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40

41  Abstract

42 We identify amino acid variants within dominant SARS-CoV-2 T-cell epitopes by interrogating
43  global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen
44  independently in multiple lineages and result in loss of recognition by epitope-specific T-cells
45  assessed by IFN-y and cytotoxic killing assays. These data demonstrate the potential for T-cell
46  evasion and highlight the need for ongoing surveillance for variants capable of escaping T-cell as
47  well as humoral immunity.

48

49  Main

50  Evolution of SARS-CoV-2 can lead to evasion from adaptive immunity generated following
51  infection and vaccination. Much focus has been on humoral immunity and spike protein mutations
52  that impair the effectiveness of neutralizing monoclonal antibodies and polyclonal sera. T-cells
53 specific to conserved proteins play a significant protective role in respiratory viral infections such
54 as influenza, particularly in broad heterosubtypic immunity!. T-cell responses following SARS-
55  CoV-2 infection are directed against targets across the genome and may play a role in favourable

56  outcomes during acute infection and in immunosuppressed hosts with deficient B-cell immunity?
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4. While CD8+ T-cells may not provide sterilising immunity, they can protect against severe
disease and limit risk of transmission, with a potentially more important role in the setting of

antibody escape.

Little is known about the potential for SARS-CoV-2 mutations to impact T-cell recognition.
Escape from antigen-specific CD8+ T-cells has been studied extensively in HIV-1 infection, where
rapid intra-host evolution renders T-cell responses ineffective within weeks of acute infection®.
While these escape variants play an important role in the dynamics of chronic viral infections, the
opportunities for T-cell escape in acute respiratory viral infections are fewer and consequences are
different. Nevertheless, several cytotoxic T-lymphocyte (CTL) escape variants have been
described in influenza, such as the R384G substitution in the HLA B*08:01-restricted
nucleoproteinsso-zgs and B*27:05-restricted nucleoproteinsss.zor epitopes®. Long-term adaptation
of influenza A/H3N2 has been demonstrated, with the loss of one CTL epitope every three years

since its emergence in 19687,

To explore the potential for viral evasion from SARS-CoV-2-specific T-cell responses, we
conducted a proof-of-concept study, focusing initially on identifying common amino acid
mutations within experimentally proven T-cell epitopes and testing the functional implications in
selected immunodominant epitopes that we and others have described previously. We conducted
a literature review in PubMed and Scopus databases (29" of November 2020; Supplementary
Information) that identified 14 publications defining 360 experimentally proven CD4+ and CD8+
T-cell epitopes®®-2°. Of these, 53 that were described in >1 publication were all CD8+ epitopes
(Table S1) and distributed across the genome (n=14 ORF1a, n=5 ORF1b, n=18 S, n=2 M, n=8 N,
n=5 ORF3a, n=1 ORF7a). In total 7538 amino acid substitutions or deletions were identified within
the 360 T-cell epitopes by searching the COVID-19 Genomics UK consortium (COG-UK) global

alignment, dated 29'" January 2021 and containing 309,119 sequences (Figure S1, Table S2). 1087
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83  amino acid variants were present within the 53 CD8+ T-cell epitopes with responses described
84  across multiple cohorts, with at least one variant in all epitopes (Figure S2, Table S3).
85
86  We focused on evaluating the functional impact of variants within seven immunodominant
87  epitopes (five CD8+, two CD4+) described in our study of UK convalescent donors (Figure 1A)2.
88  Of these, all five CD8+ epitopes have been described in at least one other cohort. In particular,
89  responses to the A*03:01/A*11:01-restricted nucleocapsid KTFPPTEPK361-360>%!%2° and
90  A*01:01-restricted ORF3a FTSDYYQLY207-215>%1%15 epitopes are consistently dominant and of
91  high magnitude. We tested the functional avidity of SARS-CoV-2 specific CD4+ and CD8+
92  polyclonal T-cell lines by interferon (IFN)-y ELISpots using wild-type and variant peptide
93 titrations (Figure 1B-G). We found that several variants resulted in complete loss of responsiveness
94 to the T-cell lines evaluated: the Q213K variant in the A*01:01-restricted CD8+ ORF3a epitope
95  FTSDYYQLY207-215>%1%15 the P13L, P13S and P13T variants in the B*27:05-restricted CD8+
96  nucleocapsid epitope QRNAPRITF,.17>!3, and T3621 and P365S variants in the A*03:01/A*11:01-
97  restricted CD8+ nucleocapsid epitope KTFPPTEPK 361-369>%!%2° (Figure 1B-D).
98
99  In contrast, Q9H in QRNAPRITF;.17, T3661 in KTFPPTEPK361-360, P384L in the A*03:01-
100  restricted CD8+ spike epitope KCYGVSPTK378.33>% and M1771 in the CD4+ spike epitope
101  CTFEYVSQPFLMDLE ¢s-130>° showed no impact on T-cell recognition (Figures 1C, D, G, S3).
102 Several other variants showed partial loss of T-cell responsiveness, with lower avidity observed to
103 the variant peptide compared to wild-type peptide. These included T325I in the B*40:01-restricted
104  nucleocapsid epitope MEVTPSGTWL322:331%!%15, R765L in the DRB1*15:01-restricted CD4+
105  spike epitope NLLLQYGSFCTQLNR7s1.765°>, and MI1771 in the CD4+ spike epitope
106 CTFEYVSQPFLMDLE ¢s-130° (Figure 1E-G). In order to confirm our findings, we evaluated the
107  impact of CD8+ T-cell epitope variants on CTL killing of peptide-loaded autologous B-cells.
108  Consistent with the ELISpot data, CTL killing ability was significantly impaired by Q213K in

109  ORF3a FTSDYYQLY207-215, P13L, P13S and P13T in nucleocapsid QRNAPRITF;.17, and T3621
4
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110 and P365S in nucleocapsid KTFPPTEPK361-360 (Figure 1H-J). Partial impairment of killing ability

111 was seen with T3251 in MEVTPSGTWL322.331 (Figure 1K).
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113 Figure 1. Functional impact of mutations in key SARS-CoV-2 dominant epitopes. A. Epitopes
114 and variants studied. Mutated positions detailed in red within wild-type epitope sequence.
115 Frequency indicates % of sequences where variant is seen within COG-UK Global alignment
116 (309,119 sequenced, 29" Jan 2021). Global Lineages refers to Pango lineage assignment.
117  ORF=Open Reading Frame, HLA=Human Leukocyte Antigen. “responses to longer peptide also
118  seen in'é; bresponses to longer peptide also seen in '8 B-G. Recognition of wild-type (black) and
119  mutant (red) peptide titrations by bulk epitope-specific T-cell lines in IFN-y ELISpot assays.
120  SFU=Spot Forming Units. H-K. Ability of CD8+ T-cell lines to kill autologous B-cells loaded
121 with wild-type (black) or mutant (red) peptides in carboxyfluoroscein succinimidyl ester (CFSE)
122 assays. Effector:target ratio denotes proportion of CD8+ T-cell:B-cells in each assay.

123

124 In contrast, Q9H in QRNAPRITFi.17, T3661 in KTFPPTEPK361-360, P384L in the A*03:01-
125  restricted CD8+ spike epitope KCYGVSPTK378.33>% and M1771 in the CD4+ spike epitope
126  CTFEYVSQPFLMDLE ¢s-130° showed no impact on T-cell recognition (Figures 1C, D, G, S3).
127  Several other variants showed partial loss of T-cell responsiveness, with lower avidity observed to
128  the variant peptide compared to wild-type peptide. These included T325I in the B*40:01-restricted
129 nucleocapsid epitope MEVTPSGTWL322:331%!%15, R765L in the DRB1*15:01-restricted CD4+
130  spike epitope  NLLLQYGSFCTQLNR7s1.765°>, and MI1771 in the CD4+ spike epitope
131  CTFEYVSQPFLMDLE ¢s-130° (Figure 1E-G). In order to confirm our findings, we evaluated the
132 impact of CD8+ T-cell epitope variants on CTL killing of peptide-loaded autologous B-cells.
133 Consistent with the ELISpot data, CTL killing ability was significantly impaired by Q213K in
134 ORF3a FTSDYYQLY207-215, P13L, P13S and P13T in nucleocapsid QRNAPRITF;.17, and T3621
135  and P365S in nucleocapsid KTFPPTEPK361-360 (Figure 1H-J). Partial impairment of killing ability
136  was seen with T3251 in MEVTPSGTWL322.331 (Figure 1K).

137

138  T-cell escape can occur via interrupting several mechanisms: antigen processing, binding of MHC

139  to peptide, or T-cell receptor (TCR) recognition of the MHC-peptide complex. While we did not
6
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140  explicitly establish which of these was responsible in each case, it is likely that any partial
141  impairment of T-cell recognition is due to reduced TCR binding to MHC-peptide. Reasons for
142 complete escape are more difficult to predict. As the anchor residues of peptide-MHC binding in
143 A*03:01/A*11:01-restricted KTFPPTEPK361-369 are at positions 2 and 9, T362I (position 2) may
144 impair peptide-MHC binding, while P365S (position 5) may affect a T-cell binding residue. The
145  proline changes (P13L, P13S, P13T) in the B*27:05-restricted QRNAPRITF;.17 (position 5) again
146 may be at a key T-cell contact residue. The anchor residues for the A*01:01-restricted
147  FTSDYYQLY207-215 are predicted to be at position 3 and 9, with auxiliary anchors at positions 2
148  and 7, which may explain the impact of the Q213K (position 7) variant. In keeping with this, we
149  see no significant impact of these mutations on the predicted binding affinities of epitope to MHC
150  (Table S4). Despite a modest 4-fold decrease in predicted ICso for Q213K compared to wild-type,
151  FTSDYYKLY207-2151s still a strong binder to A*01:01.

152

153 Exvivo IFN-y ELISpots in two A*03:01 and two B*27:05 convalescent donors confirmed loss of
154  responses to variant peptides seen with T-cell lines specific to KTFPPTEPK36i-360 and
155 QRNAPRITFi.17 (Figure S4). Thus, our findings using T-cell lines are representative of the
156  circulating T-cell response to these epitopes and of physiological relevance. Interestingly, one
157  A*03:01 donor had low level responses to P365S and T362I, suggesting that subdominant
158  responses via alternative TCR are possible. Our data are also biased by using T-cell lines generated
159  from donors recruited early in the pandemic and therefore likely infected with ‘wild-type” viruses?.
160  While variants that impair antigen processing or MHC-peptide binding result in irreversible loss
161  of T-cell recognition, CTLs with new TCR repertoires can overcome TCR-mediated escape
162  variants, as has been described in HIV-1 infection?!.

163

164
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Figure 1. Global presence of variants in key dominant SARS-CoV-2 epitopes. A. Weekly
frequency over time since beginning of SARS-CoV-2 pandemic of all variants studied in functional
experiments. COG-UK global alignment dated 29" Jan 2021 and 309,119 sequences used.
Variants named with prefix of SARS-CoV-2 protein (S=spike, N=nucleocapsid), followed by wild-
type amino acid, position within protein and variant amino acid. B-E. Phylogenies representing
global SARS-CoV-2 genomes depicting the presence of epitopes variants impacting T-cell
responses. In each case, phylogenies represent all available variant sequences (red tips), along
with a selection of non-variant sequences, which were subsampled for visualisation purposes. The
bar to the right of each phylogeny is annotated by main ancestral lineages only and not each
individual PANGO lineage that viruses belong to. The grapevine pipeline

(https.//github.com/COG-UK/grapevine) was used for generating the phylogeny based on all data

available on GISAID and COG-UK up until 16" of February 2021.

Many variants examined in our study were at relatively low frequency and stable prevalence at the
time of writing, other than P365S in KTFPPTEPK361-360, R765L in NLLLQY GSFCTQLNR751-765
and variants affecting the proline at position 13 in QRNAPRITFi.17 (Figures 1A and 2A). We
explored whether variants that result in loss of T-cell recognition appeared as homoplasies in the
phylogeny of SARS-CoV-2 suggestive of repeated independent selection, or whether global
frequency is due mainly to the expansion of lineages after initial acquisition. While in some cases,
variant frequency was dependent on a few successful lineages, P365S, Q213K, T362I, P13L, P13S
and P13T had arisen independently on several occasions including within the recently emerged
B.1.1.7 lineage (Figures 2B-E, S5A-B). It is important to emphasise that this homoplasy and our
functional data do not prove selection due to T-cell escape, which would require demonstration of
intra-host evolution. The positions we find important for T-cell recognition may be under selective
pressure for reasons other than T-cell immunity. A recent study has documented intra-host

evolution of minority variants within A*02:01 and B*40:01 CD8+ epitopes that impair T-cell


https://doi.org/10.1101/2021.04.08.438904
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.438904; this version posted April 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

192 recognition, though not all epitopes are dominant and very few of the variants studied were
193 represented amongst the global circulating viruses®.

194

195  There is unlikely to be adequate population immunity at present to see global changes due to T-
196  cell selection akin to what has been seen in adaptation of H3N2 influenza over time’. Furthermore,
197  polymorphism in HLA genes restricts the selective advantage of escape within one particular
198  epitope to a relatively small proportion of the population, given the breadth in T-cell responses we
199  and others have shown. Nevertheless, responses to many of the CTL epitopes we have studied are
200  dominant within HLA-matched individuals across many cohorts?. As A*03:01, A*11:01 and
201  A*01:01 are common HLA alleles globally, loss of T-cell responses to dominant epitopes such as
202  KTFPPTEPK361-360 and FTSDY YQLY207-215 may be significant. Substitution of three different
203  amino acid variants at nucleocapsid position 13 within the B*27:05-restricted QRNAPRITF .17
204  epitope is also striking and suggests significant positive selective pressure at this site. A single
205  dominant, protective B*27:05-restricted epitope has been described in HIV-1 infection, with T-
206  cell escape associated with progression to AIDS. T-cell escape from a B*27:05-restricted influenza
207 A epitope (nucleoproteinsss-3o1) has also been observed®.

208

209 A significant increase in sites under diversifying positive selective pressure was observed around
210  November 2020, most notably in ORF3a, N and S*. As vaccine and naturally-acquired population
211  immunity increases further, the frequency of variants we have described should be monitored
212 globally, as well as further changes arising within all immunodominant T-cell epitopes. We have
213 recently incorporated the ability to identify spike T-cell epitope variants in real-time sequence data

214  into the COG-UK mutation explorer dashboard (http://sars2.cvr.gla.ac.uk/cog-uk/). Non-spike T-

215  cell immune responses will also become increasingly important to vaccine-induced immunity as
216  inactivated whole virus vaccines are rolled out. Our findings demonstrate the potential for T-cell
217  evasion and highlight the need for ongoing surveillance for variants capable of escaping T-cell as

218  well as humoral immunity.

10
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219

220

221  Methods

222

223 Identification of amino acid variants within T-cell epitopes

224 Variants within the 360 experimentally proven T-cell epitopes were identified using the COVID-
225 19 Genomics UK consortium (COG-UK) global alignment, dated 29" January 2021 and
226  containing 309,119 sequences . Sequences were excluded if they did not contain a start and/stop
227  codon at the beginning and end of each open reading frame (ORF). Each sequence was translated
228  and compared to reference (MN908947.3) using custom python scripts (Python 3.7.6) utilising

229  Biopython (version 1.78).

230
231 Peptide titrations using T-cell lines

232 Polyclonal CD4+ and CD8+ T-cell lines specific for seven previously described immunodominant
233 epitopes® were generated after MHC class I or II tetramer sorting from cultured short-term cultures
234 of SARS-CoV-2 recovered donor peripheral blood mononuclear cells (PBMCs). Antigen-specific
235  T-cells were confirmed by corresponding tetramer staining. The functional avidity of T-cell lines
236  was assessed by IFN-y ELISpot assays performed as described previously?*, by stimulation with
237  wild-type and variant peptides starting at 10ug/mL and serial 1:5 dilutions. Peptides were
238  synthesised by GenScript Biotech (Netherlands) B.V. To quantify antigen-specific responses,
239  spots of the control wells were subtracted from test wells and results expressed as spot forming
240  units (SFU) per 10 PBMCs. If negative control wells had >30 SFU/10° PBMCs or positive control
241  (phytohemagglutinin) were negative, results were considered invalid. Duplicate wells were used
242  for each test and results are from three to seven independent experiments.

243

244 Cytotoxic T-lymphocyte (CTL) killing assays

245  Autologous B-cells were stained with 0.5umol/L carboxyfluoroscein succinimidyl ester (CFSE,

246  Thermo Fisher Scientific) before wild-type or variant peptide loading at 1pug/mL for one hour.
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247  Peptide-loaded B-cells were co-cultured with CTLs at a range of effector:target (E:T) ratios from
248  1:4to 8:1 at 37°C for 6 hours and cells stained with 7-AAD (eBioscience) and CD19-BV42

249  (eBioscience). Assessment of cell death in each condition was based on the CFSE/7-AAD

250  population present.

251
252 Predictions of binding strength of peptides to MHC

253  NetMHCpan 4.1 (http://www.cbs.dtu.dk/services/NetMHCpan/) was used to predict the binding

254  strength of wild type and variant epitopes under standard settings (strong binder % rank 0.5,
255  weak binder % rank 2). The predicted affinity (ICso nM) for variant epitopes was compared with
256  wild type.

257
258  Phylogenetic tree generation

259  Phylogenies were generated using the grapevine pipeline (https://github.com/COG-UK/grapevine)
260  based on all data available on GISAID and COG-UK up until 16" February 2021. In order to
261  visualise all sequences with a specific amino acid variant of interest in a global context, a
262  representative sample of global sequences was obtained in two steps. First, one sequence per
263  country per epi week was selected randomly, followed by random sampling of the remaining
264  sequences to generate a sample of 4000 down-sampled sequences. The global tree was then pruned
265  using code adapted from the tree-manip package (https://github.com/josephhughes/tree-manip).
266  The tips of sequences with amino acid variants impacting T-cell recognition were colour-coded.
267  Visualisations were produced using R/ape, R/ggplot2, R/ggtree, R/treeio, R/phangorn, R/stringr,
268  R/dplyr, R/aplot.

269

270  Exvivo IFN-y ELISpots in SARS-CoV-2 recovered donors

271  Cryopreserved PBMCs were used from SARS-CoV-2 recovered donors recruited into the Sepsis
272  Immunomics study with ethical approval from the South Central - Oxford C Research Ethics
273 Committee in England (Ref 13/SC/0149). These were used for ex vivo IFN-y ELISpots with wild-

274  type and variant peptides. Peptides were added to 200,000 PBMCs at a final concentration of
12
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275  2pg/mL for 16-18 hours (two replicates per condition). Results were interpreted as detailed above.
276  PBMCs used were from samples taken when patients were between 35 to 53 days from symptom
277  onset.

278
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