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ABSTRACT

The conventional way of boosting the predictive power of polygenic scores is to increase the GWAS sample size by

meta-analyzing GWAS results of multiple cohorts. In this paper, we challenge this convention. Through simulations, we

show that Instrumental Variable (IV) regression using two polygenic scores constructed from independent GWAS summary

statistics outperforms the typical Ordinary Least Squares (OLS) model employing a single meta-analysis based polygenic

score in terms of bias, root mean squared error, and statistical power. We verify the empirical validity of the simulations by

predicting educational attainment (EA) and height in a sample of siblings from the UK Biobank. We show that IV regression

between-families approaches the SNP-based heritability, and improves the predictive power of polygenic scores by 12%

(height) to 22% (EA). Furthermore, IV regression within-families provides the tightest lower bound for the direct genetic effect,

increasing the lower bound for EA from 2.0% to 3.4%, and for height from 28.9% to 37.7%.
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Introduction

Genome-Wide Association Studies (GWASs) have been successfully used to analyze the genetic architecture of various diseases

and human traits (1). These GWASs have firmly established that, with few exceptions, most human (behavioral) traits are

highly “polygenic” – that is, influenced by many individual genetic variants, each with a very small effect size (the “Fourth

Law” of behavior genetics; 2). A natural consequence of this finding has been the widespread adoption of so-called polygenic

scores (PGSs), weighted sums aggregating the small effects of numerous genetic variants (single-nucleotide polymorphisms;

SNPs), which enable out-of-sample genetic prediction of complex traits (3; 4; 5). However, an estimated PGS is a noisy proxy

for the true (latent) PGS because, amongst other reasons, the GWAS underlying the construction of the PGS is based on a finite

sample (6).

It is common practice to meta-analyze GWAS summary statistics from as many cohorts as possible to foster the identification

of genome-wide significant SNPs (1). Through the law of large numbers, this strategy has also proven to be very effective in

reducing measurement error in the PGS and thus to boost the power and accuracy for analyses involving PGSs (4). PGSs are

now able to explain a non-negligible proportion of the variance in health and behavioral traits. Nevertheless, the predictive

power of today’s PGSs is still substantially smaller than the SNP-based heritability estimates, which constitute an upper bound

for the predictive power of PGSs (7).1 For example, the current maximum predictive power, or variance explained in the

phenotype (R2), of the educational attainment (EA) PGS is about 12% (11) whereas the SNP-based heritability is estimated to

be in the range 22-28% (e.g., 12; 13; 14).2

The expected predictive power of a PGS in a linear regression model is given by (15; 16): R2 = h2
SNP

(

1+M/
(

N ×h2
SNPs

))−1
,

where h2
SNPs denotes the SNP-based heritability, M ∼ 70,000 is a population-genetic parameter corresponding to the number

of effective loci (17), and N the discovery sample size. Figure 1 shows the relation between the predicted R2 and the discov-

ery sample size N, assuming a SNP-based heritability h2
SNP = 0.50 (corresponding to the phenotype height, (18; 19)), and

h2
SNP = 0.25 (the mid-point of the range 22-28% estimated for EA (e.g., 12; 13; 14)). The figure shows that there are significant

diminishing returns to increases in GWAS sample size. Whereas the predictive power of the PGS increases rapidly with the

sample size when going from a (meta-analyzed) discovery sample size of a few thousands to a sample of around 1 million

individuals, the returns to sample size in terms of predictive power decrease for larger samples. For EA, it takes a sample of ∼1

million to construct a PGS explaining 0.20, but it would take a 7-fold increase in discovery sample size to achieve an R2 of 0.24.

For many traits the discovery samples are currently around this turning point of ∼1 million (e.g., 11, for EA)3 and so reducing

measurement error in the conventional way of meta-analyzing even larger discovery cohorts has rapidly diminishing payoffs.

Reducing measurement error in PGSs is important for two main reasons. First, reducing measurement error in the PGS

will provide more accurate estimates and increase statistical power in analyses that include a PGS. Taking the EA PGS as

an example, a non-exhaustive list of applications includes (i) studies estimating the pathways through which the EA PGS

influences lifetime outcomes including speech and reading skills (e.g., 20) or wealth accumulation (e.g., 21); (ii) studies

that estimate direct genetic effects using within-family estimation to understand the mechanisms through which molecular

differences translate into education differences (e.g., 22); (iii) studies that investigate gene-environment interplay in EA (e.g.,

23; 24), and (iv) studies including a PGS as a control variable to reduce omitted variable bias or improve precision (e.g., 25).

1The SNP-based heritability can be obtained using Linkage Disequilibrium (LD)-score regression (LDSC; 8) or Genome-based Restricted Maximum

Likelihood (GREML; 9). We follow (10) and define narrow-sense heritability, h2
f amily, as the heritability estimate obtained in family-based (twin) studies, and

SNP-based heritability, h2
SNPs, as the proportion of phenotypic variance accounted for by SNPs on a standard genotyping chip. The GWAS-based heritability,

h2
GWAS, is the variance accounted for by genetic variants identified in a GWAS. That is, the R2 in a regression of the outcome of interest on the PGS. So

h2
f amily ≥ h2

SNPs ≥ h2
GWAS.

2This difference between the SNP-based and GWAS-based heritability is referred to as ‘hidden heritability’ (e.g., 10). This part of heritability is ‘hidden’

because it will get smaller when GWAS discovery sample sizes increase.
3Lee et al. (11) construct a PGS explaining ∼12%. This number is lower than theoretically predicted because of, amongst others reasons, the inclusion of

samples from various countries in the GWAS meta-analysis.
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Figure 1. Predicted R-squared (variance explained) of the PGS versus the sample size of the discovery sample in the GWAS

for height (SNP-based heritability around 0.50) and EA (SNP-based heritability around 0.25).

Second, measurement error in the PGS may lead to misclassification in personalized medicine and screening decisions. For

example, when screening for cardiovascular disease is partly based upon values of the PGS (e.g., 26), measurement error in the

PGS may lead to some individuals being erroneously left out of screening procedures whereas others are erroneously included

(e.g., 27).

In this paper, we use analytical derivations, simulations, and empirical data, to derive the conditions under which an

Instrumental Variable (IV) approach outperforms the convention of using the meta-analysis based PGS. Among the rapidly

increasing body of papers exploiting PGSs in medicine, biology and the social sciences, the default still seems to be using a

meta-analysis based PGS, and very few apply a correction for measurement error. Due to an increase in the number of cohorts

releasing GWAS summary statistics sufficiently precise to compute PGSs with non-negligible predictive power, the comparison

between IV and OLS on basis of a meta-analysis based PGS is a timely assessment. For example, as we demonstrate in this

paper, the sample sizes of the UK Biobank (UKB) and 23andMe, Inc. are individually large enough to generate a PGS for EA

with a predictive power of 5% (23andMe) to 7% (UKB). The main contribution of this paper is then to answer a simple question:

what should an applied researcher do to maximize the predictive power of the PGS? Meta-analyze the GWAS summary statistics

from UKB and 23andMe to construct a single PGS, or apply IV using two ‘independently’ constructed PGSs?

A few recent papers have laid out the advantages of a measurement error correction and either suggested OLS estimates that

have undergone some reasonable disattenuation (28; 29) or IV estimation (17), in order to deal with measurement error. Our

paper builds upon and extends the approach developed by DiPrete et al. (17), who first suggested the IV approach to reduce

measurement error in the PGS as a by-product of their Genetic Instrumental Variable (GIV) method. The intuition of the IV

approach is to split the GWAS discovery sample to obtain two PGSs that both proxy the same underlying ‘true’ PGS. Since the

measurement error in the two PGSs is plausibly independent, we will refer to these PGSs as ‘independent’ PGSs. In the case of

no measurement error, theoretically the correlation between the two PGSs should approach 1. The IV approach then infers

the amount of measurement error through the empirical correlation between the two independent PGSs, and in turn uses this

information to correct (or ‘scale’) the observed association between the PGS and the phenotype.

Our contribution over (17) is threefold. First, we analytically derive an alternative way to standardize an estimated PGS to

estimate a consistent standardized effect of the true latent PGS on the phenotype when using IV. This standardization ensures
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that the square of the standardized effect can be interpreted as the GWAS-based heritability without further ex post correction.

Second, we avoid the arbitrary choice of selecting one PGS as the independent variable and the other as IV by using the recently

developed Obviously-Related Instrumental Variables (ORIV) technique (30). Third, and arguably foremost, we establish the

conditions and a practical rule of thumb under which our ORIV estimator outperforms a meta-analysis PGS in terms of (i) bias,

(ii) root mean squared error (RMSE), and (iii) statistical power.

Our paper also closely relates to the pioneering work by Becker et al. (29). These authors not only launched a repository

of PGSs, but additionally developed a Python tool to disattenuate between-family estimates of the PGS on a phenotype on

basis of external information on the SNP-based heritability (see also (28)). In the univariate case, the Becker et al. approach

essentially adopts the point estimate and standard error of the SNP-based heritability on basis of GREML or LDSC as the ‘true’

predictive power of the PGS. In terms of performance, both ORIV as well as the Becker et al. correction produce consistent

estimators when the respective assumptions are met. The choice between the two is therefore mainly dependent on how one

judges the assumptions, as well as the relative precision of the estimates. There are however two important advantages of the

ORIV approach. First, from a practical point of view, an advantage of (OR)IV is that it can be implemented in all standard

statistical software packages. Second, and more importantly, ORIV does not require external information on the SNP-based

heritability. This feature makes ORIV particularly attractive for within-family studies estimating direct genetic effects. After

all, when estimating direct genetic effects, SNP-based heritability estimates do not provide a theoretical upper bound on the

predictive power of the PGS as they also incorporate indirect genetic effects from relatives, assortative mating and population

stratification (e.g., 31). In other words, external information on the level of attenuation is typically not available when the

interest is in direct genetic effects.4 In contrast, (OR)IV is more flexible since it will also disattenuate PGS estimates in case no

or very imprecise external information on the ‘true’ level of disattenuation is available.

We reach four main conclusions. First, when the prediction sample is sufficiently large, the genetic correlation between the

discovery samples is close to 1, and the correlation between the independent PGSs is not too low, then ORIV outperforms

meta-analysis in terms of bias, root mean squared error (RMSE), and power. More specifically, ORIV outperforms meta-analysis

when

N > F∗
(

1

corr(PGS1,PGS2)2
−1

)

(1)

where N denotes the size of the prediction sample, F∗ denotes a given target value of the F-statistic in the first stage of the ORIV

regression, and PGS1 and PGS2 denote the independently constructed PGSs. The intuition is that ORIV provides consistent,

yet biased estimates, with the bias of ORIV inversely proportional to the first-stage F-statistic (e.g., 33; 34). The first stage

in this context is a regression of one PGS on the other, and – since the PGSs are typically standardized to have mean 0 and

standard deviation 1 – it simply reflects the correlation between the two PGSs. As a result, the performance of ORIV depends

on the correlation between the two independent PGSs, and on the sample size of the prediction sample. Using a simulation

study that is calibrated on the empirical predictive power of the PGSs for EA, our results suggest that the commonly used

Staiger and Stock (34) threshold of F∗ = 10 also applies here. Therefore, equation (1) with F∗ = 10 provides a practical

rule-of-thumb when ORIV outperforms meta-analysis in terms of lower bias, lower RMSE, and higher statistical power. That

is, after rearranging terms of equation (1), when corr(PGS1,PGS2)>
√

10/(N +10).

Second, our simulations show that the application of ORIV in a between-family setting results in the consistent estimation

of SNP-based heritability when all assumptions are satisfied.5 Our empirical illustration using EA in the UK Biobank sibling

4Young et al. (32) developed Related Disequilibrium Regression (RDR) to estimate heritability that avoids confounding from indirect genetic effects. The

method however requires genetic data from unrelated individuals and both of their parents, samples of which are currently very rare. Moreover, similar to other

heritability estimators, it assumes the absence of gene-environment interplay while empirical evidence shows this may be important (e.g., 23; 24).
5The main assumption is that the two PGSs proxy for the same underlying ‘true’ PGS, and their sources of measurement error are independent. See the

Methods section for more details about the assumptions.
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sample shows that applying ORIV in a between-family design increases the estimated GWAS-heritability from 0.076 (s.e.

0.003) to 0.114 (s.e. 0.004). This estimated GWAS-heritability is somewhat below most SNP-based heritability estimates

reported in the literature, but in our sample the SNP-based heritability for EA is estimated to be 0.155 (s.e. 0.019) using

GREML and 0.160 (s.e. 0.028) using LDSC. In other words, ORIV recovers a substantial portion of the SNP-based heritability.

Similar conclusions can be drawn for body height with the estimated GWAS-heritability rising from 0.340 (s.e. 0.006) (OLS)

to 0.426 (s.e. 0.008) (ORIV), and with the SNP-based heritability estimated as 0.530 (s.e. 0.020) using GREML and 0.511

(s.e. 0.041) using LDSC. Hence, we empirically confirm that the ORIV estimates more closely approximate the SNP-based

heritability than OLS estimates on basis of a meta-analysis based PGS.

Third, when comparing the ORIV estimator to the attenuation-corrected OLS estimator of Becker et al. (29), we find that

both estimators are consistent when the assumptions of the respective methods are satisfied. The relative performance of each

therefore depends on the relative sizes of the ORIV standard error versus the standard error of the SNP-based heritability,

which the Becker et al. approach relies on. In our empirical application, we find the ORIV estimates to be slightly below the

SNP-based heritability estimates (i.e., there is some downward bias in the ORIV results). However, the ORIV estimates are

more precise (i.e., their standard errors are relatively small compared to the SNP-based heritability estimate). Hence, the choice

between ORIV and the Becker et al. correction in between-family analyses is subject to a bias-variance trade-off and has to be

made on a case-by-case basis depending on the plausibility of assumptions and the bias-variance trade-off in the application at

hand.

Fourth, we establish that ORIV is the most practical tool for within-family models by facilitating the estimation of the

tightest lower-bound on the ‘direct’ genetic effect. Within-family estimates are the gold standard for estimating direct genetic

effects (i.e., estimates free from bias due to genetic nurture and population stratification, see e.g., (22)). This is because the

variation in genotypes across siblings is randomly assigned at conception according to Mendel’s First Law. However, as we

explain in the Methods section, when using PGSs to uncover direct genetic effects, within-family estimates are downward

biased due to measurement error in the PGS, and indirect genetic effects from parents and others relatives (35; 36; 37). As a

result, within-family estimates of the effect of the PGS on an outcome constitute a clear lower bound on the direct genetic effect.

While the bias due to indirect genetic effects can only be overcome by controlling for parental genotype in the discovery GWAS,

random measurement error can be overcome by ORIV. Therefore, applying ORIV in a within-family design is currently the best

way to estimate a tighter lower bound on the direct genetic effect.6 In our empirical applications in the UKB, our within-family

IV estimates are respectively 30% (EA) and 14% (height) higher than the effect sizes obtained using meta-analysis. Moreover,

it also allows estimating a lower bound on the ‘direct GWAS-based heritability’, that is, the contribution of SNPs to variation in

the outcomes net of indirect genetic effects such as genetic nurture. In our data, we are able to increase this lower bound for EA

from 2.0% to 3.4%, and for height from 28.9% to 37.7%.

Results

Simulation study

Our simulation compares the performance of meta-analysis and ORIV in estimating the standardized effect of the PGS on an

outcome variable. We vary the sample size of the prediction sample and the measurement error in the PGSs. The simulations are

calibrated based on educational attainment (EA), but we show that our conclusions hold for other complex traits at varying levels

of heritability. The SNP-based heritability serves as the natural upper bound for the R2 of the PGS (7), which is approximately

equal to 25% for EA in most samples (12; 13; 14). This corresponds to a correlation coefficient of 0.5 between the PGS and the

outcome (i.e., the square root of the incremental R2). Hence, we assume that the standardized outcome EA and the standardized

true latent PGS∗ are drawn from a bivariate standard normal distribution with correlation 0.5.

6To the best of our knowledge, only Kweon et al. (38) have previously applied IV in a within-family design.
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In practice, the true (latent) PGS∗ is not observed, and we have to work with approximations of the latent PGS that suffer

from measurement error. In particular, we assume that an estimated PGS is equal to the true latent PGS∗ plus some additive

classical measurement error ν (following, e.g., 39):

PGS = PGS∗+ν (2)

with ν ∼ N
(

0,σ2
ν

)

. In order to model a realistic variance for the measurement error σ2
ν , we calibrate the simulations based

on the predictive power of existing PGSs for EA. Based on the attenuation bias arising from measurement error in a linear

regression of the outcome on the PGS, we can derive that (see equation 14 in the Methods section for a derivation):

σν =

√

σ2
PGS∗

(

β 2
st

β̂ 2
st

−1

)

(3)

where σ2
PGS∗ is the variance of the true latent PGS, βst is the true standardized coefficient (the coefficient resulting from a

regression in which both the dependent variable and the true PGS are standardized to have mean 0 and standard deviation

1), and β̂st is an estimated standardized coefficient from the literature. We derive the ‘true’ βst from the square root of the

SNP-based heritability estimate, and we infer β̂st from the square root from an estimated incremental R2 in the literature.7

In the simulations, we set the true standardized effect size to βst = 0.5 and σ2
PGS∗ = 1. These choices are however largely

inconsequential, because we derive in the Methods section that the bias of both OLS (meta-analysis) and ORIV depends on the

ratio

β̂ 2
st

β 2
st

=
ĥ2

GWAS

h2
SNP

≡ “Explained SNP-based heritability” (4)

In words, the performance of OLS and ORIV is determined by how closely the estimated GWAS-based heritability on basis

of a given PGS (i.e., the square of the estimated standardized effect) approximates the SNP-based heritability h2
SNP. We coin

this term the “explained SNP-based heritability”. Even though we analytically show that the performance of OLS and ORIV

depends on the ratio of coefficients rather than on the absolute values, in the Supplementary Information we investigate the

sensitivity of our results with respect to absolute values of βst and σ2
PGS∗ .

In each simulation trial, we generate a ‘meta-analysis PGS’ with β̂st = 0.35, corresponding to an incremental R2 of 12% as

in the third and latest GWAS on EA (11), and corresponding to an explained SNP-based heritability of 0.352

0.52 = 49%. In addition,

to allow for the ORIV estimation, we construct two independent PGSs. In order to make a fair comparison, we simulate

the two independent PGSs with a lower predictive power than the meta-analysis PGS. More specifically, we sequentially

simulate two independent PGSs, each with values β̂st = 0.25 (corresponding to the incremental R2 of ∼ 7.0% that we obtain

based on our own GWAS in UKB), β̂st = 0.18 (corresponding to the incremental R2 of 3.2% as in the second GWAS of EA

(13)), and β̂st = 0.14 (corresponding to the R2 of ∼ 2% found in the first GWAS on EA (40)). We run 1,000 replications of

the above simulation set-up, each time performing (i) a linear regression of the outcome on the meta-analysis PGS, and (ii)

Obviously-Related Instrumental Variables (ORIV) estimation using the two independent PGSs as instruments for each other.

We refer to the Methods section for details on the estimation. The sample sizes of the prediction sample we investigate are

1,000, 2,000, 3,000, 4,000, 5,000, 10,000 and 20,000.

The performance indicators we use are:

1. The relative bias of the estimator, defined by
β̂st−βst

βst
.

7The incremental R2 is defined as the absolute increase in R2 when the PGS is added in a regression, compared to a regression with only a standard set of

control variables. For example, the incremental R2 of the PGS for EA in the latest large-scale GWAS of EA (EA3) is ∼12% (11), and thus β̂st =
√

0.12 ≈ 0.35.

Then, if we assume that σPGS∗ = 1, the implied standard deviation of measurement error of this estimate is σν ,EA3 =
√

(0.5/0.35)2 −1 ≈ 1.02.
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2. The Root Mean Squared Error (RMSE), defined by

√

(

β̂st −βst

)2

, which can be decomposed as the sum of the variance

of the estimated β̂st and the squared bias.

3. Statistical power, defined as the probability that the test rejects the null hypothesis when the alternative hypothesis is

true. Given that our data-generating process simulates a non-zero standardized effect size, we report the fraction of

replications in which we correctly reject the null hypothesis of a zero standardized effect (the empirical power).

The relative bias of the estimator is our first performance indicator, because meta-analysis will produce biased estimators by

construction. However, so does IV with the bias in IV being inversely proportional to the first-stage F-statistic (33; 41). As we

derive in the Methods section, in this context, the first stage F-statistic is given by (see equation 28 for a derivation):

F =
corr(PGS1,PGS2)

2(N −2)

1− corr(PGS1,PGS2)2
. (5)

We therefore analyze the relative bias of the two approaches when the sample size and correlation between the PGSs varies. The

correlation between the two PGSs, which we denote by ρ , is determined by how closely the independent PGSs approximate the

true PGS (i.e., the explained SNP-based heritability, see equations 15 and 18 in the Methods section). Therefore, even though

we choose to present our results mainly in terms of correlation between the two independent PGSs (a value which is easy to

compute in practice), the results can easily be translated in terms of the explained SNP-based heritability. Apart from bias, we

also study RMSE and statistical power. We do this because standard errors in Two-Stage Least Squares regression (the tool for

IV estimation) tend to be larger than in Ordinary Least Squares regression (the tool for meta-analysis) even in larger samples

where IV produces consistent estimates. Hence, for a fair comparison, we additionally study the RSME and statistical power.

These two performance indicators both reflect bias as well as precision.

Although we do not directly implement the Becker et al. (29) approach in our simulations, it can be thought of as an

estimator with zero bias and an RMSE equal to the standard error of the square root of the SNP-based heritability estimate (see

Methods section for details). Hence, when contrasting ORIV with the Becker et al. approach, one should compare the RMSE

of the ORIV estimate to the standard error of the square root of the SNP-based heritability estimate.

Figures 2a-2d depict our first set of simulation results, comparing meta-analysis and ORIV in terms of relative bias (top left,

2a), RMSE (top right, 2b), and statistical power (bottom left, 2c) for prediction sample sizes varying from 1,000 to 20,000

individuals. In these figures, the meta-analysis results are calibrated using the EA3 GWAS results (incremental R2 ∼ 12%). We

iteratively reduce the correlation ρ between the two independent PGSs used in ORIV estimation from 25% (corresponding to

the R-squared of 7% we obtain based on our own UKB GWAS results) to 8% (corresponding to an R-squared of 2% as found in

the EA1 GWAS). We maintain the same predictive power across the two independent PGSs. In the bottom-right panel, we

present the average first-stage F-statistics for the three ORIV estimations (2d).

In terms of bias, it is clear that ORIV outperforms meta-analysis. With relatively strong predictive power of the independent

PGSs, ORIV produces estimates with very little bias even in relatively small prediction samples of only 1,000 individuals. In

contrast, irrespective of the prediction sample size, meta-analysis substantially underestimates the effect. It bears repeating that

simply increasing the sample size of the prediction sample will not help to overcome the attenuation bias of the meta-analyzed

score (30; 42). In contrast, equation (5) and Figure 2a show that the bias of IV shrinks when the size of the prediction sample

increases. This difference in bias between the estimators is to be expected, and so it is informative to additionally study

performance measures that take into account precision. Here, a slightly more nuanced picture emerges. When the correlation

between the two independent PGSs is only 0.08 – corresponding to a prediction R2 of around 2% and an explained SNP-based

heritability of 8% – and the prediction sample has fewer than ∼5,000 individuals, then the RMSE is lower and statistical power

is higher in OLS (meta-analysis) than in ORIV. Whenever the prediction sample is beyond 5,000 individuals and the correlation

between the independent PGSs is beyond 8%, then ORIV always outperforms meta-analysis in terms of all our statistical
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Figure 2. Relative bias, Root Mean Squared Error (RMSE), Statistical power, and first-stage F-statistic for meta-analysis

(OLS) and ORIV for varying correlations (ρ) between the ‘independent’ PGSs. The simulation results are based on 1,000

replications.

criteria with the difference increasing when the prediction sample size grows. Interestingly, these cases correspond roughly to

the first-stage F-statistic being above 10 (bottom horizontal line in Figure 2d), a well-known rule of thumb in the IV literature

(34).

A central assumption of the ORIV estimation is that the relative variance of measurement error is the same for each PGS

(see the Methods section for more details), and that the genetic correlation between the two discovery samples is equal to one.

This assumption is likely to be satisfied when the GWAS discovery sample is randomly split into two equally sized parts (17).

It may be less likely to hold in case the PGSs are constructed using non-equally sized GWAS discovery samples stemming

from different environments (e.g., countries). Therefore, in Figures 3a-3d we investigate the performance of meta-analysis and

ORIV for the case where the meta-analysis PGS remains predictive at a R2 =12%, but where the first independent PGS has a

predictive power of R2 =7% (corresponding to the PGS based on our own GWAS in UKB), and the second independent PGS

has an R2 of either 5% (corresponding to the predictive power of the 23andMe PGS) or 2% (corresponding to the predictive

power of the EA2 score (13)).

Figures 3a and 3b show the bias and RMSE. When there is a substantial difference in predictive power across two
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Figure 3. Relative bias, Root Mean Squared Error (RMSE), Statistical power, and first-stage F-statistic for meta-analysis

(OLS) and ORIV with varying predictive power of the ‘independent’ PGSs used in ORIV. The simulation results are based on

1,000 replications.
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independent PGSs – e.g., one PGS with R2 = 7%, and the other with R2 = 2% – a modest bias in the ORIV estimates remains

even when the sample size increases, since the assumption of equal measurement error variance is not satisfied. Still, however,

the bias and the RMSE of the ORIV estimates are relatively low when compared with the OLS meta-analysis results. Statistical

power is identical for the two methods. We therefore conclude that ORIV estimation is not very sensitive to small violations of

the assumption that the measurement error should have equal variance across the two independent PGSs. In the Supplementary

Information, we further vary the arbitrarily chosen values of βst and σPGS∗ , and we show that our conclusions are not affected. In

fact, consistent with our analytical derivations, the bias of meta-analysis depends largely on the explained SNP-based heritability

rather than the absolute value of βst (see equation 4), and the performance of ORIV depends largely on the correlation between

the two PGSs and the prediction sample size. Hence, it is not surprising that the absolute values of βst and σPGS∗ do not play a

major role. In the Supplementary Information, we also compare the performance of ORIV versus regular IV where one PGS is

arbitrarily selected as an IV for the other (17). Since both estimators are consistent, it is no surprise that the bias is very similar.

Still, with respect to the RMSE and to a lesser extent statistical power, we do see non-negligible precision gains for ORIV

versus regular IV.

In sum, when plugging in the threshold value of F∗ = 10 and rearranging terms in equation (5), a reasonable rule of thumb

on basis of these simulations is that ORIV outperforms meta-analysis whenever corr(PGS1,PGS2) >
√

10/(N +10). To

provide some more feeling for what this rule of thumb implies, in a relatively large sample of 20,000 individuals the correlation

between the two independent PGSs should exceed 0.02. In a modest sample of 1,000 individuals, the correlation between the

two independent PGSs should be at least 0.10.8 It is harder to provide a concrete rule-of-thumb for when ORIV estimates

outperform disattenuated OLS estimators such as the one derived by Becker et al. (29) since there is typically a bias-variance

trade-off. Using the RMSE as the relevant metric, ORIV outperforms the Becker et al. approach when the RMSE of the ORIV

estimates is below the standard error of the square root of the SNP-based heritability estimate.

Empirical illustration

In this section, we use OLS (meta-analysis) and ORIV to predict EA and height using PGSs in a subsample of European

ancestry siblings in the UK Biobank (N = 35,282). We first residualized the outcomes EA and height for sex, year of birth,

month of birth, sex interacted with year of birth, and the first 40 principal components of the genetic relationship matrix. For

both EA and height, we consider three PGSs: (i) a PGS based on the UKB sample excluding siblings and their relatives; (ii) a

PGS based on the 23andMe sample (EA) or the GIANT consortium (height; (18)); and (iii) a PGS based on a meta-analysis of

(i) and (ii). In addition, we construct two additional PGSs on basis of randomly splitting the UKB sample into two equal halves.

All PGSs are constructed with the LDpred software (43) using a default prior value of 1. More details on the variables and their

construction can be found in the Supplementary Information.

Following the social-science genetics literature, we standardize the PGSs to have mean 0 and standard deviation 1 in the

analysis sample. The standardization of the PGS has the advantage that the square of its estimated coefficient in a univariate

regression is equal to the R2 (see Methods). Additionally, the aim of standardizing a given PGS is to interpret the resulting

coefficient as a one standard deviation increase in the true latent PGS. However, since any PGS is measured with error, a one

standard deviation increase in an estimated PGS is not the same as a one standard deviation increase in the true latent PGS (see

also 28). This issue of interpretation applies to any PGS – also those based upon meta-analysis in a univariate regression, where

it leads to an attenuation bias (see equation 13). In this case, external information is required to scale the estimated PGS into

units of the true latent PGS (see e.g., 28; 29; 44). This rescaling is not commonly applied, presumably because researchers

are aware that measurement error in the PGS implies a downward bias, and the issue of standardization is subsumed into the

attenuation bias induced by the measurement error.

8Since the correlation between the two PGSs is equivalent to the explained SNP-based heritability of the two independent PGSs, this same rule of thumb

can also be directly interpreted in terms of the explained SNP-based heritability of the independent PGSs.
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When applying (OR)IV, however, the bias as a result of standardization is in the opposite direction (see equation 21 in

the Methods section). In other words, when standardizing a PGS based upon its own standard deviation, (OR)IV tends to

overestimate the true standardized effect. However, when applying (OR)IV, no external information is required in order to

solve this problem. As we show in equation (25), when scaling the standardized PGSs by the square root of the correlation

between the two PGSs, a consistent estimator for the effect of a one standard deviation in the true latent PGS is obtained. Our

derivation of this scaling factor is to the best of our knowledge novel, and it avoids having to rescale regression estimates ex

post to retrieve the GWAS-based heritability as is done for example in (17).9

SNP-based heritability

Using LDSC and GREML, we estimate the SNP-based heritability of EA to be 0.160 (s.e. 0.028) and 0.155 (s.e. 0.019) in this

subsample, respectively, which is somewhat lower than most reported estimates from other samples in the literature. For height,

the SNP-based heritability is estimated to be 0.511 (s.e. 0.041) using LDSC, and 0.530 (s.e. 0.020) using GREML.10

These SNP-based heritabilities are a useful benchmark, as they constitute an upper bound on the R2 we can achieve in our

sample using a PGS (7). The SNP-based heritabilities additionally are a crucial input for disattenuating the OLS estimator in

the Becker et al. (29) framework. In fact, in the univariate case, the SNP-based heritability obtained using GREML is actually

the estimate one would obtain in this framework.

Educational attainment (EA)

Table 1 shows the results of regressions of residualized educational attainment (EA) in years (standardized to have mean 0

and standard deviation 1 in the sample) on the various PGSs. Figure 4a visualizes the results in terms of estimated heritability

estimates. As in the simulations, we can see that meta-analyzing summary statistics from independent samples increases the

standardized effect size and associated predictive power of the PGS compared with using the individual PGSs. That is, the PGS

based on the meta-analysis of the UKB sample (excluding siblings and their relatives) and 23andMe delivers a standardized

effect size of 0.28 (Column 3), implying an estimated GWAS-based heritability of 0.2762 = 7.6%. This estimate is clearly

higher than the effect sizes and GWAS-based heritability estimates obtained when using the UKB or 23andMe samples on

their own (Columns 1 and 2). Nevertheless, the meta-analysis PGS still delivers a GWAS-based heritability estimate that is

substantially below the estimates of the SNP-based heritability of 15.5%-16.0%.11

Column 4 of Table 1 shows the ORIV model employing the PGSs obtained from UKB and 23andMe as instrumental

variables for each other. The ORIV standardized effect estimate is 0.34, which implies a GWAS-based heritability ĥGWAS

estimate of 11.4%. While, unlike in the simulation, we do not know the true standardized effect size, it is reassuring that the

implied GWAS-based heritability estimate is close to our empirical estimates of the SNP-based heritability of 15.5% (s.e. 1.9%;

GREML) and 16.0% (s.e. 2.8%; LDSC). In fact, the confidence intervals overlap, as illustrated in Figure 4a.

In Column 5, we additionally present the ORIV results based on two PGSs that were constructed using two random halves

of the UKB discovery sample, excluding the sibling sample and their third degree relatives. The IV assumptions are more

likely to hold in this scenario since the samples are equally sized and they originate from the exact same environmental

context. In particular, we estimate the genetic correlation between the 23andMe and UKB summary statistics to be 0.878

(s.e. 0.011), whereas the genetic correlation between the split-sample UKB summary statistics is 1.000 (s.e. <0.001). The

9If the measurement error is very different in the between-family and within-family components of the PGS, then a different scaling factor would be

required in within-family analyses. We experimented with computing the scaling factor on basis of within-family data only, and obtained very similar results

(see Methods for details).
10These results were obtained using one randomly selected individual per family (N = 18,989 for EA, N = 18,913 for height). To obtain the LDSC estimate,

the GWAS summary statistics were first computed using FastGWA (45). In the GREML analysis (46), the analysis sample was slightly lower (N = 17,696 for

EA, N = 17,849 for height) because we excluded closely related individuals using the default relatedness cut-off of 0.025.
11It is also lower than the reported R2 of around 12% in (11), but that study used a larger GWAS meta-analysis sample to construct the PGS and it also used

different prediction samples.
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Table 1. Results of the OLS and IV regressions explaining (residualized and standardized) educational attainment.

OLS OLS OLS ORIV ORIV

(UKB) (23andMe) (Meta-analysis) (2-sample) (Split-sample)

Between-family results

Polygenic score 0.258∗∗∗ 0.218∗∗∗ 0.276∗∗∗ 0.337∗∗∗ 0.323∗∗∗

(0.005) (0.005) (0.005) (0.007) (0.007)

ĥ2
GWAS 0.067 0.047 0.076 0.114 0.105

(0.003) (0.002) (0.003) (0.004) (0.004)

First-stage estimate 0.498∗∗∗ 0.489∗∗∗

(0.005) (0.005)

First-stage F-statistic 11,918.98 11,061.02

Family fixed effects NO NO NO NO NO

N 35,282 35,282 35,282 35,282 35,282

Within-family results

Polygenic score 0.124∗∗∗ 0.115∗∗∗ 0.142∗∗∗ 0.184∗∗∗ 0.170∗∗∗

(0.009) (0.009) (0.009) (0.012) (0.013)

ĥ2
GWAS 0.015 0.013 0.020 0.034 0.029

(0.002) (0.002) (0.003) (0.004) (0.004)

First-stage estimate 0.460∗∗∗ 0.436∗∗∗

(0.006) (0.006)

First-stage F-statistic 6068.34 5184.87

Family fixed effects YES YES YES YES YES

N 35,282 35,282 35,282 35,282 35,282

Notes: ∗ p-value < 0.1; ∗∗ p-value < 0.05; ∗∗∗ p-value < 0.01. In all regressions the dependent variable is residualized educational attainment

(EA, standardized to have mean 0 and standard deviation 1), where the residuals are obtained from a regression of EA on sex, year of birth,

month of birth, sex interacted with year of birth, and the first 40 principal components of the genetic relationship matrix. Standard errors are ro-

bust and clustered at the family level, and in case of ORIV also at the individual level. OLS (UKB) refers to the model with the PGS constructed

using the UKB non-sibling (i.e., excluding all siblings and their relatives) sample. OLS (23andMe) refers to the model with the PGS constructed

using the 23andMe summary statistics. OLS (Meta-analysis) uses a PGS constructed using a meta-analysis of GWAS summary statistics of the

UKB non-sibling sample and the 23andMe sample. ORIV (2-sample) refers to a 2SLS estimation using the Obviously-Related IV method (30),

where the PGSs from the UKB non-sibling sample and 23andMe are used as instrumental variables for each other. ORIV (Split-sample) refers

to a 2SLS estimation where the summary statistics derive from a random split of the UKB sample. The ĥGWAS is computed on basis of the square

of the standardized coefficients (see equation 25), and its standard error is obtained using the Delta method.
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Figure 4. Heritability estimates and their 95% confidence intervals for (a) educational attainment (EA) and (b) height. 95%

confidence intervals were obtained using the delta method.

resulting coefficient and implied GWAS-based heritability of the split-sample ORIV are only slightly below the two-sample

ORIV results in Column 4, and considerably larger than the estimate obtained with the meta-analysis PGS. The results therefore

empirically confirm our simulations that for relatively large sample sizes and highly predictive power PGSs (and thus relatively

high correlations between the two independent PGSs), ORIV outperforms meta-analysis.

When comparing ORIV to the Becker et al. (29) disattenuated OLS estimator, which in this univariate context equals

the GREML estimate, we observe that the ORIV estimators somewhat underestimate the SNP-based heritability (i.e., ORIV

estimators exhibit some bias). However, their precision is considerably higher (i.e., ORIV estimators have lower variance).

Hence, there is a bias-variance trade-off between the ORIV and Becker et al. approach, and given that the confidence intervals

overlap no clear conclusions can be drawn on which estimator should be preferred.12

The results in the bottom panel of Table 1 are obtained using regressions that include family fixed effects. This approach only

relies on within-family variation in the PGSs and therefore uncovers direct genetic effects (47). It bears repeating that in this

context the Becker et al. correction cannot be applied, and so the relevant comparison here is between regular OLS and ORIV.

The standardized effect estimates and associated GWAS-based heritability ĥGWAS are substantially smaller within-families

than they are between-families. This finding reflects an upward bias in the between-family estimates as a result of population

phenomena, most notably genetic nurture (e.g., 16; 47; 48). More specifically, our within-family ORIV estimates are around

45% smaller than the between-family ORIV estimates in line with the literature (e.g., 22; 49; 50). What is noteworthy is that

like in our between-family estimates, applying ORIV within-families boosts the predictive power of the PGS compared to a

meta-analysis or using standalone individual PGSs. ORIV estimates the standardized direct genetic effect to be 0.18 (using

PGS from two samples - UKB and 23andMe) and 0.17 (using split-sample UKB PGSs). This estimate may still be prone to

attenuation bias as a result of indirect genetic effects from relatives (35; 37), but this estimate does represent a tighter lower

bound on the direct genetic effect, corresponding to a ‘direct GWAS-based heritability’ of around 3.5%.

Height

Table 2 and Figure 4b present the results of the regressions with height as the outcome variable. The standardized effect sizes

for height are considerably larger than for EA, consistent with the higher heritability of height. For example, a meta-analysis

PGS based upon the UKB and the GIANT consortium GWAS summary statistics reaches a standardized effect size of 0.58,

12When using the RMSE as the relevant criterion, in this specific between-family application, the Becker et al. approach has a slightly lower RMSE and

would therefore be preferred.
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which corresponds to an incremental R2 and GWAS-heritability of 34%. It is also noteworthy that for height the between- and

within-family results do not differ as dramatically as they do for EA. Again, this is in line with the literature (e.g., 22) which

generally finds genetic nurture (i.e., the confounding effect of parental genetic factors) to be more important for behavioral

outcomes such as EA than for anthropometric outcomes like height.

Despite the differences in heritability and the role of genetic nurture, we reach similar conclusions for height as for EA in

the comparison of the OLS (meta-analysis) and ORIV results. The two-sample ORIV estimation is 25% (between-family)

and even 30% (within-family) higher when using ORIV compared to a meta-analysis PGS. Compared to the Becker et al.

approach, unlike EA, for height the estimated GWAS-based heritability is significantly lower than the SNP-based heritability

estimate obtained using GREML. While the confidence interval for the SNP-based heritability estimate using GREML is

again larger than the confidence interval of the ORIV estimate, in this between-family application for height the Becker et

al. approach seems to outperform ORIV in terms of RMSE. In the within-family analysis, ORIV delivers the tightest lower

bound on the ‘direct GWAS-based heritability’ for height, which is estimated to be 38%. With height being a typical trait to test

new quantitative genetics methodologies (e.g., (46)), these empirical findings build confidence that our conclusions from the

simulations apply more broadly.
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Table 2. Results of the OLS and IV regressions explaining (residualized and standardized) height.

OLS OLS OLS ORIV ORIV

(UKB) (GIANT) (Meta-analysis) (2-sample) (Split-sample)

Between-family results

Polygenic score 0.579∗∗∗ 0.450∗∗∗ 0.583∗∗∗ 0.652∗∗∗ 0.625∗∗∗

(0.005) (0.005) (0.005) (0.006) (0.006)

ĥ2
GWAS 0.335 0.203 0.340 0.426 0.391

(0.006) (0.005) (0.006) (0.008) (0.008)

First-stage estimate 0.622∗∗∗ 0.586∗∗∗

(0.004) (0.004)

First-stage F-statistic 27261.16 20791.79

Family fixed effects NO NO NO NO NO

N 35,282 35,282 35,282 35,282 35,282

Within-family results

Polygenic score 0.521∗∗∗ 0.415∗∗∗ 0.537∗∗∗ 0.614∗∗∗ 0.571∗∗∗

(0.007) (0.007) (0.007) (0.008) (0.009)

ĥ2
GWAS 0.271 0.172 0.289 0.377 0.326

(0.007) (0.006) (0.007) (0.010) (0.010)

First-stage estimate 0.600∗∗∗ 0.558∗∗∗

(0.005) (0.005)

First-stage F-statistic 15735.36 11149.50

Family fixed effects YES YES YES YES YES

N 35,282 35,282 35,282 35,282 35,282

Notes: ∗ p-value < 0.1; ∗∗ p-value < 0.05; ∗∗∗ p-value < 0.01. In all regressions the dependent variable is residualized height (standardized to

have mean 0 and standard deviation 1), where the residuals are obtained after a regression of height on controlling for sex, year of birth, month

of birth, sex interacted with year of birth, and the first 40 principal components of the genetic relationship matrix. Standard errors are robust

and clustered at the family level, and in case of ORIV also at the individual level. OLS (UKB) refers to the model with the PGS constructed

using the UKB non-sibling (i.e., excluding all siblings and their relatives) sample. OLS (GIANT) refers to the model with the PGS constructed

using the GIANT summary statistics. OLS (Meta-analysis) uses a PGS constructed using a meta-analysis of GWAS summary statistics of the

UKB non-sibling sample and the GIANT sample. ORIV (2-sample) refers to a 2SLS estimation using the Obviously-Related IV method (30),

where the PGSs from the UKB non-sibling sample and GIANT are used as instrumental variables for each other. ORIV (Split-sample) refers

to a 2SLS estimation where the summary statistics derive from a random split of the UKB sample. The estimated GWAS-based heritability

ĥGWAS is computed on basis of the square of the standardized coefficients (see equation 25), and its standard error is obtained using the Delta

method.
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Discussion

The increasing availability of genetic data over the last decade has stimulated genetic discovery in GWAS studies and led

to increases in the predictive power of PGSs. Phenotypes such as educational attainment (EA) and height are currently at a

critical turning point at which boosting the GWAS sample size further will only increase the predictive power of the PGSs at a

marginal and diminishing rate (see Figure 1). In this paper, we argue for an alternative strategy to boost the predictive power of

and improve the inference on PGSs. Our simulation results show that when two independent PGSs are available for the same

phenotype, then when the correlation between the two scores corr(PGS1,PGS2)>
√

10/(N +10) with N the sample size of

the prediction sample, ORIV outperforms meta-analysis in terms of bias, root mean squared error, and statistical power.

Based on empirical analyses in the European ancestry sibling subsample of the UK Biobank, we confirm that ORIV

approaches the estimated SNP-based heritability, whereas the meta-analysis PGS is still relatively far from this upper bound.

In between-family analyses, the comparison of ORIV versus recent disattenuated OLS estimators (e.g., 29) is subject to a

bias-variance trade-off that will differ across applications. In within-family analyses ORIV is the most convenient way of

tightening the lower bound on the direct genetic effect, which is estimated to be around 3.5% for EA and 38% for height.

Since the total genetic effect is the sum of the direct and indirect genetic effects, our within-family estimates also

implicitly estimate an upper bound on the indirect genetic effect. Comparing the between- and within-family estimates,

our analysis suggests that this upper bound is approximately (0.337 − 0.184)/0.337 = 45% for EA and approximately

(0.652−0.614)/0.652 = 6% for height. As such, we can compare this to earlier studies that estimated indirect genetic effects.

For example, while one study (49) estimates that the indirect genetic effect for EA is approximately 30% of the total genetic

effect, a second study (22) estimates that up to 60% of the total genetic effect could be indirect. Our estimate of 45% is exactly

in the middle of these estimates, and thus represents a tightened upper bound on the indirect genetic effect on EA.

There are alternative approaches to deal with measurement error than those analyzed in this study. Simulation-extrapolation

(SIMEX, 51) is an approach that like the OLS disattenuation estimator (29) also exploits external information on the SNP-based

heritability to retrieve the variance of measurement error similar to equation (14). This technique is for example applied in (39).

The advantage of (OR)IV over SIMEX is that it does not require external information or simulations, and can also be applied

within-families. Notable other techniques to deal with measurement error are the Generalized Method of Moments (GMM,

(52)) and Structural Equation Modeling (SEM, (28; 53)). Since IV can be seen as a special case of GMM and SEM models

(e.g., 28; 54), the differences between the approaches are typically negligible in linear models. Although the distributional

assumptions are somewhat stronger in SEM compared with IV, and including family fixed effects is possible (55; 56; 57) yet

cumbersome, a possible advantage of SEM is its flexibility in allowing the factor loadings of the two individual PGSs to be

different. An extensive comparison of ORIV versus (genomic) SEM or GMM is beyond the purpose and scope of this paper,

but we anticipate that differences will typically be small unless the precision of the two independent PGSs differs substantially.

Whereas we have shown that ORIV provides a better alternative to meta-analysis to boost the predictive power of PGSs,

this does not mean that further collection of additional genotyped samples is useless. In contrast, larger sample sizes are

essential in identifying specific genetic variants that affect the phenotype of interest, allowing one to investigate the biological

mechanisms driving these effects. Further, whereas (OR)IV is a useful tool to estimate the proportion of variance explained by

the unobserved latent ‘true’ PGS, it does not generate a new predictor variable that can be applied in other contexts. Moreover,

larger discovery samples using harmonized phenotypes in similar contexts (14), will also be essential in identifying and

estimating gene-environment interactions. Finally, applying (OR)IV is not a substitute for within-family GWAS. The collection

of family samples is the only way to explicitly control for the indirect genetic effects from relatives that plague the interpretation

of the effects of PGSs in between-family studies. The collection of genetic data of family samples is on the rise (58), but their

sample sizes are still comparatively small. The results of the present study suggest that the application of ORIV may help to

speed up the increase in predictive power of PGSs constructed based on within-family GWASs.
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Methods

Conceptual model

Consider a simple linear model in which a dependent variable Y (e.g., educational attainment) is influenced by many genetic

variants:

Y = α +
J

∑
j=1

β GWAS
j SNPj + ε (6)

where J is the number of genetic variants (single-nucleotide polymorphisms, SNPs) included, SNPj represents the number of

effect alleles an individual possesses at locus j, and β GWAS
j is the coefficient of SNP j. The true data generating process would

also include the effects of maternal and paternal SNPs, because only conditional on parental genotypes the variation in SNPs is

random and hence exogenous. We discuss the use of family data briefly below, but ignore the effects of parental genotype as

well as environmental factors in the following discussion for simplicity.

The dependent variable Y is assumed to be standardized with mean zero and standard deviation 1 (σY = 1). The true latent

polygenic score PGS∗ is then defined as:

PGS∗ =
J

∑
j=1

β GWAS
j SNPj. (7)

If we would observe the true polygenic score PGS∗, then the OLS regression

Y = α +βPGS∗+ ε (8)

would give

β̂ =
Cov(Y,PGS∗)

V (PGS∗)
=

Cov(α +βPGS∗+ ε,PGS∗)

σ2
PGS∗

= β
σ2

PGS∗

σ2
PGS∗

= β

where β measures what happens to the outcome Y when the true latent PGS∗ increases with 1 unit. Since a 1 unit increase in the

PGS∗ is not straightforward to interpret, researchers are typically more interested in β ×σPGS∗ , i.e., a one standard deviation

increase in the true PGS. This estimate can be obtained by standardizing the PGS:

PGS∗st =
PGS∗−µPGS∗

σPGS∗
,

where µPGS∗ is the mean of the true PGS, and σPGS∗ is the standard deviation of the true PGS. If we now run the regression

Y = α +βstPGS∗st + ε , then the resulting estimator is:

β̂st =
Cov(Y,PGS∗st)

V (PGS∗st)
=Cov(α +βPGS∗+ ε,

PGS∗−µPGS∗

σPGS∗
) = β

σ2
PGS∗

σPGS∗
= βσPGS∗ ≡ βst . (9)

Apart from an arguably easier interpretation, the standardization of the PGS has the added advantage that there is a close

connection between the estimated coefficient and the R2 of this univariate regression. In a univariate regression, the R2 measures

the squared correlation between the outcome and the independent variable. In this case:

R2 =

[

Cov(Y,PGS∗)

σY σPGS∗

]2

=

[

Cov(α +βPGS∗+ ε,PGS∗)

σPGS∗

]2

=

[

β
σ2

PGS∗

σPGS∗

]2

= [βσPGS∗ ]
2

= β̂ 2
st (10)
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and so the squared standardized coefficient measures the R2, or GWAS-based heritability, and it can be compared to the upper

bound represented by the SNP-based heritability.

Measurement error in the polygenic score

In practice, any estimated PGS is a proxy for the true latent polygenic score PGS∗ because it is measured with error:

PGS = PGS∗+ν , ν ∼ N
(

0,σ2
ν

)

where we assume that the measurement error ν is classical in the sense that it is uncorrelated to the error term in equation (6). If

we estimate the regression Y = α +βPGS+ ε , then measurement error in the PGS attenuates the coefficient of the PGS on Y :

β̂ =
Cov(Y,PGS)

V (PGS)
=

Cov(α +βPGS∗+ ε,PGS∗+ν)

V (PGS∗+ν)
= β

σ2
PGS∗

σ2
PGS∗ +σ2

ν

< β . (11)

If – as is common in the literature – the observed PGS is standardized to obtain PGSst , it follows that:

PGSst =
PGS−µPGS

σPGS

=
PGS

√

σ2
PGS∗ +σ2

ν

=
PGS∗+ν

√

σ2
PGS∗ +σ2

ν

. (12)

The resulting standardized coefficient of PGSst on Y is given by

β̂st =
Cov(Y,PGSst)

V (PGSst)
=

Cov

(

α +βPGS∗+ ε, PGS∗+ν
√

σ2
PGS∗+σ2

ν

)

1
= β

σ2
PGS∗

√

σ2
PGS∗ +σ2

ν

= βst

σPGS∗
√

σ2
PGS∗ +σ2

ν

< βst . (13)

Note that standardizing the observed PGS with respect to its own standard deviation is a combination of standardizing with

respect to the standard deviation of the true PGS as well as the standard deviation of measurement error. Therefore, equation

(13) shows that the estimate should be interpreted as the effect of a 1 standard deviation increase in the observed PGS (and

not the true latent PGS). Hence, this estimate does not just underestimate the true β coefficient due to measurement error but

should also be interpreted on a different scale than the effect of the true PGS.

There are two important implications following from the derivation in equation (13). The first is that we can derive the

implied variance of measurement error σ2
ν if we have external information on the true standardized βst coefficients and the

variance of the true latent score σ2
PGS∗ :

σν =

√

σ2
PGS∗

(

β 2
st

β̂ 2
st

−1

)

(14)

This is what we use in the simulations to derive realistic levels of measurement error on basis of the estimates found in the

literature. The second implication is that equation (13) can be rewritten as:

σ2
PGS∗

σ2
PGS∗ +σ2

ν

=
β̂ 2

st

β 2
st

=
ĥ2

GWAS

h2
SNP

≡ “Explained SNP-based heritability” (15)

where we have used that the square of the standardized coefficient provides an estimate of the heritability (see also equation

10). Hence, equation (15) shows that the bias in OLS is determined by the ratio of the estimated GWAS-heritability over the

SNP-based heritability, which we define as the “explained SNP-based heritability”.

Disattenuating the OLS estimator

In a recent paper independently developed around the same time as this study, Becker et al. (29) exploit their equivalent of

equation (15) to directly derive an estimator that corrects for measurement error. The authors suggest computing the attenuation
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factor (15) on basis of the R2 of the regression of the phenotype and the PGS, and the SNP-based heritability. They invert

equation (15) and take the square root to obtain a disattenuation factor:13

√

β 2
st

β̂ 2
st

=

√

h2
SNP

ĥ2
GWAS

=

√

σ2
PGS∗ +σ2

ν

σPGS∗
.

In turn, they suggest – in the univariate case – multiplying the estimated coefficient β̂st of the standardized PGS by the

disattenuation factor to obtain effects of the true PGS (they call this the ‘the additive SNP factor’) free from measurement error:

β̂st

√

h2
SNP

ĥ2
GWAS

= βst

σPGS∗
√

σ2
PGS∗ +σ2

ν

√

σ2
PGS∗ +σ2

ν

σPGS∗

= βst . (16)

This procedure conveniently ensures that the estimated effect of the PGS is equal to the SNP-based heritability. Main drawback

is that it relies on externally estimated information on the SNP-based heritability, which Becker et al. suggest to obtain using

GREML. Hence, the bias of the product estimator in equation (16) is zero if the GREML assumptions are met and the researcher

can compute the SNP-based heritability in the same sample as where the analysis is conducted. The standard error of the

estimator is equal to the standard error of the square root of the SNP-based heritability obtained through GREML,14 which can

be sizable in small samples. Apart from the implied bias-variance trade-off, another important limitation is that the procedure

does not translate easily to within-family designs. The SNP-based heritability also reflects indirect genetic effects (e.g., 31; 32)

and so the relevant disattenuation factor for within-family designs cannot be computed.

(Obviously Related) Instrumental Variables

An alternative to the direct correction of Becker et al. (29) is Instrumental Variables (IV regression). It has long been recognized

in the econometrics literature (59; 60) that when at least two independent measures of the same construct (independent variable)

are available, it is possible to retrieve a consistent effect of this construct on an outcome through IV estimation. The intuition

is as follows. The two (noisy) measurements are supposed to proxy for the same underlying construct. For example, an

EA PGS constructed using GWAS summary statistics from the 23andMe sample and from the UKB sample are both meant

to approximate the same true latent PGS. Hence, theoretically their correlation should be 1.15 However, in practice, their

correlation will be smaller than 1 since the sample sizes in the GWASs used to construct these PGSs are finite and therefore

each PGS will be subject to measurement error. In case the sources of measurement error are independent and the variance of

measurement error relative to the total variance of the PGS is the same, then the correlation between the two measurements

reveals how much measurement error there is. This estimate of the amount of measurement error can then, in turn, be used to

correct the estimated relationship between the measures and the outcome.

In terms of formulas, if we have two measures for the true PGS∗, PGS1 = PGS∗ + ν1 and PGS2 = PGS∗ + ν2, with

13They denote the factor by ρ , but to avoid confusion with our definition of ρ being the correlation between the two PGSs, we do not use this symbol here.
14The authors derive this in Section 5, page 14-15, of the supplementary information.
15Since environments differ, the best linear genetic predictor (i.e., the true latent PGS) may differ across samples. This would imply that the genetic

correlation between the two samples would be lower than 1 for a particular outcome variable. This can be tested, for example with LDSC (8). LDSC can also

be used to estimate the cross-trait LDSC intercept. With a trend towards ever-larger GWAS meta-analyses and reuse of genetic data, it is important to verify

that GWAS summary statistics used to create the two independent PGSs are not computed from partially overlapping samples (or from sets of individuals that

are related to each other). Using two PGSs based on such related GWAS summary statistics would be in violation of the ORIV assumptions. The cross-trait

LDSC intercept can be used to test for sample overlap, although the precise threshold depends on the GWAS samples sizes and the heritability of the trait (61).

In our study, the LDSC cross-trait LDSC intercepts do not cross the critical threshold (results available upon request). Moreover, in the UKB split-sample

analyses, the GWAS samples are independent by construction (see the Supplementary Information).
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Cov(ν1,ν2) = 0 and
σ2

ν1

σ2
PGS1

=
σ2

ν2

σ2
PGS2

=
σ2

ν

σ2
PGS

. Then:

Cov(PGS1,PGS2) =Cov(PGS∗+ν1,PGS∗+ν2) =Cov(PGS∗,PGS∗) = σ2
PGS∗ ; (17)

Corr(PGS1,PGS2) =
Cov(PGS1,PGS2)

σPGS1
σPGS2

=
σ2

PGS∗

σ2
PGS∗ +σ2

ν

. (18)

Hence, the correlation between the two PGSs can be used to correct for the attenuation bias that plagues the interpretation of

the OLS estimates in equation (11).16 More formally, if we use PGS2 as an instrumental variable (IV) for PGS1, then the IV

estimator is the ratio of the reduced form (regression of Y on PGS2) and the first stage (regression on PGS1 on PGS2):

β̂ IV =

Cov(Y,PGS2)
V (PGS2)

Cov(PGS1,PGS2)
V (PGS2)

=
Cov(α +βPGS∗+ ε,PGS∗+ν2)

Cov(PGS∗+ν1,PGS∗+ν2)
(19)

= β
σ2

PGS∗

σ2
PGS∗

= β . (20)

Hence, IV regression is able to estimate the unstandardized coefficient of the true latent PGS in a consistent way. But since

unstandardized coefficients are hard to interpret, one is typically more interested in the standardized coefficient. In this case, the

IV estimator is given by:

β̂ IV
st =

Cov(Y,PGS2,st)
V (PGS2,st )

Cov(PGS1,st ,PGS2,st)
V (PGS2,st )

=

Cov

(

α +βPGS∗+ ε, PGS∗+ν2
√

σ2
PGS∗+σ2

ν

)

Cov

(

PGS∗+ν1
√

σ2
PGS∗+σ2

ν

, PGS∗+ν2
√

σ2
PGS∗+σ2

ν

)

= β

√

σ2
PGS∗ +σ2

ν ≥ βσPGS∗. (21)

Importantly, the standardized IV estimator is not equal to the effect of a one standard deviation increase in the true PGS since

the PGS is standardized with respect to the standard deviation of the observed instead of the true latent PGS. As a result, IV

overestimates the true standardized coefficient.17 However, a way to retrieve the effect of a 1 standard deviation increase in the

true latent PGS would be to scale the standardized IV coefficient:

σPGS∗
√

σ2
PGS∗ +σ2

ν

β̂ IV
st = βσPGS∗. (22)

Although the scaling factor is unobserved, an estimate is given by the square root of the correlation between the two PGSs (see

equation 18). Alternatively, one could also divide the observed standardized polygenic scores PGS1,st and PGS2,st by the same

scaling factor:

PGS1,+ =
PGS1,st

σPGS∗
√

σ2
PGS∗+σ2

ν

=

PGS∗+ν1
√

σ2
PGS∗+σ2

ν

σPGS∗
√

σ2
PGS∗+σ2

ν

=
PGS∗+ν1

σPGS∗
; (23)

PGS2,+ =
PGS2,st

σPGS∗
√

σ2
PGS∗+σ2

ν

=

PGS∗+ν2
√

σ2
PGS∗+σ2

ν

σPGS∗
√

σ2
PGS∗+σ2

ν

=
PGS∗+ν2

σPGS∗
. (24)

16The correlation between the two polygenic scores is also an estimate of the ‘reliability’ of the polygenic score measure (44).
17Note that the OLS and IV estimates are biased by a similar factor but in opposite directions. It follows that the square root of their product equals the true

standardized effect

√

β̂ IV
st β̂st = βσPGS∗ .
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If we then base the IV estimator upon these scaled polygenic scores PGS1,+ and PGS2,+, then the resulting estimator is given

by

β̂ IV
+ =

Cov(Y,PGS2,+)
V (PGS2,+)

Cov(PGS1,+,PGS2,+)
V (PGS2,+)

=
Cov

(

α +βPGS∗+ ε, PGS∗+ν2
σPGS∗

)

Cov
(

PGS∗+ν1
σPGS∗

, PGS∗+ν2
σPGS∗

) = β

σ2
PGS∗

σPGS∗

σ2
PGS∗

σ2
PGS∗

= βσPGS∗ ≡ βst . (25)

In sum, an IV estimate of the true standardized effect size can be obtained by (i) dividing the two independent standardized

PGSs by the square root of their correlation, and (ii) using these scaled PGSs as instrumental variables for each other. In this

case the squared IV estimate provides an estimate of the GWAS-based heritability.

It should be noted that the correlation between the independent PGSs reflects the measurement error in the PGS of the

between-family component. If the measurement error of the within-family signal is considerably different from the measurement

error of the between-family signal this will introduce some bias in our within-family estimates. We therefore computed the

correlation between deviations of the PGS from the family means in the UKB, and use this as the scaling factor in the

within-family analysis.18 The results were very similar compared to the main results. For EA, the within-family two-sample

and split-sample coefficients were estimated as 0.179 (0.012) and 0.161 (0.012), respectively. For comparison, the coefficients

are 0.184 (0.012) and 0.170 (0.013) in Table 1. For height, the within-family two-sample and split-sample ORIV coefficients

were estimated as 0.604 (0.008) and 0.556 (0.009), respectively. In Table 2, the coefficients are 0.614 (0.008) and 0.571 (0.009).

Full results for this robustness check are available upon request from the authors. These findings suggest that the measurement

error across between- and within-family signals is comparable and does not represent a relevant threat to the ORIV approach.

Obviously-related Instrumental Variables The most efficient implementation of the proposed IV estimator is the recently

proposed technique “Obviously-Related Instrumental Variables” (ORIV) by (30). The idea is to use a ‘stacked’ model





Y

Y



=





α1

α2



+β





PGS1,+

PGS2,+



+ ε, (26)

where one instruments the stack of estimated PGSs





PGS1,+

PGS2,+



 with the matrix





PGS2,+ 0N

0N PGS1,+



 (27)

in which N is the number of individuals and ON an N ×1 vector with zero’s. The implementation of ORIV is straightforward:

simply create a stacked dataset and run a Two-Stage Least Squares (2SLS) regression while clustering the standard errors

at the individual level. In other words, replicate the dataset creating two values for each individual, and then generate two

variables (i.e., an independent variable and an instrumental variable) that alternatively take the value of PGS1,+ and PGS2,+.

The resulting estimate is the average of the estimates that one would get by instrumenting PGS1,+ by PGS2,+, and vice versa.

This procedure makes most efficient use of the information in the two independent PGSs and avoids having to arbitrarily

select one PGS as IV for the other. Family fixed effects can also be included in the model, in which case one should include a

family-stack fixed effect in order to conduct only within-family comparisons within a stack of the data. Standard errors should

then be clustered at both the family as well as the individual level.

18We thank Elliot Tucker-Drob for this suggestion.
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Bias in (OR)IV Instrumental Variable regression provides consistent estimates, yet it is biased in small samples with the bias

in IV regression being a function of the first-stage F-statistic (33; 41). The F-statistic in a univariate regression is equal to the

square of the t-statistic of the first-stage coefficient τ̂ . Therefore, in this context:

F = t2 =

[

τ̂

s.e.(τ̂)

]2

=
τ̂2

[√
1−τ̂2

√
N−2

]2

=
τ̂2(N −2)

1− τ̂2

=
corr(PGS1,PGS2)

2(N −2)

1− corr(PGS1,PGS2)2
. (28)

Where τ̂ is the first-stage coefficient, and we have used the fact that the PGSs are standardized such that the coefficient τ̂

represents the correlation between the two PGSs. Hence, the performance of (OR)IV depends on the correlation between the

two PGSs. This correlation is a function of the measurement error of the independent PGSs (see equation 18), and hence of the

explained SNP-based heritability of the independent PGSs (see equation 15). Equation (28) also implies that, like OLS, the

performance of (OR)IV is (largely) independent of the absolute values of β and σ2
PGS∗ .

Unlike OLS, the performance of (OR)IV improves with the prediction sample size N. In fact, given a threshold for the

first-stage F-statistic F∗, one can derive an explicit condition (or rule of thumb) for how large the prediction sample size should

be:

N > 2+F∗
(

1

corr(PGS1,PGS2)2
−1

)

≈ F∗
(

1

corr(PGS1,PGS2)2
−1

)

(29)

In the literature, the threshold F∗ = 10 is commonly applied (34). This threshold refers to limiting the bias in 2SLS estimators.

A related problem is that IV gives distorted Type I error rates for the parameter β when instruments are weak (34; 62). To solve

this issue, Lee et al. (62) advocate using a higher threshold of F∗ = 104.7 to maintain a true 5% level of significance for the

coefficient β̂ . In our simulations, we find that the threshold of 10 seems appropriate in the context of PGSs, but researchers can

easily adapt their preferred target F-statistic to derive their own rules of thumb.

Within-family analysis: So far, we have ignored the potential influence of parental genotype on the individual’s outcome.

Controlling for parental genotype is important since the genotype of the child is only truly random conditional on parental

genotype. In other words, the only relevant omitted variables in a regression of an outcome on the child’s genotype are the

genotype of the father and the mother. Leaving parental genotype out is not innocuous. As evidenced by several studies

showing the difference between between-family and within-family analyses (e.g., 22), the role of parental genotype can be

profound. Another way of showing this is by studying the effect of non-transmitted alleles of parents on their children’s

outcomes (e.g., 49), to estimate so-called genetic nurture. Again, it is shown that parental genotype matters, in particular for

social and behavioral outcomes.

The true data generating process (DGP) may therefore be:

Y = α +
J

∑
j=1

β GWAS
j SNPj +

J

∑
j=1

β
F,GWAS
j SNPF

j +
J

∑
j=1

β
M,GWAS
j SNPM

j + ε, (30)

where the superscripts F and M denote father and mother, respectively. When the true DGP is governed by equation (30),

β GWAS
j will be estimated with bias in case equation (6) is used in a GWAS. A simple solution would be to control for parental

genotype or family fixed effects in the GWAS phase. However, with the recent exception of (58), GWAS discovery samples
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with sufficient parent-child trios or siblings are typically not available. Hence, an analyst often has no option but to work with

the ‘standard GWAS’ coefficients that are obtained with equation (6) and that produce a biased PGS.

In a between-family design, the bias in the coefficient of the resulting PGS tends to be upward, as the coefficients of the

individuals and his/her parents are typically of the same sign (35). However, interestingly, when the conventional PGS is used

in a within-family design, the bias is downward. The intuition is that when a conventional GWAS (i.e., a GWAS that does not

control for parental genotype) is used in its construction, a PGS reflects direct genetic effects as well as indirect genetic effects

(e.g., genetic nurture) arising from parental genotype. When applying these PGSs within-families, some of the differences in

the PGS across siblings therefore spuriously reflect the effects of parental genotype, whereas in fact their parental genotype is

identical. Hence, genetic nurture can be seen as measurement error in the PGS when applied in within-family analyses, leading

to an attenuation bias (35).

A final source of downward bias could stem from social genetic effects (36; 37), e.g. arising from siblings. For example,

consider a case with two siblings where there is a direct effect γ j of one’s sibling’s SNP on the outcome of the other:

Y1 j = α j +
J

∑
j=1

β jSNP1 j +
J

∑
j=1

γ jSNP2 j + ε1 j

Y2 j = α j +
J

∑
j=1

β jSNP2 j +
J

∑
j=1

γ jSNP1 j + ε2 j

When taking sibling differences to eliminate the family fixed effects, we obtain:

Y1 j −Y2 j =
J

∑
j=1

(β j − γ j)
(

SNP1 j −SNP2 j

)

+
(

ε1 j − ε2 j

)

Since sibling effects are again likely to have the same sign as the direct effect, sibling effects cause a downward bias in the

estimated effect of one’s own SNP, as measured by β j. Again, the only way to overcome this source of bias is to include the

parental genotype in the GWAS, since conditional on the parental genotype, the genotypes of siblings are independent.

In sum, within-family analyses are the gold standard to estimate direct genetic effects, free from bias arising from the

omission of parental genotype. However, when using a family fixed effects strategy on basis of a PGS from a conventional

GWAS that did not include parental genotype, the direct genetic effect is biased downward as a result of measurement error,

genetic nurture effects and social genetic effects. Therefore, this approach provides a lower bound estimate on the ‘direct

GWAS-based heritability’.
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Supplementary Information

Robustness simulation results

Choice of σPGS∗ In the baseline simulations, we arbitrarily set σPGS∗ = 1. Here we show that our main conclusions are

unaffected by this choice. In particular, the below set of figures shows the counterparts of Figures 2a to 2d but now assuming

σPGS∗ = 2 (Figures 5a to 5d), or σPGS∗ = 0.5 (Figures 6a to 6d). Especially the value of σPGS∗ = 0.5 seems realistic, as the

covariance between the non-standardized split-sample PGSs in the UKB sibling sample are 0.17 (EA) and 0.23 (height),

respectively. Since the covariance between the two PGSs is an estimate for the variance of the true latent PGS (see equation 17),

the standard deviation of the true latent PGS may well be close to 0.5. However, the figures show that our conclusions and rule

of thumb are not affected by the choice of σPGS∗ .
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Figure 5. Relative bias, Root Mean Squared Error (RMSE), Statistical power, and first-stage F-statistic for meta-analysis

(OLS) and ORIV for varying correlations between the ‘independent’ PGSs and assuming σ2
PGS∗ = 2. The results are based on

1000 replications.

Choice of βst We selected EA as the phenotype to calibrate the standardized effect size βst in our simulations. EA is a

moderately heritable phenotype, with an estimated SNP-based heritability of roughly 25%, corresponding to βst = 0.5. Here,

we seek to investigate the generalizibility of our simulation findings to more heritable phenotypes (e.g., height) and a less
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Figure 6. Relative bias, Root Mean Squared Error (RMSE), Statistical power, and first-stage F-statistic for meta-analysis

(OLS) and ORIV for varying correlations between the ‘independent’ PGSs and assuming σ2
PGS∗ = 0.5. The results are based on

1,000 replications.
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Figure 7. Relative bias, Root Mean Squared Error (RMSE), Statistical power, and first-stage F-statistic for meta-analysis

(OLS) and ORIV for varying correlations between the ‘independent’ PGSs calibrated upon the phenotype height. The results

are based on 1000 replications.

heritable phenotypes (e.g., subjective well-being).

For the simulations calibrated upon height, we assume a SNP-based heritability of 50% (18; 19), corresponding to a

true standardized effect βst = 0.7. Following (63), we assume a meta-analysis PGS with standardized effect β̂st = 0.59,

corresponding to an R-squared of 34.7%. The individual PGSs have β̂st = 0.48, corresponding to the incremental R-squared of

23% we obtain when conducting our own split-sample GWAS in UKB; and we reduce the standardized effect for height to

0.4 (corresponding to an R-squared of around 16% from (18)) and further to 0.32 (corresponding to an R-squared of around

10% from (64)). Figures 7a to 7d confirm our earlier results that ORIV clearly outperforms meta-analysis in terms of bias and

RMSE when the predictive power of the independent PGSs is high. Power equals 1 in all cases.

For subjective well-being, we use a SNP-based heritability of 10% based upon (65), apply a meta-analysis PGS correspond-

ing to the incremental R-squared of 1.57% obtained using the multi-trait analysis of GWAS (MTAG) in (66), and construct

individual PGSs with incremental R-squared of 1.20% (66) and 0.9% (67). The incremental R-squared of 1.20% corresponds to

a correlation between the two independent PGSs of around 12%, while the R-squared of 1.20% corresponds to a correlation

between the two independent PGSs of around 8%. Figures 8a to 8d show that the statistical power of a meta-analysis is higher
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Figure 8. Relative bias, Root Mean Squared Error (RMSE), Statistical power, and first-stage F-statistic for meta-analysis

(OLS) and ORIV for varying correlations between the ‘independent’ PGSs calibrated upon the phenotype well-being. The

results are based on 1000 replications.

than for ORIV in samples smaller than 5,000 individuals. In terms of both bias and RMSE, despite the lower predictive power

of the independent PGSs for the phenotype well-being, ORIV clearly outperforms meta-analysis even in smaller samples.

Together, these simulation results reiterate that the performance of meta-analysis versus (OR)IV is not driven by the absolute

value of βst , but rather by the correlation between the independent PGSs (which in turn is driven by the explained SNP-based

heritability) and the prediction sample size.

Comparing ORIV with regular IV Finally, we also compared the ORIV estimator to the regular IV estimator suggested by

DiPrete et al. (17). As can be seen in Figure 9a, the differences in bias are negligible, as would be expected given that both

approaches produce consistent estimators. With respect to the RMSE (Figure 9b) and statistical power (Figure 9c), we do see

some advantage of ORIV over regular IV. These gains are non-negligible in smaller samples, and persist even in larger samples.

Hence, while the gains from ORIV over regular IV are not as large as the comparison to a meta-analysis based PGS, they are

sufficiently meaningful to recommend implementing ORIV rather than IV as the default IV estimator.
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Figure 9. Relative bias, Root Mean Squared Error (RMSE), and Statistical power for regular IV and ORIV for varying

correlations between the ‘independent’ PGSs calibrated upon the phenotype EA. The results are based on 1000 replications.
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Polygenic scores

This study uses siblings in the UK Biobank (UKB) (68) as a holdout sample for constructing the polygenic scores (PGSs) and

the empirical analyses. The GWAS discovery sample excludes these full siblings and their relatives up to the 3rd degree to

ensure that the discovery and the holdout samples are independent from each other.

Relatedness The UKB provides a kinship matrix, which contains the genetically identified degree of relatedness for pairs of

UKB participants related up to a third degree or closer. The kinship coefficient is constructed using KING software (69). We

use the following values of the kinship coefficient corresponding to each degree of relatedness: monozygotic twins (> 0.354),

first degree parent-child or full siblings (0.177-0.354), and second and third degree relatives and cousins (0.044-0.177). In order

to separate parent-child pairs from siblings, we use the identity-by-state (IBS0) coefficient, which measures genetic similarity

in terms of the fraction of markers for which the related individuals do not share alleles (68). Given their kinship coefficient,

parent-child pairs have IBS0 < 0.0012 and full siblings have IBS0 > 0.0012. After classifying all relationships, we separated

those who are related to the siblings up to the third degree other than siblings themselves, i.e., parents of siblings and cousins of

siblings (N = 14,947), and excluded those individuals from the GWAS discovery sample along with the full siblings. This

ensures that our holdout sample of siblings is unrelated to the GWAS discovery sample.

Phenotypes We follow the literature (see e.g. (11), (13), (40)) and convert an individuals’ highest self-reported educational

qualification to equivalent years of education using the International Standard Classification of Education (ISCED). The

resulting years of education phenotype ranges from 7 to 20, where College or University degree is equivalent to 20 years,

National Vocational Qualification (NVQ), Higher National Diploma (HND), or Higher National Certificate (HNC) to 19 years,

other professional qualifications to 15 years, having an A or AS levels or similar to 13 years, O levels, and (General) Certificate

of Secondary Education ((G)CSE) to 10 years. If “none of the above” is selected, then the lowest level of 7 years is assigned.

For height, we use the standing height (in centimeters) of participants measured as a part of the anthropometric data collection at

the UKB assessment center. For both phenotypes, we impute the missing values in the first wave with the available information

from the two follow up measurements in the UKB.

GWAS We perform the GWAS on the UKB discovery sample for educational attainment (N = 389,419) and for height

(N = 391,931), where both exclude siblings and their relatives (N = 56,450). For the split-sample PGSs, we first removed all

remaining parent-child pairs (N = 5,084) and all cousins except one from each cousin cluster (N = 44,326). Thereafter, we

split the unrelated discovery sample randomly into two parts of 170,004 for educational attainment and 170,937 for height. We

use the fastGWA approach (45) as implemented in Genome-wide Complex Trait Analysis (GCTA), which applies mixed linear

modeling (MLM) to genetic data and requires the following steps. First, based on the relatedness matrix, we generate a sparse

genetic relatedness matrix (GRM). We then use the sparse GRM, the SNP data, and the respective phenotype file for height and

educational attainment to run the GWAS. Each phenotype file contains a measure of the phenotype residualized with respect to

month and year of birth, gender, interaction of birth year and gender, genotyping batch, and the first 40 principal components

(PCs) of the genetic relationship matrix. Additional quality control includes cleaning the data with respect to exclusion of

individuals who withdrew consent, with bad genotyping quality, with putative sex chromosome aneuploidy, whose second

chromosome karyotypes are different from XX or XY, with outliers in heterozygosity, with missing gender or self-reported

gender mismatching with the genetically identified gender, individuals of non-European ancestry, or with missing information

on any of the former criteria, on the phenotype or on any of the control variables. Further, we perform quality control on the

resulting GWAS summary statistics using the EasyQC tool (70).

Meta-Analysis We meta-analyze our own GWAS summary statistics obtained with UKB data with the 23andMe summary

statistics for the educational attainment PGS and with the GIANT 2014 summary statistics (18) for the height PGS using the

software package METAL (71). While the GIANT summary statistics are publicly available, the 23andMe summary statistics
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are only available through 23andMe to qualified researchers under an agreement with 23andMe that protects the privacy of

the 23andMe participants. For more information, visit https://research.23andme.com/collaborate/\#dataset-access/. 23andMe

participants were included in the analysis on the basis of consent status as checked at the time data analyses were initiated.

Participants provided informed consent and participated in the research online, under a protocol approved by the external

AAHRPP-accredited IRB, Ethical & Independent Review Services (EI Review).

Polygenic Scores We construct the PGSs by accounting for the linkage disequilibrium (LD), i.e., the non-random correlations

between SNPs at various loci of a single chromosome, using the LDpred tool (43), version 1.06, and Python, version 3.6.6.

LDpred is a Python based package that corrects the GWAS weights for LD using a Bayesian approach. We follow steps as

summarized by (10): (i) coordinate the base and the target files, (ii) compute the LD adjusted weights, and (iii) construct the

polygenic score with PLINK (72) using the LD weighted GWAS summary statistics. The PGSs are based on approximately 1

million HapMap3 SNPs (we do not apply p-value thresholds). The final prediction (hold-out) sample consists of N = 35,282

siblings.
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