

1 Short title: Pollen galactose sensitivity via SWEET5 and GALK

2 Corresponding author: Li-Qing Chen

3 Tel: +1 217 265 9459

4 E-mail: lqchen77@illinois.edu

5

6

9 Jiang Wang^{1,2}, Ya-Chi Yu¹, Ye Li^{1,3,4}, and Li-Qing Chen^{1,2*}

10 1. Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801,
11 USA

12 2. Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign,
13 Urbana, IL, 61801, USA

14 3. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12
15 ZhongGuanCun South Street, Beijing, 100081, China

16 4. Current address: Key Laboratory of Agricultural Products Chemical and Biological Processing
17 Technology, Zhejiang University of Science and Technology, Hangzhou 310023, China

18 *Author for correspondence

19

20 Author Contributions

21 J.W. and L.-Q.C. conceived and designed the experiments. W.J., Y.-C.Y., and Y.L. conducted
22 experiments. J.W., and L.-Q.C wrote the manuscript.

23

24 One-sentence summary

25 SWEET5 mediates pollen galactose sensitivity via GALK that is required for efficient galactose
26 uptake in pollen during pollen germination.

27 **Abstract**

28 Galactose is an abundant and essential sugar used for the biosynthesis of many macromolecules in
29 different organisms, including plants. Galactose metabolism is tightly and finely controlled since
30 excess galactose and derivatives are inhibitory. In *Arabidopsis*, root growth and pollen germination
31 were strongly inhibited by excess galactose. However, the mechanism of galactose induced
32 inhibition during pollen germination remains obscure. In this study, we characterized a plasma-
33 membrane localized transporter, AtSWEET5, that transports glucose and galactose. SWEET5
34 protein level started to accumulate at the tricellular stage of pollen development and peaked in
35 mature pollen before rapidly declining after pollen was germinated. SWEET5 levels are
36 responsible for the dosage-dependent sensitivity of galactose and galactokinase (GALK) is
37 essential for the inhibitory effects of galactose during pollen germination. Overall, SWEET5 and
38 GALK contribute to the maintenance of galactose metabolic homeostasis during pollen
39 germination. SWEET5 serves as a major low-affinity hexose transporter at the early stage of pollen
40 germination.

41

42

43

44 **Key words**

45 SWEET, GALK, galactose sensitivity, galactose inhibition, pollen germination, Gal-1-P

46

47 **Introduction**

48 Carbon flux, which is dependent on carbon supply and demand, needs to be well-controlled for
49 plant growth and development (Hofmeyr and Cornish-Bowden, 2000; Bezrutczyk et al., 2018).
50 Plants have developed sophisticated mechanisms to sense the sugar levels and adjust these in
51 response to developmental or environmental cues (Ruan, 2014). Plant sensitivity to various
52 concentrations of sugar varies depending on the specific sugar involved. For example, in
53 *Arabidopsis thaliana*, a low 10 mM concentration of galactose can trigger an inhibitory effect on
54 Col-0 root growth (Yamada et al., 2011; Egert et al., 2012), while the much higher 167 mM
55 (presented as 3%) concentration of glucose or 100 mM sucrose still promotes root growth (Kircher
56 and Schopfer, 2012; Singh et al., 2014). Additionally, during *in vitro* pollen germination, 60 mM
57 galactose inhibits pollen germination (Hirsche et al., 2017), while 100 mM glucose does not affect
58 the pollen germination rate (Rottmann et al., 2018) and high levels of sucrose (250-578 mM) are
59 required for successful pollen germination (Wang et al., 2008; Rottmann et al., 2018). However,
60 the mechanism by which galactose inhibits plant growth has not been well-characterized. Sugar
61 transporters and enzymes are key components in the supply-demand system to maintain carbon
62 flux control (Ruan, 2014; Julius et al., 2017). The mutants of the two hexose transporter STPs
63 (Sugar Transport Protein), AtSTP1 and AtSTP13, have shown a galactose-tolerant phenotype for
64 root growth (Sherson et al., 2000, Yamada et al., 2011). The transporter that is involved in the
65 process of galactose-suppressed pollen germination, however, remains unexplored.

66

67 STPs are important during early stage gametophyte development (Truernit et al. 1999) and pollen
68 tube growth but not in the initial phase of pollen germination (Scholz-Starke et al. 2003, Buttner,
69 2007). Facilitator SWEETs (Sugar Will Eventually be Exported Transporter) have been shown to
70 transport different sugars including galactose. OsSWEET5 (Zhou et al., 2014) and CsSWEET7a
71 (Li et al., 2021) have been demonstrated to transport galactose. So far, all plant SWEETs with a
72 measured Km, e.g. AtSWEET1 (Chen et al., 2010), AtSWEET12 (Chen et al., 2012), AtSWEET17
73 (Guo et al., 2014), SlSWEET1a (Ho et al., 2019) and CsSWEET7a (Li et al., 2021), have been
74 found to function as low-affinity glucose or sucrose transporters, ranging from ~10 to ~120 mM.
75 It is not unusual to observe that a SWEET transports different sugars but with different efficiency
76 and Kms (Chen et al., 2010, 2012, Kuanshev et al., 2021). For example, SWEET7 has a Km of
77 ~74 mM to glucose but ~308 mM to xylose (Kuanshev et al., 2021). AtSWEET5/VEX, belonging

78 to SWEET family Clade II that primarily transports hexose (Chen et al., 2010; Eom et al., 2015),
79 is strongly expressed in the pollen vegetative cell (Engel et al., 2005), but no other details have
80 been reported. We hypothesized that SWEET5 might be responsible for the galactose-suppressed
81 pollen germination.

82

83 Once galactose enters a cell, it is activated by galactokinase (GALK), a cytosolic enzyme, which
84 phosphorylates α -D-Gal into α -D-Gal-1-P at the C-1 position (Cardini and Leloir, 1953). Gal-1-P
85 can be further converted into UDP-Gal through a reversible reaction catalyzed either by Gal-1-P
86 uridylyltransferase (GALT) in the presence of UDP-Glc (mainly used in non-plant species) (Leloir,
87 1951) or by UDP-sugar pyrophosphorylase (USP) using UTP as a substrate (mainly found in plants)
88 (Feusi et al., 1999; Kotake et al., 2004). The activated UDP-Gal can be converted reversibly into
89 UDP-Glc by UDP-Glc epimerase (GALE/UGE) (Maxwell et al., 1960; Seifert et al., 2002). Only
90 a single copy of the GALK gene was reported to exist in Arabidopsis (Sherson et al., 1999; Yang
91 et al., 2009; Egert et al., 2012), and a galactose-insensitive phenotype in root growth was observed
92 in *galk* (Egert et al., 2012). As GALK is the first enzyme to catalyze galactose, we analyzed its
93 role together with SWEET5 transporter during pollen germination.

94

95 We show the plasma membrane localized SWEET5 transports both glucose and galactose. Data
96 from the current study indicate SWEET5 and GALK play critical roles in controlling galactose
97 response during pollen germination. SWEET5 transports galactose that can be phosphorylated by
98 GALK, resulting in pollen germination inhibition through yet unknown mechanisms.

99

100 **Results**

101 **SWEET5 transports galactose**

102 To determine which SWEET in the mature pollen stage is able to transport galactose, we surveyed
103 the expression and protein accumulation of all SWEETs in Arabidopsis (Mergner et al., 2020).
104 Among all 17 members of the SWEET family, several were found to be expressed in mature pollen,
105 but only SWEET5, SWEET11 and SWEET12 proteins were detectable there (Supplemental Figure
106 S1). SWEET11 and SWEET12 have been reported to be transporters of sucrose (Chen et al., 2012),
107 while SWEET5 is the most likely transporter of galactose, since its homolog OsSWEET5 has been

108 found to transport galactose (Zhou et al., 2014). To test whether SWEET5 transports galactose,
109 we conducted growth assays with a yeast strain EBY.VW4000 lacking 17 hexose transporters
110 (Wieczorke et al., 1999). Yeast cells expressing SWEET5 grew on the medium containing glucose
111 and galactose, but not fructose (Figure 1A), with slower growth on galactose than on glucose. To
112 test whether SWEET5 transports galactose less efficiently than glucose, we conducted radio-tracer
113 uptake, which showed that the uptake rate of galactose is lower than that of glucose (Fig. 1B). To
114 further confirm glucose is the favored substrate than galactose to SWEET5, we conducted sugar
115 competition experiment. Even though ten times higher concentration of galactose was used as a
116 competitor, it was insufficient to compete with glucose uptake. Similarly, sorbitol also failed to
117 compete with glucose uptake significantly. By contrast, the same concentration of glucose
118 significantly reduced glucose uptake (Fig. 1C). These results support that galactose is not
119 efficiently transported by SWEET5 relative to glucose.

120

121 Additionally, we did the kinetic analysis of SWEET5. The K_m for galactose uptake of SWEET5
122 was calculated as 671 ± 58.4 mM (Figure 1D), however, we do not know whether osmolarity will
123 affect the physiological performance of yeast cells when cultured with a high concentration (>500
124 mM). Therefore, to test if the osmolarity will affect yeast uptake and thus calculated K_m , we
125 compared galactose uptake with and without osmolarity adjusted by mixing different designed
126 concentrations of galactose with matched concentrations of sorbitol to reach a total concentration
127 of 500 mM and observed no significant osmotic effects on galactose uptake. (Supplemental Figure
128 S2).

129

130 **SWEET5 contributes to galactose inhibition of *Arabidopsis* pollen germination**

131 To test how galactose affects pollen germination under our setting, we performed pollen
132 germination experiments using pollen germination medium (PGM) supplemented with 60 mM
133 galactose compared with that supplemented with or without other sugars. The pollen germination
134 rate of Col-0 was dramatically reduced from 57% to 11% when PGM with 60 mM Galactose
135 (Figure 1E and 1F), while remained unchanged when PGM was supplemented with either 60 mM
136 glucose or fructose (Supplemental Figure S3). The galactose suppression was barely detectable in
137 *SWEET5* loss-of-function mutants created from T-DNA insertion (*sweet5*) or CRISPR/CAS9
138 editing (Figure 1E and 1F; Supplemental Figure S4). The phenotypes of the mutants were fully

139 complemented by transformation with a construct carrying the *SWEET5* promoter driving either
140 endogenous *SWEET5* or a synonymous m*SWEET5* that carries mutations to avoid gRNA
141 recognition in CRISPR mutant lines (p*SWEET5:mSWEET5/sweet5_crispr*; Figure 1E and 1F;
142 Supplemental Figure S4D). Accordingly, the *SWEET5* overexpression lines
143 (p*SWEET5:SWEET5*/Col-0) were more sensitive to galactose than Col-0 (Figure 1E and 1F). To
144 test whether *in vivo* pollen germination is affected in *sweet5* mutant, we compared pollen
145 germination and pollen tube growth of *sweet5* with that of Col-0 on Col-0 pistil after hand-
146 pollination. No obvious differences in the pollen germination/pollen tube growth (aided by aniline
147 blue staining) *in vivo* were observed at 2 hours or 6 hours after pollination (Supplemental Figure
148 S4G), suggesting the galactose content at the apoplasm of stigma cells is not high enough to trigger
149 pollen inhibition under normal condition. It is worth noting that glucose has a marginal effect on
150 pollen germination (Supplemental Figure S3) and thus is negligible, even if present. However, it
151 is not known if galactose content will rise to affect pollen germination under stress conditions. For
152 example, soluble galactose was significantly increased in coffee plant leaves under heat stress,
153 likely due to cell-wall modifications (Lima et al., 2013). Moreover, there were no observable
154 morphological phenotypes in *sweet5* mutant under normal conditions, which may be due to
155 functional redundancy with other plasma membrane-localized hexose transporters (STPs, PMTs)
156 detected at either the RNA or protein level in pollen (Supplemental Figure S5). Among those
157 hexose transporters that were detected at the protein level, many can transport glucose and
158 galactose (Supplemental Table S1).

159

160 **SWEET5 is mainly expressed at the late stages of pollen development**

161 To determine the timing of the initiation of SWEET5-associated galactose inhibition, we examined
162 the spatial and temporal accumulation patterns of SWEET5 using transgenic lines harboring a
163 SWEET5 translational fusion with β -glucuronidase (GUS) or yellow fluorescent protein (YFP)
164 driven by its native SWEET5 promoter (p*SWEET5:gSWEET5-GUS* or p*SWEET5:gSWEET5-YFP*).
165 SWEET5 was almost exclusively found in the anthers and mature pollen at late stages of flower
166 development (Figure 2A), although GUS staining was detected at the early seedling stage with a
167 preference in the vein. The SWEET5 protein accumulation pattern was carefully assessed in the
168 flowers. Flowers at different developmental stages (Bowman, 1994) were imaged using
169 fluorescence microscopy to detect SWEET5 protein levels using the reporter YFP. As shown in

170 Figure 2C, SWEET5 started to accumulate in immature pollen grains from flower stage 11, in
171 which pollen mitosis I and II occur (Cecchetti et al., 2008) and peaked at flower stage 13 (anthesis).
172 The YFP signal was also observed over the course of male gametophyte development by isolating
173 developing pollen grains. The SWEET5-YFP protein was first detected at the tricellular pollen
174 (TCP) stage and peaked at the mature pollen grain (MPG) stage, while it was undetectable in both
175 uninucleate microspores (UNM) and bicellular pollen (BCP), as delineated by PI staining of the
176 cell wall and nucleus (Figure 2B). The observed pattern of SWEET5-YFP protein agrees with the
177 reported gene expression profiling of *SWEET5* in *Arabidopsis* pollen over different developmental
178 stages (Honys and Twell, 2004), namely that *SWEET5* was highly expressed at the tricellular stage
179 and mature pollen stage. Additionally, SWEET5 protein level was substantially reduced in
180 germinated pollen/pollen tube (marked by white arrow) compared with non-germinated pollen
181 grains after *in vitro* pollen germination (Figure 2D). The subcellular localization of SWEET5 was
182 determined using pollen from transgenic plants harboring a SWEET5 (CDS) translational fusion
183 with a green fluorescent protein (GFP) driven by its native SWEET5 promoter
184 (*pSWEET5:cSWEET5-GFP*). SWEET5 is localized to the plasma membrane, and also
185 endomembrane compartments as delineated by Nile red staining for the lipid droplets (Figure 2E).
186 It is not unusual to observe that strong fluorescence throughout the cell, including endomembrane,
187 when a tagged protein is abundant in pollen (Tunc-Ozdemir et al., 2013). This has been similarly
188 observed for other plasma membrane localized proteins in pollen (Frietsch et al., 2007; Tunc-
189 Ozdemir et al., 2013; Hamilton et al., 2015). SWEET5 localization was further transiently
190 examined using the reporter mVenus in *N. benthamiana* leaves (Gookin and Assmann, 2014).
191 SWEET5 protein was localized to the pavement cell periphery enclosing both chloroplast and
192 Golgi apparatus (Figure 2F), which suggests SWEET5 localized to the plasma membrane,
193 consistent with published *Arabidopsis* SWEETs except for SWEET2, SWEET16, and SWEET17
194 that are localized to the tonoplast (Klemens et al., 2013; Guo et al., 2014; Chen et al., 2015a).
195

196 **Galactose sensitivity is GALK-dependent during pollen germination**

197 To further elucidate whether GALK is involved in the galactose sensitivity during pollen
198 germination, we first surveyed whether GALK is accumulated in the pollen. The RNA transcripts
199 of *GALK* are abundant in all pollen developmental stages, preferentially in microspore and
200 bicellular pollen stages (Honys and Twell, 2004). The protein level of GALK is relatively

201 consistent across all tissues, including mature pollen grains (Supplemental Figure S6A). Therefore,
202 we tested pollen germination of the loss-of-function *galk* mutant (Egert et al., 2012) on PGM
203 containing galactose. The *galk* mutant showed a galactose-tolerant phenotype similar to that of
204 *sweet5* (Figure 3A; Supplemental Figure S7A), although it is a knock-down mutant with *an* 80%
205 reduction in mature pollen RNA transcripts (Supplemental Figure S6C). The *galk* galactose-
206 tolerant phenotype was fully complemented by *GALK* expressed under control of the pollen-
207 specific *LAT52* promoter (Figure 3A; Supplemental Figure S7A). Notably, the *galk*
208 complementation line showed a much stronger galactose sensitivity than Col-0, which is likely
209 due to the over-expression of *GALK* in the complementation line (Supplemental Figure S6C). As
210 expected, the *GALK* and *SWEET5* double mutant *sweet5* × *galk* showed a similar galactose-
211 tolerant phenotype to their individual single mutants, which indicates that *GALK* and *SWEET5*
212 function in the same pathway way. As Gal-1-P is suggested to exert cellular toxicity from many
213 studies in animals (Lai et al., 2009), it is reasonable to speculate that pollen sensitivity to galactose
214 may be due to the accumulation of potential cytotoxic Gal-1-P, which depends on *GALK* activity
215 (de Jongh et al., 2008). To test this possibility, we compared the effects Gal-1-P on pollen
216 germination, 6 mM Gal-1-P was sufficient to mimic the suppression effect produced by 60 mM
217 galactose in Col-0 (Figure 3B; Supplemental Figure S7B). Gal-1-P can be converted into UDP-
218 Gal by USP in plants (Feusi et al., 1999). To test whether the USP-catalyzed reaction could
219 alleviate galactose suppression, we generated over-expression lines of *AtUSP* driven by the pollen-
220 specific *pLAT52* promoter in Col-0 background. However, USP overexpression lines failed to
221 improve the pollen germination rate under 60 mM galactose condition (Supplemental Figure S8).
222

223 **Galactose inhibition is dosage-dependent**

224 To determine the range of concentration at which galactose inhibits pollen germination, pollen
225 from different genotypes were germinated on PGM with galactose concentrations ranging from 0
226 to 600 mM. In Col-0, the pollen germination rate was not affected under 0.6 mM galactose, started
227 to decline significantly at 6 mM, followed by a substantial decrease at 60 mM and further reduced
228 to almost zero at 600 mM (Figure 4A, Supplemental Figure S7C). A time-course pollen
229 germination experiment of Col-0 further confirmed that the pollen germination rate was
230 significantly affected in the presence of 6 mM galactose starting from four hours after germination
231 (Supplemental Figure S7D). However, no significant difference was observed between Col-0 and

232 *sweet5* mutants at 6 mM (Figure 4A, Supplemental Figure S7C). *sweet5* mutants were generally
233 tolerant to galactose up to 60 mM. Consistent with the observation, the SWEET5 overexpression
234 lines were more sensitive to \geq 6 mM galactose than Col-0, with pollen germination rates reduced
235 to near zero by 60 mM galactose. These results suggest that SWEET5 is responsible for galactose
236 flux at the higher concentration range. To assess the differences in galactose uptake between Col-
237 0 and *sweet5*, we conducted ^{14}C -galactose tracer uptake assays in pollen with various galactose
238 concentrations. Pollen grains germinated in a liquid PGM for 45 mins (the hydration period, Wang
239 *et al.*, 2008), minimizing the interference from transporters expressed on pollen tubes. Less ^{14}C -
240 galactose was taken up by *sweet5* pollen than by Col-0 pollen at 60 mM galactose concentration
241 (Figure 4B). By contrast, differences were not prominent at lower amounts of galactose (Figure
242 4B).

243 Galactose at 10 mM was reported to strongly inhibit root growth of Col-0 (medium containing no
244 sucrose, Yamada *et al.*, 2011; Egert *et al.*, 2012), while higher galactose (60 mM) is needed to
245 strongly inhibit Col-0 pollen germination (medium containing 15% (\sim 439 mM) or 19.8% (\sim 578
246 mM) sucrose, Hirsche *et al.*, 2017 or current study). To test whether the sucrose in the medium
247 may differentially affect the observed galactose response, which may lead to a biased comparison,
248 we conducted a galactose dosage-dependent assay for root growth using Col-0. Root growth was
249 not affected at 1 mM galactose but was strongly inhibited at 6 mM or higher without sucrose in
250 the medium (Supplemental Figure S9). By contrast, a significant root reduction was only observed
251 at 60 mM galactose when 0.5% or 1% sucrose was supplemented in the medium. Therefore, the
252 level of inhibitory galactose concentration should be considered in the context of sucrose presence
253 or absence.

254

255 **Discussion**

256

257 **Pollen is a simple system to study the control of galactose flux**

258 While pollen has a fundamental role in the sexual reproduction of flowering plants, pollen
259 germination together with pollen tube growth has served as a model system to study single cell
260 growth and morphogenesis (Feijó *et al.*, 2004). In *Arabidopsis*, pollen grains are highly
261 homogeneous and have strikingly low transcriptional complexity (on average, 6044 genes
262 expressed in mature pollen; Rutley and Twell, 2015) compared to sporophytic tissues or purified

263 sporophytic cells (e.g., 13,222 genes expressed in stomatal guard cells, and 11,696 genes expressed
264 in root hair cells; Bates et al., 2012, Becker et al., 2014). Our work to understand relationships
265 among galactose transport, GALK, and galactose sensitivity sheds light on developing alternative
266 strategies to attenuate galactose suppression by fine-tuning their relationships.

267

268 Over the past several decades, extensive efforts have been made to study galactose toxicity in
269 humans (galactosemia) and yeast; however, the mechanism underlying the toxicity is far from
270 understood (Lai et al., 2009). Considerably less attention has been paid to galactose inhibition by
271 plant scientists. In the current study, we found that the plasma membrane-localized hexose
272 transporter AtSWEET5 is responsible for galactose sensitivity during pollen germination. A high
273 concentration of sucrose at 19.8% is needed in the medium for *in vitro* pollen germination, which
274 may be partially cleaved into glucose and fructose by the *Arabidopsis* cell-wall invertase 2 before
275 import into pollen (Hirsche et al., 2009). As SWEET5 prefers to transport glucose (Figure 1B),
276 glucose may competitively suppress galactose uptake, resulting in much less galactose transported
277 in pollen. Thus, a high concentration of galactose, such as 60 mM, is needed to result in a severe
278 inhibitory effect on pollen germination. This concept was supported by the reduced galactose
279 response during root growth of wild-type plant in presence of 0.5 % sucrose (Supplemental Figure
280 S9). Even when 60 mM external galactose was used, the estimated concentration was only about
281 135 μ M in Col-0 pollen after incubation with 60 mM galactose for 45 min. This was calculated
282 based on the uptake of 200 pmol galactose (Figure 4B) determined from 20 flowers that yielded a
283 combined 40,000 pollen (2000 pollen per flower), and the mean pollen volume deduced from the
284 *Arabidopsis* pollen diameter of 20.72 μ m (De Strome et al., 2013).

285

286 **Model of galactose transport and metabolism during *in vitro* germination of pollen**

287 From the data presented in this study and literature reports, a schematic model of galactose
288 sensitivity in pollen was illustrated in Figure 5: SWEET5, as a uniporter, transports galactose
289 across pollen membrane across a concentration gradient. If galactose is not sufficiently transported
290 into pollen grains due to a lack of enough SWEET5 protein, a galactose-tolerant phenotype can be
291 observed. Similarly, the lack of AtSTP1 and AtSTP13 have shown a galactose-tolerant phenotype
292 of root growth in conditions of up to 100 mM galactose (Sherson et al., 2000, Yamada et al., 2011).
293 Once galactose is taken up by cells, it will first be phosphorylated by GALK to produce the

294 potentially toxic Gal-1-P. A galactose detoxification pathway that stores excess galactose in the
295 vacuoles was proposed in the *galk* mutant (Egert et al., 2012). This pathway of detoxification
296 cannot explain the galactose-tolerant phenotype of *galk* pollen, because vacuoles are nearly absent
297 from mature pollen grains (Pacini et al., 2011). The disrupted Gal-1-P production may therefore
298 be responsible for the galactose tolerance of the *galk* mutant during pollen germination. Though
299 possible free galactose accumulation by *galk* pollen, similar to *galk* leaves (Egert et al., 2012), may
300 negatively impact galactose influx during pollen germination and obscure our understanding.

301

302 Our study suggested that Gal-1-P is responsible for the galactose sensitivity observed during pollen
303 germination, which is supported by the results of Gal-1-P effect on *in vitro* pollen germination.
304 However, caution should be taken when interpreting these results, because it is still unclear how
305 Gal-1-P can be taken up by pollen as no such transporters have been identified. Gal-1-P showed a
306 significant increase as the external galactose concentration rises beyond the inhibitory levels in
307 corn and barley coleoptiles (Roberts et al., 1971). In animals or yeast, Gal-1-P has been reported
308 to potentially inhibit enzymes such as phosphoglucomutase (de Jongh et al., 2008), UDP-glucose
309 pyrophosphorylase (UGPase, catalyzing the reversible conversion from Glc-1-P to UDP-Glc) (Lai
310 et al., 2003), and inositol monophosphatase (Bhat, 2003) *in vitro*, however, no *in vivo* targets of
311 Gal-1-P have been identified. In limited studies in plants, Gal-1-P has only been reported to inhibit
312 UGPase activity in the crude extract from oat coleoptiles, but not from the azuki bean epicotyl,
313 suggesting that galactose sensitivity appears to vary depending on the species (Yamamoto et al.,
314 1988). We attempted to measure the galactose-associated metabolites upon galactose treatment in
315 *sweet5* and *galk*, however, no clear conclusions can be drawn due to the difficulties of separating
316 glucose and galactose conjugated phosphates and nucleotide sugars using an LC-MS/MS system.

317

318 **SWEET5 orthologs may play essential roles in hexose-utilizing pollen**

319 Compared to the proton sugar symporters, SWEET5 likely functions as a uniporter, facilitating
320 substrate movement along a substrate concentration gradient (Chen et al., 2015b). The
321 physiological importance of SWEET family members was underscored mainly by their
322 involvement in multiple processes requiring sugar transport capability, for instances, SWEET11
323 and SWEET12 in apoplastic phloem loading (Chen et al., 2012); SWEET9 in nectar secretion
324 (Lin et al., 2014); and SWEET11, SWEET12, and SWEET15 in seed filling (Chen et al., 2015c).

325 In the current work, we showed that SWEET5 is highly expressed in the mature pollen but
326 dramatically declines during the transition from germinated pollen to pollen tubes, suggesting that
327 SWEET5 functions during the early stages of pollen germination. By contrast, several STPs are
328 primarily expressed in pollen tubes but are almost absent in mature pollen grains (Rottmann et al.,
329 2018). For example, STP10 is a pollen tube-specific hexose transporter (Rottmann et al., 2016);
330 the glucose transporter STP9 is weakly expressed in mature pollen grains and is primarily
331 expressed in growing pollen tubes (Schneidereit et al., 2003). Therefore, SWEET5 and STPs may
332 have complementary roles during pollen germination. As reported, high concentrations of sugars
333 (ranging from 2% to 19.8%) are needed for successful germination *in vitro* in various species
334 (Ylstra et al., 1998; Stadler et al., 1999; Wang et al., 2008) since pollen germination is an energy-
335 demanding process (Reinders, 2016). However, the effect of different sugars on *in vitro* pollen
336 germination depends on the species. For example, sucrose and hexose differentially affect *in vitro*
337 pollen germination, ranging from growing equally well on glucose, fructose, or sucrose for petunia
338 (Ylstra et al., 1998), cucumber (Cheng et al., 2015), and pearl millet (Reger et al., 1992), to a
339 nearly complete inhibition by glucose or fructose for *Arabidopsis* (Hirsche et al., 2017). But for
340 some species, such as tobacco, either sucrose or glucose can support pollen germination, while
341 only sucrose can promote pollen tube growth (Goetz et al., 2017). Galactose alone can also
342 promote pollen germination, for example in *Picea wilsonii* (Zhou et al., 2020) and cucumber
343 (Cheng et al., 2015) to a similar extent as sucrose. Therefore, the lack of a phenotype in *sweet5*
344 under normal conditions may be due to the preference of *Arabidopsis* pollen during the initial
345 phase of germination for sucrose. Considering SWEET5 also transports glucose, it is rational to
346 speculate that SWEET5 orthologues may be essential for pollen development, and therefore seed
347 production in the species that prefer to use hexose as a carbon source during pollen germination or
348 pollen tube growth.

349

350 **Conclusions**

351

352 We have presented SWEET5 as a plasma membrane-localized hexose transporter that is highly
353 expressed in mature pollen grains. GALK catalyzes the synthesis of Gal-1-P from galactose that
354 can be transported by SWEET5. The pollen grains of *sweet5* and *galk* mutants are tolerant to
355 galactose inhibition during pollen germination *in vitro*, suggesting that SWEET5 and GALK play

356 a critical role in the sensitivity of pollen germination to galactose in *Arabidopsis*. Pollen
357 germination studies served as a tool to elucidate SWEET5 biological functions and provide a
358 model system that facilitates research to uncover mechanisms underlying galactose sensitivity.
359 The future work associated with either SWEET5 or its homologs from species that favor different
360 carbon sources for pollen germination, will offer new insights into the carbon skeleton and/or
361 energy supply mechanisms responsible for successful reproduction.

362

363 **Materials and Methods**

364 **Constructs for yeast expression**

365 The CDSs of *AtSWEET5* were amplified by RT-PCR using gene specific primers named by gene
366 (Supplemental Table S2, P1 and P2) and were subsequently cloned into the donor vector
367 pDONR221-f1 by BP clonase (Invitrogen) before transfer to pDRf1-GW (Loque et al., 2007) by
368 LR clonase (Invitrogen).

369

370 **GUS and YFP fusion constructs under native promoters**

371 To construct *SWEET5* fused with GUS (pSWEET5:gSWEET5-GUS), the fragment including the
372 *SWEET5* native promoter sequence (1801 bp upstream of ATG) and genomic sequence of
373 *SWEET5* was amplified (P3 and P4) and cloned into pDONR221-f1 by BP reactions followed by
374 recombination into the vector pMDC163 carrying the GUS gene (Curtis and Grossniklaus, 2003)
375 by LR reaction. For the *SWEET5* overexpression construct (pSWEET5:gSWEET5-YFP), the entry
376 clone from above was transferred into pEarleyGateTW1 (Wang et al., 2016) by LR reactions.

377

378 **eGFP fusion constructs under different promoters for strength comparisons and mutant
379 complementation**

380 The *SWEET5* (1216 bp upstream of ATG) native promoter, and *LAT52* promoter (602 bp;
381 Muschietti et al., 1994) were amplified with specific forward primers (P5-P8) containing a *BamHI*
382 restriction site and the reverse primers containing an *XbaI* restriction site and sub-cloned into the
383 eGFP-containing vector pGKan3 (Kasaras and Kunze, 2010) via *BamHI* and *XbaI* restriction
384 sites. The CDS of *SWEET5*, *GALK*, and *USP* by their own specific primers (P9-P14) were
385 seamlessly subcloned into corresponding pGKan3_promoter constructs by In-Fusion® (Takara)

386 following the linearization at *Xba*I and *Pst*I restriction sites. For the genome editing construct of
387 *SWEET5*, gRNA that targets the first exon of *SWEET5* (Supplemental Figure S4D) was cloned
388 into p*YAO*:*hSpCas9* (Yan et al., 2015). For the synonymous complementation construct of Cas9
389 containing *sweet5_crispr*, synonymous *SWEET5* driven by p*SWEET5* was amplified by primer
390 P15 and P16 based on pDONR221_p*SWEET5-SWEET5* with gRNA targeting the region modified
391 through site-directed mutagenesis before transferring into pEarleyGate301 (Earley et al., 2006) by
392 LR reactions.

393

394 **Construct for subcellular localization**

395 For subcellular localization of *SWEET5*, after the vector pDOE-13 (Gookin and Assmann, 2014)
396 was linearized by *SanDI* + *AatII* restriction enzymes at MCS3, the CDS of *SWEET5* was amplified
397 by primers P17 and P18 and subcloned into it by In-Fusion® (Takara). The agroinfiltration-based
398 assays were performed as previously described (Gookin and Assmann, 2014). The *N. benthamiana*
399 leaf disks were collected 72 h post infiltration for confocal imaging. Three independent trials were
400 conducted.

401

402 **Plant materials and growth conditions**

403 The *Arabidopsis* Col-0 plants were grown under controlled temperature (22°C) with a 16-h light
404 (100-150 $\mu\text{Em}^{-2}\text{s}^{-1}$)/ 8-h dark photoperiod. The flowers at stage 13 (fully opened) were collected
405 at around 5 hours into the light period for different experiments. T-DNA mutants of *galk* (GABI-
406 Kat 489D10), and *sweet5* (CS853155) were obtained from NASC or ABRC. Homozygous lines
407 were genotyped using primers of P19-P24 and used in related experiments. The floral dip method
408 (Clough and Bent, 1998) was used to generate all the transgenic lines used in this study. At least
409 15 T_1 lines were generated for each construct and at least 3 randomly selected lines were
410 propagated to generate T_3 homozygous seeds.

411

412 **Yeast complementation assay and ^{14}C uptake assay**

413 Yeast complementation and yeast ^{14}C uptake assays were conducted following the previously
414 described method (Chen et al., 2010). ^{14}C -glucose (0.1 μCi D-[U- ^{14}C] glucose; 275 mCi/mmol),
415 ^{14}C -galactose (0.1 μCi D-[1- ^{14}C] galactose; 56.2 mCi/mmol) was added per sample and four
416 independent transformants were used for each uptake experiment. For concentration- and time-

417 dependent uptake of [¹⁴C] galactose for SWEET5, 5 galactose concentrations (25, 50, 100, 250,
418 500 mM), and 4 time points (10 sec, 2.5, 5, and 10 min) for each concentration were used to collect
419 yeast cell samples and measure galactose uptake. Sugar uptake at 10 sec was normalized as 0.
420

421 ***In vitro* pollen germination**

422 The *in vitro* pollen germination assay was conducted according to a previously described method
423 (Wang et al., 2008) with minor modifications. The sucrose only basic pollen germination medium
424 (PGM) was composed of 19.8% (w/v) Suc (15% (w/v) Suc in liquid PGM), 1.5 mM boric acid,
425 0.8 mM MgSO₄, 1 mM KCl, 5 mM MES, 0.05% (w/v) lactalbumin hydrolysate, 10 µM myo-
426 inositol, 5 mM CaCl₂ and 1.5% (w/v) agarose. The pH was adjusted to 5.8 using 1 mM Tris (pH
427 = 8). The medium solution was heated to boiling on a heat plate, and then 500 µl was spread evenly
428 onto 75 × 25 mm glass slides. Slides were cooled down at room temperature before placing in an
429 opaque, sealed slide box. The medium was made freshly for each germination experiment. Six
430 flowers at stage 13 were collected from each genotype to spread pollen gently onto a ~1 cm² area
431 of the germination medium. The slide box was kept at room temperature for 8 hours in the dark
432 before samples on slides were imaged with a compound microscope. Pollen with pollen tubes
433 longer than the diameter of the pollen grain (about 20 µm) was considered as germinated pollen.
434

435 **Pollen galactose uptake**

436 The liquid pollen germination method was adopted from a previously described method (Wang et
437 al., 2008) with minor modifications for ¹⁴C-galactose uptake. For each trial, 20 flowers (at least
438 2000 pollen grains collected per flower) at stage 13 for each genotype were collected into a 2 ml
439 tube, and then 1 ml of liquid PGM was added in and vortexed vigorously for 60 s to release mature
440 pollen grains into the solution. Subsequently, the pollen grains were counted using a
441 hemocytometer. Equal amounts of pollen for all tested genotypes were collected by centrifuging
442 at 15,000 g for 1 min. The pollen pellet was resuspended in 30 µl of liquid PGM containing ¹⁴C-
443 galactose (0.3 µCi hot galactose) as well as different concentrations of cold galactose (ranging
444 from 0 to 60 mM), and subsequently cultured in a petri dish (35 mm in diameter). The petri dish
445 was covered and placed in the dark for 45 min before pollen was washed using 1 ml of ice-cold
446 liquid PGM and collected into a 1.5 ml tube. The pollen was precipitated at 15,000 g for 1 min and
447 the pellet was washed by 1 ml ice-cold pollen isolation buffer (PIB, composed of 100 mM NaPO₄,

448 pH 7.5, 1 mM EDTA, and 0.1% (v/v) Triton X-100) 5 more times. The pellet was resuspended in
449 100 μ l PIB and transferred to a scintillation vial containing 5 ml Ultima Gold XR Scintillation
450 liquid (PerkinElmer). Radioactivity for each vial was measured by liquid scintillation spectrometry.

451 **GUS histochemical analysis**

452 GUS staining was performed as previously described (Chen et al., 2012). Twelve-day-old
453 seedlings were used, and inflorescences and siliques were collected for histochemical GUS
454 staining.

455

456 **Microscopy imaging**

457 A Zeiss Apotome.2 (Carl Zeiss, Thornwood, NY, USA) was used for fluorescence acquisition.
458 Different FL filter sets (YFP, CFP, RFP and GFP) were used to image samples as needed. A Zeiss
459 LSM 710 confocal microscope (Carl Zeiss, Thornwood, NY, USA) was used to image samples.
460 Argon laser excitation wavelength and emission bandwidth were 405 nm and 425-550 nm for
461 aniline blue, 458 nm and 480–520 nm for mTq2 (cyan), 488 nm and 500–550 nm for mVenus
462 (yellow), and 633 nm and 633-740 nm for chlorophyll autofluorescence (red) respectively. Image
463 acquisition parameters were held consistent. Raw data from each channel were not altered beyond
464 equal signal increases.

465

466 **RNA isolation and RT-qPCR**

467 RNA isolation from pollen was performed as previously described with modifications (Lu, 2011).
468 For each independent sample, pollen grains from 50 flowers at stage 13 were collected. For
469 samples under galactose treatment, pollen grains from 50 flowers were germinated in liquid PGM
470 for 45 mins as described above in pollen galactose uptake. RNA was isolated using Trizol
471 (Invitrogen) as instructed by the manufacturer. First-strand cDNA was synthesized using oligo(dT)
472 and M-MuLV reverse transcriptase (NEB). Real-time qPCR was performed using PowerUpTM
473 SYBRTM master mix (Applied Biosystems) according to the manufacturer's instructions on a
474 CFX96 Real-Time PCR Detection System (Bio-Rad) using gene specific primers (P25-P30). The
475 expression values were normalized to *ACTIN8* expression values in each repeat, and subsequently
476 normalized to Col-0 using $2^{-\Delta\Delta CT}$ method (Livak and Schmittgen, 2001).

477

478 **Statistical analysis**

479 The differences between the two subjects were determined using the two-tailed Student's t-test
480 with equal variance. The differences among multiple subjects were assessed using one-way
481 ANOVA followed by multiple comparison tests (Fisher's LSD method). All statistical analysis
482 was performed using SPSS 26 statistical software (SPSS Inc, Chicago, IL, USA).

483

484 **Accession numbers**

485 Sequence information from this article can be found in the Arabidopsis Genome Initiative or
486 GenBank/EMBL databases under the following accession numbers: SWEET5 (AT5G62850),
487 GALK (AT3G06580), USP (AT5G52560).

488

489 **Acknowledgments**

490 We thank Dr. Yixin Li for help with sample collection and thank Dr. Qi Xie for providing us with
491 p YAO :h $SpCas9$ vector. We also thank Mrs. Anita K. Snyder for editing. This work is supported
492 by startup funds from the University of Illinois at Urbana-Champaign to Dr. Chen (to J.W., Y.-C.
493 Y., and L.-Q.C). Y. L. was supported by China Scholarship Council (No. 201603250070).

494

495

496 **References**

497 **Bates G, Rosenthal D, Sun J, Chattopadhyay M, Peffer E, Yang J, Ort D, Jones A** (2012) A
498 comparative study of the *Arabidopsis thaliana* guard-cell transcriptome and its modulation
499 by sucrose. *Plos One* **7**

500 **Becker J, Takeda S, Borges F, Dolan L, Feijo J** (2014) Transcriptional profiling of Arabidopsis
501 root hairs and pollen defines an apical cell growth signature. *BMC Plant Biology* **14**

502 **Bezrutczyk M, Yang J, Eom J, Prior M, Sosso D, Hartwig T, Szurek B, Oliva R, Vera-Cruz
503 C, White F, Yang B, Frommer W** (2018) Sugar flux and signaling in plant-microbe
504 interactions. *Plant Journal* **93**: 675-685

505 **Bhat P** (2003) Galactose-1-phosphate is a regulator of inositol monophosphatase: a fact or a fiction?
506 *Medical Hypotheses* **60**: 123-128

507 **Bowman J** (1994) *Arabidopsis: an atlas of morphology and development*. Springer-Verlag New
508 York

509 **Buttner M** (2007) The monosaccharide transporter(-like) gene family in *Arabidopsis*. *Febs Letters*

510 **581: 2318-2324**

511 **Cardini C, Leloir L** (1953) Enzymic phosphorylation of galactosamine and galactose. *Archives*
512 *of Biochemistry and Biophysics* **45:** 55-64

513 **Cecchetti V, Altamura M, Falasca G, Costantino P, Cardarelli M** (2008) Auxin regulates
514 Arabidopsis anther dehiscence, pollen maturation, and filament elongation. *Plant Cell* **20:**
515 1760-1774

516 **Chen H, Huh J, Yu Y, Ho L, Chen L, Tholl D, Frommer W, Guo W** (2015a) The Arabidopsis
517 vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts
518 Pythium infection. *Plant Journal* **83:** 1046-1058

519 **Chen L, Cheung L, Feng L, Tanner W, Frommer W, Kornberg R** (2015b) Transport of sugars.
520 *Annual Review of Biochemistry*, Vol 84 **84:** 865-894

521 **Chen L, Hou B, Lalonde S, Takanaga H, Hartung M, Qu X, Guo W, Kim J, Underwood W,**
522 **Chaudhuri B, Chermak D, Antony G, White F, Somerville S, Mudgett M, Frommer**
523 **W** (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. *Nature*
524 **468:** 527-U199

525 **Chen L, Lin I, Qu X, Sosso D, McFarlane H, Londono A, Samuels A, Frommer W** (2015c) A
526 cascade of sequentially expressed sucrose transporters in the seed coat and endosperm
527 provides nutrition for the Arabidopsis embryo. *Plant Cell* **27:** 607-619

528 **Chen L, Qu X, Hou B, Sosso D, Osorio S, Fernie A, Frommer W** (2012) Sucrose efflux
529 mediated by SWEET proteins as a key step for phloem transport. *Science* **335:** 207-211

530 **Cheng J, Wang Z, Yao F, Gao L, Ma S, Sui X, Zhang Z** (2015) Down-regulating CsHT1, a
531 cucumber pollen-specific hexose transporter, inhibits pollen germination, tube growth, and
532 seed development. *Plant Physiology* **168:** 635-647

533 **Clough S, Bent A** (1998) Floral dip: a simplified method for Agrobacterium-mediated
534 transformation of *Arabidopsis thaliana*. *Plant Journal* **16:** 735-743

535 **Curtis M, Grossniklaus U** (2003) A gateway cloning vector set for high-throughput functional
536 analysis of genes in planta. *Plant Physiology* **133:** 462-469

537 **de Jongh W, Bro C, Ostergaard S, Regenberg B, Olsson L, Nielsen J** (2008) The roles of
538 galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity
539 in *Saccharomyces cerevisiae*. *Biotechnology and Bioengineering* **101:** 317-326

540 **De Storme N, Zamariola L, Mau M, Sharbel T, Geelen D** (2013) Volume-based pollen size

541 analysis: an advanced method to assess somatic and gametophytic ploidy in flowering
542 plants. *Plant Reproduction* **26**: 65-81

543 **Earley K, Haag J, Pontes O, Opper K, Juehne T, Song K, Pikaard C** (2006) Gateway-
544 compatible vectors for plant functional genomics and proteomics. *Plant Journal* **45**: 616-
545 629

546 **Egert A, Peters S, Guyot C, Stieger B, Keller F** (2012) An *Arabidopsis* T-DNA insertion mutant
547 for galactokinase (AtGALK, At3g06580) hyperaccumulates free galactose and is
548 insensitive to exogenous galactose. *Plant and Cell Physiology* **53**: 921-929

549 **Engel M, Davis R, McCormick S** (2005) Green sperm. Identification of male gamete promoters
550 in *Arabidopsis*. *Plant Physiology* **138**: 2124-2133

551 **Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ, Braun DM, Frommer WB** (2015)
552 SWEETs, transporters for intracellular and intercellular sugar translocation. *Current
553 Opinion in Plant Biology* **25**: 53-62

554 **Feijo J, Costa S, Prado A, Becker J, Cortal A** (2004) Signalling by tips. *Current Opinion in
555 Plant Biology* **7**: 589-598

556 **Feusi MES, Burton JD, Williamson JD, Pharr DM** (1999) Galactosyl-sucrose metabolism and
557 UDP-galactose pyrophosphorylase from *Cucumis melo* L-fruit. *Physiologia Plantarum* **106**:
558 9-16

559 **Frietsch S, Wang Y, Sladek C, Poulsen L, Romanowsky S, Schroeder J, Harper J** (2007) A
560 cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. *Proceedings
561 of the National Academy of Sciences of the United States of America* **104**: 14531-14536

562 **Goetz M, Guivarch A, Hirsche J, Bauerfeind M, Gonzalez M, Hyun T, Eom S, Chriqui D,
563 Engelke T, Grosskinsky D, Roitsch T** (2017) Metabolic control of tobacco pollination by
564 sugars and invertases. *Plant Physiology* **173**: 984-997

565 **Gookin T, Assmann S** (2014) Significant reduction of BiFC non-specific assembly facilitates in
566 planta assessment of heterotrimeric G-protein interactors. *Plant Journal* **80**: 553-567

567 **Guo W, Nagy R, Chen H, Pfrunder S, Yu Y, Santelia D, Frommer W, Martinoia E** (2014)
568 SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of
569 *Arabidopsis* roots and leaves. *Plant Physiology* **164**: 777-789

570 **Hamilton E, Jensen G, Maksaev G, Katims A, Sherp A, Haswell E** (2015) Mechanosensitive
571 channel MSL8 regulates osmotic forces during pollen hydration and germination. *Science*

572 350: 438-441

573 **Hirsche J, Engelke T, Voller D, Gotz M, Roitsch T** (2009) Interspecies compatibility of the
574 anther specific cell wall invertase promoters from Arabidopsis and tobacco for generating
575 male sterile plants. *Theoretical and Applied Genetics* **118**: 235-245

576 **Ho LH, Klemens PAW, Neuhaus HE, Ko HY, Hsieh SY, Guo WJ** (2019) SISWEET1a is
577 involved in glucose import to young leaves in tomato plants. *Journal of Experimental*
578 *Botany* **70**: 3241-3254

579 **Hofmeyr J, Cornish-Bowden A** (2000) Regulating the cellular economy of supply and demand.
580 *Febs Letters* **476**: 47-51

581 **Honya D, Twell D** (2004) Transcriptome analysis of haploid male gametophyte development in
582 *Arabidopsis*. *Genome Biology* **5**: R85

583 **Julius B, Leach K, Tran T, Mertz R, Braun D** (2017) Sugar transporters in plants: new insights
584 and discoveries. *Plant and Cell Physiology* **58**: 1442-1460

585 **Kasaras A, Kunze R** (2010) Expression, localisation and phylogeny of a novel family of plant-
586 specific membrane proteins. *Plant Biology* **12**: 140-152

587 **Kircher S, Schopfer P** (2012) Photosynthetic sucrose acts as cotyledon-derived long-distance
588 signal to control root growth during early seedling development in *Arabidopsis*.
589 *Proceedings of the National Academy of Sciences of the United States of America* **109**:
590 11217-11221

591 **Klemens P, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp
592 A, Neuhaus H** (2013) Overexpression of the vacuolar sugar carrier AtSWEET16 modifies
593 germination, growth, and stress tolerance in *Arabidopsis*. *Plant Physiology* **163**: 1338-1352

594 **Kotake T, Yamaguchi D, Ohzono H, Hojo S, Kaneko S, Ishida H, Tsumuraya Y** (2004) UDP-
595 sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide
596 1-phosphates from pea sprouts. *Journal of Biological Chemistry* **279**: 45728-45736

597 **Kuanshev N, Deewan A, Jagtap SS, Liu J, Selvam B, Chen L-Q, Shukla D, Rao CV, Jin Y-
598 S** (2021) Identification and analysis of sugar transporters capable of co-transporting
599 glucose and xylose simultaneously. *Biotechnology Journal* **n/a**: 2100238

600 **Lai K, Elsas L, Wierenga K** (2009) Galactose toxicity in animals. *Iubmb Life* **61**: 1063-1074

601 **Lai K, Langley S, Khwaja F, Schmitt E, Elsas L** (2003) GALT deficiency causes UDP-hexose
602 deficit in human galactosemic cells. *Glycobiology* **13**: 285-294

603 **Leloir L** (1951) The enzymatic transformation of uridine diphosphate glucose into a galactose
604 derivative. *Archives of Biochemistry and Biophysics* **33**: 186-190

605 **Li Y, Liu H, Yao X, Wang J, Feng S, Sun L, Ma S, Xu K, Chen L-Q, Sui X** (2021) Hexose
606 transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for
607 fruit development. *Plant Physiology*

608 **Lima R, dos Santos T, Vieira L, Ferrarese M, Ferrarese O, Donatti L, Boeger M, Petkowicz**
609 C (2013) Heat stress causes alterations in the cell-wall polymers and anatomy of coffee
610 leaves (*Coffea arabica* L.). *Carbohydrate Polymers* **93**: 135-143

611 **Lin I, Sosso D, Chen L, Gase K, Kim S, Kessler D, Klinkenberg P, Gorder M, Hou B, Qu X,**
612 **Carter C, Baldwin I, Frommer W** (2014) Nectar secretion requires sucrose phosphate
613 synthases and the sugar transporter SWEET9. *Nature* **508**: 546-549

614 **Livak K, Schmittgen T** (2001) Analysis of relative gene expression data using real-time
615 quantitative PCR and the 2(T)(-Delta Delta C) method. *Methods* **25**: 402-408

616 **Loque D, Lalonde S, Looger LL, von Wieren N, Frommer WB** (2007) A cytosolic trans-
617 activation domain essential for ammonium uptake. *Nature* **446**: 195-198

618 **Lu Y** (2011) RNA isolation from *Arabidopsis* pollen grains. *Bio-protocol* **1**: e67

619 **Maxwell E, Derobichonszulmajster H** (1960) Purification of uridine diphosphate galactose-4-
620 epimerase from yeast, and the identification of protein-bound diphosphopyridine
621 nucleotide. *Journal of Biological Chemistry* **235**: 308-312

622 **Mergner J, Frejno M, List M, Papacek M, Chen X, Chaudhary A, Samaras P, Richter S,**
623 **Shikata H, Messerer M, Lang D, Altmann S, Cyprys P, Zolg D, Mathieson T,**
624 **Bantscheff M, Hazarika R, Schmidt T, Dawid C, Dunkel A, Hofmann T, Sprunck S,**
625 **Falter-Braun P, Johannes F, Mayer K, Jurgens G, Wilhelm M, Baumbach J, Grill E,**
626 **Schneitz K, Schwechheimer C, Kuster B** (2020) Mass-spectrometry-based draft of the
627 *Arabidopsis* proteome. *Nature* **579**: 409-414

628 **Muschietti J, Dircks L, Vancanneyt G, McCormick S** (1994) LAT52 protein is essential for
629 tomato pollen development - pollen expressing antisense LAT52 RNA hydrates and
630 germinates abnormally and cannot achieve fertilization. *Plant Journal* **6**: 321-338

631 **Pacini E, Jacquard C, Clement C** (2011) Pollen vacuoles and their significance. *Planta* **234**: 217-
632 227

633 **Reger B, Pressey R, Chaubal R** (1992) In vitro chemotropism of pearl-millet pollen tubes to

634 stigma tissue - a response to glucose produced in the medium by tissue-bound invertase.
635 Sexual Plant Reproduction **5**: 201-205

636 **Reinders A** (2016) Fuel for the road - sugar transport and pollen tube growth. Journal of
637 Experimental Botany **67**: 2121-2123

638 **Roberts R, Heishman A, Wicklin C** (1971) Growth inhibition and metabolite pool levels in plant
639 tissues fed D-glucosamine and D-galactose. Plant Physiology **48**: 36-42

640 **Rottmann T, Fritz C, Sauer N, Stadler R** (2018) Glucose uptake via STP transporters inhibits
641 in vitro pollen tube growth in a HEXOKINASE1-dependent manner in *Arabidopsis*
642 *thaliana*. Plant Cell **30**: 2057-2081

643 **Rottmann T, Zierer W, Subert C, Sauer N, Stadler R** (2016) STP10 encodes a high-affinity
644 monosaccharide transporter and is induced under low-glucose conditions in pollen tubes
645 of *Arabidopsis*. Journal of Experimental Botany **67**: 2387-2399

646 **Ruan Y, Merchant S** (2014) Sucrose metabolism: gateway to diverse carbon use and sugar
647 signaling. Annual Review of Plant Biology, Vol 65 **65**: 33-67

648 **Rutley N, Twell D** (2015) A decade of pollen transcriptomics. Plant Reproduction **28**: 73-89

649 **Schneidereit A, Scholz-Starke J, Buttner M** (2003) Functional characterization and expression
650 analyses of the glucose-specific AtSTP9 monosaccharide transporter in pollen of
651 *Arabidopsis*. Plant Physiology **133**: 182-190

652 **Scholz-Starke J, Buttner M, Sauer N** (2003) AtSTP6, a new pollen-specific H⁺-monosaccharide
653 symporter from *Arabidopsis*. Plant Physiology **131**: 70-77

654 **Seifert G, Barber C, Wells B, Dolan L, Roberts K** (2002) Galactose biosynthesis in *Arabidopsis*:
655 genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers.
656 Current Biology **12**: 1840-1845

657 **Sherson S, Gy I, Medd J, Schmidt R, Dean C, Kreis M, Lecharny A, Cobbett C** (1999) The
658 arabinose kinase, ARA1, gene of *Arabidopsis* is a novel member of the galactose kinase
659 gene family. Plant Molecular Biology **39**: 1003-1012

660 **Sherson S, Hemmann G, Wallace G, Forbes S, Germain V, Stadler R, Bechtold N, Sauer N,**
661 **Smith S** (2000) Monosaccharide/proton symporter AtSTP1 plays a major role in uptake
662 and response of *Arabidopsis* seeds and seedlings to sugars. Plant Journal **24**: 849-857

663 **Singh M, Gupta A, Laxmi A** (2014) Glucose control of root growth direction in *Arabidopsis*
664 *thaliana*. Journal of Experimental Botany **65**: 2981-2993

665 **Stadler R, Truernit E, Gahrtz M, Sauer N** (1999) The AtSUC1 sucrose carrier may represent
666 the osmotic driving force for anther dehiscence and pollen tube growth in *Arabidopsis*.
667 *Plant Journal* **19**: 269-278

668 **Truernit E, Stadler R, Baier K, Sauer N** (1999) A male gametophyte-specific monosaccharide
669 transporter in *Arabidopsis*. *Plant Journal* **17**: 191-201

670 **Tunc-Ozdemir M, Rato C, Brown E, Rogers S, Mooneyham A, Frietsch S, Myers C, Poulsen
671 L, Malho R, Harper J** (2013) Cyclic nucleotide gated channels 7 and 8 are essential for
672 male reproductive fertility. *Plos One* **8**

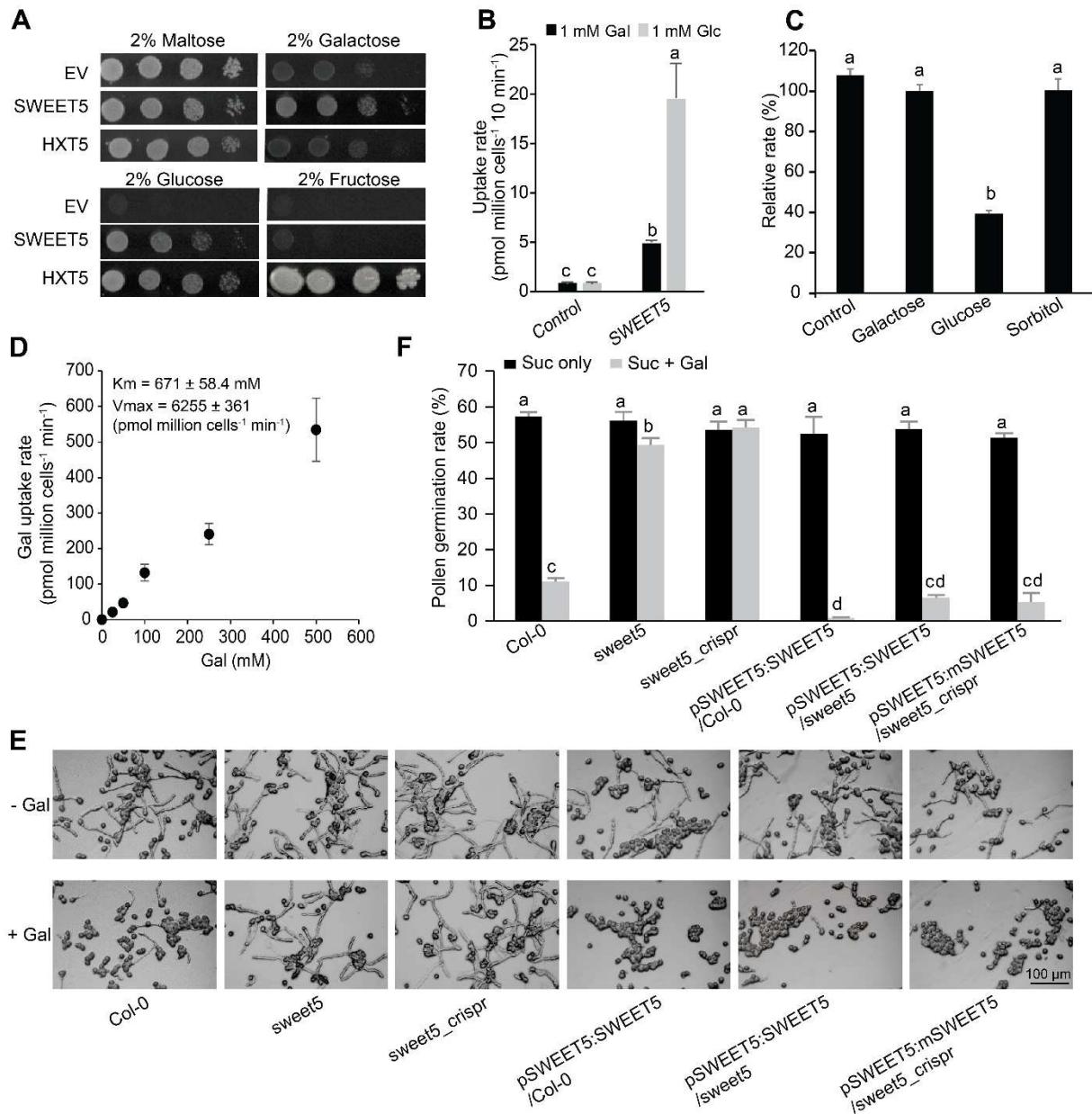
673 **Wang R, Liu M, Yuan M, Oses-Prieto J, Cai X, Sun Y, Burlingame A, Wang Z, Tang W**
674 (2016) The brassinosteroid-activated BRI1 receptor kinase is switched off by
675 dephosphorylation mediated by cytoplasm-localized PP2A B' subunits. *Molecular Plant* **9**:
676 148-157

677 **Wang Y, Zhang W, Song L, Zou J, Su Z, Wu W** (2008) Transcriptome analyses show changes
678 in gene expression to accompany pollen germination and tube growth in *Arabidopsis*. *Plant
679 Physiology* **148**: 1201-1211

680 **Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg C, Boles E** (1999) Concurrent
681 knock-out of at least 20 transporter genes is required to block uptake of hexoses in
682 *Saccharomyces cerevisiae*. *FEBS Letters* **464**: 123-128

683 **Yamada K, Kanai M, Osakabe Y, Ohiraki H, Shinozaki K, Yamaguchi-Shinozaki K** (2011)
684 Monosaccharide absorption activity of *Arabidopsis* roots depends on expression profiles
685 of transporter genes under high salinity conditions. *Journal of Biological Chemistry* **286**:
686 43577-43586

687 **Yamamoto R, Inouhe M, Masuda Y** (1988) Galactose inhibition of auxin-induced growth of
688 monocotyledonous and dicotyledonous plants. *Plant Physiology* **86**: 1223-1227


689 **Yan L, Wei S, Wu Y, Hu R, Li H, Yang W, Xie Q** (2015) High-efficiency genome editing in
690 *Arabidopsis* using YAO promoter-driven CRISPR/Cas9 system. *Molecular Plant* **8**: 1820-
691 1823

692 **Yang T, Bar-Peled L, Gebhart L, Lee S, Bar-Peled M** (2009) Identification of galacturonic
693 acid-1-phosphate kinase, a new member of the GHMP kinase duperfamily in plants, and
694 comparison with galactose-1-phosphate kinase. *Journal of Biological Chemistry* **284**:
695 21526-21535

696 **Ylstra B, Garrido D, Busscher J, van Tunen A** (1998) Hexose transport in growing petunia
697 pollen tubes and characterization of a pollen-specific, putative monosaccharide transporter.
698 Plant Physiology **118**: 297-304

699 **Zhou Y, Cui X, Hu A, Miao Y, Zhang L** (2020) Characterization and functional analysis of
700 pollen-specific PwSWEET1 in *Picea wilsonii*. Journal of Forestry Research **31**: 1913-1922

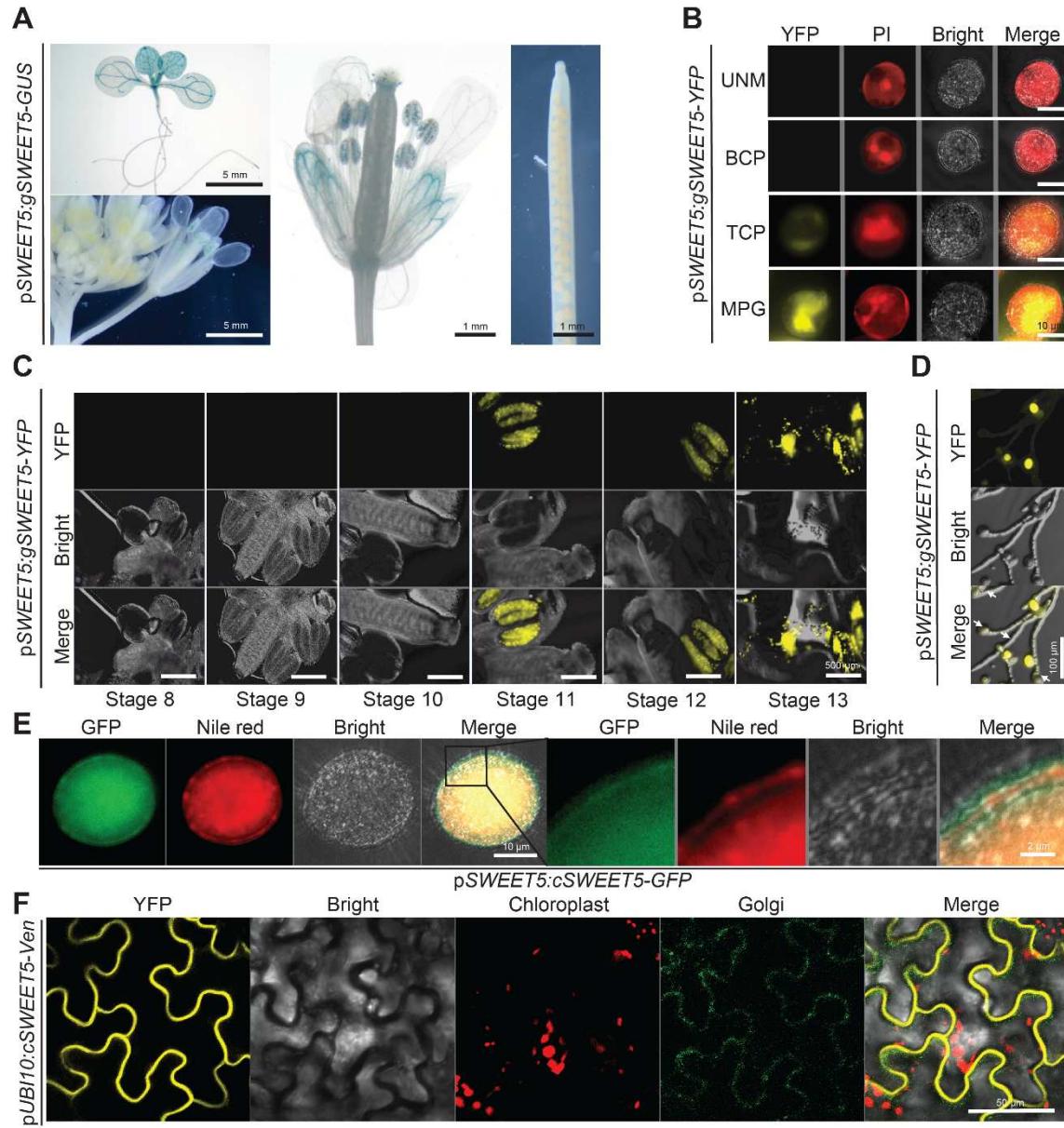
701 **Zhou Y, Liu L, Huang W, Yuan M, Zhou F, Li X, Lin Y** (2014) Overexpression of OsSWEET5
702 in rice causes growth retardation and precocious senescence. Plos One **9**: e94210

703

704

705 **Figure 1.** Characterization of Arabidopsis SWEET5.

706 (A) Functional analysis of SWEET5 by EBY.VW4000 yeast complementation assay. The empty
707 vector (EV) as a negative control, or HXT5 as a positive control.


708 (B) SWEET5-mediated uptake of 1 mM ^{14}C -galactose and ^{14}C -glucose over 10 minutes in yeast
709 cells. Cells transformed with an empty vector were used as a negative control (mean \pm SE, n = 4).

710 (C) Substrate competition uptake analysis of SWEET5 in yeast over 10 min. Different 50 mM cold
711 sugars competed with 5 mM cold glucose (including ^{14}C -glucose) that was normalized to 100 %
712 (mean \pm SE, n = 4).

713 (D) Kinetics of ^{14}C -galactose accumulation by SWEET5 in yeast (mean \pm SE, n = 4). An empty
714 vector served as a negative control and was subtracted.

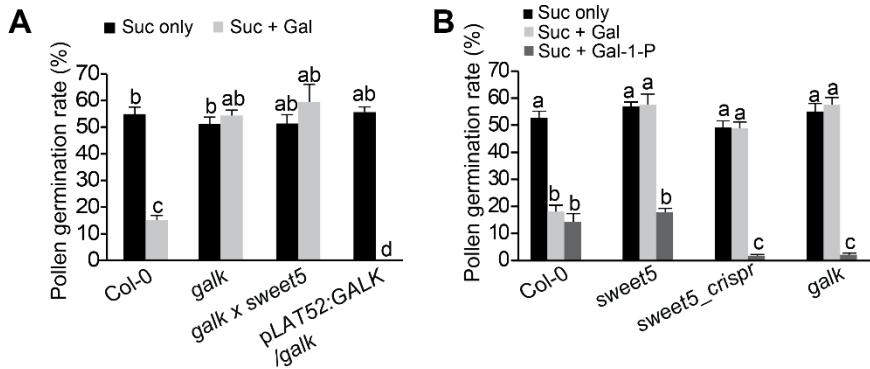
715 (E) *In vitro* pollen germination assay for various genotypes on sucrose-based medium with or
716 without 60 mM galactose. The pictures were taken 8 hours post-germination.

717 (F) Statistical analysis of pollen germination rates for various genotypes. The means were
718 calculated from multiple repeats (\pm SE, n \geq 9), with over 450 pollen grains/tubes counted in total.
719 The statistically significant differences among different samples were determined using one-way
720 ANOVA followed by multiple comparison tests and were represented by different letters ($P < 0.05$).

722 **Figure 2.** Tissue-specific accumulation and cellular localization of SWEET5.

723 (A) SWEET5 tissue-specific expression was evaluated. Twelve-day-old seedlings, inflorescences
724 and siliques from about one-month old *Arabidopsis* carrying pSWEET5:gSWEET5-GUS were
725 histochemically stained 4 h for GUS activity.

726 (B) SWEET5 localization in pollen grain was examined using fluorescence microscopy. Images
727 were captured using the YFP filter for YFP, the RFP filter for propidium iodine (PI) staining, and
728 under bright field. SWEET5 was detected in the tricellular pollen grain (TCP) and mature pollen
729 grain (MPG) but absent in early stages of uninucleate microspores (UNM) and bicellular pollen
730 (BCP).

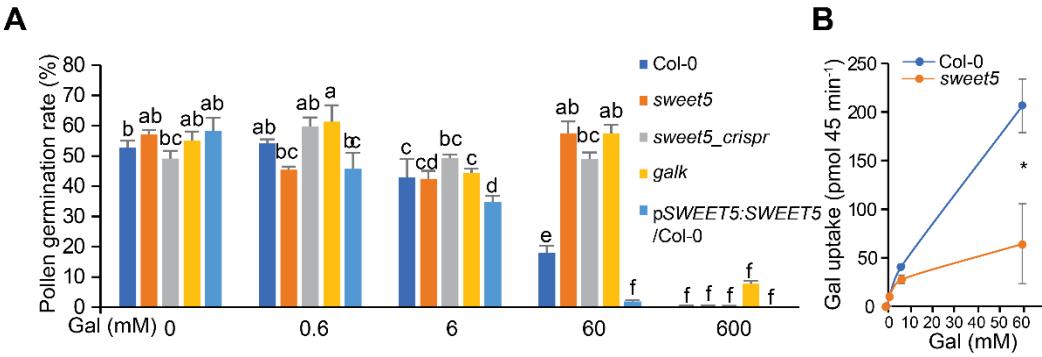

731 (C) SWEET5 accumulation in different floral stages of *Arabidopsis* was examined using
732 fluorescence microscopy. The signals started to be detected from stage 11.

733 (D) SWEET5 accumulation was detected after pollen germination in pSWEET5:gSWEET5-YFP
734 lines. Pictures were taken 8 hours post-germination using a fluorescence microscope. White arrows
735 pointed to germinated pollen with much weaker fluorescence than un-germinated pollen.

736 (E) SWEET5 cellular localization was examined in mature pollen carrying pSWEET5:cSWEET5-
737 GFP.

738 (F) SWEET5 cellular localization was examined 72 hours after infiltration of *Nicotiana*
739 *benthamiana* leaves with pUBI10:cSWEET5-mVenus. Pictures were taken using confocal
740 microscopy.

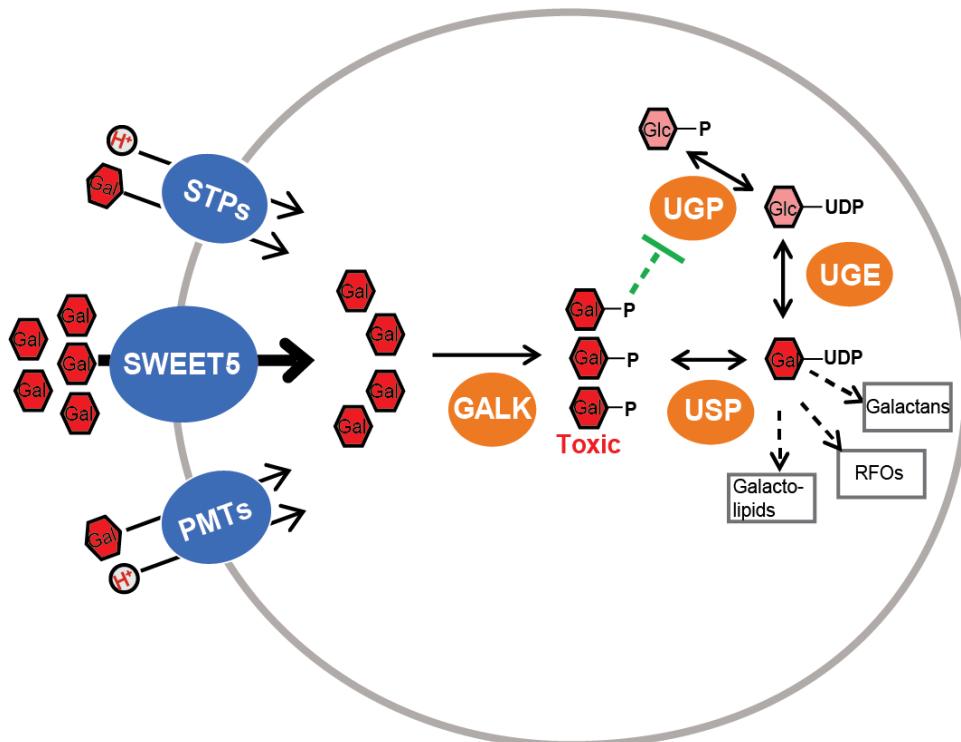
741


742

743 **Figure 3.** Involvement of GALK in galactose-inhibited pollen germination

744 (A) Examination of *in vitro* pollen germination on sucrose-based medium with 0 mM or 60 mM
745 galactose for various genotypes. (means \pm SE, $n \geq 6$ (over 300 pollen grains/tubes counted) and P
746 <0.05).

747 (B) Effects of galactose-1-phosphate (6 mM) on *in vitro* pollen germination (means \pm SE, $n \geq 6$
748 (over 300 pollen grain/tubes counted) and $P < 0.05$).


749

750 **Figure 4.** Concentration-dependent galactose response.

751 (A) *In vitro* pollen germination of various genotypes on medium supplemented with different
752 concentrations of galactose (ranging from 0 to 600 mM). The means (\pm SE) of at least 6 repeats
753 were plotted (over 300 pollen grains/tubes tested) ($P < 0.05$).
754 (B) Concentration-dependent galactose uptake in pollen of Col-0 and *sweet5* (means \pm SE, n=3
755 and $P < 0.05$). Pollen germinated on liquid medium containing 0 mM, 0.6 mM, 6 mM, or 60 mM
756 galactose in addition to 0.3 μ Ci 14 C-galactose per sample for 45 min.

757

758

759

760 **Figure 5.** Schematic representation of galactose transport and metabolism in *Arabidopsis* pollen.
761 A simplified pollen structure was drawn for clarity. Arrows represent positive regulation and bar-
762 headed lines indicate negative regulations. The black lines represent galactose metabolic flux. The
763 thick black line means higher flux. The green dotted line is for hypothetical regulation. Galacto-
764 lipids are predominantly found in plastid membrane. RFOs (Raffinose Oligosaccharides) mainly
765 include raffinose and stachyose containing one and two Galactose moieties, respectively.
766 Galactans represents the cell wall-bound galactose.

767

768