structured PN inputs onto individual KCs.

m,n. Investigating the impact of a recurrent inhibitory neuron in the KC layer. m, Schematics of a network with a recurrent inhibitory
neuron at the KC layer, modeling the Anterior Paired Lateral (APL) neuron. The recurrent inhibitory neuron receives uniform excitation
from all KC neurons, and inhibits all KC neurons uniformly in return. n. (Top to bottom) Accuracy, GloScore, and KC input degree (K)
for networks with different strengths of KC recurrent inhibition. Stronger KC recurrent inhibition moderately increases KC input degree
while having no clear impact on accuracy and GloScore. K value is not shown for the network where KC input degree cannot be
reliably inferred (Methods).
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ORNSs, 50 PN types, and 2,500 KCs (Figure 1c, Methods).
In the following sections, we will consider more realistic
network architectures with local interneurons. The model
also included a set of 100 output units that allow us to read
out the class assigned by the model to a given odor
(instead of directly modeling MBONSs). The strengths of
model connections between the OR and ORN layers
represent the levels of expression of the 50 different
receptor types in each ORN. ORN-to-PN and PN-to-KC
connections represent excitatory synapses between these
cell types and are therefore constrained to be non-
negative. We chose to represent the ~150 PNs in the
antennal lobe as 50 PN types because the ~3 homotypical
‘sibling’ PNs that converge onto the same glomerulus
show almost identical activity patterns (Kazama & Wilson,
2009; Masuda-Nakagawa, Tanaka, & O’Kane, 2005). We
hereafter refer to PN types as PNs. Initially, all
connections were all-to-all and random (Figure 1c),
meaning that every ORN expressed every OR at some
level and connected to every PN. Similarly, each PN
initially connected to all the KCs. Neural responses were
rectified linear functions of the total synaptic input, and
batch normalization, a process resembling neuronal

response adaptation, was applied to PN activity (Methods).

The network was trained by altering its connection weights
and bias currents with the goal of minimizing classification
loss. This occurs when there is high activity only in the
readout unit representing the correct class associated
which each odor. This process can be thought of as
evolving a circuit architecture in silico.

Following training of the network, classification was
~75% accurate (chance is ~1%). The initial random, all-to-
all connectivity changed dramatically during the training
process. After training, all but one of the OR-to-ORN
coupling strengths for each OR are close to zero (Figure
1d). This corresponds to the expression of a single OR in
each ORN. Similarly, all but ~10 of the ORN connections
to each PN approach zero (Figure 1e) and, for each PN,
all of these connections arise from ORNs expressing the
same OR type (Figure 1e). This recapitulates the
convergence of like ORNs onto a single glomerulus and
the innervation of single glomeruli by individual PNs
(Mombaerts et al., 1996; Vosshall, Wong, & Axel, 2000b).
The extent that PNs receive input from a single OR type
was quantified by GloScore, which, for each PN, is the
difference in magnitude between the strongest two
connections it receives from the OR types divided by their
sum (Methods). A GloScore of 1 indicates that each PN
receives all its inputs from a single OR type, recapitulating
fruit fly connectivity. During training of the network, the
GloScore of ORN-PN connectivity started near 0 and
quickly approached values close to 1 (Figure S1b). Thus,
the model recapitulates both the singularity of OR
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expression in the ORNs and the existence of glomeruli in
which ORNs expressing the same OR converge and
connect to a glomerulus innervated by a single PN type.

The model also recapitulated distinctive features of
PN-to-KC connectivity. Each KC initially received
connections from all 50 PNs but, during training,
connections from PNs to KCs became sparser (Figure 1g,
S1b). To quantify the number of PN inputs that each KC
receives, weak PN-to-KC connections were pruned to
zero during training (Figure 1h, S1d-e). Results are
insensitive to the precise value of the pruning threshold,
and pruning did not reduce classification performance
(Figure S1d). Furthermore, we found that the average
number of PNs per KCs, K, plateaued during training, with
a sparse K~3-7 PN inputs for each KC (Figure 1i, S1b).
This closely matches the value (K ~ 6) derived from the
hemibrain connectome of the adult fruit fly (Figure 1j,k, Li
et al., 2020). Importantly, this sparse connectivity can also
be obtained without pruning (Figure S1d, Methods). In
some cases, no distinct gap separated weak from strong
synapses, making an estimate of connection sparsity
ambiguous; we identify these instances when they occur
and exclude them from further analysis (Figure S1c).

The sparsity and lack of structure in the PN-to-KC
connections of the model recapitulate the properties of
these connections in the fly (Caron et al., 2013; Li et al.,
2020; Zheng et al., 2018). The sparse KC input had no
discernable structure (Figure 1l; Figure S3); the average
correlation between the input connections of all pairs of
KCs is similar to the correlations obtained by randomly
shuffled connectivity at every training epoch (Figure 1I).
Thus, from ORs to KCs, the ANNs we have trained to
classify odors exhibit connectivity that mirrors the layered
circuitry of the fly olfactory system, with individual ORs
expressing only 1 of 50 receptors, similar ORNs
converging onto single glomeruli, individual PNs receiving
input from only a single glomerulus, and KCs receiving
sparse and unstructured connections from PNs (Video S1).
These results were invariant to model hyper-parameters
such as training rate and input noise (Figure S1).
Moreover, they were also independent of non-zero activity
correlations between different ORs (Figure S4a, b).
Uniglomerular PNs and sparse, random PN-to-KC
connectivity are necessary for high accuracy (Figure S4c).
Forcing each PN to receive inputs from multiple ORs
(Figure S4d) or introducing stereotypy in PN-to-KC
connections (Figure S4e) both substantially reduces
accuracy. In all subsequent modelling experiments, we did
not include the OR-to-ORN connectivity; instead, every
ORN was constructed to express a single OR.

KCs in the fly are inhibited largely through feedback
from a non-spiking interneuron, APL (Aso et al., 2014a;
Lin, Bygrave, De Calignon, Lee, & Miesenbdck, 2014;
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Fig. 2 | Dependence of results on biological features

(a) (From top to bottom) Accuracy, GloScore, and KC input degree as a function of training for networks with and
without the non-negativity constraint for ORN-PN connections. (b,c) Summary of accuracy, GloScore and KC input
degree for trained networks with varying numbers of KCs (b), and varying numbers of PNs (c). When the number of PNs
is high, the KC input degree cannot be reliably inferred. (d) Schematics of two concentration-invariant tasks. The odor
prototypes (triangles) lie on the unit sphere, making classification boundaries radiate outwards from the origin. The class
that each odor belongs to therefore depends on its normalized activity and not on its concentration (i.e., magnitude of OR
activity), unlike in the standard task (Figure 1b). (Left) A dataset where each OR’s activity is uniformly distributed across
odors. (Right) A dataset where weak and strong odors are more common. The proportion of odors with extreme
concentration values is proportional to the “spread”, a parameter between 0 and 1 (see Methods). (e) Biological
implementations of activity normalization (divisive normalization) rescues classification performance in a concentration-
invariant classification task when odor concentration is highly variable. In contrast, a normalization method widely used
in machine learning, Batch Normalization (loffe & Szegedy, 2015), does not improve performance.

Tanaka, Tanimoto, & Ito, 2008). We modeled the APL  every KC (Figure 1m). Feedback inhibition did not strongly
assuming that it receives excitatory input from all KCs and  influence the number of PN inputs per KC, the formation
iteratively provides subtractive feedback inhibition onto  of glomeruli, or task performance (Figure 1n).
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Dependence of results on model features

We next investigated how our results depend on key
biological features in the models. The most critical
element for the results we have reported is the restriction
to non-negative OR-ORN, ORN-to-PN and PN-to-KC
connections. Convergence of ORNs expressing the same
OR onto PNs does not occur if connections are not sign-
constrained. Gloscores drop if ORN-PN connections are
not sign-constrained, although classification accuracy is
maintained (Figure 2a). In this case, PNs receive a dense
array of inhibitory and excitatory connections from ORN
inputs, with the ORN connection patterns received by PNs
largely uncorrelated (Figure S5a-d).

To explore the effect of varying cell numbers, we first
trained networks with different numbers of KCs, with
ORNSs and PNs fixed at 500 and 50, respectively. As the
number of KCs was decreased, PNs sampled from
multiple ORs, decreasing the GloScore and classification
performance (Figure 2b, Figure S5f, S6g-h). Thus, a large
expansion layer of KCs is necessary for high classification
performance but, with reduced numbers of KCs, some
compensatory mixing occurs at the PN level.

We also varied the number of PNs while keeping the
numbers of ORNs and KCs fixed at 500 and 2,500,
respectively. When the number of PNs is less than the
number of unique OR types (50), the PN layer acts as
bottleneck and mixing occurs to ensure that all ORs are
represented (Figure 2c, Figure Sb5e, S6a), but
performance suffers. When the number of PNs is greater
than 50, we observed some PN mixing of ORN input,
although this did not improve classification accuracy,
which saturates at 50 PNs (Figure 2c, Figure S5e, S6b).
A closer examination revealed that PNs segregate into
two distinct populations, a population of uni-glomerular
PNs receiving a single type of OR and multi-glomerular
PNs receiving multiple types of ORs (Figure S6c-f).
Moreover, the connection strengths from uni-glomerular
PNs to KCs were strong and crucial for classification
performance. In contrast, connection strengths from multi-
glomerular PNs to KCs were weak, and silencing them
minimally impaired classification performance (Figure
S6d-e).

Why does a PN layer exist if glomerular connectivity
simply copies ORN activity forward to the PNs?
Experimental work has shown that the PN layer
normalizes odor-evoked responses (Olsen, Bhandawat, &
Wilson, 2010), which is likely to be important for
classification of odors across a range of concentrations.
We trained a feedforward network (Figure 1c) to perform
concentration-invariant classification with and without PN
normalization while systematically varying the range of
odor concentrations in the task dataset (Figure 2d;
Methods). We normalized PN activity using a divisive
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normalization model inspired by the experimental studies
(Luo, Axel, & Abbott, 2010; Olsen et al., 2010). As the
range of odor concentrations increased, divisive
normalization allowed the network to perform
concentration-invariant classification (Figure 2e). K
remains sparse when divisive normalization is introduced
(Figure S6i, j), regardless of the range of odor
concentrations.

Recurrent neural networks converge to biological
structures

By varying the numbers of PNs and KCs, we found that
performance plateaus when the number of PNs (50)
matches the number of ORs, and marginal performance
gains were observed when the number of KCs was
increased past 2500. However, in the models we have
considered thus far, the number of neurons in each layer
and the number of layers are fixed. We next asked what
structure emerges from a neural network that is not only
capable of modifying connection strengths, but also
capable of allocating the number of neurons per layer.

To remove a priori constraints on the numbers of
neurons at each layer, we constructed a recurrent neural
network model (RNN) in which 'layers' are represented by
network processing steps (Figure 3a). The RNN receives
odor inputs at the first time step and produces
classification outputs after several steps of processing.
The training algorithm determines how many neurons are
active at each processing step, allowing us to infer a
particular layered network architecture. This
unconventional use of an RNN allowed us to study how
finite resources — neurons and their connections — should
be distributed across layers, while training only a single
network.

We first considered an RNN in which odor classes
were read out after three processing steps (Figure 3a).
The RNN model contained 2,500 neurons and was
initialized with random, all-to-all, non-negative connectivity
between all neurons. At the first processing step, 500 of
the 2,500 recurrently connected neurons were provided
with OR inputs, and the remainder of the neurons were
silent. Thus, this first step of processing represents the
ORN layer. After training, this RNN reaches 67% accuracy,
slightly lower than that of the feedforward network.

To test whether the RNN self-organized into a
compression-expansion structure like the feedforward
network, we quantified how many neurons were active at
each processing step. Because we did not regularize for
activity in the RNN units, a significant number of neurons
have non-zero but weak activations to odors (Figure S7a).
These levels of activity were bimodally separate from units
possessing high levels of activity and were counted as
inactive (Figure S7a, Methods). Although the RNN could
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Fig. 3 | Recurrent neural networks converge to
biological structures.

a. Schematic of a recurrent neural network using
recurrent connections (Wgec) (left), and the equivalent
“unrolled” network diagram (right).

b, ¢, Network connectivity between neurons whose
activity, when averaged across all odors, exceeds a
threshold at different steps. b, Connectivity from
neurons active at step 1 to neurons active at step 2.
Connections are sorted. ¢, Connectivity from neurons
active at step 2 to neurons active at step 3, only
showing the first 20 active neurons at step 3.

d. Number of active neurons at each step of
computation. At step 1, only the first 500 units in the
recurrent network are activated by odors. Classification
performance is assessed after step 3.

e-i, Similar to (a-d), but for networks unrolled for 4
steps instead of 3. Classification readout occurs at step
4. Effective step 2-4 connectivity is the matrix product
of the step 2-3 (g) and step 3-4 connectivity (not
shown).
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have used all 2,500 neurons at each processing step,
odor-evoked activity from the 500 neurons initialized with
ORN activations propagated strongly to only ~50 neurons
after the second processing step (Figure 3d). This resulted
from the convergence of ORNs onto these PN-like
neurons (Figure 3b). In contrast, nearly all neurons of the
RNN at the third processing step had average activities
(across odors) above the threshold (Figure 3c). These
neurons were driven by sparse, unstructured connections
from ~5-10 PN-like neurons to the remaining ~2,500 RNN
neurons (Figure 3c, Figure S7b-d). Thus, the RNN
recapitulated known features of the olfactory circuitry even
when the numbers of neurons available at each level was
unconstrained.

We next examined the consequence of allowing the
RNN to perform four processing steps, which is equivalent
to forcing an additional feedforward layer prior to
classification of odors (Figure 3e). Interestingly, this
network did not use the extra layer to perform additional
computations. Rather, it simply copied the activity of the
50-55 PN-like neurons at the second processing step to
another similar set of ~100 neurons at the third processing
step, only activating the bulk of the 2,500 neurons at the
fourth processing step (Figure 3f-i, Figure S7e-h). This
result shows that the three-layer olfactory system
architecture (input, compression, expansion) is sufficient
for the olfactory tasks we considered.

Network models with ongoing plasticity

We have shown thus far that biological connectivity
emerges from both feedforward and recurrent network
models when trained on an odor classification task with
fixed odor-class mappings. However, the fly olfactory
circuit must accommodate the learning of novel odor
associations for the fly to adapt successfully to new
environments. Evidence strongly suggests that plasticity
in synaptic connections from KCs to MBONs underlies
olfactory learning (Cohn et al., 2015; Felsenberg et al.,
2018; Handler et al., 2019; Hige et al., 2015), whereas PN-
KC connection strengths are thought to be fixed
(Gruntman & Turner, 2013; Wilson, 2013). We therefore
introduced Hebbian plasticity between KCs and class
neurons and sought to understand how the KC
representation can support ongoing learning. To focus on
the PN-KC representation, we eliminated the ORN layer
in these studies (Figure 4a).

Up to this point, networks were trained to assign odors
to a fixed set of classes. Now, we construct networks that,
after training, can continue to learn new odor classes.
This is possible because the networks are expanded to
include ongoing plasticity at the synapses between the
KCs and output units (Methods). On each episode, we
randomly select 16 odors from each of 5 odor classes
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drawn from the dataset described previously (Figure 1b).
During each episode, the feedforward network (Figure 4a)
uses synaptic plasticity to learn a new odor-class mapping
(Figure 4b) (Finn, Abbeel, & Levine, 2017). After training,
the KC-output synapses have undergone plastic updates
whereas the remaining network weights are fixed
(Methods).

After the update of the plastic synapses, performance
for each training episode is assessed by a set of new
odors drawn from each one of the 5 odor classes used on
that episode, and the non-plastic network weights are
adjusted by backpropagation to minimize errors. This
encourages the network to generalize to new odors on the
basis of a limited set of sampled odors (16-shot learning).
At the start of each episode, non-plastic network weights
are retained but plastic weights are reset. We asked what
connectivity evolved between PNs and KCs to support
rapid, flexible learning at the output synapses.

We found that, after training, networks with KC-output
plasticity were capable of learning new odor categories.
These networks reached up to 80% accuracy in the 16-
shot learning task (Figure S8a). Sparse, unstructured
connectivity emerged in plastic network models, with an
average of ~5 PNs per KC (Figure 4d-e). These results did
not depend strongly on hyper-parameters such as the
addition of trainable ORN-PN weights, the number of
classes per episode, or the number of training odors per
class (Figure S8a-c). We conclude that PN-KC
connectivity supporting rapid, flexible learning is similar to
that observed in the original odor classification task.

Predicting connection sparsity for different species
The anatomic organization and functional logic of the fly
olfactory system is shared with the mouse despite the
large evolutionary distance separating the two species. In
both mouse and fly, ORNs converge onto a glomerular
compression layer, which then projects sparsely to an
expansion layer (KCs in the fly, piriform cortex neurons in
the mouse). Unlike in the fly, the input degree to the
expansion layer in mouse (or any other species) can only
been inferred from existing data as K~40 — 100 (Davison
& Ehlers, 2011; Miyamichi et al., 2011) (Figure 5,
Methods).

We hypothesize that this input degree depends on a
variety of parameters, but most heavily on the number of
OR types (~1,000 in mouse compared to ~50 in fly).
Therefore, in our neural network we asked how the
expansion layer input degree (K) scales with the number
of ORs (N), termed K — N scaling. We have presented
networks trained to perform two related yet different tasks,
one with a fixed set of odor classes using supervised
training and non-plastic synapses (Figure 1), and the other
with changing odor classes using meta-training and plastic
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Fig. 4 | Network models with ongoing plasticity.

a. Schematic of a meta-trained network. The PN-KC architecture is evolved to support flexible odor learning at the KC-
output synapse (Wour). b. Multiple datasets are sequentially presented to the network. Each dataset contains a small
number of classes and 16 samples from each class. During the presentation of each dataset, KC-output connections
undergo rapid plasticity to learn the classes. After fast KC-output learning, generalization performance to a new test set
of odors that obey the same classification boundaries is assessed and then used to update, i.e. meta-train, the weights
of the network. ¢. PN-KC connectivity after training, showing 20 KCs. d. Distribution of PN-KC connection weights after

training. e. Distribution of KC input degree after training.
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synapses (Figure 4). Both of these led to similarly sparse
PN-KC connectivity in fly-sized networks, K~5 — 7 for
N = 50 (Figure 1i, 4e). We now quantify the K — N scaling
for each of them.

We constructed feedforward network models with
different numbers of ORs to examine how their
connectivity scales with OR number (Figure S9). Over the
range we considered, K always increases as a power law

Fig. 5 | Sparsity for different species.

The input degree K for networks with different numbers
of ORs (N). K predicted by various methods and is fitted
with power-law lines. Cyan: training using the fixed odor
categorization task; red: meta-training using the plastic
odor categorization task; gray: optimal K predicted by
maximum dimensionality (Litwin-Kumar et al. 2017);
Crosses: Experimental estimates. [2]: Miyamichi et al.,
2011; [3]: (Davison & Ehlers, 2011). For each N, error
bars are derived from networks trained with different
learning rates.

function of N. However, the K — N scaling is substantially
different across the two tasks. We found that K =
0.37N°82 for networks trained with fixed classes (Figure 5,
blue line), while K ~ 2.84N%12 for networks with plasticity
(Figure 5, red line). Notably, both scaling results predict
qualitatively sparse connectivity since the exponents are
significantly lower than 1. The shallower scaling found in
plastic networks is broadly consistent with that predicted
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by previous theoretical work based on determining the
wiring that maximizes dimensionality (Figure 5, gray line,
Litwin-Kumar et al. 2017). The connectivity that maximizes
dimensionality gives rise to K = 1.16N%3! (Methods).

Although both the fixed and plastic tasks we used to
construct networks result in quantitatively similar sparse
PN-KC connectivity in fly-sized networks, they make
substantially different predictions for mouse-sized
networks (N~1000): K = 0.37 x 1000°82 =~ 106 for fixed-
category training, and K = 2.84 x 1000%!2 ~ 7 for the
plastic task. Therefore, only fixed-category training
appears to produce a result consistent with the mouse
data (K~40 — 100). However, we note that we have only
explored one method to introduce ongoing plasticity. The
apparent discrepancy between the mouse data and our
plastic network prediction should not be taken as evidence
that plasticity and rapid learning of associations are not
important in early olfactory processing.

The emergence of an innate pathway
The repertoire of odorant receptors supports the detection
of a vast number of odors in the environment, but a smaller
number of receptors exhibit specificity for odors that elicit
innate behaviors (Dweck et al., 2015; Ebrahim et al., 2015;
Kurtovic, Widmer, & Dickson, 2007; Min, Ai, Shin, & Suh,
2013; Stensmyr et al., 2012; Suh et al., 2004). In flies, PNs
activated by these odors project to topographically
restricted regions of the lateral horn (LH) to drive innate
responses (Datta et al., 2008; Jefferis et al., 2007; Ruta et
al.,, 2010; Varela, Gaspar, Dias, & Vasconcelos, 2019).
We asked whether an artificial network could evolve
segregated pathways for innate and learned responses.
We trained neural networks to classify both odor class
and odor valence. Odor class was determined as in our
original models. To add an innate component, each odor
was assigned to one of 3 categories, 'appetitive’, 'aversive',
or 'neutral'. Neutral odors activated all ORs as in our
previous networks, with activations drawn from a uniform
distribution between 0 and 1 (Figure 6a, left). Each odor
bearing a non-neutral valence activated all ORs but also a
single innate OR especially strongly (on average three
times stronger than other ORs). Of the 50 ORs, five were
assigned innately appetitive responses, and another five
were assigned innately aversive responses. We used a
feedforward architecture with 500 ORNs, 50 PNs, and
2,500 third-order neurons that project to both class and
innate valence output units (Figure 6b). In this case, there
are two sets of output units, one set to report odor class
and another to report odor valence. The 2,500 third-order
model neurons represent a mixture of LHN and KC
neurons, allowing us to investigate whether the
segregation into two distinct populations is recapitulated
by the model.
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The network successfully performed both odor
classification and valence determination. Glomeruli
emerged for neutral, appetitive, and aversive ORs (Figure
S10a). The network also generated two segregated
clusters of third-order neurons (Figure 6¢-d, Figure S10b;
Methods). These clusters were segregated based on both
input and output connectivity profiles. Cluster 1 typically
contains ~2,000 neurons (Figure S10c-d). Cluster 1
neurons are analogous to KCs and project strongly to
class read-out neurons but weakly to valence read-out
neurons (Figure 6¢, d). They receive ~5-7 strong inputs
from random subsets of PNs (Figure 6e, f, Figure S10e-f).
In contrast, cluster 2 is smaller, containing ~50-200
neurons. Cluster 2 neurons, analogous to LHNs, project
strongly to valence read-out neurons (Figure 6¢, d), and
typically only receive a single strong PN input (Figure 6e,
f). Thus, the inputs to the KCs are unstructured whereas
the connections to LHN encoding innate valence are
valence-specific (Figure 6f). The innate pathway does not
emerge if there are no innate odor receptors that respond
more strongly to innate odors (Figure S10g-i).

We lesioned each cluster of KC/LHN neurons
separately to assess its contribution to odor and valence
classification. Lesioning the putative KC cluster (cluster 1)
led to a dramatic impairment in odor classification
performance (Figure 6g) but left the determination of
valence intact (Figure 6h). In contrast, lesioning the
putative LH cluster (cluster 2) substantially impaired
valence determination (Figure 6h) but had little effect on
classification performance (Figure 6g). These results
demonstrate that the model network can evolve two
segregated pathways analogous to those in the fly.

Discussion

Network models constructed from machine learning
approaches have been used to study the responses of
neural circuits and their relationship to circuit function by
comparing the activities of network units and recorded
neurons (Mante et al., 2013; Masse, Yang, Song, Wang,
& Freedman, 2019; Yamins & DiCarlo, 2016; Yamins et
al., 2014; Yang, Joglekar, Song, Newsome, & Wang,
2019). Machine learning models generate unit responses
and perform the tasks they are trained to do by developing
specific patterns of connectivity. It is difficult to perform a
detailed comparison of these connectivity patterns with
biological connectomes (Cueva, Wang, Chin, & Wei, 2019;
Uria et al., 2020) given the limited connectomic data. The
current availability of connectome data from flies (Li et al.,
2020; Zheng et al.,, 2018) and the promise of more
connectome results in the future make this an opportune
time to explore links between biological connectomes and
machine learning architectures.
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Fig. 6 | Emergence of separate innate and learned pathways.

a. lllustration of the class (left) and valence (right) tasks. Non-neutral odors (right, appetitive in blue or aversive in red) each
strongly activates one non-neutral OR. The network is trained to identify odor class (left) as previously described (Figure 1b) and
also to classify odors into 3 valences (right). b, Schematic of a neural network that is trained to identify both odor class and odor
valence using separate class and valence read-out weights. c. Distribution of third-layer neurons based on output connection
strengths to valence read-out neurons against connection strengths to class read-outs. K-means clustering revealed that the third
layer can be segregated into two clusters. The density of each cluster is normalized to the same peak value. d, The connectivity
matrix from the first 10 third-layer neurons from each cluster to output units, the first 10 of 100 class output neurons and all 3
valence output units are shown. e, Distribution of third-layer neurons based on output connection strengths to valence read-out
neurons against input degree. The distribution of cluster 2 neurons is difficult to see because almost all of them have the same
input degree value of 1. f, The connectivity matrix from PNs to first 10 third-layer neurons from each cluster. g, h. Lesioning the
KC-like cluster (group 1) leads to a dramatic drop in odor class performance. (g) Lesioning the LH-like cluster (group 2)
substantially impaired odor valence performance (h).
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We found that broad network architectures and
detailed features of synaptic connectivity shared by the fly
and mouse olfactory systems also evolved in artificial
neural networks trained to perform olfactory tasks. The
observation that machine learning evolves an olfactory
system with striking parallels to biological olfactory
pathways implies a functional logic to the successful
accomplishment of olfactory tasks. Importantly, the
artificial network evolves without the biological
mechanisms necessary to build these systems in vivo.
This implies that convergent evolution reflects an
underlying logic rather than shared developmental
principles. Stochastic gradient descent and mutation and
natural selection have evolved a similar solution to
olfactory processing.

We constructed feedforward and recurrent networks
using stochastic gradient descent. When the feedforward
networks were initialized with each ORN expressing all 50
receptors, each ORN evolved to express a single receptor
type, recapitulating the expression pattern of ORs in flies
and mice. Further, ORNs expressing a given receptor
converge on a single PN, and PNs connect with like ORNs
to create a glomerular structure. This convergence,
observed in both flies and mice, assures that mixing of
information across ORs does not occur at early
processing layers.

In the network models we studied, each KC initially
received input from all 50 PNs but these connections
become sparse during training, with each KC ultimately
receiving information from ~4-10 PNs, in agreement with
the fly circuitry. Although most of our machine modeling
was based on the olfactory system in flies, we
extrapolated our networks to olfactory systems of far
greater size. The results of this extrapolation depended
on the task and training procedure. For fixed odor classes,
the original task we considered, we obtained an estimate
of the number of inputs to piriform neurons from the
olfactory bulb, in rough agreement with data from the
mouse (40-100).

The architecture of olfactory systems, in vivo and in
silico, is based upon two essential features: converge of a
large number of ORNs onto a small number of glomeruli
followed by an expansion onto much larger number of
third order neurons. Previous theoretical work suggests
that a goal of the olfactory system may be to construct a
high-dimensional representation in the expansion layer
(KCs in the mushroom body or pyramidal cells in the
piriform cortex) to support inference about the behavioral
relevance of odors (Babadi & Sompolinsky, 2014; Litwin-
Kumar et al., 2017). This hypothesis has two important
implications for our results.

One results of this previous work is that task
performance is proportional to dimensionality when odor
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classes are learned through synaptic plasticity of a
Hebbian form (Litwin-Kumar et al., 2017). In the learning
task that we considered, new odor classes were learned
through synaptic plasticity that fits into the Hebbian
category, so the resulting network should maximize the
dimension of the expansion layer odor representation to
optimize performance. Indeed, we found that the sparsity
of the connections in the resulting networks has a power-
law dependence on the number of olfactory receptor types
that roughly agrees with the scaling that follows from
maximizing dimensionality. However, we obtained a quite
different scaling when we trained non-plastic networks on
the fixed-class task. Because these networks do not
involve Hebbian plasticity, it is not surprising that they
exhibit a different degree of sparsity, but we do not
currently know of an underlying theoretical principle that
can explain the sparsity and scaling we found in the non-
plastic case. Interestingly, it is this case that agrees with
existing data on the connectivity in the mouse (Davison &
Ehlers, 2011; Miyamichi et al., 2011).

Another requirement for achieving maximimum
dimensionality is that the representation of odors by the
PNs should be uncorrelated (Litwin-Kumar et al., 2017).
This provides an explanation for the formation of glomeruli
in our network models. The OR activations we used were
uncorrelated and, to maximize dimensionality, the
transformation from ORs to ORNs and then to PNs must
not introduce any correlation. When the weights along this
pathway are constrained to be non-negative, the only
connectivity pattern that does not induce PN-PN
correlations is an identity mapping from OR types to PN
output. This is precisely what singular OR expression and
OR-specific projection through olfactory glomeruli
provides. Interestingly, the results we found suggest that
these ubiquitous features of biological olfactory pathways
are not simply a consequence of noise robustness, as has
been conjectured, but rather arise as the unique solution
to eliminating correlations in the glomerular layer to
maximize the dimension of the expansion layer.
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METHODS
RESOURCE AVAILABILITY

Lead Contact—Further information and requests for
resources should be directed to and will be fulfilled by the
Lead Contact, Guangyu Robert Yang (yanggr@mit.edu).

Materials Availability—This study did not generate new,
unique reagents.

Data and Code Availability

. This paper analyzes existing, publicly available
data. These datasets are listed in the key resources table.
All new data reported in this paper will be shared by the
lead contact upon request.

e All original code has been deposited at
https://github.com/gyyang/olfaction_evolution _and is
publicly available. Besides code to reproduce every panel
in the paper, we also make available a self-contained
Jupyter notebook that reproduces key results and allows
easier exploration.

e  Any additional information required to reanalyze
the data reported in this paper is available from the lead
contact upon request.

METHOD DETAILS

Datasets

To generate the standard dataset, we first generated
Nproto = 200 odor prototypes. Each prototype %
activates Nyr = 50 ORN types or ORs, and the activation

of each ORN type is sampled independently from a
uniform distribution between 0 and 1, f].(i)~U(O, 1). The

200 prototypes are randomly assigned to N, = 100
classes, with each class containing two prototypes. A
given odor ¥ is a vector in the 50-dimensional ORN-type
space, sampled the same way as the prototypes. When
the network’s input layer corresponds to ORNs, each ORN
receives the activation of its OR plus an independent
Gaussian noise e~N(0, 6dry), Where agry = 0 by default
(no noise). Its associated ground-truth class c is set to be
the class of its closest prototype, as measured by
Euclidean distance in the ORN-type space. The training
set consists of 1 million odors. The validation set consists
of 8192 odors.

Besides the standard dataset, we also considered
several other datasets based on the standard dataset, as
detailed below.

Concentration dataset. In this dataset (Figure 2), the

prototypes ’fglo)n are the normalized versions of the
. i (O
prototypes in the standard dataset ¥©, so ¥, = EQl The

concentration of each odor is explicitly varied while the
average ORN activation across all odors is preserved. For
each odor, the activation of each ORN type is sampled
from a uniform distribution as described above, and is then
multiplied by a concentration scale factor. This scale factor,
s, is determined by a single parameter, ¢, in which:

s=1-€)+2ef(1—€1—¢€)

Where B is the beta distribution. A value of € = 0
produces a dataset with no additional spread, whereas e
= 1 produces a dataset exhibiting maximal spread with
scale factors densely clustered around 0 and 2.

Relabel datasets. For the family of relabel datasets
(Figure S2), we vary the number of prototypes Nyo:,=100,
200, 500, 1000 while keeping the number of classes
N.a.ss= 100 fixed. We refer to these datasets as relabel
datasets, because N, prototypes are relabeled to
N..ss Classes. The standard dataset uses relabeling as
well. The ratio between Ny, and N, is the odor
prototypes per class.

Meta-learning dataset. This dataset is organized into
episodes. Each episode includes a small amount of
training data and validation data. In each episode, we
randomly select Nepsc.ss = 2 Classes from the original
N.a.ss = 100 classes in the standard dataset. For each of
the Nepsciass Classes chosen, we randomly select
Nepssample = 16 0dors  for training and validation
respectively. Importantly, within each episode, we re-map
each of the Nepgcass = 2 selected classes t0 Nyera = 2
output classes. Intuitively, the network is always doing a
( Npeta = ) 2-way classification task. However, the
classification boundaries associated with each output
class is different in every episode. There is no fixed
relationship between the original class label and the new
label in each episode, so the network has to learn the new
class labels based on the Npgsampie data points per class.
In total, for each episode, there are NepssampieNepsciass
data points in the training set, and the same amount in the
validation set.

Valence dataset. In the valence dataset, we replaced
Nipeciat = 10 prototypes from the original Ny, prototypes
with special prototypes that each lies along one axis in the
ORN-type space. In other words, each special prototype
strongly activates a single ORN type (a special OR), at
activity level of 1.0. Of the Ny, Special prototypes,
Ngpeciat/2 = 5 are set to be appetitive or “good” odors, and
the other 5 to be aversive or “bad” odors. The rest of the
— Ngpecial Prototypes and associated odors are set
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to be neutral and are sampled the same way as the
standard dataset. The task is both to classify the odors, as
in the standard dataset, and to classify the valence
(appetitive, aversive, neutral). In both the training and the
validation dataset, we have 10% of the overall odors be
appetitive, another 10% be aversive, and the rest 80% be
neutral. Therefore, if a network classifies all odors to
neutral, the chance level performance for valence
classification is 80%. The neutral odors are sampled in the
same way as the standard dataset. Each appetitive or
aversive odor is sampled by adding the activity level of one
special prototype (1.0 for the special OR and 0.0 otherwise)
with an activity pattern sampled from a uniform distribution
between 0 and 1. In other words, the activity level of an
appetitive or aversive odor is sampled randomly from
U(1, 2) for the special OR, and from U(0,1) for other ORs.

Correlated dataset. In Figure S4, we introduce
correlation between responses of different ORN types.
The correlation is independently controlled between 0 and
0.9, while maintaining the marginal distribution of each
ORN type to be uniform between 0 and 1. We used a
previously proposed method (Cario & Nelson, 1997) for
generating such correlated random variables while
maintaining their marginal distributions.

Network architecture

We train networks of various architectures. The ORN-PN-
KC network architecture consists of an input layer of 500
model ORNSs, 50 PNs, 2500 KCs, and 100 output units.
The 500 ORNs are made of 10 ORNs per type for all 50
types of ORNs. The activation of each ORN is the sum of
the activation of the corresponding ORN-type %; and an
independent noise e~N(0,03zy) , Where oory =0 by
default (no noise). The ORN-PN, PN-KC, and KC-output
connections are all fully-connected at initialization. The
ORN-PN and PN-KC connectivity are initialized with a
uniform distribution of between 1/N and 4/N, where N is
the number of input neurons (500 for ORN-PN, and 50 for
PN-KC). The KC-output connectivity is initialized with the
standard Glorot uniform initialization. The ORN-PN and
PN-KC connections are constrained to be non-negative
using an absolute function. All neurons use a rectified-
linear activation function (ReLU).

In the OR-ORN-PN-KC network, we add an additional
layer of OR-ORN connections. Here, the inputs are 50
ORs, activated similarly to the ORNs from the ORN-PN-
KC network. The OR-ORN connections are non-negative
as well and initialized similarly to ORN-PN and PN-KC
connectivity.

For the identity/valence classification task, we used
a network with two output heads. One containing 100
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output neurons as usual. The other contains 3 output
neurons for neutral, appetitive, and aversive valence.

We briefly considered an ORN-Output network
(Figure S2) that has the output directly read out from the
ORNsSs.

Optionally, we include dropout on the KC layer, which
at training time, but not testing time, set a certain
proportion pyropout OF NEUron activities to zero. The default
dropout rate is pyropout = 0 (NO dropout).

The recurrent network used in Figure 3 is a discrete-
time vanilla recurrent network,

Tiyr = fWore + Wou, +b), t=1,2,..

The network consists of 2,500 units. The recurrent
connection is initialized uniformly between 0 and 4./2500,
the input connection is initialized using Glorot uniform
initialization. The recurrent connection is constrained to be
non-negative. Out of 2,500 units, 500 receive odor inputs
att = 1 in the same way as the ORNs in the feedforward
network. The classification output is read-out with at step
T with connections that are not sign-constrained. By
default, we have T = 3, which means the network unrolled
in time would have 3 layers (t = 1, 2, 3) and an output layer.

The KC recurrent inhibition mediated by a single
APL neuron (Figure 1) is implemented by an inhibitory
neuron interacting with the KCs iteratively. The single
inhibitory neuron has a neural response equal to the mean
KC activation level at each time step. This neuron then
sends subtractive inhibitory inputs to all KCs with a
connection weight y (KC recurrent inhibition strength in
Figure 1). Therefore, the KCs at each time step t are
activated as

1
n®=f{u® -y g= ) -1
Jj

Here f(-) is the ReLU activation function. u;(t) = u; is
the feedforward input to the i-th unit. r;(t) is the activation
level of the i-th unit at time step t. We run this recurrent
inhibition for 10 time steps.

The divisive normalization used on the PN layer in
Figure 2 is implemented in the following way. Neuron i in
this layer receives input u;, and the final activation of this
neuron, r; follows,

U;
Ti = Tmax m

Here, 1,,.x, p, m are parameters that are trained with
gradient descent alongside other trainable parameters. In
initialization, we have 1;,,, = N/2, p = 0, m = 0.99, where
N is the number of neurons in this layer. For stability
during training, we clamped N/10 < 15, < N,0<p < 3,
0.05<m<2.
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Training

The output of the network is linearly read out with trainable
weights from the final layer (KC layer in feedforward
networks, or the recurrent layer). The loss is softmax
cross-entropy loss. The default training method is the
adaptive stochastic gradient descent method Adam with
learning rate 5e-4, and exponential decay rates for first
and second moments 0.9 and 0.999 respectively (the
Pytorch default hyperparameter values). The network is
typically trained for 100 epochs, each epoch would expose
the network to all of the one million odors from the training
set.

The training batch size is B = 256. By default, we used
Batch Normalization on the PN layer to prevent individual
neurons from being active or silent for all odors.
Technically, Batch Normalization computes the mean y;
and standard deviation o; of inputs x;, to the i-th single
neuron across a minibatch (b = 1, ..., B),

= in,b; 0; = Z(xi,b - .Ui)z
7 «’ 7

The actual input to the i-th neuron is first subtracted by
u;, then divided by g;. It is then multiplied by a trainable
parameter, then another trainable parameter is added to
it. Biologically, Batch Normalization can be viewed as
approximating single neuron adaptation or homeostasis to
a range (i.e., a batch) of odors. If a neuron is strongly
driven by most odors, then Batch Normalization would
reduce its inputs, making this neuron activated in a more
balanced manner.

Ongoing Plasticity

For the ongoing plasticity results in Figure 4, we use the
delta rule to simulate ongoing plasticity in the readout
connections (KC-output weights for the model fly network)
(Dayan & Abbot, 2005). The delta rule is more biologically
plausible than the general gradient descent algorithm
because it relies on local information. However, it is not
intended to model with high fidelity the biological plasticity
rules at the KC-MBON synapses. The delta rule is used
here to encourage a KC representation that supports rapid,
flexible learning. The default delta rule learning rate is 5e-
4.

During each learning episode (see Meta-learning
dataset section), the network is presented with a small
amount of training and validation data from the meta-
learning dataset. The network takes a single delta rule
step based on the training data, and the loss is evaluated
based on the validation data. The objective of meta-
training is to minimize the expected validation loss of the
inner ftraining. Meta-training updates all weights and
biases in the network at the end of each learning episode
using the gradient descent variant, Adam. This meta-

training method is a special case of a more general
method called MAML, or Model-Agnostic Meta-
Learning (Finn, Abbeel, & Levine, 2017a). This method
aims at finding (meta-training) parameter values
(connection weights and biases) that allow rapid few-step
gradient descent learning using a small amount of new
training data. We largely adhered to the method detailed
in Finn et al., with a few notable exceptions. First, the inner
training only performs gradient descent on the KC-output
connection. Gradient descent applied only to the last layer
reduces to the delta rule. Second, the learning rate of the
inner training is allowed to be adjusted by the meta-
training process. The latter assumption does not
substantially impact our results.

Weight pruning and connection sparsity estimation
By default, we have synaptic weight pruning during
training. Weights below a certain threshold 6 are
permanently set to zero during and after training. The
threshold is set to be § = 1/N, where N is the number of
input neurons for each connectivity matrix. Weight pruning
provides a less ambiguous quantitative estimate of
connection sparsity.

We observe that in some networks, the distribution of
weights has a clear, single peak away from the pruning
threshold, and the weight distribution approaches 0
towards the threshold (see Figure S1c for examples). In
these cases, the connection sparsity (or density) can be
easily inferred by simply quantifying the proportion of
connection weights above threshold. However, we found
that in some networks (some hyperparameter settings),
the distribution of weights has a peak very close to the
threshold, making it difficult to count the above-threshold
weights. Therefore, we employ a simple heuristic to check
if there is a clear peak in the weight distribution far from
the pruning threshold. Our heuristic requires the peak of
the above-threshold weight distribution be at least 2./N
larger than the threshold itself, which by defaultis at 1./N.
Networks that do not satisfy this “clear peak” criteria are
not used to compute the input degree, and their K values
not shown in plots (e.g. Figure S1a).

When the network does not undergo pruning of weak
weights as in some control experiments and for the RNN
results, it is necessary to try inferring a threshold
separating weak and strong weights. We fit a mixture of
two Gaussians model to the log-distribution of weights.
The weak/strong weight threshold is where the probability
density of the two Gaussian modes cross. In this case, the
inferred threshold is used, instead of the pruning threshold,
in the above heuristics for determining whether the strong
weights have a clear peak in its distribution.

We have done extensive comparisons between
networks with and without pruning across various
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hyperparameter values (many results not shown in
figures). For the feedforward network architectures,
pruning almost always leads to clearer above-threshold
peak in the weight distribution. Importantly, the sparsity
result is not a result of pruning per se. When there is no
pruning, and the weights clearly separate into weak and
strong peaks (for example when N1, = Nejass = 100),
the inferred connection sparsity is quantitatively very close
to that obtained from networks with pruning. In addition,
the network performance is generally identical with or
without pruning.

QUANTIFICATION AND STATISTICAL ANALYSIS
GloScore

The glomeruli score (GloScore) of a PN-ORN
connectivity matrix Wpn_orn iS computed by first
averaging all connections from ORNSs of the same type.
For each PN, we find the strongest connection weight w,
and the second strongest connection weight w, from each
ORN type by averaging weights across ORNSs of the same
type. For non-sign-constrained weights, we use the
absolute values of weights. Then GloScore for each unit
is computed as,

GloScore = (w; — wy)/(w; + w,).

Final GloScore of the entire connection matrix is the

average GloScore of all PNs.

Inferring connection sparsity from experimental data
in mouse

Two previous publications used different approaches to
estimate the input degree, K, in mice. The first experiment
(Miyamichi et al., 2011) used retrograde anatomic tracing
to derive a convergence index of the number of
mitral/tufted cells (equivalent of PNs) over the number of
piriform neurons (equivalent of KCs), and found values
ranging from 3-20. The transfection efficiency of
retrograde labeling was estimated to be roughly 10%
(Reardon et al., 2016), so the input degree may vary from
30-200 M/T inputs per piriform neuron. The second
experiment (Davison & Ehlers, 2011) used optical
glutamate uncaging to activate defined points on the
olfactory bulb while recording piriform responses, and
found that most cells responded to >15 uncaging sites.
The authors estimate that 2-3 glomeruli are activated per
uncaging site, providing a lower bound of K=40 for input
degree.

Analysis of Synaptic Connectivity Data from the
Hemibrain Connectome

A compact connection matrix summary (v1.2 release) was
downloaded from https://www.janelia.org/project-
team/flyem/hemibrain. ORNs, uniglomerular, biglomerular
and multiglomerular PNs, and KCs and LH neurons were

20

queried according to the naming convention defined in
Scheffer et al. 2020. Thermosensory, hygrosensory, and
subesophageal zone PNs (VP and Z) were discarded.
Given that stronger synapses are formed by increasing
the number of synapses, not by larger synapses, as in
vertebrates, we use synapse count as a proxy for synaptic
strength (Scheffer et al., 2020). Only 2 types of ORNs
were present within the dataset, so ORN to PN
connectivity was discarded. The distributions of KC input
degree and PN to KC synaptic weights were previously
reported (Li et al., 2020) and were also extracted from the
connectivity of uniglomerular PNs onto KCs.
Multiglomerular PNs were excluded because KCs only
sample from 0.147 multiglomerular PNs on average.

Randomness
To determine whether the frequency of PN input onto KCs
is significantly above or below chance expectations, PN-
KC connections in the trained network were shuffled while
maintaining the number of connections each KC receives.
We generated the shuffled data by making a list of PNs
that contributed to each PN-KC connection. We then
randomly permuted this list and drew from it sequentially
to construct a new set of connections for each of the 2500
KCs, drawing as many random connections for each KC
as it receives in the trained network. This shuffling
eliminates any potential, non-random PN inputs onto
individual KCs, and is used to analyze whether KCs are
connected to any preferential pair of glomeruli (Figure S3).
To determine whether the distribution of PN inputs
onto KCs is binomial, the probability of a connection
between each PN with each KC is sampled independently
from a Bernoulli distribution with the overall PN-KC
connection probability, p, of a trained network.

Analysis of RNNs
In Figure 3, we analyzed a recurrent neural network, which
unlike traditional recurrent networks, is not running in time.
Instead we use it as a way to force a limited budget on the
total number of neurons, without specifying the exact
number of neurons to be used at each processing step.
The key analysis is to infer how many neurons are
assigned by the network to each processing step (the
same neuron may be used at multiple steps). For each
neuron, we computed its average activity at each
processing step in response to all odors shown the
network. If its average activity at a processing step
exceeds a certain threshold, we deem this neuron active
at this step. Note that by this definition, an “active neuron”
may not be active for each odor. All we ask is that it is
sufficiently active for some odors. We used the same
threshold of 0.2 across all processing steps, manually
chosen after inspecting the distribution of activity (Figure
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S7). We did not use a threshold of 0 because many
neurons are activated very weakly but above zero on
average. With positive connection weights and no
regularization, it is generally more difficult to have a
neuron be activated at 0 across all odors at a given
processing step.

Analyzing networks of different numbers of OR types
For Figure 5, we trained networks with different numbers
of OR types (N), ranging from 25 to 200. For simplicity, we
focused on the connections from the compression to the
expansion layer, while ignoring the connections from
ORNSs to the compression layer. Therefore, all networks
consist of N input neurons representing ORN activity,
which in turn project to M expansion layer neurons. For
each value of N, the number of expansion layer numbers
M is set as N?. For each number of OR, we trained
networks with different levels of learning rate 1e-3, 5e-4,
2e-4, 1e-4. We include in our summary plot (Figure 5) only
networks that contain a clear peak in the weight
distribution, using the criteria established above.

To obtain the maximum dimensionality curve in Figure
5, for each number of OR, we first computed the
representation dimensionality (Litwin-Kumar et al. 2017)
in response to the training odors when the third-layer input
degree is fixed at different values. Then we identified the
input degree corresponding to the maximum
dimensionality. Finally, we repeat this process for
networks with different numbers of ORs. Importantly, we
did not use feedforward inhibition that sets the overall
mean input to be zero. When mean-canceling feedforward
inhibition is used, the maximum dimensionality is achieved
at K = N/2. When introducing an additional constraint on
the total number of connections, the optimal K becomes
substantially lower, around 7 for N = 50. However, since
we do not constrain the total number of connections for

each network, we did not include feedforward inhibition in
Figure 5, leading to a K that is around 3 for N = 50.

Analysis of identity/valence two-task networks

For the two-task networks, we used all combinations of the
following hyperparameter values: PN normalization (None
or Batch Normalization), learning rate (1e-3, 5e-4, 2e-4,
1e-4), KC dropout rate (0, 0.25, 0.5), resulting in 24
networks trained.

To assess whether the expansion layer neurons break
into multiple types when analyzing the two-task networks,
we represent each third-layer (expansion layer) neuron
with three variables: (1) its input degree (the number of
above-threshold connections from the previous layer), (2)
the norm of its connection weights to the identity
classification head, (2) the connection weight norm to the
valence classification head. Since these variables are of
different scales, we z-scored them (mean subtract then
divide by standard deviation). We then obtained a 3-
dimensional depiction of each third layer neuron.

Next we did k-means clustering on the normalized data
with k (the pre-determined number of clusters) ranging
from 2 to 10. We quantified the quality of each clustering
result with its silhouette score (the higher the better),
which intuitively compares the inter-cluster distance with
the intra-cluster distance. We found that the optimal
number of clusters is generally 2 or 3. We analyzed all
networks with 2 optimal clusters. We named the cluster of
neurons with stronger connections to the identity readout
head as cluster 1, the other as cluster 2.

In Figure 6¢, e, we computed the density of neurons in
these data spaces separately for each cluster, before
adding the densities together. This visualization allows for
a clearer depiction of the density peak of each cluster.

When lesioning either cluster 1 or 2 in Figure 6g, h, we
set the outbound weights from the lesioned neurons to 0,
equivalent to setting their activity to 0.
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KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited Data

Hemibrain Connectome compact
connection matrix v1.2

Scheffer et al., 2020

https://www.janelia.org/project-team/flyem/hemibrain

Software and Algorithms

Python Python Software https://www.python.org/
Foundation

Tensorflow Abadi et al., 2016 https://www.tensorflow.org/

Pytorch Paszke et al., 2019 https://pytorch.org/

SciPy Virtanen et al., 2020 https://www.scipy.org/

Numpy Oliphant, 2006 https://www.numpy.org/

Scikit-learn Pedregosa et al., 2011 https://scikit-learn.org/stable/

Custom code for generating
datasets, training networks,
analyzing results, and plotting
figures

This paper

https://github.com/gyyang/olfaction evolution
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Figure S1
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Figure S1 | Robust formation of glomeruli and sparse connectivity, Related to Figure 1

a. Accuracy (top), GloScore (middle), and KC input degree (K, bottom) as a function of hyperparameters.
From left to right, learning rate, noise level, PN normalization, KC dropout rate, and initial PN-KC weights.
K values are not shown for networks where the PN-KC connectivity does not contain a single peak well
separated from the pruning threshold (see Methods). When a single peak can be inferred (blue dots),
GloScore remains high, and KC input degree remains around 5 to 10.

b. Accuracy (top), GloScore (middle), and KC input degree (K, bottom) during training. For each plot, one
hyperparameter is varied, from left or right: learning rate, noise level, and KC dropout rate. Networks of
different hyperparameter values converge to the same GloScore and KC input degree during training, as
long as PN-KC connectivity is well separated.

c. Distribution of PN-KC connection weights for networks of different hyperparameter values. Left to right:
Learning rate, PN normalization, noise level, and KC dropout rate. Having no PN normalization leads to
PN-KC weights poorly separated from the threshold, explaining why in (a) the K value is not shown for the
network with no PN normalization.

d, e. The effect of pruning weak PN-KC weights. Pruning weak PN-KC weights does not affect
performance (d), but it allows a cleanly separated distribution of PN-KC weights from the threshold (e).
The lack of a clean separation without pruning (e) leads to unreliable estimation of the PN-KC input
degree (d).
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Figure S2
Influence of relabeling datasets
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Figure S2 | Effect of having multiple odors associated with each class, Related to Figure 1

a, Schematics of two datasets. (Top) lllustrating a dataset where only one odor prototype (triangle) is
associated with each class. Each class then corresponds to a contiguous area in the input activity space,
and the dataset is linearly separable. (Bottom) lllustrating a dataset where each class is associated with
two odor prototypes residing in segregated locations in OR activity space. b, From top to bottom,
accuracy, GloScore, KC input degree, and KC activity sparsity (percentage of KCs active on average) for
networks trained on datasets with different numbers of odor prototypes per class. Having more odor
prototypes per class promotes KC activity sparsity, while keeping GloScore high and KC input degree
almost constant. Having KC dropout has a similar impact. ¢, d, Comparing accuracy between the full
ORN-PN-KC-Output network (c) and a simple ORN-Output network (d). The ORN-Output network has
classification readout directly from the ORN input layer. This shallow network performs well on the dataset
with 1 odor prototype per class (linearly separable), but much worse than the full network on more
complex datasets.
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Figure S3

Randomness analysis
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Figure S3 | Random sampling of PN inputs from KCs and the impact of KC recurrent inhibition,
Related to Figure 1

a, Average connection probability from each individual PN (n=50) to all 2500 KCs. KCs sample uniformly
from all PNs.

b, Distribution of number of KCs that receive each of the 1225 (=50x49/2) unique pairs of glomeruli. Data
derived from training is shown in blue, and shuffled connections are in orange. Shuffling maintains the
frequency of glomerular connections and the distribution of KC input degrees, but eliminates non-random
patterns of inputs onto individual KCs. KCs are not preferentially connected to any specific pair of PNs.

c, Distribution of KC input degrees for all KCs (n=2500). Data derived from training is in blue, and a
binomial distribution using the average PN-KC connectivity derived from training data is shown in orange.
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Figure S4

Correlated dataset
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Figure S4 | The impact of input correlation and additional controls, Related to Figure 1

a, lllustration of a dataset with a 0.8 correlation coefficient between the activities of all OR pairs. b, (Top
to bottom) Accuracy, GloScore, and KC input degree for networks trained on datasets with different OR
correlations. OR correlation level has no clear impact on GloScore and KC input degree. ¢, Task
accuracy across several networks in which weights at specified layers are fixed at their random initial
values. Fixing connectivity to be random in either one or both layers reduces task performance compared
to standard training. In all four scenarios, KC-output weights are trained. Neither: ORN-PN and PN-KC
weights are fixed. ORN2PN: ORN-PN weights are trained and PN-KC weights are fixed. PN2KC: ORN-
PN weights are fixed and PN-KC weights are trained. Both: ORN-PN and PN-KC weights are trained. d,
Task accuracy across networks where the number of ORs received by each PN is fixed. In other words,
ORN-PN connections are fixed to be multi-glomerular before training. PN-to-KC and KC-output weights
are trained, and performance was assessed after training. Classification performance degrades as PNs
receive input from more glomeruli. e, Comparing networks with or without PN-KC stereotypy.
Performance was significantly worse when PN connections were correlated with one another. In the
sparse condition, PN-KC connections were fixed to be sparse (K=7) and were randomly sampled from 50
PNs. In the sparse and correlated condition, the 50 PNs are subdivided into 3 evenly sized groups (17,
17, 16), and each KC only samples from PNs within a group.
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Figure S5

Varying key network hyperparameters
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Figure S5 | Impact of key network hyperparameters, Related to Figure 2

a, b, ORN-PN connectivity (a) and PN-KC connectivity (b) in a network without non-negative ORN-PN
connections. ¢, d, Training decorrelates ORN-PN connections in networks with (¢) and without (d) non-
negative ORN-PN connections. Each PN unit receives connections from 500 ORNSs, their weights
summarized by a 500-dimensional vector. For two PN units, we compute the cosine similarity (cosine of
angle) between each of their input weight vectors. The distribution of cosine similarities between all pairs
of PN units in trained networks (blue), and in random networks (orange). If ORN-PN connections are non-
negative, the random weights are drawn from a uniform distribution between 0 and 1, otherwise they are
drawn from a random Gaussian distribution. These results show that training reduces the cosine similarity
between input weights to pairs of PNs, decorrelating PNs.

e, f, Accuracy, GloScore, KC input degree for networks with different numbers of PNs (e) and KCs (f),
and for different levels of KC dropout rate.
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Figure S6
Varying key network hyperparameters
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Figure S6 | Impact of varying the number of neurons each layer and concentration datasets,
Related to Figure 2

a, ORN-PN connectivity (left) and PN-KC connectivity (right) for a network with 30 PNs. b, Similar to (a),
but for a network with 200 PNs. In neither case does ORN-PN connections form clean glomeruli.

c-f, Analysis of a network with 200 PNs. ¢, The distribution of GloScore computed for each PN unit. A
proportion of PNs have close to 1 GloScore. The threshold (dotted grey line) separates UniGlo units and
MultiGlo units. d, UniGlo PN units tend to make stronger connections to KCs. e, Lesioning UniGlo PN
units has a far stronger impact on classification accuracy. f, Connections from ORNs to PN with highest
GloScore (left) and lowest GloScore (right). g-h, Similar to (a, b), but for networks with 50 and 10,000
KCs. i, Accuracy and KC input degree K for networks using different PN normalization and trained on
different concentration datasets (see Figure 2d-e). Only PN-KC connections were trained in these
networks. j, The distribution of PN-to-KC weights for networks using divisive normalization.
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Figure S7

Recurrent Neural Network

RNN unrolled 3 steps
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Figure S7 | Additional analyses of the recurrent neural network model, Related to Figure 3

a-d. Analysis of a RNN unrolled for 3 steps. (a) Distribution of neuron’s mean activity level, computed at
different processing steps. Left to right, step 1 to 3. For each neuron, we compute the average activity
across all odors. Each dashed line corresponds to the threshold used to define active neurons. The same
value of 0.2 used for all distributions. (b,c) Distribution of step 1 to step 2 (‘PN-KC’) connection weights
after training, in linear space (b) and log space (c). No weight pruning is used for RNNs. In log space, the
distribution is fit by a bi-modal Gaussian distribution. Strong PN-KC weights refer to the connections
above the threshold separating these two modes. d, The distribution of strong “PN inputs to KC”. Here PN
neurons refer to neurons active at step 1, while KC neurons refer to those active at step 2.

e-h, Similar to (a-d), but for networks unrolled for 4 steps instead of 3. Classification readout occurs at
step 4. Here “PN-KC weights” refers to the effective step 2-4 connectivity, which is the matrix product of
the step 2-3 and step 3-4 connectivity.
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Figure S8
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Figure S8 | Formation of sparse connectivity during meta-learning, Related to Figure 4

a, Accuracy and KC input degree for networks meta-trained with different hyperparameter values. From
left to right, meta-learning rate, whether weak PN-KC weights are pruned, whether to include a trainable
ORN-PN layer, KC dropout rate, number of classes within each meta-learning episode (see Methods),
number of samples per class within each episode. By default, the PN layer forms exact glomeruli (each
PN unit receives connections only from the same type of ORNs), and the ORN-PN connections are fixed.
Although PN-KC connectivity remains sparse, KC input degree is moderately affected by hyperparameter
choices. Convention is the same as Figure S1.

b, Accuracy and KC input degree during meta-training for networks with different hyperparameter values.
c, Distribution of PN-KC weights after meta-training for different networks.

d, Accuracy is around chance level (0.5) when PN-KC weights are fixed and not being meta-trained.
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Figure S9
Varying Number of ORs
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Figure S9 | Impact of changing the number of olfactory receptors (ORs), Related to Figure 5

a, Accuracy and KC input degree for networks trained with different learning rates. From top to bottom,
networks with different number of ORs (25, 100, 150). ORN-PN connectivity is fixed and PNs form exact
glomeruli. Here we use PN to refer to the second compression layer in the network, and KC as the third
expansion layer.

b, Accuracy and KC input degree across training.

¢, The distributions of PN-KC weights for different learning rate values.
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Figure S10 | Additional analyses for the emergence of innate and learned pathways, Related to
Figure 6

a, b, Connectivity of an example network. ORN-PN connectivity (a) and PN-Third layer connectivity (b).
(b) is the same as Figure 3d.

¢, Silhouette score as a function of the number of clusters used for K-means clustering algorithm.
Silhouette score rates how well the clusters segregate by comparing intra-cluster distance with inter-
cluster distance. Across networks with different hyperparameter combinations (see Methods), Silhouette
score peaks at number of cluster equals to 2 or, less commonly, 3.

d, Across models, cluster 1 has around 2,000 neurons while cluster 2 has less than 200 neurons.
Clusters are sorted according to their average connection strength to the valence classification head. So
cluster 1 neurons has on average weaker connections to the valence output than cluster 2 neurons. Only
networks in which the Silhouette score peaks at two clusters were analyzed (c).

e, f, Accuracy, GloScore, KC input degree during training for different values of learning rates (e) and KC
dropout rate (f).

g-i, Results on a dataset with no specialized odor receptors. g, Innate odors no longer activate
specialized receptors strongly. Compare with Figure 6a. h, i, Similar to Figure 6¢, e, but for a network
trained on the dataset with no specialized receptors. No clustering emerges, despite forcing the number
of clusters to be 2 in the clustering algorithm.
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