

1 BRIEF COMMUNICATION
2
3

4 **The impact of viral mutations on recognition by SARS-CoV-2 specific T-cells**
5

6 Thushan I. de Silva^{1,2§*}, Guihai Liu^{3,4,5§}, Benjamin B Lindsey^{1§}, Danning Dong^{3,4,6§}, Dhruv
7 Shah¹, Alexander J. Mentzer^{7,8}, Adrienn Angyal¹, Rebecca Brown¹, Matthew D. Parker^{9,10}, Zixi
8 Ying^{3,4}, Xuan Yao^{3,4}, Lance Turtle¹¹, Susanna Dunachie^{12,13}, COVID-19 Genomics UK (COG-
9 UK) Consortium^{14^}, Mala K. Maini¹⁵, Graham Ogg^{3,4}, Julian C. Knight^{3,7,8}, Yanchun Peng^{3,4},
10 Sarah L. Rowland-Jones^{1,7}, Tao Dong^{3,4,7*}.

11 1. The Florey Institute for Host-Pathogen Interactions and Department of Infection,
12 Immunity and Cardiovascular Disease, Medical School, University of Sheffield,
13 Sheffield, UK.

14 2. Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the
15 London School of Hygiene and Tropical Medicine, Banjul, The Gambia.

16 3. Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of
17 Oxford, Oxford, UK.

18 4. MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine,
19 Radcliffe Department of Medicine, University of Oxford, Oxford, UK.

20 5. Beijing You'an Hospital, Capital Medical University, Beijing, China.

21 6. CAMS Key Laboratory of Tumor Immunology and Radiation Therapy, Xinjiang Tumor
22 Hospital, Xinjiang Medical University, China.

23 7. Nuffield Department of Medicine, University of Oxford, NDM Research Building,
24 Oxford, UK.

25 8. Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK

26 9. Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield, UK.

27 10. Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK.

28 11. NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of
29 Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.

30 12. Centre For Tropical Medicine and Global Health, Nuffield Dept. of Clinical Medicine,
31 University of Oxford, UK

32 13. Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand

33 14. <https://www.cogconsortium.uk>

34 15. Division of Infection and Immunity, University College London, London, UK.

35

36 §These authors contributed equally

37 *Co-corresponding authors: Thushan I. de Silva (email: t.desilva@sheffield.ac.uk); Tao Dong
38 (email: tao.dong@imm.ox.ac.uk)

39 ^Full list of consortium names and affiliations are in the Appendix.

40

41 **Abstract**

42 We identify amino acid variants within dominant SARS-CoV-2 T-cell epitopes by interrogating
43 global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen
44 independently in multiple lineages and result in loss of recognition by epitope-specific T-cells
45 assessed by IFN- γ and cytotoxic killing assays. These data demonstrate the potential for T-cell
46 evasion and highlight the need for ongoing surveillance for variants capable of escaping T-cell as
47 well as humoral immunity.

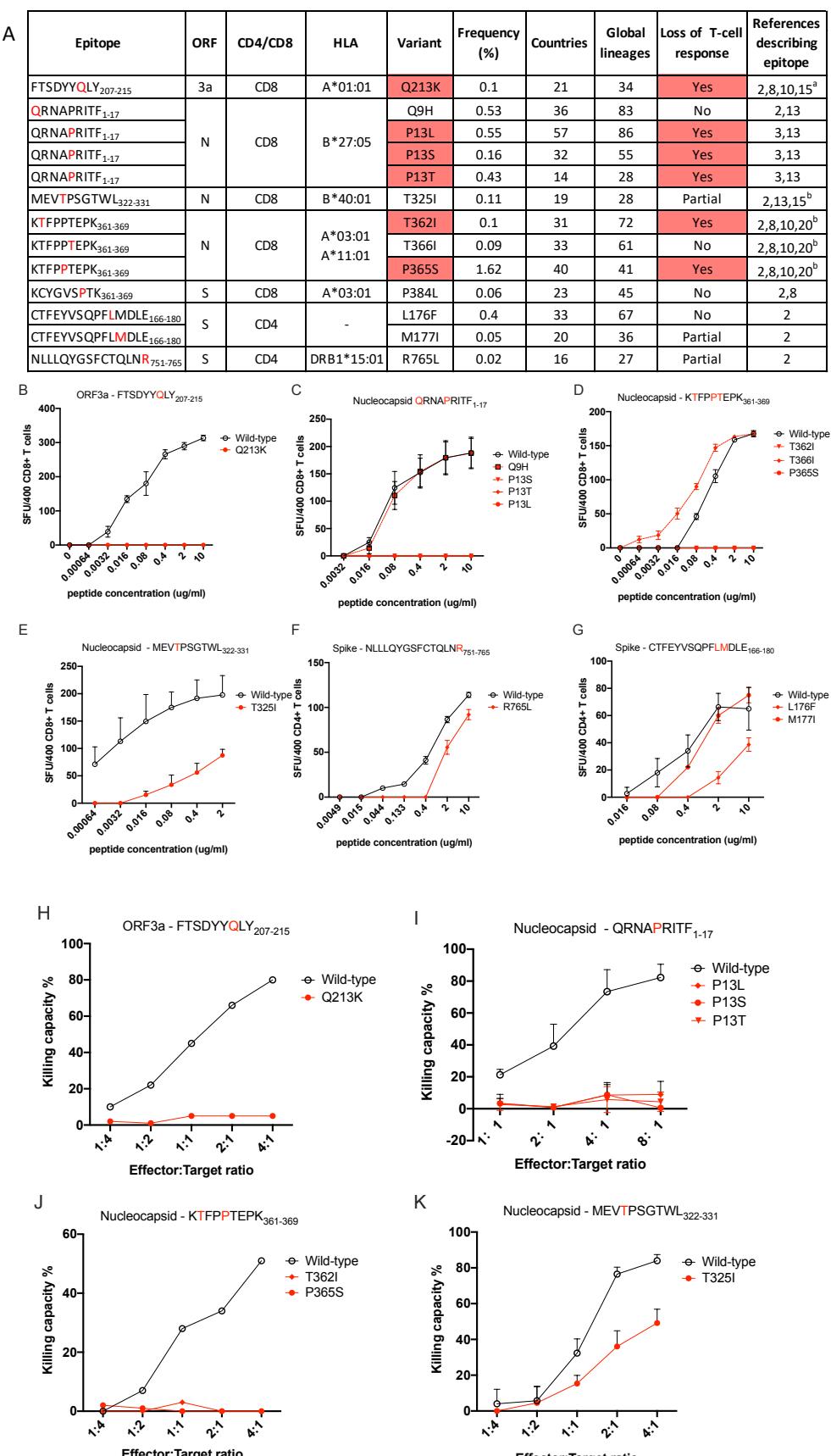
48

49 **Main**

50 Evolution of SARS-CoV-2 can lead to evasion from adaptive immunity generated following
51 infection and vaccination. Much focus has been on humoral immunity and spike protein mutations
52 that impair the effectiveness of neutralizing monoclonal antibodies and polyclonal sera. T-cells
53 specific to conserved proteins play a significant protective role in respiratory viral infections such
54 as influenza, particularly in broad heterosubtypic immunity¹. T-cell responses following SARS-
55 CoV-2 infection are directed against targets across the genome and may play a role in favourable
56 outcomes during acute infection and in immunosuppressed hosts with deficient B-cell immunity².

57 ⁴. While CD8+ T-cells may not provide sterilising immunity, they can protect against severe
58 disease and limit risk of transmission, with a potentially more important role in the setting of
59 antibody escape.

60
61 Little is known about the potential for SARS-CoV-2 mutations to impact T-cell recognition.
62 Escape from antigen-specific CD8+ T-cells has been studied extensively in HIV-1 infection, where
63 rapid intra-host evolution renders T-cell responses ineffective within weeks of acute infection⁵.
64 While these escape variants play an important role in the dynamics of chronic viral infections, the
65 opportunities for T-cell escape in acute respiratory viral infections are fewer and consequences are
66 different. Nevertheless, several cytotoxic T-lymphocyte (CTL) escape variants have been
67 described in influenza, such as the R384G substitution in the HLA B*08:01-restricted
68 nucleoprotein₃₈₀₋₃₈₈ and B*27:05-restricted nucleoprotein₃₈₃₋₃₉₁ epitopes⁶. Long-term adaptation
69 of influenza A/H3N2 has been demonstrated, with the loss of one CTL epitope every three years
70 since its emergence in 1968⁷.


71
72 To explore the potential for viral evasion from SARS-CoV-2-specific T-cell responses, we
73 conducted a proof-of-concept study, focusing initially on identifying common amino acid
74 mutations within experimentally proven T-cell epitopes and testing the functional implications in
75 selected immunodominant epitopes that we and others have described previously. We conducted
76 a literature review in PubMed and Scopus databases (29th of November 2020; Supplementary
77 Information) that identified 14 publications defining 360 experimentally proven CD4+ and CD8+
78 T-cell epitopes^{2,8-20}. Of these, 53 that were described in ≥ 1 publication were all CD8+ epitopes
79 (Table S1) and distributed across the genome (n=14 ORF1a, n=5 ORF1b, n=18 S, n=2 M, n=8 N,
80 n=5 ORF3a, n=1 ORF7a). In total 7538 amino acid substitutions or deletions were identified within
81 the 360 T-cell epitopes by searching the COVID-19 Genomics UK consortium (COG-UK) global
82 alignment, dated 29th January 2021 and containing 309,119 sequences (Figure S1, Table S2). 1087

83 amino acid variants were present within the 53 CD8+ T-cell epitopes with responses described
84 across multiple cohorts, with at least one variant in all epitopes (Figure S2, Table S3).

85
86 We focused on evaluating the functional impact of variants within seven immunodominant
87 epitopes (five CD8+, two CD4+) described in our study of UK convalescent donors (Figure 1A)².
88 Of these, all five CD8+ epitopes have been described in at least one other cohort. In particular,
89 responses to the A*03:01/A*11:01-restricted nucleocapsid KTFPPTEPK₃₆₁₋₃₆₉^{2,8,10,20} and
90 A*01:01-restricted ORF3a FTSDYYQLY₂₀₇₋₂₁₅^{2,8,10,15} epitopes are consistently dominant and of
91 high magnitude. We tested the functional avidity of SARS-CoV-2 specific CD4+ and CD8+
92 polyclonal T-cell lines by interferon (IFN)- γ ELISpots using wild-type and variant peptide
93 titrations (Figure 1B-G). We found that several variants resulted in complete loss of responsiveness
94 to the T-cell lines evaluated: the Q213K variant in the A*01:01-restricted CD8+ ORF3a epitope
95 FTSDYYQLY₂₀₇₋₂₁₅^{2,8,10,15}, the P13L, P13S and P13T variants in the B*27:05-restricted CD8+
96 nucleocapsid epitope QRNAPRITF₁₋₁₇^{2,13}, and T362I and P365S variants in the A*03:01/A*11:01-
97 restricted CD8+ nucleocapsid epitope KTFPPTEPK₃₆₁₋₃₆₉^{2,8,10,20} (Figure 1B-D).

98
99 In contrast, Q9H in QRNAPRITF₁₋₁₇, T366I in KTFPPTEPK₃₆₁₋₃₆₉, P384L in the A*03:01-
100 restricted CD8+ spike epitope KCYGVSPTK₃₇₈₋₃₈₆^{2,8} and M177I in the CD4+ spike epitope
101 CTFEYVSQPFLMDLE₁₆₆₋₁₈₀² showed no impact on T-cell recognition (Figures 1C, D, G, S3).
102 Several other variants showed partial loss of T-cell responsiveness, with lower avidity observed to
103 the variant peptide compared to wild-type peptide. These included T325I in the B*40:01-restricted
104 nucleocapsid epitope MEVTPSGTWL₃₂₂₋₃₃₁^{2,13,15}, R765L in the DRB1*15:01-restricted CD4+
105 spike epitope NLLLQYGSFCTQLNR₇₅₁₋₇₆₅², and M177I in the CD4+ spike epitope
106 CTFEYVSQPFLMDLE₁₆₆₋₁₈₀² (Figure 1E-G). In order to confirm our findings, we evaluated the
107 impact of CD8+ T-cell epitope variants on CTL killing of peptide-loaded autologous B-cells.
108 Consistent with the ELISpot data, CTL killing ability was significantly impaired by Q213K in
109 ORF3a FTSDYYQLY₂₀₇₋₂₁₅, P13L, P13S and P13T in nucleocapsid QRNAPRITF₁₋₁₇, and T362I

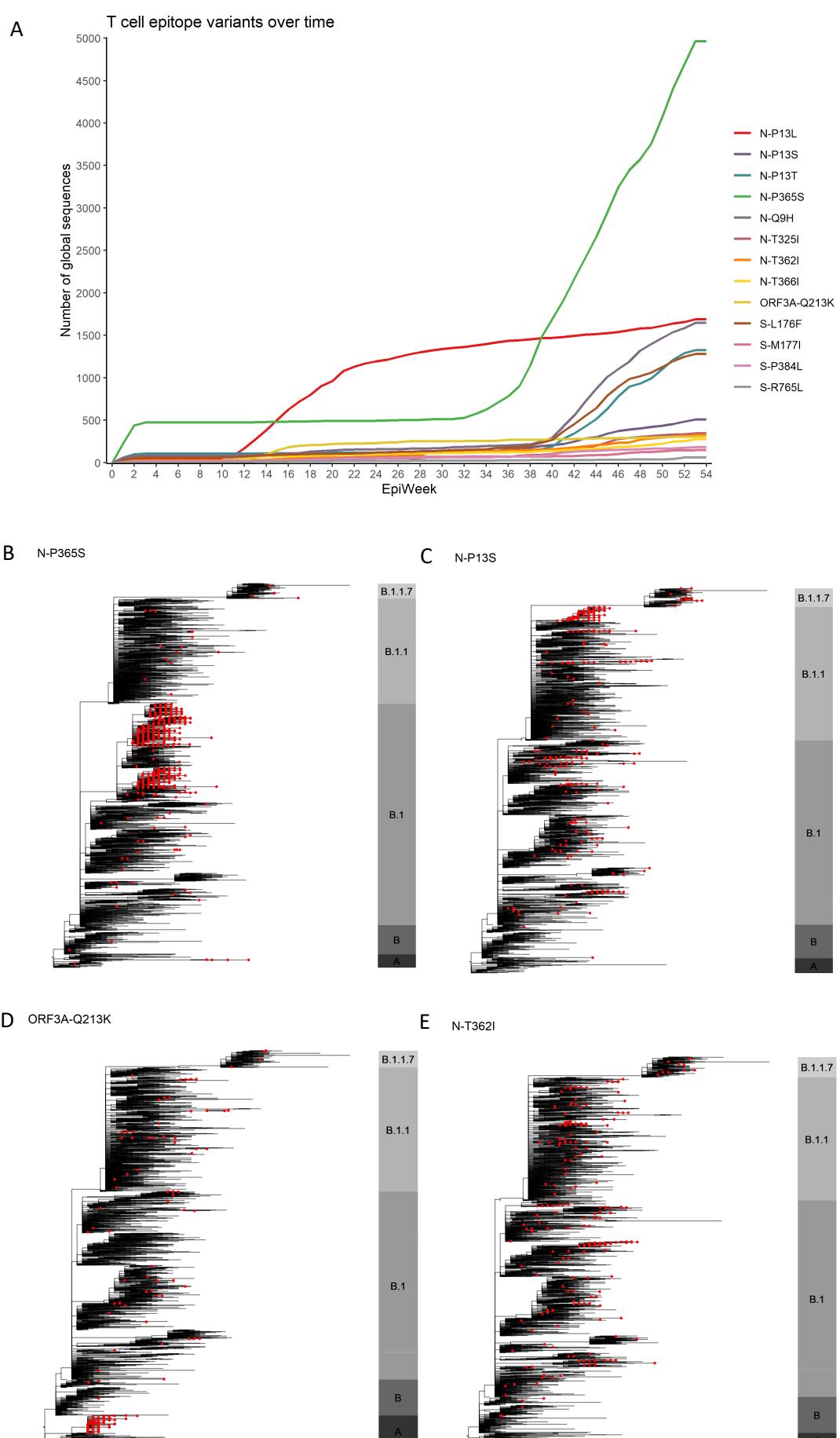
110 and P365S in nucleocapsid KTFPPTEPK₃₆₁₋₃₆₉ (Figure 1H-J). Partial impairment of killing ability
 111 was seen with T325I in MEVTPSGTWL₃₂₂₋₃₃₁ (Figure 1K).

113 **Figure 1. Functional impact of mutations in key SARS-CoV-2 dominant epitopes. A. Epitopes**
114 *and variants studied. Mutated positions detailed in red within wild-type epitope sequence.*
115 *Frequency indicates % of sequences where variant is seen within COG-UK Global alignment*
116 *(309,119 sequenced, 29th Jan 2021). Global Lineages refers to Pango lineage assignment.*
117 *ORF=Open Reading Frame, HLA=Human Leukocyte Antigen. ^aresponses to longer peptide also*
118 *seen in¹⁸; ^bresponses to longer peptide also seen in^{10,18}* **B-G.** *Recognition of wild-type (black) and*
119 *mutant (red) peptide titrations by bulk epitope-specific T-cell lines in IFN- γ ELISpot assays.*
120 *SFU=Spot Forming Units. H-K.* *Ability of CD8+ T-cell lines to kill autologous B-cells loaded*
121 *with wild-type (black) or mutant (red) peptides in carboxyfluoroscein succinimidyl ester (CFSE)*
122 *assays. Effector:target ratio denotes proportion of CD8+ T-cell:B-cells in each assay.*

123

124 In contrast, Q9H in QRNAPRITF₁₋₁₇, T366I in KTFPPTEPK₃₆₁₋₃₆₉, P384L in the A*03:01-
125 restricted CD8+ spike epitope KCYGVSP₃₇₈₋₃₈₆^{2,8} and M177I in the CD4+ spike epitope
126 CTFEYVSQPFLMDLE₁₆₆₋₁₈₀² showed no impact on T-cell recognition (Figures 1C, D, G, S3).
127 Several other variants showed partial loss of T-cell responsiveness, with lower avidity observed to
128 the variant peptide compared to wild-type peptide. These included T325I in the B*40:01-restricted
129 nucleocapsid epitope MEVTPSGTW₃₂₂₋₃₃₁^{2,13,15}, R765L in the DRB1*15:01-restricted CD4+
130 spike epitope NLLLQYGSFCTQLNR₇₅₁₋₇₆₅², and M177I in the CD4+ spike epitope
131 CTFEYVSQPFLMDLE₁₆₆₋₁₈₀² (Figure 1E-G). In order to confirm our findings, we evaluated the
132 impact of CD8+ T-cell epitope variants on CTL killing of peptide-loaded autologous B-cells.
133 Consistent with the ELISpot data, CTL killing ability was significantly impaired by Q213K in
134 ORF3a FTSDYYQLY₂₀₇₋₂₁₅, P13L, P13S and P13T in nucleocapsid QRNAPRITF₁₋₁₇, and T362I
135 and P365S in nucleocapsid KTFPPTEPK₃₆₁₋₃₆₉ (Figure 1H-J). Partial impairment of killing ability
136 was seen with T325I in MEVTPSGTW₃₂₂₋₃₃₁ (Figure 1K).

137


138 T-cell escape can occur via interrupting several mechanisms: antigen processing, binding of MHC
139 to peptide, or T-cell receptor (TCR) recognition of the MHC-peptide complex. While we did not

140 explicitly establish which of these was responsible in each case, it is likely that any partial
141 impairment of T-cell recognition is due to reduced TCR binding to MHC-peptide. Reasons for
142 complete escape are more difficult to predict. As the anchor residues of peptide-MHC binding in
143 A*03:01/A*11:01-restricted KTFPPTEPK₃₆₁₋₃₆₉ are at positions 2 and 9, T362I (position 2) may
144 impair peptide-MHC binding, while P365S (position 5) may affect a T-cell binding residue. The
145 proline changes (P13L, P13S, P13T) in the B*27:05-restricted QRNAPRITF₁₋₁₇ (position 5) again
146 may be at a key T-cell contact residue. The anchor residues for the A*01:01-restricted
147 FTSDYYQLY₂₀₇₋₂₁₅ are predicted to be at position 3 and 9, with auxiliary anchors at positions 2
148 and 7, which may explain the impact of the Q213K (position 7) variant. In keeping with this, we
149 see no significant impact of these mutations on the predicted binding affinities of epitope to MHC
150 (Table S4). Despite a modest 4-fold decrease in predicted IC₅₀ for Q213K compared to wild-type,
151 FTSDYYKLY₂₀₇₋₂₁₅ is still a strong binder to A*01:01.

152

153 *Ex vivo* IFN- γ ELISpots in two A*03:01 and two B*27:05 convalescent donors confirmed loss of
154 responses to variant peptides seen with T-cell lines specific to KTFPPTEPK₃₆₁₋₃₆₉ and
155 QRNAPRITF₁₋₁₇ (Figure S4). Thus, our findings using T-cell lines are representative of the
156 circulating T-cell response to these epitopes and of physiological relevance. Interestingly, one
157 A*03:01 donor had low level responses to P365S and T362I, suggesting that subdominant
158 responses via alternative TCR are possible. Our data are also biased by using T-cell lines generated
159 from donors recruited early in the pandemic and therefore likely infected with ‘wild-type’ viruses².
160 While variants that impair antigen processing or MHC-peptide binding result in irreversible loss
161 of T-cell recognition, CTLs with new TCR repertoires can overcome TCR-mediated escape
162 variants, as has been described in HIV-1 infection²¹.

163
164

166 **Figure 1. Global presence of variants in key dominant SARS-CoV-2 epitopes. A. Weekly**
167 *frequency over time since beginning of SARS-CoV-2 pandemic of all variants studied in functional*
168 *experiments. COG-UK global alignment dated 29th Jan 2021 and 309,119 sequences used.*
169 *Variants named with prefix of SARS-CoV-2 protein (S=spike, N=nucleocapsid), followed by wild-*
170 *type amino acid, position within protein and variant amino acid. B-E. Phylogenies representing*
171 *global SARS-CoV-2 genomes depicting the presence of epitopes variants impacting T-cell*
172 *responses. In each case, phylogenies represent all available variant sequences (red tips), along*
173 *with a selection of non-variant sequences, which were subsampled for visualisation purposes. The*
174 *bar to the right of each phylogeny is annotated by main ancestral lineages only and not each*
175 *individual PANGO lineage that viruses belong to. The grapevine pipeline*
176 *(<https://github.com/COG-UK/grapevine>) was used for generating the phylogeny based on all data*
177 *available on GISAID and COG-UK up until 16th of February 2021.*

178
179 Many variants examined in our study were at relatively low frequency and stable prevalence at the
180 time of writing, other than P365S in KTFPPTEPK₃₆₁₋₃₆₉, R765L in NLLLQYGSFCTQLNR₇₅₁₋₇₆₅
181 and variants affecting the proline at position 13 in QRNAPRITF₁₋₁₇ (Figures 1A and 2A). We
182 explored whether variants that result in loss of T-cell recognition appeared as homoplasies in the
183 phylogeny of SARS-CoV-2 suggestive of repeated independent selection, or whether global
184 frequency is due mainly to the expansion of lineages after initial acquisition. While in some cases,
185 variant frequency was dependent on a few successful lineages, P365S, Q213K, T362I, P13L, P13S
186 and P13T had arisen independently on several occasions including within the recently emerged
187 B.1.1.7 lineage (Figures 2B-E, S5A-B). It is important to emphasise that this homoplasy and our
188 functional data do not prove selection due to T-cell escape, which would require demonstration of
189 intra-host evolution. The positions we find important for T-cell recognition may be under selective
190 pressure for reasons other than T-cell immunity. A recent study has documented intra-host
191 evolution of minority variants within A*02:01 and B*40:01 CD8+ epitopes that impair T-cell

192 recognition, though not all epitopes are dominant and very few of the variants studied were
193 represented amongst the global circulating viruses²².

194
195 There is unlikely to be adequate population immunity at present to see global changes due to T-
196 cell selection akin to what has been seen in adaptation of H3N2 influenza over time⁷. Furthermore,
197 polymorphism in HLA genes restricts the selective advantage of escape within one particular
198 epitope to a relatively small proportion of the population, given the breadth in T-cell responses we
199 and others have shown. Nevertheless, responses to many of the CTL epitopes we have studied are
200 dominant within HLA-matched individuals across many cohorts². As A*03:01, A*11:01 and
201 A*01:01 are common HLA alleles globally, loss of T-cell responses to dominant epitopes such as
202 KTFPPTEPK₃₆₁₋₃₆₉ and FTSDYYQLY₂₀₇₋₂₁₅ may be significant. Substitution of three different
203 amino acid variants at nucleocapsid position 13 within the B*27:05-restricted QRNAPRITF₁₋₁₇
204 epitope is also striking and suggests significant positive selective pressure at this site. A single
205 dominant, protective B*27:05-restricted epitope has been described in HIV-1 infection, with T-
206 cell escape associated with progression to AIDS. T-cell escape from a B*27:05-restricted influenza
207 A epitope (nucleoprotein₃₈₃₋₃₉₁) has also been observed⁶.

208
209 A significant increase in sites under diversifying positive selective pressure was observed around
210 November 2020, most notably in ORF3a, N and S²³. As vaccine and naturally-acquired population
211 immunity increases further, the frequency of variants we have described should be monitored
212 globally, as well as further changes arising within all immunodominant T-cell epitopes. We have
213 recently incorporated the ability to identify spike T-cell epitope variants in real-time sequence data
214 into the COG-UK mutation explorer dashboard (<http://sars2.cvr.gla.ac.uk/cog-uk/>). Non-spike T-
215 cell immune responses will also become increasingly important to vaccine-induced immunity as
216 inactivated whole virus vaccines are rolled out. Our findings demonstrate the potential for T-cell
217 evasion and highlight the need for ongoing surveillance for variants capable of escaping T-cell as
218 well as humoral immunity.

219

220

221 **Methods**

222

223 *Identification of amino acid variants within T-cell epitopes*

224 Variants within the 360 experimentally proven T-cell epitopes were identified using the COVID-
225 19 Genomics UK consortium (COG-UK) global alignment, dated 29th January 2021 and
226 containing 309,119 sequences . Sequences were excluded if they did not contain a start and/stop
227 codon at the beginning and end of each open reading frame (ORF). Each sequence was translated
228 and compared to reference (MN908947.3) using custom python scripts (Python 3.7.6) utilising
229 Biopython (version 1.78).

230

231 *Peptide titrations using T-cell lines*

232 Polyclonal CD4+ and CD8+ T-cell lines specific for seven previously described immunodominant
233 epitopes² were generated after MHC class I or II tetramer sorting from cultured short-term cultures
234 of SARS-CoV-2 recovered donor peripheral blood mononuclear cells (PBMCs). Antigen-specific
235 T-cells were confirmed by corresponding tetramer staining. The functional avidity of T-cell lines
236 was assessed by IFN- γ ELISpot assays performed as described previously²⁴, by stimulation with
237 wild-type and variant peptides starting at 10 μ g/mL and serial 1:5 dilutions. Peptides were
238 synthesised by GenScript Biotech (Netherlands) B.V. To quantify antigen-specific responses,
239 spots of the control wells were subtracted from test wells and results expressed as spot forming
240 units (SFU) per 10⁶ PBMCs. If negative control wells had >30 SFU/10⁶ PBMCs or positive control
241 (phytohemagglutinin) were negative, results were considered invalid. Duplicate wells were used
242 for each test and results are from three to seven independent experiments.

243

244 *Cytotoxic T-lymphocyte (CTL) killing assays*

245 Autologous B-cells were stained with 0.5 μ mol/L carboxyfluorescein succinimidyl ester (CFSE,
246 Thermo Fisher Scientific) before wild-type or variant peptide loading at 1 μ g/mL for one hour.

247 Peptide-loaded B-cells were co-cultured with CTLs at a range of effector:target (E:T) ratios from
248 1:4 to 8:1 at 37°C for 6 hours and cells stained with 7-AAD (eBioscience) and CD19-BV42
249 (eBioscience). Assessment of cell death in each condition was based on the CFSE/7-AAD
250 population present.

251
252 *Predictions of binding strength of peptides to MHC*

253 NetMHCpan 4.1 (<http://www.cbs.dtu.dk/services/NetMHCpan/>) was used to predict the binding
254 strength of wild type and variant epitopes under standard settings (strong binder % rank 0.5,
255 weak binder % rank 2). The predicted affinity (IC₅₀ nM) for variant epitopes was compared with
256 wild type.

257
258 *Phylogenetic tree generation*

259 Phylogenies were generated using the grapevine pipeline (<https://github.com/COG-UK/grapevine>)
260 based on all data available on GISAID and COG-UK up until 16th February 2021. In order to
261 visualise all sequences with a specific amino acid variant of interest in a global context, a
262 representative sample of global sequences was obtained in two steps. First, one sequence per
263 country per epi week was selected randomly, followed by random sampling of the remaining
264 sequences to generate a sample of 4000 down-sampled sequences. The global tree was then pruned
265 using code adapted from the tree-manip package (<https://github.com/josephhughes/tree-manip>).
266 The tips of sequences with amino acid variants impacting T-cell recognition were colour-coded.
267 Visualisations were produced using R/ape, R/ggplot2, R/ggtree, R/treeio, R/phangorn, R/stringr,
268 R/dplyr, R/aplot.

269
270 *Ex vivo IFN-γ ELISpots in SARS-CoV-2 recovered donors*
271 Cryopreserved PBMCs were used from SARS-CoV-2 recovered donors recruited into the Sepsis
272 Immunomics study with ethical approval from the South Central - Oxford C Research Ethics
273 Committee in England (Ref 13/SC/0149). These were used for *ex vivo* IFN-γ ELISpots with wild-
274 type and variant peptides. Peptides were added to 200,000 PBMCs at a final concentration of

275 2 μ g/mL for 16-18 hours (two replicates per condition). Results were interpreted as detailed above.
276 PBMCs used were from samples taken when patients were between 35 to 53 days from symptom
277 onset.

278
279
280 **Acknowledgements**

281 This work is supported by the UK Medical Research Council (MRC); Chinese Academy of
282 Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National
283 Institute of Health Research (NIHR) Oxford Biomedical Research Centre and by UK Research
284 and Innovation (UKRI)/NIHR through the UK Coronavirus Immunology Consortium (UK-CIC).
285 Sequencing of SARS-CoV-2 samples and collation of data was undertaken by the COG-UK
286 CONSORTIUM. COG-UK is supported by funding from the Medical Research Council (MRC)
287 part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and
288 Genome Research Limited, operating as the Wellcome Sanger Institute. TIdS is supported by a
289 Wellcome Trust Intermediate Clinical Fellowship (110058/Z/15/Z). MDP is funded by the NIHR
290 Sheffield Biomedical Research Centre (BRC – IS-BRC-1215-20017). JCK is a Wellcome
291 Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centre
292 and CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR,
293 or MRC.

294

295 **Contributions**

296 TIdS and TD conceptualized the project; TD, TIdS and YP designed and supervised T cell
297 experiments, BBL and MDP conducted the viral sequence analyses, DS conducted the literature
298 review and collated T-cell epitope information, GL, DD performed experiments and analysed the
299 data, XY, ZY, AA. and RB provided critical reagents and technical assistance, JCK and AJM,
300 established clinical cohorts; TIdS and TD wrote and edited the original draft, all co-authors
301 reviewed and edited the manuscript.

302
303 **Competing Interests**
304
305 The authors declare no competing interests
306
307
308 **References**
309
310 1. Hayward, A.C., *et al.* Natural T Cell-mediated Protection against Seasonal and Pandemic
311 Influenza. Results of the Flu Watch Cohort Study. *Am J Respir Crit Care Med* **191**, 1422-
312 1431 (2015).
313 2. Peng, Y., *et al.* Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-
314 CoV-2 in UK convalescent individuals following COVID-19. *Nat Immunol* **21**, 1336-
315 1345 (2020).
316 3. Huang, A., *et al.* CD8 T cells compensate for impaired humoral immunity in COVID-19
317 patients with hematologic cancer. *Res Sq* (2021).
318 4. Tan, A.T., *et al.* Early induction of functional SARS-CoV-2-specific T cells associates
319 with rapid viral clearance and mild disease in COVID-19 patients. *Cell Rep* **34**, 108728
320 (2021).
321 5. Goonetilleke, N., *et al.* The first T cell response to transmitted/founder virus contributes
322 to the control of acute viremia in HIV-1 infection. *J Exp Med* **206**, 1253-1272 (2009).
323 6. Voeten, J.T., *et al.* Antigenic drift in the influenza A virus (H3N2) nucleoprotein and
324 escape from recognition by cytotoxic T lymphocytes. *J Virol* **74**, 6800-6807 (2000).
325 7. Woolthuis, R.G., van Dorp, C.H., Kesmir, C., de Boer, R.J. & van Boven, M. Long-term
326 adaptation of the influenza A virus by escaping cytotoxic T-cell recognition. *Sci Rep* **6**,
327 33334 (2016).
328 8. Ferretti, A.P., *et al.* Unbiased Screens Show CD8(+) T Cells of COVID-19 Patients
329 Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike
330 Protein. *Immunity* **53**, 1095-1107 e1093 (2020).

331 9. Habel, J.R., *et al.* Suboptimal SARS-CoV-2-specific CD8(+) T cell response associated
332 with the prominent HLA-A*02:01 phenotype. *Proc Natl Acad Sci U S A* **117**, 24384-
333 24391 (2020).

334 10. Kared, H., *et al.* SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-
335 19 individuals. *J Clin Invest* (2021).

336 11. Keller, M.D., *et al.* SARS-CoV-2 specific T-cells Are Rapidly Expanded for Therapeutic
337 Use and Target Conserved Regions of Membrane Protein. *Blood* (2020).

338 12. Le Bert, N., *et al.* SARS-CoV-2-specific T cell immunity in cases of COVID-19 and
339 SARS, and uninfected controls. *Nature* **584**, 457-462 (2020).

340 13. Nelde, A., *et al.* SARS-CoV-2-derived peptides define heterologous and COVID-19-
341 induced T cell recognition. *Nat Immunol* **22**, 74-85 (2021).

342 14. Poran, A., *et al.* Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass
343 spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes.
344 *Genome Med* **12**, 70 (2020).

345 15. Schulien, I., *et al.* Characterization of pre-existing and induced SARS-CoV-2-specific
346 CD8(+) T cells. *Nat Med* **27**, 78-85 (2021).

347 16. Sekine, T., *et al.* Robust T Cell Immunity in Convalescent Individuals with
348 Asymptomatic or Mild COVID-19. *Cell* **183**, 158-168 e114 (2020).

349 17. Shomuradova, A.S., *et al.* SARS-CoV-2 Epitopes Are Recognized by a Public and
350 Diverse Repertoire of Human T Cell Receptors. *Immunity* **53**, 1245-1257 e1245 (2020).

351 18. Snyder, T.M., *et al.* Magnitude and Dynamics of the T-Cell Response to SARS-CoV-2
352 Infection at Both Individual and Population Levels. *medRxiv* (2020).

353 19. Chour, W., *et al.* Shared Antigen-specific CD8+ T cell Responses Against the SARS-
354 COV-2 Spike Protein in HLA-A*02:01 COVID-19 Participants. *medRxiv* (2020).

355 20. Gangaev, A., *et al.* Profound CD8 T cell responses towards the SARS-CoV-2 ORF1ab in
356 COVID-19 patients. *Research Square* (2020).

357 21. Ladell, K., *et al.* A molecular basis for the control of preimmune escape variants by HIV-
358 specific CD8+ T cells. *Immunity* **38**, 425-436 (2013).

359 22. Agerer, B., *et al.* SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8(+) T
360 cell responses. *Sci Immunol* **6**(2021).

361 23. Martin, D.P., *et al.* The emergence and ongoing convergent evolution of the N501Y
362 lineages coincides with a major global shift in the SARS-CoV-2 selective landscape.
363 *medRxiv* (2021).

364 24. Peng, Y., *et al.* Boosted Influenza-Specific T Cell Responses after H5N1 Pandemic Live
365 Attenuated Influenza Virus Vaccination. *Front Immunol* **6**, 287 (2015).

366