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Abstract

We explore the utility of an on-demand multimodal conversa-
tional platform in extracting speech and facial metrics in chil-
dren with Autism Spectrum Disorder (ASD). We investigate
the extent to which these metrics correlate with objective clin-
ical measures, particularly as they pertain to the interplay be-
tween the affective, phonatory and motoric subsystems. 22 par-
ticipants diagnosed with ASD engaged with a virtual agent in
conversational affect production tasks designed to elicit facial
and vocal affect. We found significant correlations between vo-
cal pitch and loudness extracted by our platform during these
tasks and accuracy in recognition of facial and vocal affect, as-
sessed via the Diagnostic Analysis of Nonverbal Accuracy-2
(DANVA-2) neuropsychological task. We also found significant
correlations between jaw kinematic metrics extracted using our
platform and motor speed of the dominant hand assessed via
a standardised neuropsychological finger tapping task. These
findings offer preliminary evidence for the usefulness of these
audiovisual analytic metrics and could help us better model the
interplay between different physiological subsystems in indi-
viduals with ASD.

Index Terms: multimodal conversational agent, autism spec-
trum disorder, affect production, motor coordination, audiovi-
sual analytics.

1. Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental con-
dition that manifests as deficits in social communication and
interaction [1]. Epidemiological surveys estimate the preva-
lence of ASD in the United States at 18.5 per 1,000 children
[2]. Autism diagnosis rates have increased due to an increase
in awareness and access to resources. In the state of Califor-
nia, the diagnosed autism incidence rate increased by 612% in
the past two decades [3]; however, sociodemographic barriers
such as race, economic challenges and stigma still hamper early
detection and intervention in children with autism [4].
Individuals with ASD are known to have impaired process-
ing of emotions (affect recognition) and impaired production of
both vocal and non-verbal emotional expressions (affect pro-
duction) during communication [5, 6, 7]. Acoustic characteris-
tics like prosody and fundamental frequency of speech in chil-
dren with ASD are often perceived as atypical when compared
to speech in typically-developing children [8, 9]. Individuals

with ASD produce emotional phrases that are louder, longer,
more variable in pitch, and sound less natural [10]. Facial affect
production has been demonstrated to be equally difficult for in-
dividuals with ASD in both imitation and expression tasks [11].
Also, facial expressions of emotion are rated as more intense
and less natural in individuals with ASD [12] by both neurotyp-
ical raters as well as raters with ASD [13].

Prior work has demonstrated the objective significance of
automated quantitative assessment of atypical speech produc-
tion and facial expression in ASD [14, 15, 16]. Such automated
assessments can help clinicians objectively quantify skills in
this domain of functioning for which no standardised, age-
normed, validated measures are available. [17, 18, 19].

Moreover, the coordination of facial and vocal expressions
during emotional speech production is less coordinated in ASD
[20]. Due to such cross-domain atypicalities in ASD, a multi-
modal framework approach has been suggested to provide use-
ful quantitative insights in early diagnosis and categorisation
of ASD [21, 22, 23]. In this paper, we explore the interplay
between multiple neuropsychological subsystems through ex-
amination of automatically-extracted voice and facial metrics
during a novel conversational task and a comprehensive set of
clinically-validated objective measures. We probe the feasibil-
ity of a scalable, low-cost and remotely-administrable multi-
modal conversational platform for this purpose. Such technol-
ogy could potentially assist clinicians and researchers in gather-
ing relevant diagnostic information and in longitudinally moni-
toring children with developmental disorders.

2. Multimodal Conversational Platform

NEMSI or NEurological and Mental health Screening Instru-
ment is a cloud-based multimodal dialogue technology in which
participants engage in a conversation with a virtual agent and
speech and facial behaviours are elicited through a variety of
exercises. Data analytics modules automatically extract relevant
speech and facial metrics from the captured audiovisual data in
real time and store them in a database. These metrics, with a de-
tailed participant-wise, session-wise and task-wise breakdown,
can be accessed by researchers via a user-friendly dashboard. A
more detailed description of NEMSI, conversational protocols
and a schematic of the software and hardware architecture of the
system can be found in our previous publications [24, 25, 26].
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Figure 1: Distribution of age in the cohort

3. Methods

The current study was conducted on site at the University of
California, San Francisco and was approved by the university’s
Institutional Review Board. Informed consent was obtained
from the participants’ guardians along with a written assent
from the participants. Data from 22 participants (10 females,
mean age: 11.37 £ 2.47 years, see Figure 1) diagnosed with
ASD by a licensed clinical psychologist was included in the
analysis.

3.1. Standardised Clinical Instruments

All participants / guardians underwent a thorough neuropsycho-
logical evaluation battery including the Autism Diagnostic Ob-
servation Schedule, Second Edition (ADOS-2) [27], the Autism
Diagnostic Interview - Revised [28], the Behavior Assessment
System for Children, Third Edition (BASC-3) [29], the Diag-
nostic Analysis of Nonverbal Accuracy (DANVA) [30, 31] and
NEPSY-II [32]. The ADOS-2 scores for 11 participants were
collected during the COVID-19 pandemic and were deemed in-
valid because the participants wore a mask during the assess-
ment. These scores were excluded from the analysis. Addition-
ally, participants also took part in a motor skills and fine motor
dexterity assessment, including bilateral manual grip strength
assessed with a Lafayette Hand Dynamometer Model JO0105
[33], finger tapping speed assessed with a standard board-
mounted finger tapper with counter [34], and the Grooved Peg-
board Test [35]. All scores were age scaled based on the refer-
enced norms.

3.2. Affect Production Task

The Affect Production Task (APT) was administered via Modal-
ity.AI’'s NEMSI platform. Participants were prompted to pro-
duce four emotions (happy, sad, angry and afraid) through five
tasks:

1. Monosyllabic Emotion Production (8 turns, 2 turns per

emotion): a video stimulus prompted the users to say
“oh” in a way that conveyed the specified emotion during
every turn;

2. Sentence-length Emotion Production (8 turns, 2 turns per
emotion): a video stimulus prompted the users to say
“I’ll be right back” in a way that conveyed the specified
emotion during every turn;

3. Emotion-eliciting Situations (16 turns, 4 turns per emo-
tion): the virtual agent narrated a situation and a corre-
sponding emotional response at the end of which a pic-
ture depicting the situation was shown and the user was
prompted to say “oh” in a way that conveyed the speci-
fied emotion that was situationally appropriate;

4. Monosyllabic Repetition (16 turns, 4 turn per emotion):
an audio recording of “oh” in one of the four emotions
was played during every turn and the user was asked
to repeat the monosyllabic production in the same emo-
tional inflection;

5. Facial Repetition (8 turns, 2 turns per emotion): a video
prompted the user to make a face representing one of the
four emotions like the person in the video during every
turn.

3.3. Analytics

Speech metrics (Fundamental Frequency in Hz, Articulation
Loudness in dB) and facial metrics (Eyebrow Height in pixels,
Eye Openness in pixels, Lip Aperture in pixels, Mouth Surface
Area in pixels®, Jaw Velocity in pixels/frames and Jaw Acceler-
ation pixels/framesz) were calculated in real time [25] and dis-
played on a dashboard accessible to the clinicians and the re-
searchers involved in the study. Facial metrics in pixels were
normalised within every subject by dividing the values by the
inter-lachrymal distance in pixels for each subject.

3.4. Statistical Methods

Linear correlations were run between measures from standard-
ised neuropsychological assessments and the speech and facial
metrics derived from our platform. To control for false positives
due to multiple comparison, the Benjamini-Hochberg procedure
[36] was used to adjust the p-values using a false discovery rate
of o« = 0.05. Findings that survived this adjusted significance
threshold were included in this paper.

4. Observations
4.1. Language Level and 1Q

The Clinical Evaluation of Language Fundamentals- Fifth Edi-
tion (CELF-5) [37] and the Weschler Intelligence Scale for
Children - Full Scale IQ (WISC - FSIQ) [38] scores for the co-
hort are reported in Table 1.

4.2. Speech Metrics

We found significant positive correlations between the DANVA
Adult Receptive Paralanguage Subscore (APSS) and the fun-
damental frequency of the participants’ speech during the
Emotion-Eliciting Situation subtask in the APT (Happy: r* =
0.41 and Sad: * = 0.54) and also in the Monosyllabic Emotion
Production subtask (Happy: r* = 0.56 and Angry: r* = 0.44).
We also found positive correlations between the DANVA Child
Receptive Paralanguage Subscore (CPSS) and the fundamen-
tal frequency of the participants’ speech during the Emotion-
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Table 1: Language level and 1Q measures in the cohort

Measure Range Mean + SD
CELF-5 Core Language Score 59 -143 | 100.77 £ 22.06
CELF-5 Expressive Language Index | 59 - 131 | 100.09 4 20.48
CELF-5 Receptive Language Index | 58 - 141 | 100.73 £ 23.08
WISC - FSIQ 50-136 | 102.95 + 19.79

Table 2: Speech acoustic measures of fundamental frequency (F0) and articulation loudness extracted automatically correlate with the
participants’ accuracy at recognition of facial and vocal affect in audio recordings of adults and children

Objective Clinical Extracted Sample

Measure Analytics Prompt Size r p-value
DANVA APSS Fundamental Frequency Emotion-Eliciting Situation HAPPY 15 0.41 | 0.0099
DANVA APSS Fundamental Frequency Monosyllabic Emotion Production HAPPY 19 0.56 | 0.0002
DANVA APSS Fundamental Frequency Emotion-Eliciting Situation SAD 17 0.54 | 0.0007
DANVA APSS Fundamental Frequency | Monosyllabic Emotion Production ANGRY 18 0.44 | 0.0028
DANVA CPSS Fundamental Frequency Emotion-Eliciting Situation HAPPY 16 0.55 | 0.0016
DANVA CPSS Fundamental Frequency Monosyllabic Emotion Production HAPPY 19 0.48 | 0.0010
DANVA CPSS Fundamental Frequency Emotion-Eliciting Situation SAD 17 0.45 | 0.0034
DANVA CPSS Fundamental Frequency Monosyllabic Repetition AFRAID 16 0.36 | 0.0108
DANVA CPSS Articulation Loudness Sentence-length Emotion Production HAPPY 16 0.34 | 0.0180

Table 3: Jaw kinematic measures (velocity and acceleration) extracted automatically correlate with motor speed of the dominant hand

Objective Clinical Extracted Sample
Measure Analytics Prompt Size r p-value
Finger Tapping Dominant Hand Maximum Jaw Velocity Monosyllabic Repetition SAD 13 0.44 | 0.0139
Finger Tapping Dominant Hand Maximum Jaw Velocity Monosyllabic Repetition AFRAID 13 0.35 | 0.0317
Finger Tapping Dominant Hand Maximum Jaw Velocity Emotion-Eliciting Situation AFRAID 13 0.35 | 0.0345
Finger Tapping Dominant Hand | Maximum Jaw Acceleration | Emotion-Eliciting Situation AFRAID 13 042 | 0.0164

Eliciting Situation subtask (Happy: r* = 0.55 and Sad: 1* =
0.45), the Monosyllabic Emotion Production subtask (Happy:
> = 0.48) and the Monosyllabic Repetition subtask (Angry:
* = 0.36). Fundamental frequency of speech during all these
tasks did not correlate with participants’ age so the effect of
age on these correlations can be ruled out. Additionally, the
DANVA CPSS score was also positively correlated with Artic-
ulation Loudness during the Sentence-length Emotion Produc-
tion subtask (Happy: 1> = 0.34). Please refer to Table 2 for more
details.

4.3. Facial Metrics

Motor speed of the dominant hand assessed using a finger tap-
ping task was found to be positively correlated with partici-
pants’ maximum jaw velocity during the Monosyllabic Repe-
tition subtask in the APT (Sad: r* = 0.43 and Afraid: r* = 0.37)
and during the Emotion-Eliciting Situation subtask (Afraid: r*
=0.36). Motor speed of the dominant hand was also positively
correlated with maximum jaw acceleration during the Emotion-
Eliciting Situation subtask (Afraid: P = 0.42). Please refer to
Table 3 for more details.

5. Discussion

In this study, we found that speech metrics derived by NEMSI, a
cloud-based multimodal dialogue technology, are significantly
correlated with recognition of vocal affect assessed via the
Diagnostic Analysis of Nonverbal Accuracy (DANVA) task.
We also found correlations between jaw kinematics and motor
speed of the dominant hand as assessed by a standardised finger

tapping task.

The DANVA receptive paralanguage subtasks assess the
participants’ ability to identify vocal emotional communication,
with higher scores indicating competence in recognition of vo-
cal affect. Participants who were more competent in identify-
ing the emotion from adult and child voice recordings produced
emotional speech (monosyllabic “oh”) with a higher fundamen-
tal frequency. A previous study has found an increased pitch
range in high-functioning autism [9]. Participants with bet-
ter DANVA CPSS scores also produced louder sentence-length
happy emotional speech. Increased articulation loudness is in-
deed associated with happy emotional speech [39]. Our find-
ings may suggest that high-performing participants on the vo-
cal affect recognition task may possess greater ability to modu-
late the acoustic properties of emotional speech whereas more
impaired participants are unable to do so. This may suggest
that there is a relationship between the recognition and produc-
tion of the acoustic properties that are relevant for signifying
emotion. Indeed, previous research has identified a relationship
between basic auditory processing and vocal affect recognition
[40, 41, 42].

The correlations between jaw movement and motor dex-
terity of the dominant hand may be a manifestation of global
motor impairments in individuals with ASD [43, 44]. Motor
deficits in ASD have been attributed to abnormal sensorimotor
integration [45, 46] due to increased sensory noise [47] or dys-
functional representation of internal models of action [48]. A
previous study has found no differences in finger-tapping accu-
racy between children with ASD and typically-developing chil-
dren but there was increased variability in temporal processing
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parameters in the ASD group [49]. Correlations between jaw
movement and finger tapping suggest global altered temporal
processing in ASD which may also explain poor cross-modal
coordination during emotional speech production [20]. Indeed,
prior work has suggested a coupling between speech motor co-
ordination and fine motor skill systems in ASD [50].

Our preliminary results indicate that speech and facial met-
rics extracted from our APT task administered using Modal-
ity.AI’s NEMSI platform can tap into deficits of various physio-
logical subsystems in children with ASD. The current study was
conducted in a laboratory setting but the conversational plat-
form can also be accessed remotely via a weblink [26]. Thus,
our technology provides the opportunity for clinicians and re-
searchers to monitor children with developmental disorders in
a non-clinical, non-laboratory setting. Since deficits in emotion
recognition have been observed cross-culturally in individuals
with ASD [51], our technology can also be leveraged to compile
a global corpus of speech and facial metrics during affect recog-
nition and production in ASD. A conversational task where par-
ticipants are prompted to produce a monosyllabic “oh” may also
prove useful in a low-functioning population. Furthermore, it
has been shown that children with ASD can be trained to pro-
duce qualitatively-improved emotional facial expressions [52].
Remote monitoring may also facilitate a longitudinal, quantita-
tive analysis of such training paradigms.

Future studies would involve collecting data from larger
cohorts of children with ASD along with data from typically-
developing children to examine whether differences in vocal
and facial affect production between the two groups can be cap-
tured through automatically-extracted metrics.

6. Acknowledgements

This study was supported by the National Institutes of Health
grant K23 DC016637 and Autism Speaks grant 11637 awarded
to Carly Demopoulos.

7. References

[1] A.P. Association et al., Diagnostic and statistical manual of men-
tal disorders (DSM-5®). American Psychiatric Pub, 2013.

[2] M. J. Maenner, K. A. Shaw, J. Baio et al., “Prevalence of autism
spectrum disorder among children aged 8 years—autism and
developmental disabilities monitoring network, 11 sites, united
states, 2016, MMWR Surveillance Summaries, vol. 69, no. 4, p. 1,
2020.

[3] A.S. Winter, C. Fountain, K. Cheslack-Postava, and P. S. Bear-
man, “The social patterning of autism diagnoses reversed in cal-
ifornia between 1992 and 2018,” Proceedings of the National
Academy of Sciences, vol. 117, no. 48, pp. 30295-30 302, 2020.

[4] M. K. Khowaja, A. P. Hazzard, and D. L. Robins, “Sociode-
mographic barriers to early detection of autism: screening and
evaluation using the m-chat, m-chat-r, and follow-up,” Journal of
autism and developmental disorders, vol. 45, no. 6, pp. 1797—
1808, 2015.

[5] R. B. Grossman, L. R. Edelson, and H. Tager-Flusberg, “Emo-
tional facial and vocal expressions during story retelling by chil-
dren and adolescents with high-functioning autism,” Journal of
Speech, Language, and Hearing Research, vol. 56, no. 3, pp.
1035-1044, 2013.

[6] L. M. Lozier, J. W. Vanmeter, and A. A. Marsh, “Impairments
in facial affect recognition associated with autism spectrum dis-
orders: a meta-analysis,” Development and psychopathology,
vol. 26, no. 4, pp. 933-945, 2014.

[7]1 S. Griffiths, C. Jarrold, I. S. Penton-Voak, A. T. Woods, A. L.
Skinner, and M. R. Munafo, “Impaired recognition of basic emo-
tions from facial expressions in young people with autism spec-
trum disorder: Assessing the importance of expression intensity,”

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Journal of autism and developmental disorders, vol. 49, no. 7, pp.
2768-2778, 2019.

S. M. Fosnot and S. Jun, “Prosodic characteristics in children with
stuttering or autism during reading and imitation,” in Proceedings
of the 14th international congress of phonetic sciences, 1999, pp.
1925-1928.

A. Nadig and H. Shaw, “Acoustic and perceptual measurement
of expressive prosody in high-functioning autism: Increased pitch
range and what it means to listeners,” Journal of Autism and De-
velopmental Disorders, vol. 42, no. 4, pp. 499-511, 2012.

D. J. Hubbard, D. J. Faso, P. F. Assmann, and N. J. Sasson,
“Production and perception of emotional prosody by adults with
autism spectrum disorder,” Autism Research, vol. 10, no. 12, pp.
1991-2001, 2017.

K. A. Loveland, B. Tunali-Kotoski, D. A. Pearson, K. A. Brels-
ford, J. Ortegon, and R. Chen, “Imitation and expression of fa-
cial affect in autism,” Development and Psychopathology, vol. 6,
no. 3, pp. 433444, 1994.

D. J. Faso, N. J. Sasson, and A. E. Pinkham, “Evaluating posed
and evoked facial expressions of emotion from adults with autism
spectrum disorder,” Journal of autism and developmental disor-
ders, vol. 45, no. 1, pp. 75-89, 2015.

R. Brewer, E Biotti, C. Catmur, C. Press, F. Happé, R. Cook,
and G. Bird, “Can neurotypical individuals read autistic facial ex-
pressions? atypical production of emotional facial expressions in
autism spectrum disorders,” Autism Research, vol. 9, no. 2, pp.
262-271, 2016.

F. B. Pokorny, B. Schuller, P. B. Marschik, R. Brueckner,
P. Nystrom, N. Cummins, S. Bolte, C. Einspieler, and T. Falck-
Ytter, “Earlier identification of children with autism spectrum
disorder: An automatic vocalisation-based approach,” in INTER-
SPEECH, 2017, pp. 309-313.

E. Zane, Z. Yang, L. Pozzan, T. Guha, S. Narayanan, and R. B.
Grossman, “Motion-capture patterns of voluntarily mimicked dy-
namic facial expressions in children and adolescents with and
without asd,” Journal of autism and developmental disorders,
vol. 49, no. 3, pp. 1062-1079, 2019.

S. Cho, M. Liberman, N. Ryant, M. Cola, R. T. Schultz, and
J. Parish-Morris, “Automatic detection of autism spectrum disor-
der in children using acoustic and text features from brief natural
conversations.” in INTERSPEECH, 2019, pp. 2513-2517.

M. Li, D. Tang, J. Zeng, T. Zhou, H. Zhu, B. Chen, and
X. Zou, “An automated assessment framework for atypical
prosody and stereotyped idiosyncratic phrases related to autism
spectrum disorder,” Computer Speech & Language, vol. 56,
pp- 80-94, 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0885230817303601

M. Leo, P. Carcagni, C. Distante, P. Spagnolo, P. L. Mazzeo, A. C.
Rosato, S. Petrocchi, C. Pellegrino, A. Levante, F. De Lume et al.,
“Computational assessment of facial expression production in asd
children,” Sensors, vol. 18, no. 11, p. 3993, 2018.

A. Bangerter, M. Chatterjee, J. Manfredonia, N. V. Manyakov,
S. Ness, M. A. Boice, A. Skalkin, M. S. Goodwin, G. Dawson,
R. Hendren et al., “Automated recognition of spontaneous facial
expression in individuals with autism spectrum disorder: parsing
response variability,” Molecular autism, vol. 11, pp. 1-15, 2020.
T. Sorensen, E. Zane, T. Feng, S. Narayanan, and R. Grossman,
“Cross-modal coordination of face-directed gaze and emotional
speech production in school-aged children and adolescents with
asd,” Scientific reports, vol. 9, no. 1, pp. 1-11, 2019.

M. D. Samad, N. Diawara, J. L. Bobzien, J. W. Harrington, M. A.
Witherow, and K. M. Iftekharuddin, “A feasibility study of autism
behavioral markers in spontaneous facial, visual, and hand move-
ment response data,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 26, no. 2, pp. 353-361, 2017.
C.-P. Chen, X.-H. Tseng, S. S.-F. Gau, and C.-C. Lee, “Computing
multimodal dyadic behaviors during spontaneous diagnosis inter-
views toward automatic categorization of autism spectrum disor-
der” in INTERSPEECH, 2017, pp. 2361-2365.

J. Chen, M. Liao, G. Wang, and C. Chen, “An intelligent mul-
timodal framework for identifying children with autism spec-
trum disorder,” International Journal of Applied Mathematics and
Computer Science, vol. 30, no. 3, pp. 435-448, 2020.


https://doi.org/10.1101/2021.04.10.439293
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.10.439293; this version posted April 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]
[38]

[39]

D. Suendermann-Oeft, A. Robinson, A. Cornish, D. Habberstad,
D. Pautler, D. Schnelle-Walka, F. Haller, J. Liscombe, M. Neu-
mann, M. Merrill et al., “Nemsi: A multimodal dialog system for
screening of neurological or mental conditions,” in Proceedings
of the 19th ACM International Conference on Intelligent Virtual
Agents, 2019, pp. 245-247.

M. Neumann, O. Roesler, D. Suendermann-Oeft, and V. Rama-
narayanan, “On the utility of audiovisual dialog technologies and
signal analytics for real-time remote monitoring of depression
biomarkers,” in Proceedings of the First Workshop on Natural
Language Processing for Medical Conversations, 2020, pp. 47—
52.

V. Ramanarayanan, O. Roesler, M. Neumann, D. Pautler, D. Hab-
berstad, A. Cornish, H. Kothare, V. Murali, J. Liscombe,
D. Schnelle-Walka et al., “Toward remote patient monitoring of
speech, video, cognitive and respiratory biomarkers using multi-
modal dialog technology,” Proc. Interspeech 2020, pp. 492493,
2020.

C. Lord, S. Risi, L. Lambrecht, E. H. Cook, B. L. Leventhal, P. C.
DiLavore, A. Pickles, and M. Rutter, “The autism diagnostic ob-
servation schedule—generic: A standard measure of social and
communication deficits associated with the spectrum of autism,”
Journal of autism and developmental disorders, vol. 30, no. 3, pp.
205-223, 2000.

C. Lord, M. Rutter, and A. Le Couteur, “Autism diagnostic
interview-revised: a revised version of a diagnostic interview
for caregivers of individuals with possible pervasive developmen-
tal disorders,” Journal of autism and developmental disorders,
vol. 24, no. 5, pp. 659-685, 1994.

C. Reynolds and R. Kamphaus, “Behavior assessment system
for children—third edition (basc-3),” Bloomington, MN: Pearson,
2015.

S. Nowicki and M. P. Duke, “Individual differences in the nonver-
bal communication of affect: The diagnostic analysis of nonverbal
accuracy scale,” Journal of Nonverbal behavior, vol. 18, no. 1, pp.
9-35, 1994.

K. M. Baum and S. Nowicki, “Perception of emotion: Measuring
decoding accuracy of adult prosodic cues varying in intensity,”
Journal of Nonverbal Behavior, vol. 22, no. 2, pp. 89-107, 1998.

B. L. Brooks, E. M. Sherman, and E. Strauss, “Nepsy-ii: a devel-
opmental neuropsychological assessment,” Child Neuropsychol-
ogy, vol. 16, no. 1, pp. 80-101, 2009.

R. M. Reitan and D. Wolfson, The Halstead-Reitan neuropsycho-
logical test battery: Theory and clinical interpretation. —Reitan
Neuropsychology, 1985, vol. 4.

R. Reitan and D. Wolfson, “The halstead-reitan cognitive test bat-
tery: Theory and clinical interpretation,” 1993.

R. K. Heaton, I. Grant, and C. G. Matthews, “Differences in neu-
ropsychological test performance associated with age, education,
and sex,” Neuropsychological assessment of neuropsychiatric dis-
orders, vol. 1, pp. 100-120, 1986.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery
rate: a practical and powerful approach to multiple testing,” Jour-
nal of the Royal statistical society: series B (Methodological),
vol. 57, no. 1, pp. 289-300, 1995.

E. H. Wiig, W. A. Secord, and E. Semel, Clinical evaluation of
language fundamentals: CELF-5. Pearson, 2013.

D. Wechsler, WISC-V: Technical and interpretive manual.
Pearson, Incorporated, 2014.

I. R. Murray and J. L. Arnott, “Toward the simulation of emo-
tion in synthetic speech: A review of the literature on human vo-

NCS

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

cal emotion,” The Journal of the Acoustical Society of America,
vol. 93, no. 2, pp. 1097-1108, 1993.

M. D. Lerner, J. C. McPartland, and J. P. Morris, “Multimodal
emotion processing in autism spectrum disorders: an event-related
potential study,” Developmental cognitive neuroscience, vol. 3,
pp. 11-21, 2013.

C. Demopoulos, J. Hopkins, B. E. Kopald, K. Paulson, L. Doyle,
W. E. Andrews, and J. D. Lewine, “Deficits in auditory process-
ing contribute to impairments in vocal affect recognition in autism
spectrum disorders: A meg study.” Neuropsychology, vol. 29,
no. 6, p. 895, 2015.

C. Demopoulos and J. D. Lewine, “Audiometric profiles in autism
spectrum disorders: Does subclinical hearing loss impact commu-
nication?”” Autism Research, vol. 9, no. 1, pp. 107-120, 2016.

E. M. Jansiewicz, M. C. Goldberg, C. J. Newschaffer, M. B.
Denckla, R. Landa, and S. H. Mostofsky, “Motor signs distinguish
children with high functioning autism and asperger’s syndrome
from controls,” Journal of autism and developmental disorders,
vol. 36, no. 5, pp. 613-621, 2006.

X. Ming, M. Brimacombe, and G. C. Wagner, ‘“Prevalence of mo-
tor impairment in autism spectrum disorders,” Brain and Devel-
opment, vol. 29, no. 9, pp. 565-570, 2007.

J. K. Kern, M. H. Trivedi, C. R. Garver, B. D. Grannemann,
A. A. Andrews, J. S. Savla, D. G. Johnson, J. A. Mehta, and J. L.
Schroeder, “The pattern of sensory processing abnormalities in
autism,” Autism, vol. 10, no. 5, pp. 480-494, 2006.

C. Demopoulos, H. Kothare, D. Mizuiri, J. Henderson-Sabes,
B. Fregeau, J. Tjernagel, J. F. Houde, E. H. Sherr, and S. S.
Nagarajan, “Abnormal speech motor control in individuals with
16pl1. 2 deletions,” Scientific reports, vol. 8, no. 1, pp. 1-10,
2018.

E. Gowen and A. Hamilton, “Motor abilities in autism: a review
using a computational context,” Journal of autism and develop-
mental disorders, vol. 43, no. 2, pp. 323-344, 2013.

C. C. Haswell, J. Izawa, L. R. Dowell, S. H. Mostofsky, and
R. Shadmehr, “Representation of internal models of action in the
autistic brain,” Nature neuroscience, vol. 12, no. 8, pp. 970-972,
2009.

C. Morimoto, E. Hida, K. Shima, and H. Okamura, “Temporal
processing instability with millisecond accuracy is a cardinal fea-
ture of sensorimotor impairments in autism spectrum disorder:
analysis using the synchronized finger-tapping task,” Journal of
autism and developmental disorders, vol. 48, no. 2, pp. 351-360,
2018.

T. Talkar, J. R. Williamson, D. J. Hannon, H. M. Rao, S. Yu-
ditskaya, K. T. Claypool, D. Sturim, L. Nowinski, H. Saro,
C. Stamm, M. Mody, C. J. Mcdougle, and T. F. Quatieri, “As-
sessment of speech and fine motor coordination in children with
autism spectrum disorder,” IEEE Access, vol. 8, pp. 127535-
127 545, 2020.

S. Fridenson-Hayo, S. Berggren, A. Lassalle, S. Tal, D. Pigat,
S. Bolte, S. Baron-Cohen, and O. Golan, “Basic and complex
emotion recognition in children with autism: cross-cultural find-
ings,” Molecular autism, vol. 7, no. 1, pp. 1-11, 2016.

1. Gordon, M. D. Pierce, M. S. Bartlett, and J. W. Tanaka, “Train-
ing facial expression production in children on the autism spec-
trum,” Journal of autism and developmental disorders, vol. 44,
no. 10, pp. 24862498, 2014.


https://doi.org/10.1101/2021.04.10.439293
http://creativecommons.org/licenses/by-nc-nd/4.0/

