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14 Abstract

15 Models of cognitive function typically focus on the cerebral cortex and hence overlook
16  functional links to subcortical structures. This view neglects the highly-conserved ascending
17  arousal system's role and the computational capacities it provides the brain. In this study, we
18  test the hypothesis that the ascending arousal system modulates cortical neural gain to alter
19  the low-dimensional energy landscape of cortical dynamics. Our analyses of spontancous
20  functional magnetic resonance imaging data and phasic bursts in both locus coeruleus and
21  basal forcbrain demonstrate precise time-locked relationships between bramnstem activity,
22  low-dimensional energy landscapes, network topology, and spatiotemporal travelling waves.
23  We extend our analysis to a cohort of experienced meditators and demonstrate locus
24 coeruleus-mediated network dynamics were associated with internal shifts i conscious
25  awareness. Together, these results present a novel view of brain organization that highlights
26  the ascending arousal system's role in shaping both the dynamics of the cerebral cortex and

27  conscious awareness.
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29  Main Text

30  Itis often difficult to see the forest for the trees, but to fully understand a concept typically
31 involves an accurate depiction of both. That is, we need to comprehend not only the detailed
32  workings of a specific system, but also how that system functions within a broader context
33  of interacting parts. Modern theories of whole-brain function exemplify this challenge. For
34  instance, activity in the brain has been shown to incorporate signatures of both local
35 computational specificity (e.g., specialized regions within the cercbral cortex) as well as
36  system-wide integration (e.g., the interactions between the cortex and the rest of the brain)*.
37  Anatomical cvidence suggests that the balance between integration and segregation is
38  mediated in part by the relatively fixed white matter connections between cerebral cortical
39  regions' — local connectivity motifs support segregated activity, whereas the axonal, re-
40  entrant connections between regions act to integrate the distributed signals via a highly
41  interconnected structural backbone’. However, how the human brain is also capable of

42  remarkable contextual flexibility given this relatively fixed connectivity remains pootly

43  understood.

45  During cognitive tasks, neural activity rapidly reconfigures the functional large-scale network
46  architecture of the brain to facilitate coordination between otherwise segregated cortical
47 regions. Precisely how this flexibility 1s implemented in the brain without altering structural
48  connectivity remains an open question in systems neuroscience. Although it 1s often
49  overlooked in theories of whole brain function, the neuromodulatory ascending arousal
50 system is well-placed to mediate this role®. The arousal system is comprised of a range of
51  nuclet spread across the brainstem and forebrain that send wide-reaching axons to the rest of
52  the central nervous Systerns. At their target sites, arousal neurons release neuromodulatory
53  necurotransmitters that shape and constrain a region’s processing mode — altering their
54 excitability and responsivity without necessarily causing them to fire an action potential*’. As
55 a result, subtle changes in the concentration of neuromodulatory chemicals can cause
56  masstve alterations 1 the dynamics of the target regions, leading to nonlinear effects on the
57  coordinated patterns of activity that emerge from ‘simple’ neuronal circuits”.

58

59  The ascending arousal system also contains substantial heterogeneity — unique cell

60 populations project in diverse ways to the cerebral cortex and release distinct
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61 neurotransmitters. One key dichotomy 1is the distinction between —adrenergic
62 neuromodulation (predominantly via the locus coeruleus [LC]), which promotes arousal and
63  exploratory behaviour’, and cholinergic neuromodulation (such as via the basal nucleus of
64  Meynert [BNM]), which is associated with attentional focus and vigilance®. These highly
65 interconnected’ structures both promote wakefulness and arousal'™", albeit via distinct
66 topological projections to the cerebral cortex: the LC projects in a diffuse manner that
67  crosses typical specialist boundaries, whereas the BNM projects in a more targeted, region-
68  specific manner” (Fig. 1A). The two systems have also been linked with distinct and
69  complimentary computational principles: the noradrenergic LC is presumed to modulate
70  interactions between neurons (response gain)”, whereas the cholinergic BNM is presumed to

71  facilitate divisive normalization (multiplicative gain)'*.

Based on these anatomical and
72 computational features, we have hypothesized that the interaction between these two
73 neuromodulatory systems is crucial for mediating the dynamic, flexible balance between
74 integration and segregation in the brain®.

75

76  Another crucial feature of the ascending arousal system is that the number of neurons that
77  project to the cerebral cortex is several orders of magnitude smaller than those that project
78  back to the brainstem and forebrain'*"®. Based on this feature, we further hypothesize that
79  shifts in arousal are realized through a low-dimensional modulation of the ongoing neural
80  activity (‘brain state’)'’. Conceptually, low-dimensional neural dynamics can be depicted as
81  evolving on a brain state energy landscape'”, where the energy of a given state corresponds
82  to the occurrence probability, e.g. high energy brain states have a low occurrence probability
83  (and « 2). That 1s brain states evolve along the energy landscape topography, much like a ball
84  rolls under the influence of gravity down a valley and requires energy to traverse up a hill,
85  this corresponds to an evolution towards an attractive or repulsive brain state, respectively.
86  This technique can resolve what might otherwise be obscured states of attraction (and

87  repulsion) in a multi-stable system and has been successfully applied to the dynamics of

20,21
>

88  spiking neurons blood oxygenation level dependent (BOILD) functional magnetic

89  resonance imaging (fMRT)** and magnetoencephalography (MEG)*. The approach offers
90  scveral conceptual advances, but perhaps most importantly, it renders the otherwise
91  daunting task of systems-level interpretation relatively intuitive. Importantly, this framework

b

92 is not a mere analogyao as the topography of the energy landscape shares a 1-to-1
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93  correspondence with the generative equations required to synthesize realistic neural

94  timeseries data®. In this manuscript, we test these ideas by combining high-resolution resting

95  state fMRI data with analytic techniques from the study of complex systems.

96

97  Results

98 To begin with, we extracted time series data from major subcortical hubs within the

99  noradrenergic 1.C” (Fig. 1A, red) and cholinergic BNM* (Fig. 1A, green) systems from 59
100  healthy participants who had undergone high-resolution, 71 resting-state functional
101  magnetic resonance imaging (fMRI; 2 mm’ voxels; TR = 586 ms repetition time). Given the
102  known spatiotemporal mnteractions between the ascending arousal system and fluctuations in
103 cerebrospinal fluid, we first controlled for activity fluctuations in the nearby fourth ventricle,
104  which contains no neural structures, but nonetheless can cause alterations in the BOID
105  signal over time. We next accounted for nearby gray-matter signals, by regressing the signal
106  from the nearby pontine nuclet. Using the residuals from these regressions from the 1L.C
107  signal, 1,, and the BMN signal, 1., we focused on the difference between these signals
108 (1, pamand Ty o concatenated across subjects) and then identified time points associated
109  with phasic bursts of LC activity that led to sustained adrenergic (versus cholinergic)
110  influence over evolving brain state dynamics (and 2.2 for phasic bursts of BNM; see
111 Methods). Importantly, the phasic mode of firing within the noradrenergic arousal system
112 has been specifically linked to systemic influences that occur on time-scales relevant to
113  cognitive function®”. Tracking the mean cortical BOLD response around these peaks
114 identified a spatiotemporal travelling wave (Fig. 1B; velocity = 0.13ms™) that propagated
115  from frontal to sensory cortices and tracked closely with the known path of the dorsal
116  noradrenergic bundle’, albeit with a preserved ‘island’ within the parietal operculum (Fig.
117  1B). A block-resampling null model was applied to ensure that the results were not due to
118  spatial-autocorrelation (p < 0.05; see Methods). These results can be inverted for BNM
119  activity (relative to LC) as Tgym—rc = —Trc—pnm- Furthermore, these results confirm that
120  coordinated macroscale activity patterns align to fluctuations in activity within the ascending

121  arousal system of the brainstem™.
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124  Figure 1. Sympathetic activity precedes network-level integration. A) regional time series were extracted
125 from the locus coeruleus (red), which 1s thought to alter response gain, and the basal nucleus of Meynert
126 (green), which 1s thought to alter mulaplicative gain, and compared to BOLD signal and topological signatures
127  during the resting state; B) we observed a anterior-to-posterior traveling wave (velocity ~ 0.13ms™) following

128  peaks in Ty - g Which are shown on both the left (LH) and right (RH) hemispheres of a cortical flat map; C)

129  the lagged cross-correlation between and PC — dotted line depicts the zero-lag correlation, and the

130  black lines depict the upper (lower) bounds of a block-resampled null model (95% CI); D) mean cortical

131  participation coefficient (PC) preceding (left) and following (right) the zero-lagged value, only the
132 tight hemisphere is shown (mirrored for Post’); F) the participation coefficient following peak was
133 higher in the right- (red) vs. the left- (blue) hemisphere (p < 0.001; green bar).

134

135  Time-varying network topology

136  Based on previous empirical”, modelling® and theoretical” work, we predicted that phasic
137  bursts in 7oy would facilitate network-level integration by modulating increased neural
138  gain among regions distributed across the cerebral cortex. As predicted, we observed a
139  strong positive correlation between 1, 5y, and network-level integration (p < 0.05, block-
140  resampling null model; Fig. 1C) across the brain (Fig. 1D). An increase in phasic activity
141  within the LC (relative to the BNM) preceded an increase in the mean level of integration
142  within the cerebral cortex that was dominated by the frontoparietal cortices (Fig. 1D;

143  parcellated according to the 17 resting-state networks identified in™). Interestingly, this
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144 global integration was opposed by a relative topological segregation of limbic, visual, and
145 motor cortices (Fig. S2). This mncrease in the synchronisation of the frontoparietal cortices
146  following an increase in sensory-limbic coordination and LC activity may reflect arousal-

147  enhanced processing of sensory stimuli’>”

. Furthermore, regional integration occurred
148  earlier in the right- vs. the left-hemisphere (p<0.001; Fig. 1E), which is consistent with the
149  known anatomical bias of the LC system™”. Together, these findings provide robust
150  evidence for the hypothesis that the balance between ascending noradrenergic and
151  cholinergic tone facilitates a transition towards topological integration across the
152  frontoparictal network of the brain®.

153

154  Neuromodulation of the Energy Landscape

155  The results of our mitial analysis demonstrate that coordinated distributed activity in the
156  cortex align with changes in small groups of neuromodulatory cells activity in the brainstem
157 and forebrain, which in turn are proposed to constrain brain dynamics onto a low-
158  dimensional energy landscape (Fig. 2A). The effects of noradrenaline and acetylcholine can
159  also be easily viewed through this lens: by integrating the brain, noradrenaline should flatten
160  the energy landscape (Fig. 2A, red) facilitating otherwise unlikely brain state transitions,
161  whereas in contrast, the segregative nature of cholinergic activity should act to deepen
162  energy valleys (Fig. 2A, green) decreasing the likelihood of a brain state transition. In
163  previous work, we have shown a correspondence between low-dimensional brain state
164  dynamics across multiple cognitive tasks and the heterogenous expression of metabotropic
165 neuromodulatory receptors'’. This implies that neuromodulators act similar to catalysts in
166  chemical reactions, which lower (or raise) the activation energy (I,) required to transform
167  chemicals from one steady state (or energy well) to another (Fig. 2B). In the context of the
168 interconnected, heterarchical networks that comprise the cerebral cortex, this would have
169  the effect of flattening (or deepening) the energy landscape, promoting variable (or rigid)
170  brain states™ (Fig. 2A).
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172  Figure 2 - LC and BNM mediated shifts in energy landscape brain state space dynamics. A) an energy
173  landscape, which defines the energy required to move between different brain states: by increasing response
174  gain, the T.C should flatten the energy landscape (red); by increasing multiplicative gain, the BNM should
175  deepen the energy wells (green); B) the topography of the energy landscape can be conceptualized as similar to
176  the activation energy (F.) that must be overcome in order to convert one chemical to another; C) Empirical
177  BOLD trajectory energy as a function of MSD and TR of the bascline activity (I, black) and after phasic
178  bursts in LC (Hic, red) and BNM (Egxu, green) — relative to the baseline energy landscape phasic bursts in LC
179  (Fic- Ea, red inset) lead to a flattening or reduction of the energy landscape, whereas peaks in BNM (Fapxo -

180 L, green inset) lead to a raising of the energy landscape. D) Empirical activation energy as a function of MSD

181 averaged over lags TR during base baseline activity (Fa, Left) and following phasic bursts in 1.C
182 (Frc, red) and BNM (Fan, green).
183
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184  To clucidate the role of phasic activity from the neuromodulatory system in modifying the
185  energy landscape, we first estimated the energy of BOLD signal transitions across the
186  cerebral cortex. Importantly, the term ‘energy’ here is used in reference to its definition in
187  statistical physics and hence does not represent the biological use of the term, which instead
188  stands for the energy used by the brain to maintain or change neural activity. Specifically, we
189  define the energy landscape, E, as the natural logarithm of the inverse probability of
190  observing a given BOLD MSD at a given time-lag t, P(MSD,t), calculated as E =

1 2 . .
191 In PSD.D’ where MSD, ;= <|xto+t - xt0| )r is the mean-squared displacement (MSD) of

192 BOLD signal, x, = [xl,t,let, ...,xr't] across T voxels and t 1s the number of time-lags of
193  size TR from a reference timepoint t, ». The probability of a BOLD signal transition,
194 P(MSD,t), was estimated from the sampled MSD;; , and we used a Gaussian kernel

1 wn MSD¢; 1 12
— Y K( ) where K(u) =——=c¢e 2 see
an i=1 4 > ( ) Zw/ﬁ (

196  Methods). Our analysis is consistent with the statistical mechanics interpretation that the

195  density estimation P(MSD,t) =

_Eg :
197  energy of a given state, E;, and its probability are related P, = %e T, where Z 1s the

198 normalisation function and T is a scaling factor equivalent to temperature in
199  thermodynamics, where we set T = 1 and Z = 1%. In this framework, a highly probable
200  relative change in BOLD (as quantified by the MSD) corresponds to a relatively low energy
201  transition (ic., low E ), whereas an infrequently visited state will require the most energy
202  (te., highE ).

203

204 By treating energy as inversely proportional to the probability of brain state occurrence, our
205  approach resembles other studies that have been applied to spiking dynamics of neuronal
206  populations, spiking neurons™?, BOLD fMRI?**, MEG™, and natural scene’’. However,
207  these studies binarized continuous signals to reduce the brain state space (to 2" states),
208  however this approach requires the fitting of a threshold, which can be problematic in
209  continuously recorded data. In contrast, our approach reduces the dimensionality by
210  analysing the likelthood of a change in BOLD activity (i.c., the MSD), and thus retains the
211  dimensionality of the underlying signal without the need for thresholding. This approach

212  overcomes a major limitation inherent to previous energy landscape studies that require a

213  large sample size to sufficiently sample the brain state space.
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214

215  With this in mind, we turned our attention to the relationship between the ascending arousal
216  system dynamics and the MSD energy landscape. To test the hypothesis that the
217  neuromodulatory system alters the topography of the energy landscape, we calculated BOLLD
218  MSD energetics following phasic bursts of both LC relative to BNM (T¢c—gym), Erc, and
219  BNM relative to LC (Tgym—1c)s Epnms 1€, tg was the onset of a phasic burst, and compared
220  these to sampled brain evolutions without large changes in LC and BNM arousal 1.e., t, was
221  all tmepoints outside of a phasic burst in I.C and BNM, analogous to the baseline energy
222  landscape E4. We identified phasic bursts as peaks in the second derivative of the arousal
223  BOLD signals Ty c_pyy and Tpyy—rc that lead to a sustained increase in BOLD activity for
224 each individual (see Methods) and using these criterta, we identified 148 1, 5y, time points
225  and 130 1, time points.

226

227  'The energy landscapes for these three states are defined by the energy for a given BOLD
228  MSD at a given TR delay. Figure 2C demonstrates the bascline energy landscape (Fig. 2C,
229  black), which corresponds to the reaction pathway in Fig. 2B, and the MSD energy
230 landscape following phasic bursts in the LC (Fig. 2C, red) and BNM (Fig. 2C, green). These
231  figures demonstrate an MSD energy landscape across displacement and time, wherein the
232 energy relates to the likelthood of seeing a given mean change in bold activity (i.e., MSD) at a
233  given temporal displacement (i.c., TR). For example, all the MSD energy landscapes have a
234 high energy peak for large MSD at a short timescale as it 1s extremely unlikely that the bold
235  activity would change significantly (quantified by a large MSD) in one TR (~0.5s), and
236  ncuromodulation increases the energy of such an initial change. The utility of the MSD
237  energy landscape can be seen when comparing large phasic bursts of LC and BNM relative
238  to bascline fluctuations. We found the largest change occurs around 10-15 TR (~6-9s)
239  following a phasic burst that typically corresponds to a peak in the I.C or BNM BOILD
240  signal. At this ~6-9s temporal delay we see direct evidence that a phasic burst of T1.C
241  flattened the energy landscape (decreased the energy relative to baseline Fig. 2C, red inset),
242 thus making previously unlikely large MSD trajectories far more probable (Fig. 2D red),
243  whereas a phasic burst of BNM activity (increased energy relative to baseline Fig. 2C, green
244 inset) caused the energy landscape to be clevated, thus promoting local trajectories, and

245  making large MSD deviations unlikely (Fig. 2D green). These patterns are analogous to

10
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246  modulating a physical landscape in which towns sit within valleys separated by impassable
247  mountains — when BNM is high, the towns remain isolated, whereas when LC is high, the
248  towns are separated by easily navigated rolling plains and transitions between towns (novel
249  combinations of consecuttve brain states) can be easily realised.

250

251  We next asked whether 1.C and BNM combined synergistically to alter the energy landscape.
252  To achieve this, we isolated simultancous phasic peaks in both 1.C and BNM (T,¢ypny). We
253  found that the LC + BNM energy landscape differed from either independent LC or BNM
254  activation, shifting the brain state into divergent regimes than could be explained by the
255  HRF. By comparing the MSD energy topography for a given TR slice we found that the
256  landscape switched from an anti- to de-correlation with the HRF. In other words, the
257  cooperative behaviour between the noradrenergic and cholinergic systems allowed the brain
258  to reach unique BOLD MSDs that neither could facilitate individually. To examine how
259  simultancous LC+BNM activity altered the energy landscape, we compared the energy
260  relative to the two individual landscapes. As demonstrated in Fig. S3, the energy landscape
261  following phasic bursts of LC+BNM differed in magnitude from that expected from a lincar
262  superposition of the LC and BNM energy landscape — 1.e.,, LC+BNM # (1L.C) + (BNM).
263  Furthermore, to explore the dominance of ecither LC or BNM 1n this signal, we minimised
264  the relationship I.LC+BNM = al.C + SBNM (conditional upon @ and f being positive
265  constants) and found that @ = 0.16 and f = 0.84 gave the best match to the I.C+BNM
266  energy landscape. That is, the BNM dynamics dominates the simultancous LC+BNM energy
267  landscape, which is consistent with the unidirectional synaptic projections from the LC that

268  synapse upon the BNM on their way through to the cortex'?, and suggests that phasic

269  I.C+BNM bursts may be initiated by the I.C in order to elicit a cascade of BNM activity.

270

271  Conscious awareness of shifts in BOLD state

272  Interpreting the relationship between neuroimaging data and conscious awareness 1s
273  notoriously challenging. For instance, it is currently not possible to directly determine the
274 contents of self-directed thought without intervening, and thus altering, the contents of
275  consciousness™. Although we can’t determine the contents of consciousness directly, we can

276  use task designs to modulate the state of consciousness. To this end, we leveraged data from

277  a group of 14 expert meditators who were asked to meditate during an fMRI scanning

11
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278  session”, and to press a button when they noticed that their focus had drifted from their

279  breath (Fig. 3A). At this point, there 18 a mismatch between expectation and conscious
280  awareness, which is an internal state that has been previously linked to the activation of the
281  noradrenergic system, both in theoretical*'and computational”® work. Based on these
282  studies, we predicted that the switch 1 internal conscious awareness would be facilitated by
283  increases in locus coeruleus-mediated integration and subsequent reconfiguration of low-
284  dimensional brain states. Analysing time-resolved network data with a finite impulse
285  response model, we observed a peak in locus coeruleus activity (Fig. 3B), TR-to-TR mean
286  squared displacement (Fig. 3C) and elevated network-level integration (Fig. 3D) surrounding
287  the change in conscious awareness (all ppppy, < 0.05; 95% CI of null distribution). These

288  results confirm that the locus coeruleus mediates energy landscape reconfigurations and that

289  these changes modulate internal states of conscious awareness.

A) / Distracted N
Awareness Attention
B) "

= . A R S
7
m 0
= ® oo ®
[ od 5 - (5} o)
o .
()]
a © (6}
. (&)
e 051 e T o
o ©
0,
D)
0.43
@
O 042 AL R -
A 0 @ o)
041 1T
Q@
0.4
-4s 0 +4s

290
291 Figure 3 — Awareness of intrinsic state changes. A) participants performing breath-awareness meditation
292 (Focus; blue) were tramed to respond with a Button Press (orange) when they became Aware (purple) that they

293  had become Distracted (ie., their attention had wandered from their breath) and to then re-focus their

12
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294 Attention (blue) on their breath; B) we observed a peak in Tjc_gyy (ie., L.C > BNM; red) ~4 seconds before
295  the button press, which then returned to low levels (ie., BNM > 1.C) in the 2-4 seconds following the button
296  press; C) the Mean Squared Displacement (MSD; dark orange) of TR-to-TR BOLD signal was increased above
297  null values around the peak in Tic_gym, as well as following the re-establishment of attentional focus (in
298  panels B & C, grey shading depicts 95% CT of block-resampled null distribution); D) we observed a peak in
299  mean participation coefficient (PC) ~4 seconds (2 TRs) prior to the Button Press during the task. All: grey
300  shading depicts 97.5% and 2.5% percentile of null distribution ie., outside grey shading indicates a value
301  different than null [p < 0.05]; and lower: red shading represents SEM error bars).

302

303  Discussion

304  Our results provide evidence for an arousal-mediated macroscopic network and energy
305 landscape reconfiguration which tracks with moment-to-moment alterations in conscious
306  awareness. By tracking fluctuations in BOLD signal within the noradrenergic LC and the
307  cholinergic BNM, we were able to demonstrate fundamental ways in which the low-
308  dimensional, dynamic, and topological signature of cortical dynamics was related to changes
309  within the ascending arousal system. Furthermore, we demonstrated a link between these
310  dynamic reconfigurations and alterations in conscious awareness in a cohort of experienced
311 meditators. In this way, our results provide a novel, systems-level perspective on the
312 distributed dynamics of the human brain.

313

314  There is growing evidence that distributed neural dynamics in the brain are well described by

315 relatively low-dimensional models”'**™*

, however the biological constraints that impose
316  these features on the brain remain poorly understood. Due to the low number of cells in the
317  arousal system and their broad projections to the rest of the brain, we theorized that
318 neuromodulatory regions are well-placed to shape and constrain the vast number of neurons
319 in the cerebral cortex into low-dimensional dynamic modes. Our results support this
320 prediction by showing that patterns of activity in key regions within the brainstem and
321  forcbrain relate to fundamental alterations in a dynamically evolving energy landscape. In
322  other words, neural state space trajectories are a powerful framework that extends beyond

323 that of mere analogy, and the ascending arousal system is well-placed to mediate

324  deformations in the energy landscape.

325
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326  Much in the same way that there are many different reference frames for navigation — e.g.,
327  egocentric (Le., straight, left, right directions), which is independent of the environment; and
328  allocentric (ie., following compass directions and visual cues), which is dependent on the
329  environment — we can interrogate energy landscapes using different vantage points on
330 BOLD dynamics. Our displacement framework is consistent with an egocentric (or “first-
331  person’) frame of reference, wherein MSD 1s used to track BOLD trajectories from an initial
332  state which maps out the topology of the energy landscape (1., a BOLD MSD mmplics a
333 BOLD trajectory). Nonetheless, the method does not distinguish between two different
334  ncural trajectories that possess the same MSD. In comparison, other methods have evaluated
335 the energy landscape for a given pre-defined state estimated from thresholded BOLD

336  timeseries™?

a framework consistent with an allocentric (or ‘third-person’) reference frame.
337  This framework has the advantage of calculating energy for a given state, however, it also
338  requires substantial exploration of the state-space — which 1s typically unfeasible — or the
339  nced to resort to severe coarse-graining (such as the binarization of BOLD activity) which
340  further diminishes interpretability. Furthermore, the allocentric view does not provide
341 insights into the transitions between cach energy state, whereas this information is inherent
342  to the egocentric reference. Along these lines, we found that the egocentric reference frame
343 clearly demonstrated the flattening and deepening of the energy landscape, providing indirect
344  evidence that the ascending arousal system 1s well set-up to control brain-state dynamics
345  ‘egocentrically’ (as opposed to specific neural activity patterns). Nevertheless, given
346  improvements in recording length and novel analytic techniques to probe the brains
347  dynamical landscape, we expect that the field will ultimately discover even more optimal
348  mappings between neurobiology and low-dimensional brain state dynamics.

349

350 The results of our state-space analysis have important implications for the biological
351  mechanisms underlying cognition. For instance, the concept of locus coeruleus-mediated
352  energy landscape flattening is reminiscent of the al receptor-mediated notion of a ‘network
353  reset’™. By increasing response gain (Fig. 1A) through the modulation of second-messenger
354  cascades’, noradrenaline released by the 1.C would augment inter-regional coordination™.
355  Importantly, this capacity could confer adaptive benefits across a spectrum, potentially
while also

356 facilitating the formation of flexible coalitions in precise cognitive contexts*

>

357  forcing a broader landscape flattening (i.c., a ‘reset’) m the context of large, unexpected
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358 changes®™. Similarly, the idea that phasic cholinergic bursts decpens energy wells is
359  consistent with the idea that the cholinergic system instantiates divisive normalization within
360  the cerebral cortex'. Numerous cognitive neuroscience studies have shown that heightened
361  acetylcholine levels correspond to improvements in attentional precision™’. By deepening
362  energy wells, acetylcholine from the BNM could ensure that the brain remains within a
363  particular state and is hence not diluted by other (potentially distracting) brain states.
364  Determining the specific rules that govern the links between the neuromodulation of the

47-49

365  energy landscape and cognitive function™ ™ is of paramount importance, particularly given

366  the highly integrated and degenerate nature of the ascending arousal system™.

367

368  Our results also provide a systems-level perspective on an emerging corpus of work that
369  details the microscopic circuit level mechanisms responsible for conscious phenomena®. Tn
370  particular, 2 number of recent studies have highlighted the mntersection between the axonal
371  projections of the ascending arousal system and pyramidal cell dendrites in the supragranular
372 regions of the cerebral cortex as a key site for mediating conscious awareness. For instance,
373  optogenctic blockage of the connections between the cell bodies and dendrites of thick-
374  tufted layer V pyramidal cells in the sensory cortex causally modulated conscious arousal in
375  mice™ Other work has shown that both the noradrenergic™ and cholinergic™ systems alter
376  this mechanism, albeit in distinct ways: noradrenaline would promote burst firing due to the

377  «2a receptor-mediated closure of Ih TICN leak-channels™, whereas the cholinergic system

378  instead prolongs the time-scale of firing via M1 cholinergic receptor activation on pyramidal
379  cell dendrites™. In this way, coordinated activity in the ascending arousal system can mediate
380 alterations in microcircuit processing that ultimately manifest as alteration in macroscopic
381  brain network dynamics.

382

383  The vascular nature of the T2* fMRI signal 1s such that it is impossible to rule out the role of
384  haemodynamics in the results we obtained in our analysis. Indeed, there is evidence that
385  noradrenaline causes a targeted hyperaemia through the augmentation of G-protein-coupled

> However, it is also clear that the

386  receptors on vascular smooth muscle cells
387  haemodynamics and massed neural action in the cerebral cortex are inextricably linked™. In
388  addition, there 1s evidence that stimulation of the locus cocruleus leads to the high-

389  frequency, low-amplitude electrophysiological activity patterns characteristic of the awake
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390  state'. Together, these results argue that the locus coeruleus mediates a combination of
391  haemodynamic and neural responses that facilitate integrative neural network interactions
392  and subsequently mediate alterations in conscious awareness.

393

394  In this manuscript, we have argued that the ascending arousal system provides crucial
395  constraints over normal brain function, however there are numerous examples wherein
396  pathology within the ascending arousal system leads to systemic impairments in cognition. In
397  addition to disorders of consciousness’, dementia syndromes are also crucially related to
398  dysfunction within the ascending arousal system. For instance, Alzheimer’s disease has been
399  linked to tau pathology within the BNM?, however individuals with Alzheimer’s disease also
400 often have pathological involvement of the LC as well”. Similarly, individuals with
401  Parkinson’s disease often have extra-dopaminergic pathology in the I.C", as well as in the
402  cholinergic tegmentum®. Given the pathological processes at play in these disorders, we
403  expect that other neuromodulatory systems will also be impaired, and in turn effect the
404  macroscopic dynamics of the system in ways that remain to be elucidated.

405

406 In conclusion, we leveraged a high-resolution 71" resting state fMRI dataset to test the
407  hypothesis that activity within the ascending arousal system shapes and constrains patterns
408  of systems-level network reconfiguration. Our results support specific predictions from a
409  recent hypothetical framework'”, and further delineate the manner in which the autonomic
410  nervous system shapes and constraints ongoing, low-dimensional brain state dynamics in the

411  central nervous system in a manner that supports changes in conscious awareness.

412
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413  Methods

414 7T resting state fMRI

415  Sixty-five healthy, right-handed adult participants (mean, 23.35 years; SD, 3.6 years; range
416  18-33 years; 28 females) were recruited, of whom 59 were included in the final analysis (four
417  participants were excluded due to MR scanning issues, one participant was excluded due to
418  an unforescen brain structure abnormality, and one was excluded due to inconsistent BOLD
419  dynamics following global-signal regression). Participants provided informed written consent
420  to participate in the study. The research was approved by The University of Queensland
421  Human Rescarch Ethics Committee. These data were originally described in Hearne et al.,
422 2017%. 1050 (~10 minutes) whole-brain 7T resting state fMRI echo planar images were
423  acquired using a multiband sequence (acceleration factor = 5; 2 mm’ voxels; 586 ms TR,
424 23 ms TF; 40" flip angle; 208 mm FOV; 55 slices). Structural images were also collected to
425  assist functional data pre-processing (MP2RAGE sequence — 0.75 mm’ voxels 4,300 ms TR;
426  3.44 ms T'L; 256 slices).

427

428 DICOM mmages were first converted to NIfIT format and realigned. 11 images were
429  reoriented, skull-stripped (FSL BE'T), and co-registered to the NIfIT functional images using
430  statistical parametric mapping functions. Segmentation and the DARTEL algorithm were
431  used to improve the estimation of non-neural signal in subject space and the spatial
432  normalization. From each grey-matter voxel, the following signals were regressed: linear
433  trends, signals from the six head-motion parameters (three translation, three rotation) and
434 their temporal derivatives, white matter, and CSF (estimated from single-subject masks of
435  white matter and CSF). The aCompCor method (Behzadi et al.,, 2007) was used to regress
436  out residual signal unrelated to neural activity (i.c., five principal components derived from
437  notse regions- of-interest in which the time series data were unlikely to be modulated by
438  neural activity). Participants with head displacement > 3 mm in > 5% of volumes in any one
439  scan were excluded (# = 5). A temporal band pass filter (0.01 < /< 0.15 Hz) was applied to
440  the data.

441

442  Brain parcellation

443  Following pre-processing, the mean time series was extracted from 400 pre-defined cortical

444 parcels using the Schaefer atlas (Schaefer et al., 2018). Probabilistic anatomical atlases were

17


https://doi.org/10.1101/2021.03.30.437635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.30.437635; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

445  used to define the location of the noradrenergic LC* and the cholinergic BNM (Ch4 cell
446  group)”. The mean signal intensity from each region was extracted and then used for
447  subsequent analyses. To ensure that the BOLD data were reflective of neuronal signals, we
448  statistically compared 1.C and BNM time series with 2 number of potential nuisance signals
449  from: 1) the cerebrospinal fluid; 1) the cortical white matter; i) mean framewise
450  displacement; and iv) a 2mm’ sphere in the fourth ventricle (centred at MNI co-ordinates: 0
451 45 -30)*. All signals were unrelated to 1.C and BNM activity (|r| < 0.05 in each case),
452  however given the spatial proximity of the LC to the fourth ventricle, we opted to use a
453  lincar regression to residualize the signal from the fourth ventricle. To ensure that BOLD
454 signals from nearby grey matter structures were not influencing the locus coeruleus
455  timeseries, we extracted the mean activity of the locus coeruleus mask after shifting the mask
456  anteriorly such that it overlapped with an area of the pons that harbours the nuclei (ie.,
457  +8mm in the Y direction). In the same manner i which we previously regressed the
458  dynamics of the fourth ventricle, we regressed the activity of this non-LLC pontine region,
459  and then re-analysed our data. Fach of the results was statistically identical following this
460  approach, providing confidence that the original conclusions were not biased by a lack of
461  regional specificity.

462

463  Phasic increases in neuromodulatory BOLD signal

464  To identify phasic increases in neuromodulatory BOLLD signal, we calculated the second
465  derivative (Le., the acceleration) of the I.C and BNM time series, and then identified points
466  in time that fulfilled three criteria: 1) value greater than or equal to 2 s.d. above the mean
467  acceleration; 2) value of the original time series, i.c., LC or BNM, was greater than or equal
468  to 2 s.d. above the mean of the time series within the following 10 TRs (i.e., 5.8 seconds);
469  and 3) the time point was not present within the first or last 20 TRs of an individual subjects’
470  trial (so as to avoid potential boundary effects). Using these criteria, we identified 148 1; ¢ pu
471 time points, 130 Tpc time points and 316 7, ¢,ppy time points across all 59 subjects. To
472  ensure that the choice of 2 s.d. threshold was reflective of the underlying dynamics, we
473 altered this threshold between 1-3 s.d. and found robustly similar patterns. For subsequent
474  analyses, we identified time points in the 21 TR window surrounding these peaks, and then
475  used these to conduct statistical comparisons of the low-dimensional, complex network

476  signature of brain network dynamics as a function of phasic ascending arousal system

18


https://doi.org/10.1101/2021.03.30.437635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.30.437635; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

477  activity. Each of these patterns was confirmed using a lag-based cross-correlation analysts,
478  which demonstrated similar phenomena to those that we present in the manuscript.

479

480  To monitor the propagation of cortical signals with respect to T « g Teraerc AN Ty caman WE
481  extracted the time-to-peak of the cross-correlation between these signals and each of the 400
482  cortical parcels within the 10 TR (i.e., 5.8 second) windows following ecach identified phasic
483  peak. These patterns were mapped onto the cortex (Fig. 1B) for visualization and cleatly
484  demonstrated anterior-to-posterior direction for the wave. We then used the volumetric
485  MNI co-ordinates of the Schaefer parcellation scheme to calculate the average velocity of the
486  travelling wave (0.13m s™).

487

488 In order to obtain an appropriate null model against which to compare our data, we
489  identified 5,000 random timepoints within the concatenated dataset that did not substantially
490  overlap with the already identified T ¢ gy Tonnre a0 Ty time series, and used these to
491  populate a null distribution®”. Outcome measures were deemed significant if they were more
492  extreme than the 95" (or 5%) percentile of the null distribution. Crucially, this ensured that
493  our data could not be explained by the characteristic spatial and temporal autocorrelation
494 present in BOLD timeseries data.

495

496  Time-resolved functional connectivity.

497 To estimate functional connectivity between the 400 regions of interest, we used the
498  multiplication of temporal dertvatives (MTD) technique. Briefly, MTD 1s computed by
499  calculating the point-wise product of temporal derivative of pair-wise time series. The
500  resultant score is then averaged over a temporal window, w (a window length of 20 'TRs was
501  used in this study, though results were consistent for w = 10-50 TRs).

502

503  Modularity Maximization

504  'The I.ouvain modularity algorithm from the Brain Connectivity Toolbox (BCT"™) was used
505 on the neural network edge weights to esttmate community structure. The Louvain
506  algorithm iteratively maximizes the modularity statistic, (), for different community

507  assignments until the maximum possible score of ( has been obtained:
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ij 9]

508  where »is the total weight of the network (sum of all negative and positive connections),
509  is the weighted and signed connection between regions 7 and j, ¢, is the strength of a
510  connection divided by the total weight of the network, and g, 1s set to 1 when regions are
511 in the same community and O otherwise. ‘“+” and " super-scripts denote all positive and
512  negative connections, respectively. The modularity of a given network is therefore a
513  quantification of the extent to which the network may be subdivided into communities with
514 stronger within-module than between-module connections.

515

516  For each epoch, we assessed the community assignment for each region 500 times and a
517  consensus partition was identified using a fine-tuning algorithm from the Brain Connectivity
518 Toolbox (BCT; http://www.brain-connectivity-toolbox.net/). We calculated all graph
519  theoretical measures on un-thresholded, weighted and signed connectivity matrices”™. The
520  stability of the y parameter was estimated by iteratively calculating the modularity across a
521  range of y wvalues (0.5-2.5; mean Pearson’s r = 0.859 +-0.01) on the time-averaged
522  connectivity matrix for each subject — across iterations and subjects, a y value of 1.0 was
523  found to be the least variable, and hence was used for the resultant topological analyses.

524

525  Participation Coefficient

526  The participation coefficient, PC, quantifies the extent to which a region connects across all
527  modules (i.c., between-module strength) and has previously been used to successfully
528  characterize hubs within brain networks (c.g. sce ). The PC for each region was calculated

529  within each temporal window as,

nm

PC=1— 2 (K"ST)Z
Kir

s=1

530  where kg 1s the strength of the positive connections of region 7 to regions in module s at
531 time T, and ky is the sum of strengths of all positive connections of region 7 at time 1.
532  Negative connections were discarded prior to calculation. The participation coefficient of a
533  region is therefore close to 1 if its connections are uniformly distributed among all the

534  modules and 0 if all of its links are within its own module.
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535

536

537  Brain State Displacement and the Energy Landscape

538 To quantify the change i BOLD activity following phasic bursts of neuromodulation we

539  calculated the BOLD mean-squared displacement (MSD). The MSD 1s a measure of the

540  deviation mn BOLD activity, X¢ = [X1 ¢ Xp4) ey Xy e] for 7 parcels, with respect to the

541  activity at the phasic onset, ty. The MSD 1s calculated as the average change of each voxel
MSD; ., = <|xt0+t _xt0|2>rr

542  and it is calculated for different ty, where ty are the onset of a subcortical phasic burst,

543  across t TRs. We are interested in the probability, Pygp, that we will observe a given

944  displacement 11 BOLD at a given time-lag t. We estimated the probability distribution

545  function P(MSD, t) from n MSD,; samplings, — e.g., the identified n phasic bursts of

546  subcortical structures (as above) — using a Gaussian kernel density estimation P(MSD, t) =

MSDy;

547 - ;;11((

1 Ly2 .
o ), where K(u) = S €2 “and we display the results for t between 1 to

=
548 15 TR and MSD between 0 to 50. As 1s typical in statistical mechanics the energy of a given

E
. - 1 _Eo . .
549  state, E,, and its probability are related P(o) = Ze 7, where Z 1s the normalisation

550 function and T is a scaling factor equivalent to temperature in thermodynamics *. In our
551  analysis ), P, = 1 by construction and we can set T = 1 for the observed data. Thus, the
552  energy of each BOLD MSD for a given at a given time-lag ¢, E, 1s then equal to the natural
553  logarithm of the inverse probability, P(MSD, t), of its occurrence:

E=1In ;

P(MSD, t)

554
555  Meditation Dataset
556  Fourteen healthy right-handed non-smoking meditation practitioners (11 female; age 28-66)
557  underwent Siemens 3T MRI scanning (11: TR = 2600 msec, TE = 3.9 msec, TT = 900 msec,
558  FOV = 24 cm, 256 x 256 matrix, voxel dimensions = 1 x 1 x 1 mm?; T2% weighted gradient-echo
559  pulse sequence, TR = 1500 msec, TE = 30 msec, flip angle = 90 deg, FOV = 192 cm, 64 x 64
560  matrix, voxel dimensions = 3 x 3 x 4 mm?). All participants signed a consent form approved by

561  the Institutional Review Board at Emory University and the Atlanta Veterans Affairs
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562  Rescarch and Development Committee as an indication of informed consent. Participants
563  were asked to meditate for 20 min in the MRI scanner by maintaining focused attention on
564  the breath and keeping the eyes closed. They were instructed to press a button whenever
565  they realized their mind had wandered away from the breath, and then return their focus to
566  the breath. The epoch of time immediately prior to the button press was thus the moment in
567  time in which each individual recognized that their focus had deviated from their breath.
568  This information was used to construct a finite impulses response model that mapped the 5
569  TRs prior-to and following cach button press. We then modelled LC>BNM activity, low-
570  dimensional dynamics and network topology around this epoch to construct a model of
571  state-space reconfiguration as a function of intrinsic conscious awareness. Non-parametric,
572  block-resampling null distributions were utilized for statistical testing (p < 0.05).

573

574  Data availability

575 'The BOLD data was obtained from (Hearne et al., 2017)* and

576  'The BOLD data that support the findings of this study were obtained from (Hearne et al,,
577  2017)° and they are available from the authors upon reasonable request. The subcortical
578  timeseries (Tyc and Tgyy ) that support the findings of this study are available at
579  (github.com/Bmunn/BSI).

580

581

582  Code availability

583 All the code required to conduct the analysis can be found on Github at
584  (github.com/Bmunn/BSI).

585
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586  Supplementary Figures
0.5mm MNI Template  Echo Planar Image

X4

587
588  Figure S1. The locus coeruleus. Left: The anatomical locus coeruleus mask projected onto MNI 0.5mm
589 standard brain (orange); Right: The anatomical locus coeruleus mask down-sampled onto an example 7T Licho

590  Planar Image from a single subject (red).

+0.1

-0.1

591

592  Figure S2. Time-varying correlations. Average correlation preceding (left) and following (middle) the zero-
593  lagged value, along with the difference between the two (right); squares represent eight pre-defined
594 sub-networks: Vis — visual, SM — somatomotor, DAN — dorsal attention, VAN — ventral attention, LIM —

595 limbic, CON — control, DMN — default and TP — temporal pole.
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597 Figure S3 — LC and BNM move dynamics to differing regimes than unaroused activity and their
598  simultaneous combination LC+BNM. The energy landscape of simultaneous LC+BNM phasic bursts
599  relative to their linear superposition, suggesting the simultaneous combination may allow the system to reach

600  particularly unique brain-states that neither individually could reach.

601
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