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Abstract

Gene correlation network inference from single-cell transcriptomics data potentially allows
to gain unprecendented insights into cell type-specific regulatory programs. ScRNA-seq data
is severely affected by dropout, which significantly hampers and restrains current downstream
analysis. Although newly developed tools are capable to deal with sparse data, no appropriate
single-cell network inference workflow has been established. A potential way to end this deadlock
is the application of data imputation methods, which already proofed to be useful in specific
contexts of single-cell data analysis, e.g., recovering cell clusters. In order to infer cell-type
specific networks, two prerequisites must be met: the identification of cluster-specific cell-types
and the network inference itself.

Here, we propose a benchmarking framework to investigate both objections. By using suit-
able reference data with inherent correlation structure, six representative imputation tools and
appropriate evaluation measures, we were able to systematically infer the impact of data imputa-
tion on network inference. Major network structures were found to be preserved in low dropout
data sets. For moderately sparse data sets, DCA was able to recover gene correlation structures,
although systematically introducing higher correlation values. No imputation tool was able to
recover true signals from high dropout data. However, by using an additional biological data
set we could show that cell-cell correlation by means of specific marker gene expression was not
compromised through data imputation.

Our analysis showed that network inference is feasible for low and moderately sparse data sets
by using the unimputed and DCA-prepared data, respectively. High sparsity data, on the other
side, still pose a major problem since current imputation techniques are not able to facilitate
network inference. The annotation of cluster-specific cell-types as a prerequisite is not hampered
by data imputation but their power to restore the deeply hidden correlation structures is still
not sufficient enough.

1 Introduction

Inferring gene regulatory networks from transcriptomic data has led to important biological insights
for example in recurrence-associated genes of colon cancer [39] or gene architectures associated with
Alzheimer’s disease [1].

However, current knowledge is mainly based on information collected from a population of cells
which, depending on the experimental setup, might comprise different cell (sub)types, cells resting
in different cell cycle stages, or cell subpopulations that gained certain genetic mutations.
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With the technological breakthrough of single-cell genomics it is now feasible to extract and
analyze the transcriptome of each cell separately, leveraging those obstacles and opening up a novel
level of resolution. For example, scRNA-seq helped to identify previously masked cell types [9, 17], to
uncover cellular dynamics within a cell population [4], and to unfold developmental trajectories [35,
13]. The inter-cellular heterogeneity in single-cell transcriptomics data furthermore promises to
substantially improve our understanding of cellular processes, allowing to uncover gene regulatory
networks that are specific to a cell type or cluster of cells and that so far remain buried [31] (see
Figure 1).

However, to fullfill this promise, two things must be achieved using scRNA-seq data: (7) the
identification of cell types, and (7i) the possibility to infer gene correlation networks.
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Figure 1: Difference in resolution from bulk and single-cell RNA-seq data on the level of gene
networks.

[lustrating the input of sequencing experiments as various fruits (left) would result in a
homogenized, mixed source material for bulk RNA-seq data, much like a fruit smoothie (top).
Inferred networks would therefore reflect an average of all the signals detected in the mixture of,
potenially different, cells. Single-cell RNA-seq on the other hand would preserve the information
of the individual fruits, hence different cell types and would allow for cell type specific gene
correlation networks (bottom). Thus similarities as well as differences in netwoks between cell

types could be carved out that would be hidden or covered in the bulk RNA-seq data.

A plethora of novel analysis tools and comprehensive pipelines has been developed in recent
years [34, 5] 1 trying to harness the special characteristics of single-cell transcriptomics data. Next
to its shear size, the data is extremely sparse and afflicted with two types of zero values [20]. They
can either represent a truely absent count or be introduced methodologically where a transcript was
expressed but not measured. This second type of zero, referred to as sparsity, can therefore arise
from two different scenarios: either systematically, such as mRNA degradation during cell lysis, or
by chance where a barely expressed transcript is measured in one cell but not in the other though
present in both [18]. The latter phenomenon is also denoted as ’dropout’. In addition, single-cell

Yhttps : | /www.scrna — tools.org/analysis


https://doi.org/10.1101/2021.04.02.438193
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.02.438193; this version posted April 2, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

data owns higher degrees of variability and technical noise compared to bulk RNA-seq data [8].
Allover, these specific characteristics of scRNA-seq data may interfere with the previously stated
aims, particularly regarding network inference from cell-clusters.

While single-cell transcriptomics data sets were restricted to only a few cells, containing far less
sparsity, early WGCNA-based approaches however allowed new insights into genetic programs [23, 36].
With the emergence of higher throughput methods, these bulk-derived, non-single-cell specific tools
showed only mediocre results [8]. Subsequent developments of highly specific single-cell tools,
however, were also not able to transform the unique characteristics of this data into the desired
outcome [8]. More recent work benchmarked single-cell specific tools using curated reference mod-
els [28, 24]. Including 12 algorithms as well as three different sources of reference datasets, BEELINE,
for example, offers an evaluation framework to facilitate development of novel tools [28]. While
testing conditions were improved, network inference remains a challenging problem. Although al-
gorithms such as SCENIC or CellOracle [2, 16] have been proven to be meaningful, they calculate
the network inference on a restricted search space by subsetting the number of investigated genes,
and thus still neglect an overall and unbiased picture.

One potential direction to improve the efficacy of single-cell analysis tools is to leverage the data
sparsity through imputation approaches intending to ’interpolate’ the previously missed expression.
In the past years, many single-cell specific imputation tools have already been published [15, 11, 27]
and their evaluation showed that denoising sparse simulated data can, for example, help to reobtain
original cell clusters and time-course patterns [10]. Because of the rapid increase of published
imputation methods, several review articles [20, 7] and benchmarking analysis [40, 25] have been
published in recent months, also investigating specific fields within the downstream analysis realm,
such as differential gene expression [14]. Unsupervised clustering of cells represents another common
downstream tool in the analysis of scRNA-seq data which allows for later cell type classification. Past
work already proofed that some imputation tools did improve clustering compared to the unimputed
situation [14]. Apart from the overall clustering performance, the impact of data imputation on
specific cell cluster expression profiles was investigated. Since each cell type owns a set of specific
marker genes, data imputation should not render or destroy these expression profiles, as they take a
central part in the inference of cell type specific network configurations, but recent research revealed
that their reprodicibility was reduced after data imputation [3].

However, the precise influence of data imputation on gene correlation networks remained out
of focus. In general, the assessment of cell-type specific network inference based on scRNA-seq
data that builds on imputation and evaluates inference and cell type identification cluster-specific
expression profiles proofed to be difficult [6]. Since any experimentally derived scRNA-seq dataset
is affected by a considerable degree of dropout, a synthetic gold-standard dataset is required as a
reference to assess the performance of network inference. To facilitate statistical evaluation, such
a dataset should solely contain ’true zeros’ and fully exclude dropout. However, such a universal,
gold-standard reference dataset is so far missing. Those simulated datasets need to fullfill some
criteria to be utilized in a benchmarking study. This strongly includes standard research paradigms
like reproducibility, scalability, adjustability, and suitability.

Here we provide a comprehensive benchmarking analysis where we elaborate the precise impact
of data imputation approaches for a subsequent network inference on single-cell transcriptomics
data. In order to infer the influence of imputation methods, we generated a synthetic, non-sparse,
ground truth dataset through the downsampling of a bulk RNA-seq dataset, containing solely true
zeros and correlation structure, both, between cells and genes, in contrast to other approaches.
Based on this dataset, six additional reference datasets were generated with increasing levels of
dropout, thus allowing for conclusions on different real-world scenarios. Representative imputation
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methods have then been applied to all reference datasets and their corresponding network structures
were compared to the structure of the gold data.

2 Results

2.1 Generation of single-cell like reference datasets

In the following paragraphs, we will describe the generation of our reference datasets. In this respect
the term gold data refers to the single-cell like data that contains no zeros that are inserted based on
sequencing errors (dropout). Alltogether the gold and all six dropout affected datasets are referred
to as reference data.

Gold data. While scRNA-seq allows for unprecedented biological insights, technical as well as
biological noise produce an extremely sparse data matrix hindering current network inference meth-
ods [28, 8, 24]. In order to desparsify data, imputation approaches might help to overcome this
constraint, thus paving the way for well known network inference tools.

Since real scRNA-seq data always suffer from dropout, we generated a synthetic gold dataset,
which only contains true zeros. To ensure reproducibility, scalability, adjustability, and especially
suitability of this gold data, an existing mouse hair follicle bulk dataset by Wang et al. [33] was
used to simulate single-cell data, containing 48,795 genes across 48 conditions (over 20 cell types).
For the downsampling procedure described by Peng et al. [27], eight hair follicle cell types were
chosen randomly such that the synthetic gold dataset owned 5000 genes across 800 cells. After a
quality filtering to remove barely expressed genes, being the consequence of the sampling procesure,
we finally created a gold dataset with 4960 genes across 800 cells. In total, this dataset contains
15% of true zeros. As a proof-of-concept, we applied WGCNA [21] to the gold dataset to ensure that
we retained the natural correlation structure of the bulk RNA-seq dataset, see Figure 2. Figure
2A shows the R? of a fit to a scale-free topology model, which is a hallmark of many networks,
over different soft threshold S values. Based on this plot, 8 is chosen to generate a network with
approximately scale-free topology. For the gold data a plateau for § values larger than eight was
reached. Other simulation tools, like splatter [38] or GeneNetWeaver [30] failed in producing
datasets that allowed to reconstruct approximately scale-free networks. This may be due to an
insufficient ability of these tools to correspond to real biological processes that has been previously
reported [28]. By choosing a § of nine for the gene network inference, the gene dendrogram showed
a clear hierarchical structure within the genes (Figure 2B). In total, seven different gene modules
were detected, whereby the turquoise module was the largest with 2143 genes and the black module
was the smallest with only 21 genes.

Reference datasets. Based on the gold dataset, we generated six additional datasets with in-
creasing degrees of dropout, ranging from 40% to 84%. With the 15% true zeros in the gold data,
we hence created six datasets containing 55% to 99% percent zeros, which resembles the propor-
tion of zeros of current scRNA-seq methods. The characteristics of these reference data sets are
summarized in Figure 3. With an increasing degree of dropout, the distribution of gene expression
values indicates the expected shift towards larger proportions of lowly expressed or missing genes
(see a clipped version in Figure 3A and the complete graph in Supplemental Figure S4). The gold
data shows the smallest fraction of lowly expressed genes, while the 84% dropout dataset shows
the opposite behaviour. A real scRNA-seq dataset of human retina organoid cells [19], which was
generated via the 10X Genomics procedure was included and plotted for comparison, exhibited a
very similar distribution as the 84% dropout dataset (Figure 3A).
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Figure 2: Gold data characteristics.
(A) Scale-free model fit of gold data using the WGCNA package. Development of scale-freeness over
twenty 3 values. A plateau of R? values was reached for 3 values larger than eight. (B) Cluster
Dendrogram of gold data using the WGCNA package. The gene module assignment is shown in the
color bar below. Hierarchy of the genes is indicated on the y-axis. This result is based on a (5 of
nine. In total seven gene modules were defined.

We investigated to what extent hallmarks of network structure can be recovered, or are lost with
increasing degrees of dropout. (Figure 3B). For this purpose we utilized the Zgymmary statistic from
WGCNA which quantifies module preservation [22] for all reference datasets. This measure indicates
how well a group of correlated genes (modules) from a reference dataset is preserved in a test data
set. Here, all artificially dropped out datasets were compared to the gold data. Since Zsymmary is
dependent on module size, we compared the gold dataset to itself as a reference. As introduced by
Langfelder and colleagues, two different thresholds were applied defining the preservation of gene
modules [22]. Modules with a Zsummary value below two are considered to be not preserved at all,
whereby values larger than ten indicate a strong preservation. Modules in between both thresholds
are considered moderately preserved. Within the gold data, modules showed a median Zgymmary
value above the strong preservation threshold as also seen for slightly increased dropout levels (40%
- 55%). Zsummary values close to zero were detected for both high sparsity datasets containing 75%
and 84% dropout. Moreover, no single module remained even moderately preserved in the 84%
dropout reference dataset. In general, we can state that an increase in dropout correlates with a
decrease in module preservation. Nonetheless, correlation network appears fairly robust for low to
intermediate levels of dropout. Up to a level of 55 % dropout we observed strong preservation for
the majority of modules.

Hence, we were able to generate reference datasets that (1) resemble true biological datasets
in their distribution of expression values, (2) retain the natural correlation structure of its original
bulk RNA-seq ancestor, and (3) were shown to have a decreasing network preservation with higher
levels of dropout.
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Figure 3: Reference data characteristics.

(A) Distribution of logged expression values of all reference datasets and the human retina
dataset. Density of expression values across eight datasets is shown to contrast impact of different
dropout rates. The gold data is plotted in orange, all six dropout reference datasets are shown
with a grey gradient and a biological dataset is plotted in blue. Here, only an excerpt between 0.0
and 0.2 is shown. The full plot is provided in Supplemental Figure S4. (B) Boxplots showing the
behavior of module preservation across different dropout levels. The Zgymmary measure
implemented in WGCNA is a composite, permutation- based metric of various network density and
connectivity measures. The blue and the green line indicate the threshold towards moderate and
strong module preservation, respectively. Coloration of the dots correspond to the individual
modules. Dropout refers to the the amount of artificially introduced non-true zeros in each of the
reference datasets. An increase in dropout is associated with a decrease in module preservation.
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2.2 Impacts of data imputation on network inference

Since dropout seems to compromise network inference we next investigated, whether imputation
methods alleviate the situation.

We selected five imputation tools that each represent a certain class of imputation methods.
Whereby DrImpute[ll], SAVER[15] and ENHANCE[32] are smoothing, model-, or low-rank matrix-
based, respectively, DCA[10] uses a neural network structure. scNPF[37] performs imputation while
extracting gene correlation network information from the dataset. All tools are highly used and
well-accepted in the single-cell community. A sixth method, DISC[12], belongs to the class of neural
networks but performs imputation in a semi-supervised manner. For more information, please see
the methods section.

Module Preservation. To compare the imputation tools on the basis of Zsummary values, we
computed a module-wise Zgymmary log-2 fold change (log2-FC) that reflects the difference in module
preservation to the gold dataset before and after imputation, see Figure 4A. A negative fold change
therefore represents a module preservation smaller than the gold data and thus a loss of network
information.

The unimputed, dropout-affected reference datasets (shown in black) showed lower negative
log2-FC values with an increase in dropout, reflecting the loss of module preservation as it was
described above. All log2-FC in the 40% dropout dataset were still close to zero, while it decreased
drastically in the 84% dropout dataset. If imputation restored the correlation structure, values
closer to zero would be obtained. However, we observed a rather diverse picture: For low levels
of dropout, where network inference still worked robustly without imputation, only DrImpute and
DCA yielded a log2-FC comparable to the unimputed data. All other tools performed considerably
worse. At intermediate levels of dropout (55-66%), where network inference without imputation
was increasingly affected but still feasible, DrImpute and DCA strongly improved log2-FC. SAVER,
ENHANCE and DISC resulted in similar log2-FC distributions as the unimputed data, while both
variants of scNPF even diminished the network inference.

For the high dropout levels, none of the imputation tools enabled network inference with suffi-
cient log2-FC. While DCA and ENHANCE for 75% dropout and scNPF for 84% of dropout performed
substantially better than the unimputed data most of the network structure was still lost. An
overview of the module preservation values is presented in Supplemental Figure S5.

In summary, from a module preservation perspective, imputation using DrImpute and DCA fa-
cilitated network inference for datasets with low to intermediate levels of dropout, whereas several
other tools severely compromised the inference at those dropout levels. For high-level dropout
datasets, however, no imputation tool showed convincing and promising results.
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Figure 4: Network measures before and after imputation of reference datasets.

(A) Boxplot of the Zsummary 10g2 fold change (log2-FC) of all reference datasets compared to gold
data before and after imputation. Zsummary Was computed for gold data compared to itself and
for any reference data set, with and without imputation, compared to gold data, respectively.
Subsequently, a log2 fold change was computed between the gold versus gold and any reference
versus gold Zsymmary to illustrate how well gene modules from the gold data were preserved in the
dropped out and imputed data. The dashed line indicates completely recovered modules. Dots
represent values of individual gene modules. The dropout data is depicted in black.
Implementation tools that employ related methodological approaches were grouped by similar
colors. (B) Trends of Precision, Recall, and Matthews correlation coefficient (MCC) over all
dropout levels indicating the ability to recover true edges after binarizing the gold data network.
Mean and standard deviation (SD) of the topological overlap matrix (TOM) per dataset were
computed. Edges with a TOM greater 1 x SD + mean of the gold and all dropped out and
imputed datasets were retained. Retained edges of gold data were considered as true edges for

computing Precision, Recall, and MCC, respectively.
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Edge recovery. By calculating module preservation scores, we employed a similarity measure to
infer the impacts of imputation on network inference. By switching the perspective, we additionally
wanted to analyze the ability of imputation methods to recover gold data gene interactions.

Therefore, we transformed the network with continuous edge weights to an unweighted network
either stating that an edge is present or not. This transformation allowed the computation of
measures like precision, recall, and Matthews correlation coefficient (MCC) to quantify the potential
to recover true edges. To account for different data distributions and ranges, the binarization
threshold was derived individually per dataset. The thresholds were calculated based on the mean
and standard deviation of the topological overlap matrix (TOM) with 1%.SD +mean, meaning that
only weights above this threshold were accounted as existing edges (see Figure 4B). Results using
2% SD + mean are depicted in Supplemental Figure S2. Initially, we evaluated the precision, which
calculates the fraction of true edges over all detected edges, see Figure 4B. The higher the precision,
the less false edges were detected. Before imputation, the dropped out reference datasets revealed
moderate precision in the 40% and 46% dropout datasets. With increasing dropout, precision
dropped towards zero. Imputation of low sparsity datasets (40-55% dropout) did not improve the
precision. Whereby some tools such as DCA, DrImpute, and ENHANCE reached precision values half
as high as the dropped out data, SAVER, and DISC revealed values close to zero. We could not
calculate precision values for both scNPF approaches. Based on a high mean and a high standard
deviation in the TOM values, we did not retain any edge. As soon as the dropout level exceeded
55 %, DCA retrieved a higher precision than the unimputed data with a peak of performance at the
66% dropout dataset. For both high dropout datasets, all approaches showed low precision values.
These results suggest, that independent of the method used, imputation methods applied to high
dropout datasets tend to inflict the correlation network with large amounts of false edges.

The recall measures the fraction of true edges in the gold network that were actually classified as
edges in the dropout or imputed datasets. Similiar to the precision, the dropout datasets revealed a
stepwise decrease in recall with increasing dropout level. Overall, this trend also persisted after data
imputation. However, DCA showed increasing recall rates until a dropout level of 55% is reached.
DCA, ENHANCE, and DrImpute consistently outperformed the unimputed datasets. DISC showed a
steady increase in recall starting from dropout levels of 55%, resulting in the highest recall value at
84%. Both scNPF resulted in recall rates of zero - based on the fact that no edge was detected in
those datasets.

Similar to scalefree biological networks with only a few highly connectes edges, the datast was
highly unbalanced towards true negativ edges. The MCC represents a more robust evaluation of the
classification for such inbalanced datasets since it makes use of all entries in the confusion matrix.
Perfectly predicted values reflect an MCC of one, whereby a random assignment would result in
values close to zero. Predictions opposite to the true values have negative values ranging up to
minus one. Here, we observed trends similar to precision. While the dropout datasets exhibited the
highest MCC values at 40 and 46% dropout, DCA and later ENHANCE outperformed the unimputed
data exceeding 46% dropout. For the highest dropout dataset, neither the sparse nor any imputation
tool reached good MCC values. Both scNPF approaches and SAVER consistently showed values close
to or below zero.

Gaining a broader picture of the effect of imputation prior to network inference, the edge recovery
analysis revealed that good recall values in data imputation are mainly caused by inflating the
data with more correlation, i.e. artificial edges, compared to the Gold data as highlighted by the
moderate precision values (Supplementary Figure S6). However, as already indicated by the module
preservation analysis, overall good edge recovery values were obtained for the unimputed data with
low dropout levels. DCA revealed a moderate performance on datasets affected with intermediate
levels of dropout.
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2.3 Cell cluster annotation in human retina organoid data

Apart from gene network inference, we also investigated cell correlation before and after imputation,
which are essential to annoate cell types prior to identifying cell-type-specific network properties.
Therefore we used a human retina organoid dataset that was published by Kim et. al [19]. This
dataset is afflicted by dropout (total percentage of zeros: 85%) and will be denoted hereafter as
sparse dataset. In their study, Kim et. al clustered the cells and annotated them as either rods,
cones, or Miiller Glia (MG) cells based on (well-established) marker genes extracted from their
low-dimensional t- distributed stochastic neighbor embedding (t-SNE). Starting from this sparse
dataset we investigated the impact of the previously introduced imputation methods with respect
to cell clustering and a subsequent marker gene-based annotation of cell types.

The Louvain cluster detection within the t-SNE of the original sparse dataset revealed eight
cell clusters, see Figure 5(a). Most imputation tools produced comparable quantities of eight to
eleven cluster, Figure 5(b-f). Solely the imputation by ENHANCE resulted in a total of twenty-one
clusters being detected (Figure 5(g)). Cluster sizes were comparable between the sparse data and
most imputation methods. The largest Louvain cluster contained around 300 cells in the original
organoid data, as well as for both scNPF variants, DCA, and SAVER. Markably smaller sizes were
obtained after ENHANCE and DrImpute imputation with 128 and 195, respectively. The smallest
Louvain cluster counted between 39 to 46 cells, which was found in the sparse dataset and after
both scNPF, SAVER and DrImpute. Deviations were detected after ENHANCE and DCA imputation
with 19 and 62, respectively.

By mere visual inspection of the cluster density for the sparse data, both scNPF alternatives,
and SAVER showed clusters with interwining boundaries. Imputation by means of DrImpute and
DCA resulted in slightly more dense clusters while ENHANCE led to a completely different cluster
layout with much more fine grained clusters. To back these findings up with a statistical measure,
we calculated the mean silhuette coeffiecient (MSC) that allows to quantify the density of clusters.
Clusters revealing an MSC of close to one reflect well separated, dense cell clusters, whereas values
close to zero hint towards overlapping clusters. Negative values (lowest:-1) indicate that a cell was
most likely missclassified. Before and after imputation overall MSC values were found to be close
to zero. Slightly positive values were obtained by DCA and ENHANCE. The weakest performance
was found for DrImpute. These results support the visual observation of overlapping and not
well separated clusters. Thus, data imputation did not improve the cluster density substantially
compared to the sparse data.

Based on their original clustering, Kim et al., derived unique marker genes for the retina-specific
cell types rods, cones, and MG cells. In the following, the reproducibity and consistency of these
marker genes before and after imputation was investigated by comparing quantities of annotated
cell types. We set up an automated cluster annotation pipeline based on the expression pattern of
these marker gene lists. All dotplots, showing the expression pattern of these marker genes before
and after imputation are provided in Supplemental Figure S1. Briefly, a cluster was annotated as
rods, cones, or MG cells when more than 75% of the cells in this cluster expressed the respective
marker genes. A summary of this analysis is depicted in Figure 6 (bottom). Comparing the amounts
of annotated retina-specific cell types before and after imputation, overall similar quantities of rods
were detected. More diverging results were found for MG cells. The biggest difference was observed
for cones after ENHANCE imputation.

To compare the results on a cluster level we defined three additional classes: (a) pure clusters
represent the percentage of clusters where all cells have the exact same annotation, (b) mized
annotation summarize clusters with at least two different annotations, while (c¢) not assignable
contain cluster where no unique annotation was possible. Whereby the amount of class (c) was

10


https://doi.org/10.1101/2021.04.02.438193
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.02.438193; this version posted April 2, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

quite different between all imputed and the unimputed data, ENHANCE resulted in the lowest and
scNPF String in the highest pecentages. ENHANCE was the only tool that led to cells with mixed
annotations (3.5% of cells) (Figure 6C, Supplemental Table S1).

Summarizing the above described results, cluster quantities, clustering performance as well as
cluster annotatability behaved comparably before and after imputation. Again, DCA improved the
results marginally regarding cluster density and the amount of annotated retina cell types. ENHANCE,
on the other hand, produced a slightly different ratio in cones towards rods and MG cells.

louvain louvain louvain louvain

X X "’*,:‘; .0

L o1 & \\:{: S| e

: i |02 ML N e 1 .2
3 T &

E E P E o3 E e X .3
. o8¢
9 a .6 2 Iy N Wi e ' o4
7 s . B 5
.8 6 1. 6
9 7 ol A 31 7
N 10 °
tSNEL tSNEL tSNEL
(a) sparse (b) Drimpute (d) DCA
louvain louvain louvain
. e 0 o1l
o el 12
. ) 2 13
¥ . , # - 3 14
P

. N .4 15
S L TN P
ngt oy BT\
&7 P 4 9 20
- tSNE1 tSNE1 tSNE1

(e) scNPF (f) scNPF String (g) ENHANCE

tSNE2
tSNE2
tSNE2

Figure 5: Louvain clusters detected in human retina organoid data before and after imputation.
The sparse and imputed datasets were subjected to a standard preprocessing procedure in scanpy
and projected into a low dimensional t-SNE. The embeddings were colored according to the
Louvain cluster detection. Colors are specific for the individual plot and do not correspond
between data sets. Eight to eleven Louvain clusters were generally detected. Solely ENHANCE
imputation resulted in twenty-one clusters. In most cases, cell clusters were found to be
overlapping on the cluster boundaries. Visually more separated clusters were obtained after DCA

and DrImpute.
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Figure 6: Effect of imputation on cell cluster annotation in human retina organoid data.

(top left) The barplot shows the number of Louvain clusters for sparse and imputed data,
obtained as described for Figure 5. (top right) The barplot shows the mean silhouette coefficient
indicating the overall cluster density. (bottom) Result of the automated cell cluster annotation
procedure based on the expression of known marker genes. Expression values per gene and cluster
were scaled between zero and one, and binarized (threshold: 0.5) . When 75% of the marker genes
representing a certain cell type were expressed in a cluster, this cluster was annotated to the
respective cell type. The barplot visualizes the percentage of cells annotated as rods, cones, or
Miiller Glia (MG) cells as well as the percentage of clusters with a mixed, or without a cell
type-specific annotation.
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3 Discussion

Single-cell omics approaches may provide a unique opportunity to gain unprecendented insights
into cell type-specific regulatory programs via the inference of cell-type specific networks and the
comparative analysis of these networks between cell types or states. This manuscript investigates
to what extent the sparsity or drop-out observed in scRNA-seq data interferes with correlation
network inference and the identifcation of cell types using marker genes and whether imputation
approaches improve these tasks.

3.1 Correlation structure from bulk sequencing data can be used to study the
effect of dropout on gene networks in single-cell transcriptomics data

Inferring the effect of dropout on network inference in single cell data requires reference datasets
with defined levels of dropout. Since all experimentally generated datasets are afflicted with certain
degrees of dropout, this goal can only be achieved with a synthetic dataset. Though several single-
cell data simulation tools were available at the beginning of the study, none of those were specifically
designed to deliver data with a proper gene correlation structure, which is a trivial requirement of
correlation network inference. We therefore applied a downsampling approach to a bulk RNA-
seq data set [27] to generate a non-sparse single-cell like gold dataset. We were able to show
that this synthetic data has suitable gene-gene correlation properties that enabled the inference of
networks of approximately scale-free topology. Since this dataset contains per definition only true
zeros we were able to subsequently produce datasets of defined degree of dropout. These reference
data sets enabled a thorough investigation of the impact of data dropout on uncovering network
information measured as the module preservation compared to the gold network. Although this
Zsummary Statistic is dependent on module size, i.e., that smaller modules will decrease faster, we
still observed a negative correlation between dropout and module preservation. A similar trend
was stated by Zhang et. al, where the sum of squared errors increased while Pearson’s correlation
coefficient decreases with higher ratios of dropout [40].

We could, however, demonstrate that retrieving reliable and meaningful biological gene networks
from low dropout scRNA-seq data is still maintainable (up to 55% dropout). Datasets with dropout
levels beyond 75% or even 84%, which resemble, e.g., typical up-to-date 10X Genomics data output,
are fairly inappropriate for network inference analysis. An option to overcome this situation could
be to manipulate the data prior to the network inference, for example through data imputation.
This might help to potentially lift the aforementioned restrictions to finally take advantage of the
higher resolution of the source data.

3.2 Current imputation methods do not improve network inference from high
dropout datasets

Diving deeper into the potentials of imputation approaches, we utilized seven different methods to
preprocess our six dropout datasets. By calculating the log2-FC of the Zsummary values compared
to the gold data, we were able to investigate the question if those methods allowed to regain at least
parts of the burried gene correlation structure, and hence enabled the usage of scRNA-seq data for
(sub)network inference.

In general, we observed that the impact of imputation was highly dependent on the applied
method and even more so on the dropout level of the source datasets. In addition, our results
suggets that most algorithms alter the complete gene correlation structure instead of restoring
previously hidden information (see Supplementary Figure S6).

13


https://doi.org/10.1101/2021.04.02.438193
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.02.438193; this version posted April 2, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Most imputation tools did not improve module preservation especially for low dropout levels (up
to 46%) with the exceptions DCA and DrImpute which achieved comparable results. However, for
such low dropout levels even DCA and DrImpute fell short of unimputed data in terms of precision of
edge recovery suggesting that low dropout datasets barely benefit from imputation. Platforms such
as Smart-seq2 are only moderately afflicted by dropout [41]. Hence we would suggest to stick to
the original data instead of applying data imputation for such low-dropout data. For intermediate
levels of dropout (up to 66%), imputed datasets revealed better module preservation compared
to the sparse data. While still DCA and DrImpute appear to preserve modules best, the highest
precision and recall rates of DCA compared to all competitors highlighted that DCA might be the
most suitable option to recover hidden gene correlations in moderately sparse datasets. Beyond 75%
of dropout none of the imputation tools was able to approximately restore the true gene correlation
structure.

Taking into consideration the results of module preservation and edge recovery, we thus propose
to infer networks directly from low dropout single-cell transcriptomics data and use DCA-imputed
data for intermediate levels of dropout. Although Andrews and Hemberg declare SAVER as the
’safest’ option for data imputation [3], we cannot support this statement based on our findings. In
case of high dropout levels, the value and benefit of network inference should be scrutinized in the
current situation.

3.3 Marker gene expression is not affected by imputation

Next to reliable network inference, identification of specific cellular populations via cell clustering
and annotation of clusters is the other important requirement for studying cell type specific net-
works. One frequently employed approach for cluster annotation is relying on unique expression
patterns of known marker genes. After finding that imputation methods tend to induce false pos-
itive signals into (high dropout) gene-gene correlation data, we additionally investigated the effect
on correlation between cells. Intrinsically, the unique expression profile should prevent marker genes
from being too prone to dropout, which makes an imputation not necessarily required prior to cell
type annotation. However, in case imputation tools have been applied, it is of major importance
that the imputation methods have no negative effect on the overall expression profiles of marker
genes. Andrews and Hemberg already pointed out that the reproducibility of marker genes tends
to be reduced upon data imputation [3] when extracting and comparing marker genes before and
after imputation. Here, we aimed at investigating the impact of imputation on known marker genes
more closely employing an experimentally generated dataset.

We obtained clusters without clear distinctions between one another both for sparse data as well
as most imputation tools, with the exception of minor improvements for DCA. These findings suggest
that imputation did not strongly improve cell type separation in low dimensional space. This is in
contrast to previous findings by Eraslan et al [10], who, however, used a synthetic dataset with
lower levels of dropout, which may explain the discrepancy.

Based on the tSNE and Louvain cluster detection, we created an automated annotation pipeline
to compare quantities of annotated retina-specific cell types before and after imputation. Allover,
annotation of pure retina clusters was only marginally improved using DCA or ENHANCE. All remaining
tools resulted in less retina specific cell types compared to the unimputed data, raising concerns
about their applicability and usefulness in this respect. Looking at this analysis part alone, the
results suggest that DCA as well as ENHANCE allow to annotate marginally more retina cells and can
thus improve, for example, cell type quantification.

In general, we could show that the applied imputation tools maintain usability of marker genes
leading to comparable quantities of annotated cell clusters. Based on this analysis, again DCA was
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able to slightly optimize both, cell clustering and annotatability compared to the sparse situation.
Here, no tool led to an eradication of the marker gene profiles, but they have not been found to add
certain definiteness to the problem.

4 Conclusion

In this manuscript we investigated the influence of scRNA-seq data imputation on gene correlation
network inference and annotation of cell clusters. Based on our findings on the preservation of
network features in synthetic datasets we recommend to use unimputed data for low levels of dropout
and DCA-imputed data for datasets with intermediate levels of dropout. None of the investigated
imputation approaches allowed to reliably reconstruct correlation networks for high levels of dropout.
Cell cluster annotation was neither pronouncedly hampered nor facilitated by imputation. Solely
DCA slighty improved the clustering of cells. We thus showed that the identification of cell-type
specific network properties from scRNA-seq data seems technically feasibly, if dropout is sufficiently
well controlled. It remains to be shown that this enables the generation of novel biological insights.

5 Methods

In this paper, we investigated the influence of imputation methods with respect to network inference
on single-cell RNA-seq data. A visual summary of our analysis workflow is depicted in Figure 7.

The code for data generation, data analysis, and visualization, is publicly accessible on our
Github page?.

5.1 Generation of synthetic reference datasets

To evaluate the ability of reconstructing gene regulatory networks from single-cell RN A-seq data we
firstly needed to generate a dropout-free, gold dataset that had to contain an appropriate correlation
structure. As shown by Peng et al. [27], the existing correlation structure from a bulk RNA-seq
datasets can be used to create single-cell-like data. The bulk dataset of mice hair follicles was taken
from Wang et al. [33]2 and contained 48795 genes across 48 conditions. Single-cell data generation
was done in accordance to the workflow by Peng et al. [27] and is available on their Github page.
Briefly, eight conditions and 5000 genes were randomly selected during the downsampling procedure.
Each of these conditions was used to simulate a certain cell type. After replicating each cell type
100 times, we generated a 800 cell data set. To resemble the single-cell-like gold data, we used (five
times) the standard deviation of each gene in each condition to introduce noise via a random normal
distribution with mean zero and one hundred observations. A dropout rate was modelled via the A
parameter (range from 0 to 1). The higher the A, the smaller the resulting sparsity. This dropout
rate followed an exponential function e~**mean expression® 715 values representing the explicitly
dropped out gene expressions, were in the end introduced via a Bernoulli distribution defined by
the dropout rate. In total, six different A\ values were used with 0.01 ,0.09, 0.21, 0.42, 0.7, and 0.99
to generate six different sparse datasets ranging from 84 % to 40% dropout, respectively.
All data sets were filtered for genes and samples with missing values using the WGCNA GoodSamplesGenes

function and transformed to count values.

2https://github.com/yigbt/scImpNetworks
3https://github.com/software-github/scrabble_paper
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Figure 7: Workflow to investigate the impact of imputation of GRN in single-cell transcriptomic
data
By downsampling a bulk RNA seq dataset, a dropout-free, single-cell like, gold dataset was
generated. Introducing increasing level of dropout, six artifically sparse datasets were generated
which severed as the input for six imputation tools. The ability to preserve correlated gene groups
from the gold data was inferred using the quantitativ measure of module preservation from the
WGCNA package which relies on various network density and connectivity metrics. Apart from the
obtained scores, gene modules can be classified as beeing strongly, moderately or not preserved
compared to the gold data. In a second step, the ability to recover true edges was evaluated by
binarizing the weighted networks. The applied tresholds were determined statistically per dataset
individually. Edge recovery was quantified via precision, recall and Matthews correlation
coefficient.
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5.2 Imputation methods

This paper aims to investigate the influence of imputation with respect to network inference. To
perform a systematic evaluation, we utilized well-established and highly representative tools in ac-
cordance to the four classes defined by Léhnemann et al. [20]: (1) deep-learning based - DCA(scanpy
version 1.3.1) , (2) smoothing-based - DrImpute(version 1.0), (3) model-based - SAVER(version 1.1.2),
and (4) low-rank matrix based - ENHANCE*. We furthermore created an additonal class (5) of tools
which utilize gene networks - scNPF(version 0.1.0). In addition to those tools, we also included
DISC(version 1.1.2), which was very recently published. It also implements a deep-learning ap-
proach but performs imputation in a semi-supervised manner. An overview of these tools is given
in Table 1.

All imputation tools were run according to their recommended settings which are described in
R-markdown files. Solely ENHANCE was applied with a fixed knn-parameter of eight for the synthetic
dataset. Our reference datasets were provided to these approaches as described in their respective
publications. The scNPF tool made use of a gene correlation network to guide the imputation
process. In its implementation, two different types of networks can be imported which are either
derived from the sparse data or extracted from a reference database. Here, we used WGCNA(version
1.69) for both scenarios: a network based on the sparse datasets to reflect the first case and a
network of the gold data to resemble the latter case. In either way, topological overlap measure
(TOM) matrices were used as scNPF input. DISC required the input data in a LoomPy® format which
was accomplished in accordance to the tutorial®

Table 1: Overview of published imputation approaches use.

Imputation Class Data input Output Code

Drimpute[ll]  (2) Logl0(X+1) data Logged data R
SAVER[15] (3) Count data Count data R
DCA [10] (1) Count data Count data python

ENHANCE[32] (4) Count data Both possible (Logged used) R
ScNPF[37] (5)  Count data + TOM data Count data R
DISC[12] (1) Count data Count data python

5.3 Network Analysis using WGNCA

After defining the reference datasets as well as the included imputation approaches, the effect on
the gene networks must be determined. Thus, gene correlation networks were detected using the
Weighted Gene Network Correlation Analysis (WGCNA) R-package [21] (version 1.69). The general
steps were performed according to the tutorial stated on the website .

Detection of gene clusters. Gene module detection was only performed on the gold dataset
which does not contain artificial dropout. After removing genes and cells containing zero values
by means of the GoodSamplesGenes function, the scale-free model fit was calculated. Here, we

“https://github.com/yanailab/enhance-R

http://loompy.org/

Shttps://nbviewer. jupyter.org/github/iyhaoo/DISC/blob/master/reproducibility/Data\%20Preparation\
%2C\%20Imputation\’%20and\%20Computational\}20Resource\%20Evaluation/Data\}20Pre-processing/
MELANOMA . ipynb

"https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
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achieved a scale-freeness by using a § of nine. For subsequent module detection a minimal cluster
size of twenty was used while the remaining parameters were left with their default values. The
vector including the gene module assignment together with the expression data was used for the
calculation of module preservation.

Investigate Module preservation statistics. The module preservation was calculated using
the provided modulePreservation function. Here, a pairwise comparison in module preservation
between the gold data and the test datasets (either dropout or imputed data) was calculated. To
reduce random reduction of modules, the maximal module size was set to the number of genes
included in the dataset. The number of permutations was set to 100, the dataIsExpr parameter
was left on default, and all other arguments were chosen according to the tutorial. In order to
make the results more tangible, log2 fold changes (log2-FC) of the module-specific Zsymmary scores
were calculated between the gold and the test datasets. Gold data Zgymmary values were obtained
by calculating the module preservation against itself. A negative value indicates a lower Zsummary
value in the test than in the gold dataset. A value of zero corresponds to equal values.

5.4 Evaluation of edge detection

Next to module preservation other measures were included to assess whether true gene correlation
can be inferred after imputation. We therefore needed to transform the weighted WGCNA network to
a unweighted, binarized network.

Binarization of weighted gene networks. Gene modules were detected in WGCNA using the
topological overlap matrix (TOM) measure, which does not only account for co-expression similarity,
but also for network topology information [21]. By setting certain thresholds to the TOM values,
we could binarize the presence of an edge. Since the distribution of TOM values were different
before and after imputation, we decided to use a distribution-depended threshold by using the
following formular: e *SD + mean;e = {1,2}. To avoid bias in the model evaluation measures, the
self-correlated gene diagonal was removed from the subsequent analysis.

Measuring edge recovery. We used the gold network as true reference and the imputed net-
works as predictions. Three different measures were applied to analyse the problem from different
perspectives. On the one hand, precision and recall were used to approximate the recovery of true
gene-correlations. On the other hand, Matthew’s correlation coefficient (MCC) was applied to infer
the performance of the whole edge classification task. The MCC is particularly useful since these
datasets are heavily unbalanced towards true negative entries (non-correlated genes). The measures
are defined as follows:

Precision:
_rr (1)
TP+ FP

Recall: TP
_— 2
TP+ FN (2)

Matthews Correlation Coefficient:

TPxTN —FPxFN
V(TP +FP)TP+ FN)(TN + FP)(TN + FN)

18


https://doi.org/10.1101/2021.04.02.438193
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.02.438193; this version posted April 2, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

5.5 Retina Organoid Dataset

A biological dataset was utilized to evaluate the impact of imputation approaches on the expression
profiles of marker genes.

Data preparation. We used the human retina organoid dataset from Kim et. al (GEO:GSE119343) [19].
In their original study, retina organoids were clustered and annotated according to the major cell
types in the retina: rods, cones, and Miiller Glia cells. Specific marker genes were extracted to de-
scribe each retinal cell type. This dataset contained 19426 genes across 1346 cells and included 85%
zeros. Prior to the imputation, genes which were not expressed in at least two cells were removed
using the preprocessSC function from the DrImpute package [11]. Data input was performed as
depicted in Table 1

Data imputation. DrImpute, SAVER, DCA, scNPF, DISC, and ENHANCE were applied on the retina
dataset. However, DISC failed to operate on this large dataset and was therefore not included in
this analysis part. All imputation tools were applied using their default parameters as indicated in
the corresponding script. Again, scNPF was applied using both settings, (1) by extracting a network
from the sparse data using WGCNA and (2) by incorporating a reference network from the STRING
database which was implemented in the tool.

Data processing and visualization. In the original publication, the single-cell data was pro-
cessed with the Seurat(version 2.3.4) workflow. In this publication we utilized the scanpy pipeline
(version 1.6.0)[34] since it proved to be more robust, and adjustable for the needs of this analysis
than Seurat. Both workflows revealed comparable results, which can be seen in Supplementary
Figure S3.

Briefly, sparse and imputated data were filtered for low quality cells and genes upon the initial
data import into scanpy. As described in the original publication, cells with less than 600 genes and
genes which do not occur in at least 5% cells were discarded. Here, 5% account for 67 cells. This
parameter was changed for ENHANCE imputed data, where genes without any count were removed.
Otherwise the subsequent downstream tasks would not have been conductable after imputation.

In a following step, cells expressing an aberrantly high number of genes will be detected and
removed. Since some imputation tools introduced a uniform number of expressed genes acrosss cells
and to ensure comparability across imputation approaches, this threshold was set individually per
dataset to avoid excessive filtering. The individual thresholds are given in Table 2.

Using the data normalization procedure described in the tutorial, followed by a log10(x+1) trans-
formation, highly variable genes were detected and kept using default parameters. Subsequently,
unwanted variation from the total gene counts was regressed out and data was scaled according to
parameters given in the paper.

We then applied a dimensionally reduction using principal component analysis (PCA) prior to
the t-SNE. The neighbor graph was calculated using ten neighbors and 40 principal components.
Cluster detection was done via the Louvain algorithm using standard parameters.

Clustering performance evaluation. To infer performance of the Louvain clustering before and
after the imputation, the mean silhouette coefficient from the sk.learn package (version 0.23.2)
was used [26]. This score helps to infer clustering performance by investigating the tightness and
separation of each cluster [29]. Therein, we utilized the expression data and the Louvain cluster
assignment as input. As a metric we used the euclidean distance measure.
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Table 2: Overview of filtering thresholds used for data preprocessing. The table shows the individual
gene number upon which cells were discarded in case they exceed this cutoff of expressed genes.

Imputation Number of genes
Sparse 4000
DrImpute 7900
SAVER 13369
DCA 14845
ENHANCE 14000
ScNPF 13369
scNPF String-reference 13369

Automatic cell cluster Annotation. Based on marker genes expression, cell clusters could
be annotated to their corresponding cell type. To infer whether this was still possible after the
imputation, an automatated cluster annotation pipeline was implemented.

Using the originally published marker genes for cones, rods, and Miiller Glia cells [19], the mean
expression per gene and Louvain cluster was calculated. To allow for a fair comparison, the data
was scaled per Louvain cluster with a min-max-normalization. In a next step, the scaled data was
binarized using a threshold of 0.5. A Louvain cluster was then annotated if more than 75% of the
marker genes were expressed above this threshold. Three classes of annotation results were inferred
such as pure, mixed and unassigned clusters. Pure clusters showed an assignment for exactly one cell
type and mixed clusters exhibited at least a double assignment. The third class included Louvain
clusters with no successful annotation. Their relative numbers were compared across imputation
tools.
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