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Introduction 

The anatomic organization and functional logic of the 

olfactory systems of flies and mice are remarkably similar 

despite the 500 million years of evolution separating the 

two organisms. Flies and mice have evolved odorant 

receptors from different gene families and employ distinct 

developmental pathways to construct a similar neural 

architecture for olfaction, suggesting that the similarity 

between the two olfactory systems emerged by 

convergent evolution. The sensory neurons in each 

organism express only one of multiple odor receptors. 

This singularity is maintained with the convergence of like 

neurons to form glomeruli so that mixing of olfactory 

information occurs only later in the processing pathway. 

Convergent evolution of the olfactory system may reflect 

the independent acquisition of an efficient solution to the 

problems of olfactory perception. We asked whether 

networks constructed by machine learning to perform 

olfactory tasks share the organizational principles of 

biological olfactory systems. 

Artificial neural networks (ANNs) (Lecun, Bengio, & 

Hinton, 2015) capable of performing complex tasks 

provide a novel approach to modeling neural circuits 

(Mante, Sussillo, Shenoy, & Newsome, 2013; Yamins & 

DiCarlo, 2016). Neural activity patterns from higher visual 

areas of monkeys viewing natural images resemble 

activity patterns from neural networks trained to classify 

large numbers of visual images (Yamins & DiCarlo, 2016). 

These results reveal a correspondence between the 

artificial and biological visually driven responses. However, 

it has been difficult to determine to what extent the 

connectivity of ANNs recapitulates the connectivity of the 

visual brain. Multiple circuit architectures can be 

constructed by machine-learning methods to achieve 

similar task performance, and details of connectivity that 

might resolve this ambiguity remain unknown for most 

mammalian neural circuits. In contrast, the precise 

knowledge of the connectivity of the fly olfactory circuit 

affords a unique opportunity to determine whether ANNs 

and biological circuits converge to the same neural 

architecture for solving olfactory tasks. In essence, we 

have used machine learning to 'replay' evolution, to 

explore the rationale for the evolutionary convergence of 

biological olfactory circuits. 

Evolving the olfactory system  

with machine learning 
 

Peter Y. Wang1,4, Yi Sun3,5, Richard Axel1, 2, L.F. Abbott1 and Guangyu Robert Yang1, 6, 7* 
1 The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA 
2 Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA 
3 Department of Mathematics, Columbia University, New York, NY 10027, USA 
4 Present address: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA 
5 Present address: Department of Statistics, University of Chicago, Chicago, IL 60637, USA 
6 Present address: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 
7 Lead Contact 

 

*Correspondence: yanggr@mit.edu 

https://doi.org/10.1016/j.neuron.2021.09.010 

 

 

Summary 

 

The convergent evolution of the fly and mouse olfactory system led us to ask whether the anatomic connectivity and 

functional logic of olfactory circuits would evolve in artificial neural networks trained to perform olfactory tasks. Artificial 

networks trained to classify odor identity recapitulate the connectivity inherent in the olfactory system. Input units are 

driven by a single receptor type, and units driven by the same receptor converge to form a glomerulus. Glomeruli exhibit 

sparse, unstructured connectivity to a larger, expansion layer of Kenyon cells. When trained to both classify odor identity 

and to impart innate valence onto odors, the network develops independent pathways for identity and valence 

classification. Thus, the defining features of fly and mouse olfactory systems also evolved in artificial neural networks 

trained to perform olfactory tasks. This implies that convergent evolution reflects an underlying logic rather than shared 

developmental principles. 
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In fruit flies, olfactory perception is initiated by the 

binding of odorants to olfactory receptors on the surface 

of sensory neurons on the antennae (Figure 1a). 

Individual olfactory receptor neurons (ORNs) express one 

of 50 different olfactory receptors (ORs), and all receptor 

neurons that express the same receptor converge onto an 

anatomically invariant locus, a glomerulus within the 

antennal lobe of the fly brain (Vosshall, Amrein, Morozov, 

Rzhetsky, & Axel, 1999; Vosshall, Wong, & Axel, 2000a). 

Most projection neurons (PNs) innervate a single 

glomerulus and send axons to neurons in the lateral horn 

of the protocerebrum (LHNs) and to Kenyon cells (KCs) in 

the mushroom body (MB) (Jefferis et al., 2007; Marin, 

Jefferis, Komiyama, Zhu, & Luo, 2002; Wong, Wang, & 

Axel, 2002). The invariant circuitry of the lateral horn 

mediates innate behaviors (Datta et al., 2008; Jefferis et 

al., 2007; Tanaka, Awasaki, Shimada, & Ito, 2004), 

whereas the MB translates olfactory sensory information 

into associative memories and learned behaviors (De 

Belle & Heisenberg, 1994; Dubnau, Grady, Kitamoto, & 

Tully, 2001; Heisenberg, Borst, Wagner, & Byers, 1985; 

McGuire, Le, & Davis, 2001). 

Individual Kenyon cells, the intrinsic neurons of the MB, 

receive unstructured input from ~4-10 PNs (Caron, Ruta, 

Abbott, & Axel, 2013; Li et al., 2020; Zheng et al., 2018) 

and densely innervate MBONs, the extrinsic output 

neurons of the mushroom body (Aso et al., 2014b; Caron 

et al., 2013; Chia & Scott, 2019; Hattori et al., 2017; Li et 

al., 2020; Tanaka et al., 2004; Zheng et al., 2018). 

Synaptic plasticity at the KC-MBON synapse results in 

olfactory conditioning and mediates learned behaviors 

(Cohn, Morantte, & Ruta, 2015; Felsenberg et al., 2018; 

Handler et al., 2019; Hige, Aso, Rubin, & Turner, 2015).  

The anatomic organization and functional logic of the 

mouse olfactory system is remarkably similar to the fly 

olfactory circuit. Sensory neurons in the mouse express 

only 1 of ~1000 odorant receptors (Buck & Axel, 1991; 

Godfrey, Malnic, & Buck, 2004; Zhang & Firestein, 2002). 

Neurons expressing a given receptor converge onto 

topographically fixed glomeruli in the olfactory bulb, the 

vertebrate equivalent of the antennal lobe (Mombaerts et 

al., 1996; Ressler, Sullivan, & Buck, 1993, 1994; Vassar 

et al., 1994). The mouse projection neurons, mitral and 

tufted cells, project to primary olfactory cortex where they 

synapse onto ~1 million piriform neurons (Price & Powell, 

1970). Piriform neurons receive roughly 30-100 inputs 

from an apparently random collection of glomeruli 

(Davison & Ehlers, 2011; Miyamichi et al., 2011).  The 

hemi-brain connectome of the fly brain (Scheffer et al., 

2020) reports numerous axonal-axonal synapses 

between Kenyon cells in the mushroom body, but these 

are not believed to be functional (Li et al., 2020). In 

contrast, pyramidal cells of the piriform cortex make 

functional recurrent connections with other excitatory 

neurons (Franks et al., 2011). These recurrent 

connections are important for concentration-invariant odor 

coding (Bolding & Franks, 2018; Stern, Bolding, Abbott, & 

Franks, 2018) and may shape odor tuning during passive 

odor experience and learning (Pashkovski et al., 2020; 

Schoonover, Ohashi, Axel, & Fink, 2021). 

The convergent evolution of the fly and mouse 

olfactory systems led us to ask whether the anatomic 

connectivity and functional logic of olfactory circuits would 

evolve in artificial neural networks constructed to perform 

olfactory tasks. We used stochastic gradient descent 

(Bottou, 2010; Kingma & Ba, 2014; Lecun et al., 2015; 

Rumelhart, Hinton, & Williams, 1986) to construct artificial 

neural networks that classify odors. In trained networks, 

we found singularity of receptor expression, convergence 

to form glomeruli, and divergence to generate sparse 

unstructured connectivity that recapitulate the circuit 

organization in flies and mice. We found that a three-layer 

input-convergence-expansion structure is both necessary 

and sufficient for the odor classification tasks we have 

considered. We also trained neural networks to classify 

both odor class and odor valence. After training, an initially 

homogeneous population of neurons segregated into two 

populations with distinct input and output connections, 

resembling learned and innate pathways. These studies 

provide a logic for the functional connectivity of the 

olfactory systems in evolutionarily distant organisms. 

 

Results 

Artificial neural networks converge to biological 

structures  

We designed a family of odor classification tasks that 

mimic the ability of animals to distinguish between odor 

classes and to generalize within classes. In the model, 

each odor elicits a unique pattern of activation across the 

ORs. Odors are assigned to 100 classes that are defined 

by odor prototypes. Specifically, each odor belongs to the 

class of its nearest prototype, measured by the Euclidean 

distance between receptor activations (Figure 1b). Using 

only a single prototype to define each class results in a 

relatively simple olfactory task that can be solved without 

using the layers of olfactory processing that we wish to 

explore (Figure S2a-d). Thus, we consider classes that 

are defined by multiple prototypes, predominantly using 

two prototypes per class. This means that an odor class 

corresponds to an association involving multiple different 

types of odors.  We used a training set of a million 

randomly sampled odors to construct the networks and 

assessed generalization performance with a test set of 

8192 = 213 additional odors. 

We first modeled the olfactory pathway as a 

feedforward network with layers representing 50 ORs, 500  
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Fig. 1 | Artificial neural network evolves the connectivity of the fly olfactory system. 

a. The fly olfactory system. b. Illustration of the task. Every odor (a million in total, 100 shown) is a point in the space of ORN activity 

(50 dimensions, 2 dimensions shown) and is classified based on the closest prototype odor (triangles, 100 in total, 4 shown). Each 

class is defined by two prototype odors. c. Architecture of the artificial neural network. The expression profile of ORs in every ORN as 

well as all other connection weights are trained. d. OR-ORN expression profile after training. ORNs are sorted by the strongest 

projecting OR. e. ORN-PN mapping after training. Each PN type is sorted by the strongest projecting ORN. f. Effective connectivity 

from OR to PN type, produced by multiplying the matrices in (d) and (e). g. PN-KC connectivity after training, only showing 20 KCs 

(2500 total). h. Distribution of PN-KC connection weights after training showing the split into strong and weak groups. Connections 

weaker than a set threshold (dotted gray line) are pruned to zero (left peak). i. Distribution of KC input degree after training. Text near 

peak shows mean and standard deviation. ! is the average number of PN inputs per KC. j, Distribution of PN-KC synapse counts 

from the fly hemibrain connectome (Li et al., 2020). k, Distribution of KC input degree from the connectome data. Left peak corresponds 

to connections with one synapse. l. Average cosine similarity between the weights of all pairs of KCs during training. At every epoch, 

the cosine similarity was also computed after shuffling the PN-KC connectivity matrix. This shuffling preserves the number of 

connections each KC receives but eliminates any potential structured PN inputs onto individual KCs. 

m,n. Investigating the impact of a recurrent inhibitory neuron in the KC layer. m, Schematics of a network with a recurrent inhibitory 

neuron at the KC layer, modeling the Anterior Paired Lateral (APL) neuron. The recurrent inhibitory neuron receives uniform excitation 

from all KC neurons, and inhibits all KC neurons uniformly in return.  n. (Top to bottom) Accuracy, GloScore, and KC input degree (!) 

for networks with different strengths of KC recurrent inhibition. Stronger KC recurrent inhibition moderately increases KC input degree 

while having no clear impact on accuracy and GloScore. ! value is not shown for the network where KC input degree cannot be 

reliably inferred (Methods). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.04.15.439917doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439917
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

4 

ORNs, 50 PN types, and 2,500 KCs (Figure 1c, Methods). 

In the following sections, we will consider more realistic 

network architectures with local interneurons. The model 

also included a set of 100 output units that allow us to read 

out the class assigned by the model to a given odor 

(instead of directly modeling MBONs). The strengths of 

model connections between the OR and ORN layers 

represent the levels of expression of the 50 different 

receptor types in each ORN. ORN-to-PN and PN-to-KC 

connections represent excitatory synapses between these 

cell types and are therefore constrained to be non-

negative. We chose to represent the ~150 PNs in the 

antennal lobe as 50 PN types because the ~3 homotypical 

8sibling9 PNs that converge onto the same glomerulus 

show almost identical activity patterns (Kazama & Wilson, 

2009; Masuda-Nakagawa, Tanaka, & O9Kane, 2005). We 

hereafter refer to PN types as PNs. Initially, all 

connections were all-to-all and random (Figure 1c), 

meaning that every ORN expressed every OR at some 

level and connected to every PN. Similarly, each PN 

initially connected to all the KCs. Neural responses were 

rectified linear functions of the total synaptic input, and 

batch normalization, a process resembling neuronal 

response adaptation, was applied to PN activity (Methods). 

The network was trained by altering its connection weights 

and bias currents with the goal of minimizing classification 

loss. This occurs when there is high activity only in the 

readout unit representing the correct class associated 

which each odor. This process can be thought of as 

evolving a circuit architecture in silico.  

Following training of the network, classification was 

~75% accurate (chance is ~1%). The initial random, all-to-

all connectivity changed dramatically during the training 

process. After training, all but one of the OR-to-ORN 

coupling strengths for each OR are close to zero (Figure 

1d). This corresponds to the expression of a single OR in 

each ORN. Similarly, all but ~10 of the ORN connections 

to each PN approach zero (Figure 1e) and, for each PN, 

all of these connections arise from ORNs expressing the 

same OR type (Figure 1e). This recapitulates the 

convergence of like ORNs onto a single glomerulus and 

the innervation of single glomeruli by individual PNs 

(Mombaerts et al., 1996; Vosshall, Wong, & Axel, 2000b). 

The extent that PNs receive input from a single OR type 

was quantified by GloScore, which, for each PN, is the 

difference in magnitude between the strongest two 

connections it receives from the OR types divided by their 

sum (Methods). A GloScore of 1 indicates that each PN 

receives all its inputs from a single OR type, recapitulating 

fruit fly connectivity. During training of the network, the 

GloScore of ORN-PN connectivity started near 0 and 

quickly approached values close to 1 (Figure S1b). Thus, 

the model recapitulates both the singularity of OR 

expression in the ORNs and the existence of glomeruli in 

which ORNs expressing the same OR converge and 

connect to a glomerulus innervated by a single PN type. 

The model also recapitulated distinctive features of 

PN-to-KC connectivity. Each KC initially received 

connections from all 50 PNs but, during training, 

connections from PNs to KCs became sparser (Figure 1g, 

S1b). To quantify the number of PN inputs that each KC 

receives, weak PN-to-KC connections were pruned to 

zero during training (Figure 1h, S1d-e). Results are 

insensitive to the precise value of the pruning threshold, 

and pruning did not reduce classification performance 

(Figure S1d). Furthermore, we found that the average 

number of PNs per KCs, !, plateaued during training, with 

a sparse !~3-7 PN inputs for each KC (Figure 1i, S1b). 

This closely matches the value (K ~ 6) derived from the 

hemibrain connectome of the adult fruit fly (Figure 1j,k, Li 

et al., 2020). Importantly, this sparse connectivity can also 

be obtained without pruning (Figure S1d, Methods). In 

some cases, no distinct gap separated weak from strong 

synapses, making an estimate of connection sparsity 

ambiguous; we identify these instances when they occur 

and exclude them from further analysis (Figure S1c). 

The sparsity and lack of structure in the PN-to-KC 

connections of the model recapitulate the properties of 

these connections in the fly (Caron et al., 2013; Li et al., 

2020; Zheng et al., 2018). The sparse KC input had no 

discernable structure (Figure 1l; Figure S3); the average 

correlation between the input connections of all pairs of 

KCs is similar to the correlations obtained by randomly 

shuffled connectivity at every training epoch (Figure 1l). 

Thus, from ORs to KCs, the ANNs we have trained to 

classify odors exhibit connectivity that mirrors the layered 

circuitry of the fly olfactory system, with individual ORs 

expressing only 1 of 50 receptors, similar ORNs 

converging onto single glomeruli, individual PNs receiving 

input from only a single glomerulus, and KCs receiving 

sparse and unstructured connections from PNs (Video S1). 

These results were invariant to model hyper-parameters 

such as training rate and input noise (Figure S1). 

Moreover, they were also independent of non-zero activity 

correlations between different ORs (Figure S4a, b). 

Uniglomerular PNs and sparse, random PN-to-KC 

connectivity are necessary for high accuracy (Figure S4c). 

Forcing each PN to receive inputs from multiple ORs 

(Figure S4d) or introducing stereotypy in PN-to-KC 

connections (Figure S4e) both substantially reduces 

accuracy. In all subsequent modelling experiments, we did 

not include the OR-to-ORN connectivity; instead, every 

ORN was constructed to express a single OR. 

KCs in the fly are inhibited largely through feedback 

from a non-spiking interneuron, APL (Aso et al., 2014a; 

Lin, Bygrave, De Calignon, Lee, & Miesenböck, 2014; 
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Tanaka, Tanimoto, & Ito, 2008). We modeled the APL 

assuming that it receives excitatory input from all KCs and 

iteratively provides subtractive feedback inhibition onto 

every KC (Figure 1m). Feedback inhibition did not strongly 

influence the number of PN inputs per KC, the formation 

of glomeruli, or task performance (Figure 1n).  

Fig. 2 | Dependence of results on biological features 

(a) (From top to bottom) Accuracy, GloScore, and KC input degree as a function of training for networks with and 

without the non-negativity constraint for ORN-PN connections. (b,c) Summary of accuracy, GloScore and KC input 

degree for trained networks with varying numbers of KCs (b), and varying numbers of PNs (c). When the number of PNs 

is high, the KC input degree cannot be reliably inferred. (d) Schematics of two concentration-invariant tasks. The odor 

prototypes (triangles) lie on the unit sphere, making classification boundaries radiate outwards from the origin. The class 

that each odor belongs to therefore depends on its normalized activity and not on its concentration (i.e., magnitude of OR 

activity), unlike in the standard task (Figure 1b). (Left) A dataset where each OR9s activity is uniformly distributed across 

odors. (Right) A dataset where weak and strong odors are more common. The proportion of odors with extreme 

concentration values is proportional to the <spread=, a parameter between 0 and 1 (see Methods). (e) Biological 

implementations of activity normalization (divisive normalization) rescues classification performance in a concentration-

invariant classification task when odor concentration is highly variable. In contrast, a normalization method widely used 

in machine learning, Batch Normalization (Ioffe & Szegedy, 2015), does not improve performance. 
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Dependence of results on model features 

We next investigated how our results depend on key 

biological features in the models. The most critical 

element for the results we have reported is the restriction 

to non-negative OR-ORN, ORN-to-PN and PN-to-KC 

connections. Convergence of ORNs expressing the same 

OR onto PNs does not occur if connections are not sign-

constrained. Gloscores drop if ORN-PN connections are 

not sign-constrained, although classification accuracy is 

maintained (Figure 2a). In this case, PNs receive a dense 

array of inhibitory and excitatory connections from ORN 

inputs, with the ORN connection patterns received by PNs 

largely uncorrelated (Figure S5a-d).   

To explore the effect of varying cell numbers, we first 

trained networks with different numbers of KCs, with 

ORNs and PNs fixed at 500 and 50, respectively. As the 

number of KCs was decreased, PNs sampled from 

multiple ORs, decreasing the GloScore and classification 

performance (Figure 2b, Figure S5f, S6g-h). Thus, a large 

expansion layer of KCs is necessary for high classification 

performance but, with reduced numbers of KCs, some 

compensatory mixing occurs at the PN level. 

We also varied the number of PNs while keeping the 

numbers of ORNs and KCs fixed at 500 and 2,500, 

respectively. When the number of PNs is less than the 

number of unique OR types (50), the PN layer acts as 

bottleneck and mixing occurs to ensure that all ORs are 

represented (Figure 2c, Figure S5e, S6a), but 

performance suffers. When the number of PNs is greater 

than 50, we observed some PN mixing of ORN input, 

although this did not improve classification accuracy, 

which saturates at 50 PNs (Figure 2c, Figure S5e, S6b). 

A closer examination revealed that PNs segregate into 

two distinct populations, a population of uni-glomerular 

PNs receiving a single type of OR and multi-glomerular 

PNs receiving multiple types of ORs (Figure S6c-f). 

Moreover, the connection strengths from uni-glomerular 

PNs to KCs were strong and crucial for classification 

performance. In contrast, connection strengths from multi-

glomerular PNs to KCs were weak, and silencing them 

minimally impaired classification performance (Figure 

S6d-e). 

Why does a PN layer exist if glomerular connectivity 

simply copies ORN activity forward to the PNs? 

Experimental work has shown that the PN layer 

normalizes odor-evoked responses (Olsen, Bhandawat, & 

Wilson, 2010), which is likely to be important for 

classification of odors across a range of concentrations. 

We trained a feedforward network (Figure 1c) to perform 

concentration-invariant classification with and without PN 

normalization while systematically varying the range of 

odor concentrations in the task dataset (Figure 2d; 

Methods).  We normalized PN activity using a divisive 

normalization model inspired by the experimental studies 

(Luo, Axel, & Abbott, 2010; Olsen et al., 2010). As the 

range of odor concentrations increased, divisive 

normalization allowed the network to perform 

concentration-invariant classification (Figure 2e). ! 

remains sparse when divisive normalization is introduced 

(Figure S6i, j), regardless of the range of odor 

concentrations.  

 

Recurrent neural networks converge to biological 

structures 

By varying the numbers of PNs and KCs, we found that 

performance plateaus when the number of PNs (50) 

matches the number of ORs, and marginal performance 

gains were observed when the number of KCs was 

increased past 2500. However, in the models we have 

considered thus far, the number of neurons in each layer 

and the number of layers are fixed. We next asked what 

structure emerges from a neural network that is not only 

capable of modifying connection strengths, but also 

capable of allocating the number of neurons per layer. 

To remove a priori constraints on the numbers of 

neurons at each layer, we constructed a recurrent neural 

network model (RNN) in which 'layers' are represented by 

network processing steps (Figure 3a). The RNN receives 

odor inputs at the first time step and produces 

classification outputs after several steps of processing. 

The training algorithm determines how many neurons are 

active at each processing step, allowing us to infer a 

particular layered network architecture. This 

unconventional use of an RNN allowed us to study how 

finite resources 3 neurons and their connections 3 should 

be distributed across layers, while training only a single 

network.   

We first considered an RNN in which odor classes 

were read out after three processing steps (Figure 3a). 

The RNN model contained 2,500 neurons and was 

initialized with random, all-to-all, non-negative connectivity 

between all neurons. At the first processing step, 500 of 

the 2,500 recurrently connected neurons were provided 

with OR inputs, and the remainder of the neurons were 

silent. Thus, this first step of processing represents the 

ORN layer. After training, this RNN reaches 67% accuracy, 

slightly lower than that of the feedforward network.  

To test whether the RNN self-organized into a 

compression-expansion structure like the feedforward 

network, we quantified how many neurons were active at 

each processing step. Because we did not regularize for 

activity in the RNN units, a significant number of neurons 

have non-zero but weak activations to odors (Figure S7a). 

These levels of activity were bimodally separate from units 

possessing high levels of activity and were counted as 

inactive (Figure S7a, Methods). Although the RNN could  
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Fig. 3 | Recurrent neural networks converge to 

biological structures. 

a. Schematic of a recurrent neural network using 

recurrent connections (WREC) (left), and the equivalent 

<unrolled= network diagram (right).  

b, c, Network connectivity between neurons whose 

activity, when averaged across all odors, exceeds a 

threshold at different steps. b, Connectivity from 

neurons active at step 1 to neurons active at step 2. 

Connections are sorted. c, Connectivity from neurons 

active at step 2 to neurons active at step 3, only 

showing the first 20 active neurons at step 3.  

d. Number of active neurons at each step of 

computation. At step 1, only the first 500 units in the 

recurrent network are activated by odors. Classification 

performance is assessed after step 3.   

e-i, Similar to (a-d), but for networks unrolled for 4 

steps instead of 3. Classification readout occurs at step 

4. Effective step 2-4 connectivity is the matrix product 

of the step 2-3 (g) and step 3-4 connectivity (not 

shown). 
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have used all 2,500 neurons at each processing step, 

odor-evoked activity from the 500 neurons initialized with 

ORN activations propagated strongly to only ~50 neurons 

after the second processing step (Figure 3d). This resulted 

from the convergence of ORNs onto these PN-like 

neurons (Figure 3b). In contrast, nearly all neurons of the 

RNN at the third processing step had average activities 

(across odors) above the threshold (Figure 3c). These 

neurons were driven by sparse, unstructured connections 

from ~5-10 PN-like neurons to the remaining ~2,500 RNN 

neurons (Figure 3c, Figure S7b-d). Thus, the RNN 

recapitulated known features of the olfactory circuitry even 

when the numbers of neurons available at each level was 

unconstrained. 

We next examined the consequence of allowing the 

RNN to perform four processing steps, which is equivalent 

to forcing an additional feedforward layer prior to 

classification of odors (Figure 3e). Interestingly, this 

network did not use the extra layer to perform additional 

computations. Rather, it simply copied the activity of the 

50-55 PN-like neurons at the second processing step to 

another similar set of ~100 neurons at the third processing 

step, only activating the bulk of the 2,500 neurons at the 

fourth processing step (Figure 3f-i, Figure S7e-h). This 

result shows that the three-layer olfactory system 

architecture (input, compression, expansion) is sufficient 

for the olfactory tasks we considered. 

 

Network models with ongoing plasticity 

We have shown thus far that biological connectivity 

emerges from both feedforward and recurrent network 

models when trained on an odor classification task with 

fixed odor-class mappings. However, the fly olfactory 

circuit must accommodate the learning of novel odor 

associations for the fly to adapt successfully to new 

environments. Evidence strongly suggests that plasticity 

in synaptic connections from KCs to MBONs underlies 

olfactory learning (Cohn et al., 2015; Felsenberg et al., 

2018; Handler et al., 2019; Hige et al., 2015), whereas PN-

KC connection strengths are thought to be fixed 

(Gruntman & Turner, 2013; Wilson, 2013). We therefore 

introduced Hebbian plasticity between KCs and class 

neurons and sought to understand how the KC 

representation can support ongoing learning. To focus on 

the PN-KC representation, we eliminated the ORN layer 

in these studies (Figure 4a). 

Up to this point, networks were trained to assign odors 

to a fixed set of classes. Now, we construct networks that, 

after training, can continue to learn new odor classes.  

This is possible because the networks are expanded to 

include ongoing plasticity at the synapses between the 

KCs and output units (Methods). On each episode, we 

randomly select 16 odors from each of 5 odor classes 

drawn from the dataset described previously (Figure 1b). 

During each episode, the feedforward network (Figure 4a) 

uses synaptic plasticity to learn a new odor-class mapping 

(Figure 4b) (Finn, Abbeel, & Levine, 2017). After training, 

the KC-output synapses have undergone plastic updates 

whereas the remaining network weights are fixed 

(Methods).   

After the update of the plastic synapses, performance 

for each training episode is assessed by a set of new 

odors drawn from each one of the 5 odor classes used on 

that episode, and the non-plastic network weights are 

adjusted by backpropagation to minimize errors. This 

encourages the network to generalize to new odors on the 

basis of a limited set of sampled odors (16-shot learning). 

At the start of each episode, non-plastic network weights 

are retained but plastic weights are reset. We asked what 

connectivity evolved between PNs and KCs to support 

rapid, flexible learning at the output synapses. 

We found that, after training, networks with KC-output 

plasticity were capable of learning new odor categories. 

These networks reached up to 80% accuracy in the 16-

shot learning task (Figure S8a). Sparse, unstructured 

connectivity emerged in plastic network models, with an 

average of ~5 PNs per KC (Figure 4d-e). These results did 

not depend strongly on hyper-parameters such as the 

addition of trainable ORN-PN weights, the number of 

classes per episode, or the number of training odors per 

class (Figure S8a-c). We conclude that PN-KC 

connectivity supporting rapid, flexible learning is similar to 

that observed in the original odor classification task. 

 

Predicting connection sparsity for different species 

The anatomic organization and functional logic of the fly 

olfactory system is shared with the mouse despite the 

large evolutionary distance separating the two species. In 

both mouse and fly, ORNs converge onto a glomerular 

compression layer, which then projects sparsely to an 

expansion layer (KCs in the fly, piriform cortex neurons in 

the mouse). Unlike in the fly, the input degree to the 

expansion layer in mouse (or any other species) can only 

been inferred from existing data as !~40 2 100 (Davison 

& Ehlers, 2011; Miyamichi et al., 2011) (Figure 5, 

Methods). 

We hypothesize that this input degree depends on a 

variety of parameters, but most heavily on the number of 

OR types (~1,000 in mouse compared to ~50 in fly). 

Therefore, in our neural network we asked how the 

expansion layer input degree (!) scales with the number 

of ORs ((), termed ! 2( scaling. We have presented 

networks trained to perform two related yet different tasks, 

one with a fixed set of odor classes using supervised 

training and non-plastic synapses (Figure 1), and the other 

with changing odor classes using meta-training and plastic  
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synapses (Figure 4). Both of these led to similarly sparse 

PN-KC connectivity in fly-sized networks, !~5 2 7  for ( = 50 (Figure 1i, 4e). We now quantify the ! 2( scaling 

for each of them. 

We constructed feedforward network models with 

different numbers of ORs to examine how their 

connectivity scales with OR number (Figure S9). Over the 

range we considered, ! always increases as a power law  

 

function of (. However, the ! 2(	scaling is substantially 

different across the two tasks. We found that ! j0.37(!.#$ for networks trained with fixed classes (Figure 5, 

blue line), while ! j 2.84(!.%$ for networks with plasticity 

(Figure 5, red line). Notably, both scaling results predict 

qualitatively sparse connectivity since the exponents are 

significantly lower than 1. The shallower scaling found in 

plastic networks is broadly consistent with that predicted 

Fig. 5 | Sparsity for different species. 

The input degree ! for networks with different numbers 

of ORs ((). ! predicted by various methods and is fitted 

with power-law lines. Cyan: training using the fixed odor 

categorization task; red: meta-training using the plastic 

odor categorization task; gray: optimal !  predicted by 

maximum dimensionality (Litwin-Kumar et al. 2017); 

Crosses: Experimental estimates. [2]: Miyamichi et al., 

2011; [3]: (Davison & Ehlers, 2011). For each (, error 

bars are derived from networks trained with different 

learning rates. 

Fig. 4 | Network models with ongoing plasticity. 

a. Schematic of a meta-trained network. The PN-KC architecture is evolved to support flexible odor learning at the KC-

output synapse (WOUT). b. Multiple datasets are sequentially presented to the network. Each dataset contains a small 

number of classes and 16 samples from each class. During the presentation of each dataset, KC-output connections 

undergo rapid plasticity to learn the classes. After fast KC-output learning, generalization performance to a new test set 

of odors that obey the same classification boundaries is assessed and then used to update, i.e. meta-train, the weights 

of the network. c. PN-KC connectivity after training, showing 20 KCs. d. Distribution of PN-KC connection weights after 

training. e. Distribution of KC input degree after training. 
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by previous theoretical work based on determining the 

wiring that maximizes dimensionality (Figure 5, gray line, 

Litwin-Kumar et al. 2017). The connectivity that maximizes 

dimensionality gives rise to ! j 1.16(!.&% (Methods).  

Although both the fixed and plastic tasks we used to 

construct networks result in quantitatively similar sparse 

PN-KC connectivity in fly-sized networks, they make 

substantially different predictions for mouse-sized 

networks ((~1000): ! j 0.37 × 1000!.#$ j 106 for fixed-

category training, and ! j 2.84 × 1000!.%$ j 7  for the 

plastic task. Therefore, only fixed-category training 

appears to produce a result consistent with the mouse 

data (!~40 2 100). However, we note that we have only 

explored one method to introduce ongoing plasticity. The 

apparent discrepancy between the mouse data and our 

plastic network prediction should not be taken as evidence 

that plasticity and rapid learning of associations are not 

important in early olfactory processing.   

 

The emergence of an innate pathway 

The repertoire of odorant receptors supports the detection 

of a vast number of odors in the environment, but a smaller 

number of receptors exhibit specificity for odors that elicit 

innate behaviors (Dweck et al., 2015; Ebrahim et al., 2015; 

Kurtovic, Widmer, & Dickson, 2007; Min, Ai, Shin, & Suh, 

2013; Stensmyr et al., 2012; Suh et al., 2004). In flies, PNs 

activated by these odors project to topographically 

restricted regions of the lateral horn (LH) to drive innate 

responses (Datta et al., 2008; Jefferis et al., 2007; Ruta et 

al., 2010; Varela, Gaspar, Dias, & Vasconcelos, 2019). 

We asked whether an artificial network could evolve 

segregated pathways for innate and learned responses.  

We trained neural networks to classify both odor class 

and odor valence. Odor class was determined as in our 

original models. To add an innate component, each odor 

was assigned to one of 3 categories, 'appetitive', 'aversive', 

or 'neutral'. Neutral odors activated all ORs as in our 

previous networks, with activations drawn from a uniform 

distribution between 0 and 1 (Figure 6a, left). Each odor 

bearing a non-neutral valence activated all ORs but also a 

single innate OR especially strongly (on average three 

times stronger than other ORs). Of the 50 ORs, five were 

assigned innately appetitive responses, and another five 

were assigned innately aversive responses. We used a 

feedforward architecture with 500 ORNs, 50 PNs, and 

2,500 third-order neurons that project to both class and 

innate valence output units (Figure 6b). In this case, there 

are two sets of output units, one set to report odor class 

and another to report odor valence. The 2,500 third-order 

model neurons represent a mixture of LHN and KC 

neurons, allowing us to investigate whether the 

segregation into two distinct populations is recapitulated 

by the model.  

The network successfully performed both odor 

classification and valence determination. Glomeruli 

emerged for neutral, appetitive, and aversive ORs (Figure 

S10a). The network also generated two segregated 

clusters of third-order neurons (Figure 6c-d, Figure S10b; 

Methods). These clusters were segregated based on both 

input and output connectivity profiles. Cluster 1 typically 

contains ~2,000 neurons (Figure S10c-d). Cluster 1 

neurons are analogous to KCs and project strongly to 

class read-out neurons but weakly to valence read-out 

neurons (Figure 6c, d). They receive ~5-7 strong inputs 

from random subsets of PNs (Figure 6e, f, Figure S10e-f). 

In contrast, cluster 2 is smaller, containing ~50-200 

neurons. Cluster 2 neurons, analogous to LHNs, project 

strongly to valence read-out neurons (Figure 6c, d), and 

typically only receive a single strong PN input (Figure 6e, 

f). Thus, the inputs to the KCs are unstructured whereas 

the connections to LHN encoding innate valence are 

valence-specific (Figure 6f). The innate pathway does not 

emerge if there are no innate odor receptors that respond 

more strongly to innate odors (Figure S10g-i). 

We lesioned each cluster of KC/LHN neurons 

separately to assess its contribution to odor and valence 

classification. Lesioning the putative KC cluster (cluster 1) 

led to a dramatic impairment in odor classification 

performance (Figure 6g) but left the determination of 

valence intact (Figure 6h). In contrast, lesioning the 

putative LH cluster (cluster 2) substantially impaired 

valence determination (Figure 6h) but had little effect on 

classification performance (Figure 6g). These results 

demonstrate that the model network can evolve two 

segregated pathways analogous to those in the fly. 

 

Discussion  

Network models constructed from machine learning 

approaches have been used to study the responses of 

neural circuits and their relationship to circuit function by 

comparing the activities of network units and recorded 

neurons (Mante et al., 2013; Masse, Yang, Song, Wang, 

& Freedman, 2019; Yamins & DiCarlo, 2016; Yamins et 

al., 2014; Yang, Joglekar, Song, Newsome, & Wang, 

2019). Machine learning models generate unit responses 

and perform the tasks they are trained to do by developing 

specific patterns of connectivity. It is difficult to perform a 

detailed comparison of these connectivity patterns with 

biological connectomes (Cueva, Wang, Chin, & Wei, 2019; 

Uria et al., 2020) given the limited connectomic data. The 

current availability of connectome data from flies (Li et al., 

2020; Zheng et al., 2018) and the promise of more 

connectome results in the future make this an opportune 

time to explore links between biological connectomes and 

machine learning architectures. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.04.15.439917doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439917
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

11   

Fig. 6 | Emergence of separate innate and learned pathways. 

a. Illustration of the class (left) and valence (right) tasks. Non-neutral odors (right, appetitive in blue or aversive in red) each 

strongly activates one non-neutral OR. The network is trained to identify odor class (left) as previously described (Figure 1b) and 

also to classify odors into 3 valences (right). b, Schematic of a neural network that is trained to identify both odor class and odor 

valence using separate class and valence read-out weights. c. Distribution of third-layer neurons based on output connection 

strengths to valence read-out neurons against connection strengths to class read-outs. K-means clustering revealed that the third 

layer can be segregated into two clusters. The density of each cluster is normalized to the same peak value. d, The connectivity 

matrix from the first 10 third-layer neurons from each cluster to output units, the first 10 of 100 class output neurons and all 3 

valence output units are shown. e, Distribution of third-layer neurons based on output connection strengths to valence read-out 

neurons against input degree. The distribution of cluster 2 neurons is difficult to see because almost all of them have the same 

input degree value of 1. f, The connectivity matrix from PNs to first 10 third-layer neurons from each cluster. g, h. Lesioning the 

KC-like cluster (group 1) leads to a dramatic drop in odor class performance. (g) Lesioning the LH-like cluster (group 2) 

substantially impaired odor valence performance (h). 
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We found that broad network architectures and 

detailed features of synaptic connectivity shared by the fly 

and mouse olfactory systems also evolved in artificial 

neural networks trained to perform olfactory tasks. The 

observation that machine learning evolves an olfactory 

system with striking parallels to biological olfactory 

pathways implies a functional logic to the successful 

accomplishment of olfactory tasks. Importantly, the 

artificial network evolves without the biological 

mechanisms necessary to build these systems in vivo. 

This implies that convergent evolution reflects an 

underlying logic rather than shared developmental 

principles. Stochastic gradient descent and mutation and 

natural selection have evolved a similar solution to 

olfactory processing.   

We constructed feedforward and recurrent networks 

using stochastic gradient descent. When the feedforward 

networks were initialized with each ORN expressing all 50 

receptors, each ORN evolved to express a single receptor 

type, recapitulating the expression pattern of ORs in flies 

and mice. Further, ORNs expressing a given receptor 

converge on a single PN, and PNs connect with like ORNs 

to create a glomerular structure. This convergence, 

observed in both flies and mice, assures that mixing of 

information across ORs does not occur at early 

processing layers.  

In the network models we studied, each KC initially 

received input from all 50 PNs but these connections 

become sparse during training, with each KC ultimately 

receiving information from ~4-10 PNs, in agreement with 

the fly circuitry. Although most of our machine modeling 

was based on the olfactory system in flies, we 

extrapolated our networks to olfactory systems of far 

greater size.  The results of this extrapolation depended 

on the task and training procedure. For fixed odor classes, 

the original task we considered, we obtained an estimate 

of the number of inputs to piriform neurons from the 

olfactory bulb, in rough agreement with data from the 

mouse (40-100).  

The architecture of olfactory systems, in vivo and in 

silico, is based upon two essential features: converge of a 

large number of ORNs onto a small number of glomeruli 

followed by an expansion onto much larger number of 

third order neurons. Previous theoretical work suggests 

that a goal of the olfactory system may be to construct a 

high-dimensional representation in the expansion layer 

(KCs in the mushroom body or pyramidal cells in the 

piriform cortex) to support inference about the behavioral 

relevance of odors (Babadi & Sompolinsky, 2014; Litwin-

Kumar et al., 2017). This hypothesis has two important 

implications for our results. 

One results of this previous work is that task 

performance is proportional to dimensionality when odor 

classes are learned through synaptic plasticity of a 

Hebbian form (Litwin-Kumar et al., 2017).  In the learning 

task that we considered, new odor classes were learned 

through synaptic plasticity that fits into the Hebbian 

category, so the resulting network should maximize the 

dimension of the expansion layer odor representation to 

optimize performance.  Indeed, we found that the sparsity 

of the connections in the resulting networks has a power-

law dependence on the number of olfactory receptor types 

that roughly agrees with the scaling that follows from 

maximizing dimensionality.  However, we obtained a quite 

different scaling when we trained non-plastic networks on 

the fixed-class task.  Because these networks do not 

involve Hebbian plasticity, it is not surprising that they 

exhibit a different degree of sparsity, but we do not 

currently know of an underlying theoretical principle that 

can explain the sparsity and scaling we found in the non-

plastic case.  Interestingly, it is this case that agrees with 

existing data on the connectivity in the mouse (Davison & 

Ehlers, 2011; Miyamichi et al., 2011). 

Another requirement for achieving maximimum 

dimensionality is that the representation of odors by the 

PNs should be uncorrelated (Litwin-Kumar et al., 2017).  

This provides an explanation for the formation of glomeruli 

in our network models.  The OR activations we used were 

uncorrelated and, to maximize dimensionality, the 

transformation from ORs to ORNs and then to PNs must 

not introduce any correlation. When the weights along this 

pathway are constrained to be non-negative, the only 

connectivity pattern that does not induce PN-PN 

correlations is an identity mapping from OR types to PN 

output.  This is precisely what singular OR expression and 

OR-specific projection through olfactory glomeruli 

provides.  Interestingly, the results we found suggest that 

these ubiquitous features of biological olfactory pathways 

are not simply a consequence of noise robustness, as has 

been conjectured, but rather arise as the unique solution 

to eliminating correlations in the glomerular layer to 

maximize the dimension of the expansion layer. 
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METHODS 

RESOURCE AVAILABILITY 

 

Lead Contact4Further information and requests for 

resources should be directed to and will be fulfilled by the 

Lead Contact, Guangyu Robert Yang (yanggr@mit.edu). 

 

Materials Availability4This study did not generate new, 

unique reagents. 

 

Data and Code Availability 

• This paper analyzes existing, publicly available 

data. These datasets are listed in the key resources table. 

All new data reported in this paper will be shared by the 

lead contact upon request. 

• All original code has been deposited at 

https://github.com/gyyang/olfaction_evolution and is 

publicly available. Besides code to reproduce every panel 

in the paper, we also make available a self-contained 

Jupyter notebook that reproduces key results and allows 

easier exploration. 

• Any additional information required to reanalyze 

the data reported in this paper is available from the lead 

contact upon request. 

 

METHOD DETAILS 

Datasets 

To generate the standard dataset, we first generated ('()*) = 200  odor prototypes. Each prototype 45(,) 
activates (./ = 50 ORN types or ORs, and the activation 

of each ORN type is sampled independently from a 

uniform distribution between 0 and 1, 670(,)~8(0, 1). The 

200 prototypes are randomly assigned to (12344  = 100 

classes, with each class containing two prototypes. A 

given odor  45 is a vector in the 50-dimensional ORN-type 

space, sampled the same way as the prototypes. When 

the network9s input layer corresponds to ORNs, each ORN 

receives the activation of its OR plus an independent 

Gaussian noise ;~((0, <./5$ ), where <./5 = 0 by default 

(no noise). Its associated ground-truth class = is set to be 

the class of its closest prototype, as measured by 

Euclidean distance in the ORN-type space. The training 

set consists of 1 million odors. The validation set consists 

of 8192 odors. 

Besides the standard dataset, we also considered 

several other datasets based on the standard dataset, as 

detailed below. 

 

Concentration dataset. In this dataset (Figure 2), the 

prototypes 451)6(,)
 are the normalized versions of the 

prototypes in the standard dataset 45(,), so 451)6(,) = 78(")

978(")9
. The 

concentration of each odor is explicitly varied while the 

average ORN activation across all odors is preserved. For 

each odor, the activation of each ORN type is sampled 

from a uniform distribution as described above, and is then 

multiplied by a concentration scale factor. This scale factor, >, is determined by a single parameter, ;, in which: 

> = (1 2 ;) + 2);)A(1 2 ;, 1 2 ;) 
Where ³ is the beta distribution. A value of ;  = 0 

produces a dataset with no additional spread, whereas ; 

= 1 produces a dataset exhibiting maximal spread with 

scale factors densely clustered around 0 and 2. 

 

Relabel datasets. For the family of relabel datasets 

(Figure S2), we vary the number of prototypes ('()*)=100, 

200, 500, 1000 while keeping the number of classes (12344= 100 fixed. We refer to these datasets as relabel 

datasets, because ('()*)  prototypes are relabeled to (12344  classes. The standard dataset uses relabeling as 

well. The ratio between ('()*)  and (12344  is the odor 

prototypes per class. 

 

Meta-learning dataset. This dataset is organized into 

episodes. Each episode includes a small amount of 

training data and validation data. In each episode, we 

randomly select (:'4,12344 = 2  classes from the original (12344 = 100 classes in the standard dataset. For each of 

the (:'4,12344  classes chosen, we randomly select (:'4,43<'2: = 16  odors for training and validation 

respectively. Importantly, within each episode, we re-map 

each of the (:'4,12344 = 2  selected classes to (<:*3 = 2 

output classes. Intuitively, the network is always doing a 

( (<:*3 = ) 2-way classification task. However, the 

classification boundaries associated with each output 

class is different in every episode. There is no fixed 

relationship between the original class label and the new 

label in each episode, so the network has to learn the new 

class labels based on the (:'4,43<'2: data points per class. 

In total, for each episode, there are (:'4,43<'2:(:'4,12344 

data points in the training set, and the same amount in the 

validation set. 

 

Valence dataset. In the valence dataset, we replaced (4':1=32 = 10 prototypes from the original ('()*) prototypes 

with special prototypes that each lies along one axis in the 

ORN-type space. In other words, each special prototype 

strongly activates a single ORN type (a special OR), at 

activity level of 1.0. Of the (4':1=32  special prototypes, (4':1=32/2 = 5 are set to be appetitive or <good= odors, and 

the other 5 to be aversive or <bad= odors. The rest of the ('()*) 2(4':1=32 prototypes and associated odors are set 
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to be neutral and are sampled the same way as the 

standard dataset. The task is both to classify the odors, as 

in the standard dataset, and to classify the valence 

(appetitive, aversive, neutral). In both the training and the 

validation dataset, we have 10% of the overall odors be 

appetitive, another 10% be aversive, and the rest 80% be 

neutral. Therefore, if a network classifies all odors to 

neutral, the chance level performance for valence 

classification is 80%. The neutral odors are sampled in the 

same way as the standard dataset. Each appetitive or 

aversive odor is sampled by adding the activity level of one 

special prototype (1.0 for the special OR and 0.0 otherwise) 

with an activity pattern sampled from a uniform distribution 

between 0 and 1. In other words, the activity level of an 

appetitive or aversive odor is sampled randomly from 8(1, 2) for the special OR, and from 8(0,1) for other ORs. 

 

Correlated dataset. In Figure S4, we introduce 

correlation between responses of different ORN types. 

The correlation is independently controlled between 0 and 

0.9, while maintaining the marginal distribution of each 

ORN type to be uniform between 0 and 1. We used a 

previously proposed method (Cario & Nelson, 1997) for 

generating such correlated random variables while 

maintaining their marginal distributions. 

 

Network architecture 

We train networks of various architectures. The ORN-PN-

KC network architecture consists of an input layer of 500 

model ORNs, 50 PNs, 2500 KCs, and 100 output units. 

The 500 ORNs are made of 10 ORNs per type for all 50 

types of ORNs. The activation of each ORN is the sum of 

the activation of the corresponding ORN-type 670  and an 

independent noise ;~((0, <./5$ ) , where <./5 = 0  by 

default (no noise). The ORN-PN, PN-KC, and KC-output 

connections are all fully-connected at initialization. The 

ORN-PN and PN-KC connectivity are initialized with a 

uniform distribution of between 1/( and 4/(, where ( is 

the number of input neurons (500 for ORN-PN, and 50 for 

PN-KC). The KC-output connectivity is initialized with the 

standard Glorot uniform initialization. The ORN-PN and 

PN-KC connections are constrained to be non-negative 

using an absolute function. All neurons use a rectified-

linear activation function (ReLU).  

In the OR-ORN-PN-KC network, we add an additional 

layer of OR-ORN connections. Here, the inputs are 50 

ORs, activated similarly to the ORNs from the ORN-PN-

KC network. The OR-ORN connections are non-negative 

as well and initialized similarly to ORN-PN and PN-KC 

connectivity. 

For the identity/valence classification task, we used 

a network with two output heads. One containing 100 

output neurons as usual. The other contains 3 output 

neurons for neutral, appetitive, and aversive valence. 

We briefly considered an ORN-Output network 

(Figure S2) that has the output directly read out from the 

ORNs. 

Optionally, we include dropout on the KC layer, which 

at training time, but not testing time, set a certain 

proportion C>()')?* of neuron activities to zero. The default 

dropout rate is C>()')?* = 0 (no dropout). 

The recurrent network used in Figure 3 is a discrete-

time vanilla recurrent network, D@A% = E(FBD@ +FCG@ + H),				I = 1, 2,& 

The network consists of 2,500 units. The recurrent 

connection is initialized uniformly between 0 and 4./2500, 

the input connection is initialized using Glorot uniform 

initialization. The recurrent connection is constrained to be 

non-negative. Out of 2,500 units, 500 receive odor inputs 

at I = 1 in the same way as the ORNs in the feedforward 

network. The classification output is read-out with at step K  with connections that are not sign-constrained. By 

default, we have K = 3, which means the network unrolled 

in time would have 3 layers (I = 1, 2, 3) and an output layer. 

The KC recurrent inhibition mediated by a single 

APL neuron (Figure 1) is implemented by an inhibitory 

neuron interacting with the KCs iteratively. The single 

inhibitory neuron has a neural response equal to the mean 

KC activation level at each time step. This neuron then 

sends subtractive inhibitory inputs to all KCs with a 

connection weight L  (KC recurrent inhibition strength in 

Figure 1). Therefore, the KCs at each time step I  are 

activated as 

M,(I) = E NO,(I) 2 L ç 1(DE
QM0
0

(I 2 1)R. 
Here E(ç) is the ReLU activation function. O,(I) = O, is 

the feedforward input to the S-th unit. M,(I) is the activation 

level of the S-th unit at time step I. We run this recurrent 

inhibition for 10 time steps. 

The divisive normalization used on the PN layer in 

Figure 2 is implemented in the following way. Neuron S in 

this layer receives input O,, and the final activation of this 

neuron, M, follows, M, = MFGH ç O,O, + T +U3 M00
 

Here, MFGH, T, U are parameters that are trained with 

gradient descent alongside other trainable parameters. In 

initialization, we have MFGH = (/2, T = 0, U = 0.99, where (  is the number of neurons in this layer. For stability 

during training, we clamped (/10 f MFGH f (, 0 f T f 3, 0.05 f U f 2. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.04.15.439917doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439917
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

19 

Training 

The output of the network is linearly read out with trainable 

weights from the final layer (KC layer in feedforward 

networks, or the recurrent layer). The loss is softmax 

cross-entropy loss. The default training method is the 

adaptive stochastic gradient descent method Adam with 

learning rate 5e-4, and exponential decay rates for first 

and second moments 0.9 and 0.999 respectively (the 

Pytorch default hyperparameter values). The network is 

typically trained for 100 epochs, each epoch would expose 

the network to all of the one million odors from the training 

set.  

The training batch size is Y = 256. By default, we used 

Batch Normalization on the PN layer to prevent individual 

neurons from being active or silent for all odors. 

Technically, Batch Normalization computes the mean Z, 
and standard deviation <,  of inputs 6,,I  to the S-th single 

neuron across a minibatch ([ = 1,& , Y), 

Z, =Q6,,I
,

,					<, = \Q]6,,I 2 Z,^$
,

 

The actual input to the S-th neuron is first subtracted by Z,, then divided by <,. It is then multiplied by a trainable 

parameter, then another trainable parameter is added to 

it. Biologically, Batch Normalization can be viewed as 

approximating single neuron adaptation or homeostasis to 

a range (i.e., a batch) of odors. If a neuron is strongly 

driven by most odors, then Batch Normalization would 

reduce its inputs, making this neuron activated in a more 

balanced manner. 

 

Ongoing Plasticity 

For the ongoing plasticity results in Figure 4, we use the 

delta rule to simulate ongoing plasticity in the readout 

connections (KC-output weights for the model fly network) 

(Dayan & Abbot, 2005). The delta rule is more biologically 

plausible than the general gradient descent algorithm 

because it relies on local information. However, it is not 

intended to model with high fidelity the biological plasticity 

rules at the KC-MBON synapses. The delta rule is used 

here to encourage a KC representation that supports rapid, 

flexible learning. The default delta rule learning rate is 5e-

4. 

During each learning episode (see Meta-learning 

dataset section), the network is presented with a small 

amount of training and validation data from the meta-

learning dataset. The network takes a single delta rule 

step based on the training data, and the loss is evaluated 

based on the validation data. The objective of meta-

training is to minimize the expected validation loss of the 

inner training. Meta-training updates all weights and 

biases in the network at the end of each learning episode 

using the gradient descent variant, Adam. This meta-

training method is a special case of a more general 

method called MAML, or Model-Agnostic Meta-

Learning (Finn, Abbeel, & Levine, 2017a). This method 

aims at finding (meta-training) parameter values 

(connection weights and biases) that allow rapid few-step 

gradient descent learning using a small amount of new 

training data. We largely adhered to the method detailed 

in Finn et al., with a few notable exceptions. First, the inner 

training only performs gradient descent on the KC-output 

connection. Gradient descent applied only to the last layer 

reduces to the delta rule. Second, the learning rate of the 

inner training is allowed to be adjusted by the meta-

training process. The latter assumption does not 

substantially impact our results. 

 

Weight pruning and connection sparsity estimation 

By default, we have synaptic weight pruning during 

training. Weights below a certain threshold _  are 

permanently set to zero during and after training. The 

threshold is set to be _ = 1/(, where ( is the number of 

input neurons for each connectivity matrix. Weight pruning 

provides a less ambiguous quantitative estimate of 

connection sparsity. 

We observe that in some networks, the distribution of 

weights has a clear, single peak away from the pruning 

threshold, and the weight distribution approaches 0 

towards the threshold (see Figure S1c for examples). In 

these cases, the connection sparsity (or density) can be 

easily inferred by simply quantifying the proportion of 

connection weights above threshold. However, we found 

that in some networks (some hyperparameter settings), 

the distribution of weights has a peak very close to the 

threshold, making it difficult to count the above-threshold 

weights. Therefore, we employ a simple heuristic to check 

if there is a clear peak in the weight distribution far from 

the pruning threshold. Our heuristic requires the peak of 

the above-threshold weight distribution be at least 2./( 

larger than the threshold itself, which by default is at 1./(. 

Networks that do not satisfy this <clear peak= criteria are 

not used to compute the input degree, and their ! values 

not shown in plots (e.g. Figure S1a). 

When the network does not undergo pruning of weak 

weights as in some control experiments and for the RNN 

results, it is necessary to try inferring a threshold 

separating weak and strong weights. We fit a mixture of 

two Gaussians model to the log-distribution of weights. 

The weak/strong weight threshold is where the probability 

density of the two Gaussian modes cross. In this case, the 

inferred threshold is used, instead of the pruning threshold, 

in the above heuristics for determining whether the strong 

weights have a clear peak in its distribution. 

We have done extensive comparisons between 

networks with and without pruning across various 
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hyperparameter values (many results not shown in 

figures). For the feedforward network architectures, 

pruning almost always leads to clearer above-threshold 

peak in the weight distribution. Importantly, the sparsity 

result is not a result of pruning per se. When there is no 

pruning, and the weights clearly separate into weak and 

strong peaks (for example when ('()*) = (12344 = 100 ), 

the inferred connection sparsity is quantitatively very close 

to that obtained from networks with pruning. In addition, 

the network performance is generally identical with or 

without pruning. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

GloScore 

The glomeruli score (GloScore) of a PN-ORN 

connectivity matrix FJ5³./5  is computed by first 

averaging all connections from ORNs of the same type. 

For each PN, we find the strongest connection weight %̀ 

and the second strongest connection weight `$ from each 

ORN type by averaging weights across ORNs of the same 

type. For non-sign-constrained weights, we use the 

absolute values of weights. Then GloScore for each unit 

is computed as, GloScore = ( %̀ 2`$)/( %̀ +`$). 
Final GloScore of the entire connection matrix is the 

average GloScore of all PNs. 

 

Inferring connection sparsity from experimental data 

in mouse 

Two previous publications used different approaches to 

estimate the input degree, K, in mice. The first experiment 

(Miyamichi et al., 2011) used retrograde anatomic tracing 

to derive a convergence index of the number of 

mitral/tufted cells (equivalent of PNs) over the number of 

piriform neurons (equivalent of KCs), and found values 

ranging from 3-20. The transfection efficiency of 

retrograde labeling was estimated to be roughly 10% 

(Reardon et al., 2016), so the input degree may vary from 

30-200 M/T inputs per piriform neuron. The second 

experiment (Davison & Ehlers, 2011) used optical 

glutamate uncaging to activate defined points on the 

olfactory bulb while recording piriform responses, and 

found that most cells responded to >15 uncaging sites. 

The authors estimate that 2-3 glomeruli are activated per 

uncaging site, providing a lower bound of K=40 for input 

degree.  

 

Analysis of Synaptic Connectivity Data from the 

Hemibrain Connectome 

A compact connection matrix summary (v1.2 release) was 

downloaded from https://www.janelia.org/project-

team/flyem/hemibrain. ORNs, uniglomerular, biglomerular 

and multiglomerular PNs, and KCs and LH neurons were 

queried according to the naming convention defined in 

Scheffer et al. 2020. Thermosensory, hygrosensory, and 

subesophageal zone PNs (VP and Z) were discarded. 

Given that stronger synapses are formed by increasing 

the number of synapses, not by larger synapses, as in 

vertebrates, we use synapse count as a proxy for synaptic 

strength (Scheffer et al., 2020). Only 2 types of ORNs 

were present within the dataset, so ORN to PN 

connectivity was discarded. The distributions of KC input 

degree and PN to KC synaptic weights were previously 

reported (Li et al., 2020) and were also extracted from the 

connectivity of uniglomerular PNs onto KCs. 

Multiglomerular PNs were excluded because KCs only 

sample from 0.147 multiglomerular PNs on average. 

 

Randomness 

To determine whether the frequency of PN input onto KCs 

is significantly above or below chance expectations, PN-

KC connections in the trained network were shuffled while 

maintaining the number of connections each KC receives. 

We generated the shuffled data by making a list of PNs 

that contributed to each PN-KC connection. We then 

randomly permuted this list and drew from it sequentially 

to construct a new set of connections for each of the 2500 

KCs, drawing as many random connections for each KC 

as it receives in the trained network. This shuffling 

eliminates any potential, non-random PN inputs onto 

individual KCs, and is used to analyze whether KCs are 

connected to any preferential pair of glomeruli (Figure S3).  

To determine whether the distribution of PN inputs 

onto KCs is binomial, the probability of a connection 

between each PN with each KC is sampled independently 

from a Bernoulli distribution with the overall PN-KC 

connection probability, C, of a trained network. 

 

Analysis of RNNs 

In Figure 3, we analyzed a recurrent neural network, which 

unlike traditional recurrent networks, is not running in time. 

Instead we use it as a way to force a limited budget on the 

total number of neurons, without specifying the exact 

number of neurons to be used at each processing step. 

The key analysis is to infer how many neurons are 

assigned by the network to each processing step (the 

same neuron may be used at multiple steps). For each 

neuron, we computed its average activity at each 

processing step in response to all odors shown the 

network. If its average activity at a processing step 

exceeds a certain threshold, we deem this neuron active 

at this step. Note that by this definition, an <active neuron= 

may not be active for each odor. All we ask is that it is 

sufficiently active for some odors. We used the same 

threshold of 0.2 across all processing steps, manually 

chosen after inspecting the distribution of activity (Figure 
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S7). We did not use a threshold of 0 because many 

neurons are activated very weakly but above zero on 

average. With positive connection weights and no 

regularization, it is generally more difficult to have a 

neuron be activated at 0 across all odors at a given 

processing step. 

 

Analyzing networks of different numbers of OR types 

For Figure 5, we trained networks with different numbers 

of OR types ((), ranging from 25 to 200. For simplicity, we 

focused on the connections from the compression to the 

expansion layer, while ignoring the connections from 

ORNs to the compression layer. Therefore, all networks 

consist of (  input neurons representing ORN activity, 

which in turn project to h expansion layer neurons. For 

each value of (, the number of expansion layer numbers h  is set as ($ . For each number of OR, we trained 

networks with different levels of learning rate 1e-3, 5e-4, 

2e-4, 1e-4. We include in our summary plot (Figure 5) only 

networks that contain a clear peak in the weight 

distribution, using the criteria established above. 

To obtain the maximum dimensionality curve in Figure 

5, for each number of OR, we first computed the 

representation dimensionality (Litwin-Kumar et al. 2017) 

in response to the training odors when the third-layer input 

degree is fixed at different values. Then we identified the 

input degree corresponding to the maximum 

dimensionality. Finally, we repeat this process for 

networks with different numbers of ORs. Importantly, we 

did not use feedforward inhibition that sets the overall 

mean input to be zero. When mean-canceling feedforward 

inhibition is used, the maximum dimensionality is achieved 

at ! = (/2. When introducing an additional constraint on 

the total number of connections, the optimal ! becomes 

substantially lower, around 7 for ( = 50. However, since 

we do not constrain the total number of connections for 

each network, we did not include feedforward inhibition in 

Figure 5, leading to a ! that is around 3 for ( = 50.  
 

Analysis of identity/valence two-task networks 

For the two-task networks, we used all combinations of the 

following hyperparameter values: PN normalization (None 

or Batch Normalization), learning rate (1e-3, 5e-4, 2e-4, 

1e-4), KC dropout rate (0, 0.25, 0.5), resulting in 24 

networks trained. 

To assess whether the expansion layer neurons break 

into multiple types when analyzing the two-task networks, 

we represent each third-layer (expansion layer) neuron 

with three variables: (1) its input degree (the number of 

above-threshold connections from the previous layer), (2) 

the norm of its connection weights to the identity 

classification head, (2) the connection weight norm to the 

valence classification head. Since these variables are of 

different scales, we z-scored them (mean subtract then 

divide by standard deviation). We then obtained a 3-

dimensional depiction of each third layer neuron. 

Next we did k-means clustering on the normalized data 

with i  (the pre-determined number of clusters) ranging 

from 2 to 10. We quantified the quality of each clustering 

result with its silhouette score (the higher the better), 

which intuitively compares the inter-cluster distance with 

the intra-cluster distance. We found that the optimal 

number of clusters is generally 2 or 3. We analyzed all 

networks with 2 optimal clusters. We named the cluster of 

neurons with stronger connections to the identity readout 

head as cluster 1, the other as cluster 2. 

In Figure 6c, e, we computed the density of neurons in 

these data spaces separately for each cluster, before 

adding the densities together. This visualization allows for 

a clearer depiction of the density peak of each cluster. 

When lesioning either cluster 1 or 2 in Figure 6g, h, we 

set the outbound weights from the lesioned neurons to 0, 

equivalent to setting their activity to 0.  
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KEY RESOURCES TABLE 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

Hemibrain Connectome compact 

connection matrix v1.2 

Scheffer et al., 2020 https://www.janelia.org/project-team/flyem/hemibrain  

Software and Algorithms 

Python Python Software 

Foundation 

https://www.python.org/  

 

Tensorflow Abadi et al., 2016 https://www.tensorflow.org/  

Pytorch Paszke et al., 2019 https://pytorch.org/  

SciPy Virtanen et al., 2020 https://www.scipy.org/  

Numpy Oliphant, 2006 https://www.numpy.org/   

Scikit-learn Pedregosa et al., 2011 https://scikit-learn.org/stable/   

Custom code for generating 

datasets, training networks, 

analyzing results, and plotting 

figures 

This paper https://github.com/gyyang/olfaction_evolution 
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Figure S1 
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Figure S1 | Robust formation of glomeruli and sparse connectivity, Related to Figure 1 

a. Accuracy (top), GloScore (middle), and KC input degree (K, bottom) as a function of hyperparameters. 

From left to right, learning rate, noise level, PN normalization, KC dropout rate, and initial PN-KC weights. 

K values are not shown for networks where the PN-KC connectivity does not contain a single peak well 

separated from the pruning threshold (see Methods). When a single peak can be inferred (blue dots), 

GloScore remains high, and KC input degree remains around 5 to 10.  

b. Accuracy (top), GloScore (middle), and KC input degree (K, bottom) during training. For each plot, one 

hyperparameter is varied, from left or right: learning rate, noise level, and KC dropout rate. Networks of 

different hyperparameter values converge to the same GloScore and KC input degree during training, as 

long as PN-KC connectivity is well separated. 

c. Distribution of PN-KC connection weights for networks of different hyperparameter values. Left to right: 

Learning rate, PN normalization, noise level, and KC dropout rate. Having no PN normalization leads to 

PN-KC weights poorly separated from the threshold, explaining why in (a) the K value is not shown for the 

network with no PN normalization. 

d, e. The effect of pruning weak PN-KC weights. Pruning weak PN-KC weights does not affect 

performance (d), but it allows a cleanly separated distribution of PN-KC weights from the threshold (e). 

The lack of a clean separation without pruning (e) leads to unreliable estimation of the PN-KC input 

degree (d).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.04.15.439917doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439917
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

3 

Figure S2 

 
Figure S2 | Effect of having multiple odors associated with each class, Related to Figure 1 

a, Schematics of two datasets. (Top) Illustrating a dataset where only one odor prototype (triangle) is 

associated with each class. Each class then corresponds to a contiguous area in the input activity space, 

and the dataset is linearly separable. (Bottom) Illustrating a dataset where each class is associated with 

two odor prototypes residing in segregated locations in OR activity space. b, From top to bottom, 

accuracy, GloScore, KC input degree, and KC activity sparsity (percentage of KCs active on average) for 

networks trained on datasets with different numbers of odor prototypes per class. Having more odor 

prototypes per class promotes KC activity sparsity, while keeping GloScore high and KC input degree 

almost constant. Having KC dropout has a similar impact. c, d, Comparing accuracy between the full 

ORN-PN-KC-Output network (c) and a simple ORN-Output network (d). The ORN-Output network has 

classification readout directly from the ORN input layer. This shallow network performs well on the dataset 

with 1 odor prototype per class (linearly separable), but much worse than the full network on more 

complex datasets.  
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 Figure S3  

 
Figure S3 | Random sampling of PN inputs from KCs and the impact of KC recurrent inhibition, 

Related to Figure 1 

a, Average connection probability from each individual PN (n=50) to all 2500 KCs. KCs sample uniformly 

from all PNs.  

b, Distribution of number of KCs that receive each of the 1225 (=50x49/2) unique pairs of glomeruli. Data 

derived from training is shown in blue, and shuffled connections are in orange. Shuffling maintains the 

frequency of glomerular connections and the distribution of KC input degrees, but eliminates non-random 

patterns of inputs onto individual KCs. KCs are not preferentially connected to any specific pair of PNs.  

c, Distribution of KC input degrees for all KCs (n=2500). Data derived from training is in blue, and a 

binomial distribution using the average PN-KC connectivity derived from training data is shown in orange.  
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Figure S4 

 
Figure S4 | The impact of input correlation and additional controls, Related to Figure 1 

a, Illustration of a dataset with a 0.8 correlation coefficient between the activities of all OR pairs. b, (Top 

to bottom) Accuracy, GloScore, and KC input degree for networks trained on datasets with different OR 

correlations. OR correlation level has no clear impact on GloScore and KC input degree. c, Task 

accuracy across several networks in which weights at specified layers are fixed at their random initial 

values. Fixing connectivity to be random in either one or both layers reduces task performance compared 

to standard training. In all four scenarios, KC-output weights are trained. Neither: ORN-PN and PN-KC 

weights are fixed. ORN2PN: ORN-PN weights are trained and PN-KC weights are fixed. PN2KC: ORN-

PN weights are fixed and PN-KC weights are trained. Both: ORN-PN and PN-KC weights are trained. d, 

Task accuracy across networks where the number of ORs received by each PN is fixed. In other words, 

ORN-PN connections are fixed to be multi-glomerular before training. PN-to-KC and KC-output weights 

are trained, and performance was assessed after training. Classification performance degrades as PNs 

receive input from more glomeruli. e, Comparing networks with or without PN-KC stereotypy. 

Performance was significantly worse when PN connections were correlated with one another. In the 

sparse condition, PN-KC connections were fixed to be sparse (K=7) and were randomly sampled from 50 

PNs. In the sparse and correlated condition, the 50 PNs are subdivided into 3 evenly sized groups (17, 

17, 16), and each KC only samples from PNs within a group.   
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Figure S5 

 
Figure S5 | Impact of key network hyperparameters, Related to Figure 2 

a, b, ORN-PN connectivity (a) and PN-KC connectivity (b) in a network without non-negative ORN-PN 

connections. c, d, Training decorrelates ORN-PN connections in networks with (c) and without (d) non-

negative ORN-PN connections. Each PN unit receives connections from 500 ORNs, their weights 

summarized by a 500-dimensional vector. For two PN units, we compute the cosine similarity (cosine of 

angle) between each of their input weight vectors. The distribution of cosine similarities between all pairs 

of PN units in trained networks (blue), and in random networks (orange). If ORN-PN connections are non-

negative, the random weights are drawn from a uniform distribution between 0 and 1, otherwise they are 

drawn from a random Gaussian distribution. These results show that training reduces the cosine similarity 

between input weights to pairs of PNs, decorrelating PNs. 

e, f, Accuracy, GloScore, KC input degree for networks with different numbers of PNs (e) and KCs (f), 

and for different levels of KC dropout rate.
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Figure S6 
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Figure S6 | Impact of varying the number of neurons each layer and concentration datasets, 

Related to Figure 2 

a, ORN-PN connectivity (left) and PN-KC connectivity (right) for a network with 30 PNs. b, Similar to (a), 

but for a network with 200 PNs. In neither case does ORN-PN connections form clean glomeruli. 

c-f, Analysis of a network with 200 PNs. c, The distribution of GloScore computed for each PN unit. A 

proportion of PNs have close to 1 GloScore. The threshold (dotted grey line) separates UniGlo units and 

MultiGlo units. d, UniGlo PN units tend to make stronger connections to KCs. e, Lesioning UniGlo PN 

units has a far stronger impact on classification accuracy. f, Connections from ORNs to PN with highest 

GloScore (left) and lowest GloScore (right). g-h, Similar to (a, b), but for networks with 50 and 10,000 

KCs. i, Accuracy and KC input degree K for networks using different PN normalization and trained on 

different concentration datasets (see Figure 2d-e). Only PN-KC connections were trained in these 

networks. j, The distribution of PN-to-KC weights for networks using divisive normalization.  
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Figure S7  

 
Figure S7 | Additional analyses of the recurrent neural network model, Related to Figure 3 

a-d. Analysis of a RNN unrolled for 3 steps. (a) Distribution of neuron9s mean activity level, computed at 

different processing steps. Left to right, step 1 to 3. For each neuron, we compute the average activity 

across all odors. Each dashed line corresponds to the threshold used to define active neurons. The same 

value of 0.2 used for all distributions. (b,c) Distribution of step 1 to step 2 (8PN-KC9) connection weights 

after training, in linear space (b) and log space (c). No weight pruning is used for RNNs. In log space, the 

distribution is fit by a bi-modal Gaussian distribution. Strong PN-KC weights refer to the connections 

above the threshold separating these two modes. d, The distribution of strong <PN inputs to KC=. Here PN 

neurons refer to neurons active at step 1, while KC neurons refer to those active at step 2. 

e-h, Similar to (a-d), but for networks unrolled for 4 steps instead of 3. Classification readout occurs at 

step 4. Here <PN-KC weights= refers to the effective step 2-4 connectivity, which is the matrix product of 

the step 2-3 and step 3-4 connectivity. 
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Figure S8 

 
 

Figure S8 | Formation of sparse connectivity during meta-learning, Related to Figure 4 

a, Accuracy and KC input degree for networks meta-trained with different hyperparameter values. From 

left to right, meta-learning rate, whether weak PN-KC weights are pruned, whether to include a trainable 

ORN-PN layer, KC dropout rate, number of classes within each meta-learning episode (see Methods), 

number of samples per class within each episode. By default, the PN layer forms exact glomeruli (each 

PN unit receives connections only from the same type of ORNs), and the ORN-PN connections are fixed. 

Although PN-KC connectivity remains sparse, KC input degree is moderately affected by hyperparameter 

choices. Convention is the same as Figure S1. 

b, Accuracy and KC input degree during meta-training for networks with different hyperparameter values. 

c, Distribution of PN-KC weights after meta-training for different networks. 

d, Accuracy is around chance level (0.5) when PN-KC weights are fixed and not being meta-trained. 
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Figure S9 

 
Figure S9 | Impact of changing the number of olfactory receptors (ORs), Related to Figure 5 

a, Accuracy and KC input degree for networks trained with different learning rates. From top to bottom, 

networks with different number of ORs (25, 100, 150). ORN-PN connectivity is fixed and PNs form exact 

glomeruli. Here we use PN to refer to the second compression layer in the network, and KC as the third 

expansion layer. 

b, Accuracy and KC input degree across training.  

c, The distributions of PN-KC weights for different learning rate values.  
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Figure S10 
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Figure S10 | Additional analyses for the emergence of innate and learned pathways, Related to 

Figure 6  

a, b, Connectivity of an example network. ORN-PN connectivity (a) and PN-Third layer connectivity (b). 

(b) is the same as Figure 3d. 

c, Silhouette score as a function of the number of clusters used for K-means clustering algorithm. 

Silhouette score rates how well the clusters segregate by comparing intra-cluster distance with inter-

cluster distance. Across networks with different hyperparameter combinations (see Methods), Silhouette 

score peaks at number of cluster equals to 2 or, less commonly, 3. 

d, Across models, cluster 1 has around 2,000 neurons while cluster 2 has less than 200 neurons. 

Clusters are sorted according to their average connection strength to the valence classification head. So 

cluster 1 neurons has on average weaker connections to the valence output than cluster 2 neurons. Only 

networks in which the Silhouette score peaks at two clusters were analyzed (c). 

e, f, Accuracy, GloScore, KC input degree during training for different values of learning rates (e) and KC 

dropout rate (f). 

g-i, Results on a dataset with no specialized odor receptors. g, Innate odors no longer activate 

specialized receptors strongly. Compare with Figure 6a. h, i, Similar to Figure 6c, e, but for a network 

trained on the dataset with no specialized receptors. No clustering emerges, despite forcing the number 

of clusters to be 2 in the clustering algorithm.  
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