

1 **Title**

2 The ascending arousal system shapes low-dimensional neural dynamics to mediate awareness
3 of intrinsic cognitive states

4

5 **Authors**

6 Brandon Munn^{1,2,†*}, Eli J. Müller^{1,2,†}, Gabriel Wainstein^{1,2}, and James M. Shine^{1,2,*}

7

8 **Affiliations**

9 1 Complex Systems Research Group, The University of Sydney, Sydney, NSW, Australia

10 2 Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia

11 * Corresponding authors: brandon.munn@sydney.edu.au & mac.shine@sydney.edu.au

12 † Denotes equal contribution

13

14 **Abstract**

15 Models of cognitive function typically focus on the cerebral cortex and hence overlook
16 functional links to subcortical structures. This view neglects the highly-conserved ascending
17 arousal system's role and the computational capacities it provides the brain. In this study, we
18 test the hypothesis that the ascending arousal system modulates cortical neural gain to alter
19 the low-dimensional energy landscape of cortical dynamics. Our analyses of spontaneous
20 functional magnetic resonance imaging data and phasic bursts in both locus coeruleus and
21 basal forebrain demonstrate precise time-locked relationships between brainstem activity,
22 low-dimensional energy landscapes, network topology, and spatiotemporal travelling waves.
23 We extend our analysis to a cohort of experienced meditators and demonstrate locus
24 coeruleus-mediated network dynamics were associated with internal shifts in conscious
25 awareness. Together, these results present a novel view of brain organization that highlights
26 the ascending arousal system's role in shaping both the dynamics of the cerebral cortex and
27 conscious awareness.

28

29 **Main Text**

30 It is often difficult to see the forest for the trees, but to fully understand a concept typically
31 involves an accurate depiction of both. That is, we need to comprehend not only the detailed
32 workings of a specific system, but also how that system functions within a broader context
33 of interacting parts. Modern theories of whole-brain function exemplify this challenge. For
34 instance, activity in the brain has been shown to incorporate signatures of both local
35 computational specificity (e.g., specialized regions within the cerebral cortex) as well as
36 system-wide integration (e.g., the interactions between the cortex and the rest of the brain)^{1,2}.
37 Anatomical evidence suggests that the balance between integration and segregation is
38 mediated in part by the relatively fixed white matter connections between cerebral cortical
39 regions¹ – local connectivity motifs support segregated activity, whereas the axonal, re-
40 entrant connections between regions act to integrate the distributed signals via a highly
41 interconnected structural backbone³. However, how the human brain is also capable of
42 remarkable contextual flexibility given this relatively fixed connectivity remains poorly
43 understood.

44

45 During cognitive tasks, neural activity rapidly reconfigures the functional large-scale network
46 architecture of the brain to facilitate coordination between otherwise segregated cortical
47 regions. Precisely how this flexibility is implemented in the brain without altering structural
48 connectivity remains an open question in systems neuroscience. Although it is often
49 overlooked in theories of whole brain function, the neuromodulatory ascending arousal
50 system is well-placed to mediate this role⁴. The arousal system is comprised of a range of
51 nuclei spread across the brainstem and forebrain that send wide-reaching axons to the rest of
52 the central nervous system⁵. At their target sites, arousal neurons release neuromodulatory
53 neurotransmitters that shape and constrain a region's processing mode – altering their
54 excitability and responsivity without necessarily causing them to fire an action potential^{4,6}. As
55 a result, subtle changes in the concentration of neuromodulatory chemicals can cause
56 massive alterations in the dynamics of the target regions, leading to nonlinear effects on the
57 coordinated patterns of activity that emerge from 'simple' neuronal circuits⁴.

58

59 The ascending arousal system also contains substantial heterogeneity – unique cell
60 populations project in diverse ways to the cerebral cortex and release distinct

61 neurotransmitters. One key dichotomy is the distinction between adrenergic
62 neuromodulation (predominantly via the locus coeruleus [LC]), which promotes arousal and
63 exploratory behaviour⁷, and cholinergic neuromodulation (such as via the basal nucleus of
64 Meynert [BNM]), which is associated with attentional focus and vigilance⁸. These highly
65 interconnected⁹ structures both promote wakefulness and arousal^{10,11}, albeit via distinct
66 topological projections to the cerebral cortex: the LC projects in a diffuse manner that
67 crosses typical specialist boundaries, whereas the BNM projects in a more targeted, region-
68 specific manner¹² (Fig. 1A). The two systems have also been linked with distinct and
69 complimentary computational principles: the noradrenergic LC is presumed to modulate
70 interactions between neurons (response gain)¹³, whereas the cholinergic BNM is presumed to
71 facilitate divisive normalization (multiplicative gain)¹⁴. Based on these anatomical and
72 computational features, we have hypothesized that the interaction between these two
73 neuromodulatory systems is crucial for mediating the dynamic, flexible balance between
74 integration and segregation in the brain¹⁵.

75

76 Another crucial feature of the ascending arousal system is that the number of neurons that
77 project to the cerebral cortex is several orders of magnitude smaller than those that project
78 back to the brainstem and forebrain¹⁶⁻¹⁸. Based on this feature, we further hypothesize that
79 shifts in arousal are realized through a low-dimensional modulation of the ongoing neural
80 activity ('brain state')¹⁷. Conceptually, low-dimensional neural dynamics can be depicted as
81 evolving on a brain state energy landscape¹⁹, where the energy of a given state corresponds
82 to the occurrence probability, e.g. high energy brain states have a low occurrence probability
83 (and *v. v.*). That is brain states evolve along the energy landscape topography, much like a ball
84 rolls under the influence of gravity down a valley and requires energy to traverse up a hill,
85 this corresponds to an evolution towards an attractive or repulsive brain state, respectively.
86 This technique can resolve what might otherwise be obscured states of attraction (and
87 repulsion) in a multi-stable system and has been successfully applied to the dynamics of
88 spiking neurons^{20,21}, blood oxygenation level dependent (BOLD) functional magnetic
89 resonance imaging (fMRI)^{22,23}, and magnetoencephalography (MEG)²⁴. The approach offers
90 several conceptual advances, but perhaps most importantly, it renders the otherwise
91 daunting task of systems-level interpretation relatively intuitive. Importantly, this framework
92 is not a mere analogy³⁰, as the topography of the energy landscape shares a 1-to-1

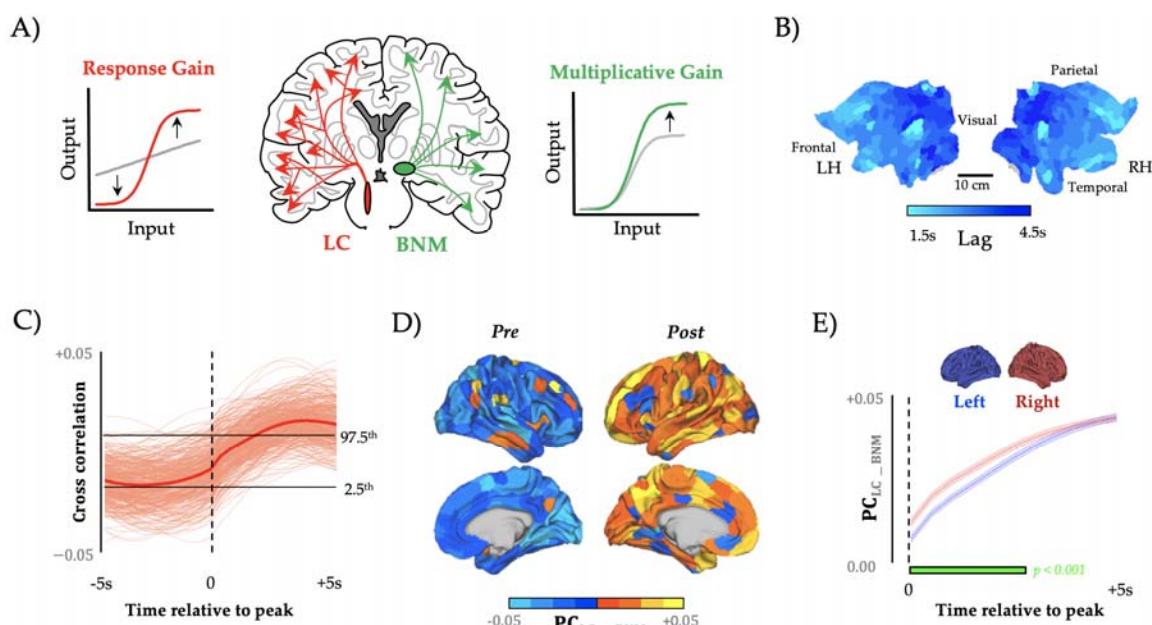
93 correspondence with the generative equations required to synthesize realistic neural
94 timeseries data²⁵. In this manuscript, we test these ideas by combining high-resolution resting
95 state fMRI data with analytic techniques from the study of complex systems.

96

97 **Results**

98 To begin with, we extracted time series data from major subcortical hubs within the
99 noradrenergic LC⁹ (Fig. 1A, red) and cholinergic BNM²⁶ (Fig. 1A, green) systems from 59
100 healthy participants who had undergone high-resolution, 7T resting-state functional
101 magnetic resonance imaging (fMRI; 2 mm³ voxels; TR = 586 ms repetition time). Given the
102 known spatiotemporal interactions between the ascending arousal system and fluctuations in
103 cerebrospinal fluid, we first controlled for activity fluctuations in the nearby fourth ventricle,
104 which contains no neural structures, but nonetheless can cause alterations in the BOLD
105 signal over time. We next accounted for nearby gray-matter signals, by regressing the signal
106 from the nearby pontine nuclei. Using the residuals from these regressions from the LC
107 signal, τ_{LC} , and the BNM signal, τ_{BNM} , we focused on the difference between these signals
108 (τ_{LC-BNM} and τ_{BNM-LC} ; concatenated across subjects) and then identified time points associated
109 with phasic bursts of LC activity that led to sustained adrenergic (versus cholinergic)
110 influence over evolving brain state dynamics (and *v.v.* for phasic bursts of BNM; see
111 Methods). Importantly, the phasic mode of firing within the noradrenergic arousal system
112 has been specifically linked to systemic influences that occur on time-scales relevant to
113 cognitive function^{8,27}. Tracking the mean cortical BOLD response around these peaks
114 identified a spatiotemporal travelling wave (Fig. 1B; velocity = 0.13ms⁻¹) that propagated
115 from frontal to sensory cortices and tracked closely with the known path of the dorsal
116 noradrenergic bundle⁹, albeit with a preserved ‘island’ within the parietal operculum (Fig.
117 1B). A block-resampling null model was applied to ensure that the results were not due to
118 spatial-autocorrelation ($p < 0.05$; see Methods). These results can be inverted for BNM
119 activity (relative to LC) as $\tau_{BNM-LC} = -\tau_{LC-BNM}$. Furthermore, these results confirm that
120 coordinated macroscale activity patterns align to fluctuations in activity within the ascending
121 arousal system of the brainstem²⁸.

122



123

124 **Figure 1. Sympathetic activity precedes network-level integration.** A) regional time series were extracted
 125 from the locus coeruleus (red), which is thought to alter response gain, and the basal nucleus of Meynert
 126 (green), which is thought to alter multiplicative gain, and compared to BOLD signal and topological signatures
 127 during the resting state; B) we observed a anterior-to-posterior traveling wave (velocity $\sim 0.13\text{ms}^{-1}$) following
 128 peaks in $\tau_{\text{LC-BNM}}$, which are shown on both the left (LH) and right (RH) hemispheres of a cortical flat map; C)
 129 the lagged cross-correlation between and PC – dotted line depicts the zero-lagged correlation, and the
 130 black lines depict the upper (lower) bounds of a block-resampled null model (95% CI); D) mean cortical
 131 participation coefficient (PC) preceding (left) and following (right) the zero-lagged value, only the
 132 right hemisphere is shown (mirrored for 'Post'); E) the participation coefficient following peak was
 133 higher in the right- (red) vs. the left- (blue) hemisphere ($p < 0.001$; green bar).

134

135 **Time-varying network topology**

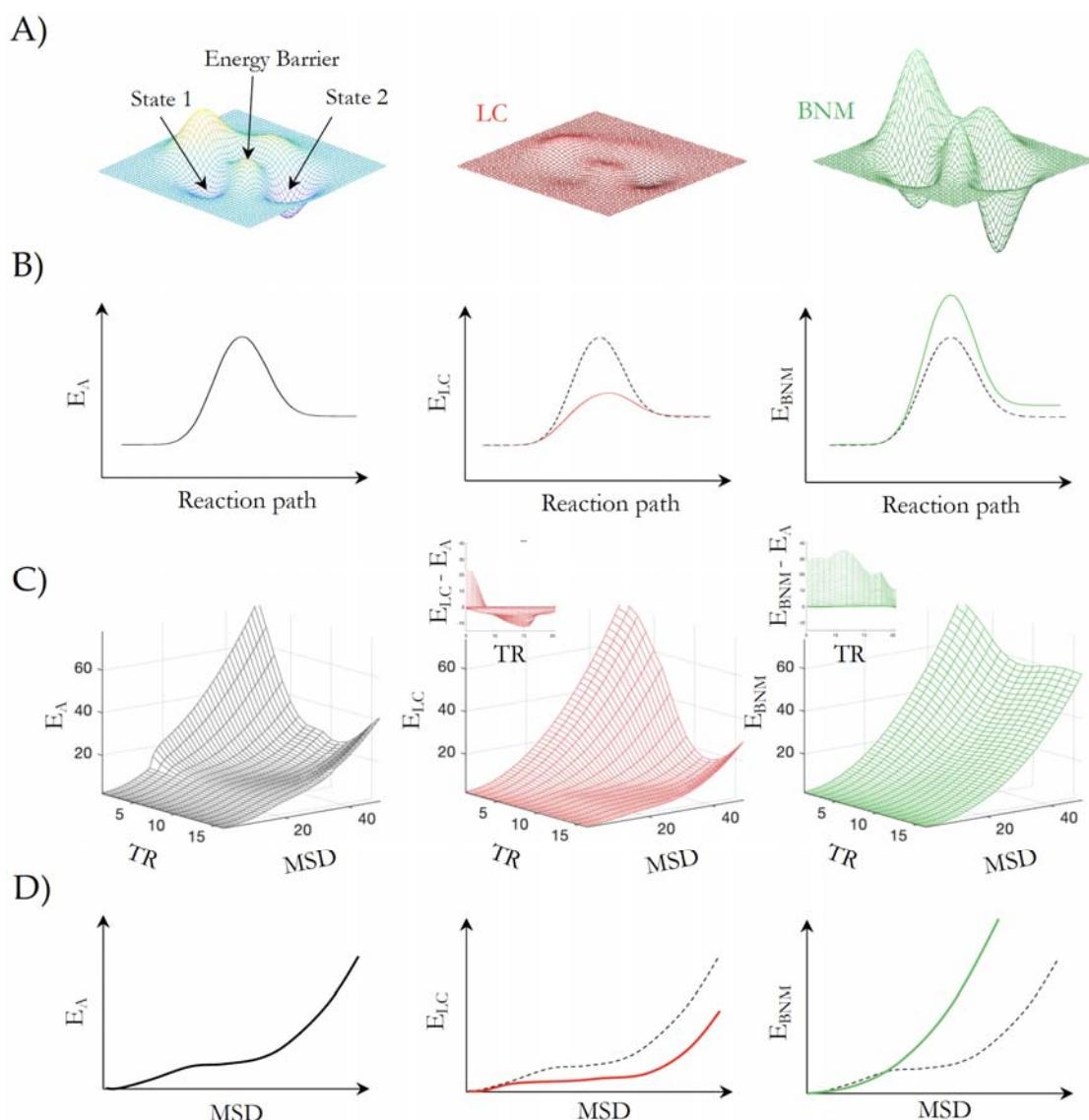
136 Based on previous empirical²⁹, modelling³⁰ and theoretical¹⁵ work, we predicted that phasic
 137 bursts in $\tau_{\text{LC-BNM}}$ would facilitate network-level integration by modulating increased neural
 138 gain among regions distributed across the cerebral cortex. As predicted, we observed a
 139 strong positive correlation between $\tau_{\text{LC-BNM}}$ and network-level integration ($p < 0.05$, block-
 140 resampling null model; Fig. 1C) across the brain (Fig. 1D). An increase in phasic activity
 141 within the LC (relative to the BNM) preceded an increase in the mean level of integration
 142 within the cerebral cortex that was dominated by the frontoparietal cortices (Fig. 1D;
 143 parcellated according to the 17 resting-state networks identified in³¹). Interestingly, this

144 global integration was opposed by a relative topological segregation of limbic, visual, and
145 motor cortices (Fig. S2). This increase in the synchronisation of the frontoparietal cortices
146 following an increase in sensory-limbic coordination and LC activity may reflect arousal-
147 enhanced processing of sensory stimuli^{32,33}. Furthermore, regional integration occurred
148 earlier in the right- vs. the left-hemisphere ($p < 0.001$; Fig. 1E), which is consistent with the
149 known anatomical bias of the LC system^{34,35}. Together, these findings provide robust
150 evidence for the hypothesis that the balance between ascending noradrenergic and
151 cholinergic tone facilitates a transition towards topological integration across the
152 frontoparietal network of the brain¹⁵.

153

154 ***Neuromodulation of the Energy Landscape***

155 The results of our initial analysis demonstrate that coordinated distributed activity in the
156 cortex align with changes in small groups of neuromodulatory cells activity in the brainstem
157 and forebrain, which in turn are proposed to constrain brain dynamics onto a low-
158 dimensional energy landscape (Fig. 2A). The effects of noradrenaline and acetylcholine can
159 also be easily viewed through this lens: by integrating the brain, noradrenaline should flatten
160 the energy landscape (Fig. 2A, red) facilitating otherwise unlikely brain state transitions,
161 whereas in contrast, the segregative nature of cholinergic activity should act to deepen
162 energy valleys (Fig. 2A, green) decreasing the likelihood of a brain state transition. In
163 previous work, we have shown a correspondence between low-dimensional brain state
164 dynamics across multiple cognitive tasks and the heterogenous expression of metabotropic
165 neuromodulatory receptors¹⁷. This implies that neuromodulators act similar to catalysts in
166 chemical reactions, which lower (or raise) the activation energy (E_A) required to transform
167 chemicals from one steady state (or energy well) to another (Fig. 2B). In the context of the
168 interconnected, heterarchical networks that comprise the cerebral cortex, this would have
169 the effect of flattening (or deepening) the energy landscape, promoting variable (or rigid)
170 brain states³⁶ (Fig. 2A).



171

172 **Figure 2 – LC and BNM mediated shifts in energy landscape brain state space dynamics.** A) an energy
 173 landscape, which defines the energy required to move between different brain states: by increasing response
 174 gain, the LC should flatten the energy landscape (red); by increasing multiplicative gain, the BNM should
 175 deepen the energy wells (green); B) the topography of the energy landscape can be conceptualized as similar to
 176 the activation energy (E_A) that must be overcome in order to convert one chemical to another; C) Empirical
 177 BOLD trajectory energy as a function of MSD and TR of the baseline activity (E_A , black) and after phasic
 178 bursts in LC (E_{LC} , red) and BNM (green) – relative to the baseline energy landscape phasic bursts in LC
 179 ($E_{LC} - E_A$, red inset) lead to a flattening or reduction of the energy landscape, whereas peaks in BNM ($E_{BNM} -$
 180 E_A , green inset) lead to a raising of the energy landscape. D) Empirical activation energy as a function of MSD
 181 averaged over lags TR during base baseline activity (E_A , Left) and following phasic bursts in LC
 182 (E_{LC} , red) and BNM (green).
 183

184 To elucidate the role of phasic activity from the neuromodulatory system in modifying the
185 energy landscape, we first estimated the energy of BOLD signal transitions across the
186 cerebral cortex. Importantly, the term ‘energy’ here is used in reference to its definition in
187 statistical physics and hence does not represent the biological use of the term, which instead
188 stands for the energy used by the brain to maintain or change neural activity. Specifically, we
189 define the energy landscape, E , as the natural logarithm of the inverse probability of
190 observing a given BOLD MSD at a given time-lag t , $P(MSD, t)$, calculated as $E =$
191 $\ln \frac{1}{P(MSD, t)}$, where $MSD_{t, t_0} = \langle |x_{t_0+t} - x_{t_0}|^2 \rangle_r$ is the mean-squared displacement (MSD) of
192 BOLD signal, $x_t = [x_{1,t}, x_{2,t}, \dots, x_{r,t}]$ across r voxels and t is the number of time-lags of
193 size TR from a reference timepoint t_0 ²⁰. The probability of a BOLD signal transition,
194 $P(MSD, t)$, was estimated from the sampled MSD_{t, t_0} , and we used a Gaussian kernel
195 density estimation $P(MSD, t) = \frac{1}{4n} \sum_{i=1}^n K\left(\frac{MSD_{t,i}}{4}\right)$, where $K(u) = \frac{1}{2\sqrt{\pi}} e^{-\frac{1}{2}u^2}$ (see
196 Methods). Our analysis is consistent with the statistical mechanics interpretation that the
197 energy of a given state, E_σ , and its probability are related $P_\sigma = \frac{1}{Z} e^{-\frac{E_\sigma}{T}}$, where Z is the
198 normalisation function and T is a scaling factor equivalent to temperature in
199 thermodynamics, where we set $T = 1$ and $Z = 1^{20}$. In this framework, a highly probable
200 relative change in BOLD (as quantified by the MSD) corresponds to a relatively low energy
201 transition (i.e., low E_A), whereas an infrequently visited state will require the most energy
202 (i.e., high E_A).

203

204 By treating energy as inversely proportional to the probability of brain state occurrence, our
205 approach resembles other studies that have been applied to spiking dynamics of neuronal
206 populations, spiking neurons^{20,21}, BOLD fMRI^{22,23}, MEG²⁴, and natural scene³⁷. However,
207 these studies binarized continuous signals to reduce the brain state space (to 2^r states),
208 however this approach requires the fitting of a threshold, which can be problematic in
209 continuously recorded data. In contrast, our approach reduces the dimensionality by
210 analysing the likelihood of a change in BOLD activity (i.e., the MSD), and thus retains the
211 dimensionality of the underlying signal without the need for thresholding. This approach
212 overcomes a major limitation inherent to previous energy landscape studies that require a
213 large sample size to sufficiently sample the brain state space.

214

215 With this in mind, we turned our attention to the relationship between the ascending arousal
216 system dynamics and the MSD energy landscape. To test the hypothesis that the
217 neuromodulatory system alters the topography of the energy landscape, we calculated BOLD
218 MSD energetics following phasic bursts of both LC relative to BNM (τ_{LC-BNM}), E_{LC} , and
219 BNM relative to LC (τ_{BNM-LC}), E_{BNM} , i.e., t_0 was the onset of a phasic burst, and compared
220 these to sampled brain evolutions without large changes in LC and BNM arousal i.e., t_0 was
221 all timepoints outside of a phasic burst in LC and BNM, analogous to the baseline energy
222 landscape E_A . We identified phasic bursts as peaks in the second derivative of the arousal
223 BOLD signals τ_{LC-BNM} and τ_{BNM-LC} that lead to a sustained increase in BOLD activity for
224 each individual (see Methods) and using these criteria, we identified 148 τ_{LC-BNM} time points
225 and 130 τ_{BNM-LC} time points.

226

227 The energy landscapes for these three states are defined by the energy for a given BOLD
228 MSD at a given TR delay. Figure 2C demonstrates the baseline energy landscape (Fig. 2C,
229 black), which corresponds to the reaction pathway in Fig. 2B, and the MSD energy
230 landscape following phasic bursts in the LC (Fig. 2C, red) and BNM (Fig. 2C, green). These
231 figures demonstrate an MSD energy landscape across displacement and time, wherein the
232 energy relates to the likelihood of seeing a given mean change in bold activity (i.e., MSD) at a
233 given temporal displacement (i.e., TR). For example, all the MSD energy landscapes have a
234 high energy peak for large MSD at a short timescale as it is extremely unlikely that the bold
235 activity would change significantly (quantified by a large MSD) in one TR (~0.5s), and
236 neuromodulation increases the energy of such an initial change. The utility of the MSD
237 energy landscape can be seen when comparing large phasic bursts of LC and BNM relative
238 to baseline fluctuations. We found the largest change occurs around 10-15 TR (~6-9s)
239 following a phasic burst that typically corresponds to a peak in the LC or BNM BOLD
240 signal. At this ~6-9s temporal delay we see direct evidence that a phasic burst of LC
241 flattened the energy landscape (decreased the energy relative to baseline Fig. 2C, red inset),
242 thus making previously unlikely large MSD trajectories far more probable (Fig. 2D red),
243 whereas a phasic burst of BNM activity (increased energy relative to baseline Fig. 2C, green
244 inset) caused the energy landscape to be elevated, thus promoting local trajectories, and
245 making large MSD deviations unlikely (Fig. 2D green). These patterns are analogous to

246 modulating a physical landscape in which towns sit within valleys separated by impassable
247 mountains – when BNM is high, the towns remain isolated, whereas when LC is high, the
248 towns are separated by easily navigated rolling plains and transitions between towns (novel
249 combinations of consecutive brain states) can be easily realised.

250

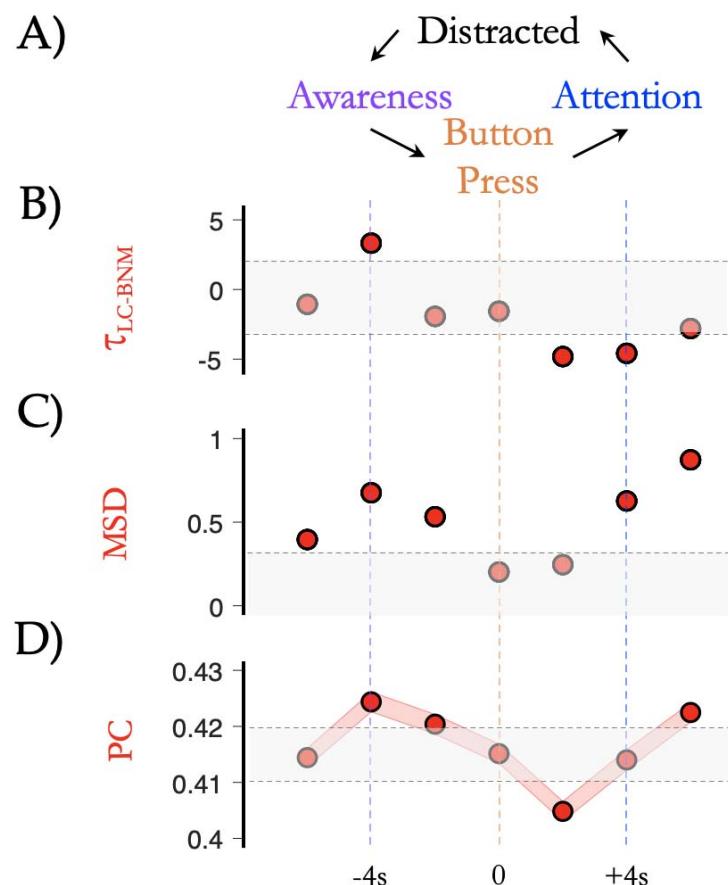
251 We next asked whether LC and BNM combined synergistically to alter the energy landscape.
252 To achieve this, we isolated simultaneous phasic peaks in both LC and BNM (τ_{LC+BNM}). We
253 found that the LC + BNM energy landscape differed from either independent LC or BNM
254 activation, shifting the brain state into divergent regimes than could be explained by the
255 HRF. By comparing the MSD energy topography for a given TR slice we found that the
256 landscape switched from an anti- to de-correlation with the HRF. In other words, the
257 cooperative behaviour between the noradrenergic and cholinergic systems allowed the brain
258 to reach unique BOLD MSDs that neither could facilitate individually. To examine how
259 simultaneous LC+BNM activity altered the energy landscape, we compared the energy
260 relative to the two individual landscapes. As demonstrated in Fig. S3, the energy landscape
261 following phasic bursts of LC+BNM differed in magnitude from that expected from a linear
262 superposition of the LC and BNM energy landscape – i.e., $LC+BNM \neq (LC) + (BNM)$.
263 Furthermore, to explore the dominance of either LC or BNM in this signal, we minimised
264 the relationship $LC+BNM = \alpha LC + \beta BNM$ (conditional upon α and β being positive
265 constants) and found that $\alpha = 0.16$ and $\beta = 0.84$ gave the best match to the LC+BNM
266 energy landscape. That is, the BNM dynamics dominates the simultaneous LC+BNM energy
267 landscape, which is consistent with the unidirectional synaptic projections from the LC that
268 synapse upon the BNM on their way through to the cortex¹², and suggests that phasic
269 LC+BNM bursts may be initiated by the LC in order to elicit a cascade of BNM activity.

270

271 ***Conscious awareness of shifts in BOLD state***

272 Interpreting the relationship between neuroimaging data and conscious awareness is
273 notoriously challenging. For instance, it is currently not possible to directly determine the
274 contents of self-directed thought without intervening, and thus altering, the contents of
275 consciousness³⁸. Although we can't determine the contents of consciousness directly, we can
276 use task designs to modulate the state of consciousness. To this end, we leveraged data from
277 a group of 14 expert meditators who were asked to meditate during an fMRI scanning

278 session³⁹, and to press a button when they noticed that their focus had drifted from their
279 breath (Fig. 3A). At this point, there is a mismatch between expectation and conscious
280 awareness, which is an internal state that has been previously linked to the activation of the
281 noradrenergic system, both in theoretical^{40,41} and computational⁴² work. Based on these
282 studies, we predicted that the switch in internal conscious awareness would be facilitated by
283 increases in locus coeruleus-mediated integration and subsequent reconfiguration of low-
284 dimensional brain states. Analysing time-resolved network data with a finite impulse
285 response model, we observed a peak in locus coeruleus activity (Fig. 3B), TR-to-TR mean
286 squared displacement (Fig. 3C) and elevated network-level integration (Fig. 3D) surrounding
287 the change in conscious awareness (all $p_{PERM} < 0.05$; 95% CI of null distribution). These
288 results confirm that the locus coeruleus mediates energy landscape reconfigurations and that
289 these changes modulate internal states of conscious awareness.



290
291 **Figure 3 – Awareness of intrinsic state changes.** A) participants performing breath-awareness meditation
292 (Focus; blue) were trained to respond with a Button Press (orange) when they became Aware (purple) that they
293 had become Distracted (i.e., their attention had wandered from their breath) and to then re-focus their

294 Attention (blue) on their breath; B) we observed a peak in τ_{LC-BNM} (i.e., LC > BNM; red) \sim 4 seconds before
295 the button press, which then returned to low levels (i.e., BNM > LC) in the 2-4 seconds following the button
296 press; C) the Mean Squared Displacement (MSD; dark orange) of TR-to-TR BOLD signal was increased above
297 null values around the peak in τ_{LC-BNM} , as well as following the re-establishment of attentional focus (in
298 panels B & C, grey shading depicts 95% CI of block-resampled null distribution); D) we observed a peak in
299 mean participation coefficient (PC) \sim 4 seconds (2 TRs) prior to the Button Press during the task. All: grey
300 shading depicts 97.5th and 2.5th percentile of null distribution i.e., outside grey shading indicates a value
301 different than null [$p < 0.05$]; and lower: red shading represents SEM error bars).

302

303 ***Discussion***

304 Our results provide evidence for an arousal-mediated macroscopic network and energy
305 landscape reconfiguration which tracks with moment-to-moment alterations in conscious
306 awareness. By tracking fluctuations in BOLD signal within the noradrenergic LC and the
307 cholinergic BNM, we were able to demonstrate fundamental ways in which the low-
308 dimensional, dynamic, and topological signature of cortical dynamics was related to changes
309 within the ascending arousal system. Furthermore, we demonstrated a link between these
310 dynamic reconfigurations and alterations in conscious awareness in a cohort of experienced
311 meditators. In this way, our results provide a novel, systems-level perspective on the
312 distributed dynamics of the human brain.

313

314 There is growing evidence that distributed neural dynamics in the brain are well described by
315 relatively low-dimensional models^{17,18,43-45}, however the biological constraints that impose
316 these features on the brain remain poorly understood. Due to the low number of cells in the
317 arousal system and their broad projections to the rest of the brain, we theorized that
318 neuromodulatory regions are well-placed to shape and constrain the vast number of neurons
319 in the cerebral cortex into low-dimensional dynamic modes. Our results support this
320 prediction by showing that patterns of activity in key regions within the brainstem and
321 forebrain relate to fundamental alterations in a dynamically evolving energy landscape. In
322 other words, neural state space trajectories are a powerful framework that extends beyond
323 that of mere analogy, and the ascending arousal system is well-placed to mediate
324 deformations in the energy landscape.

325

326 Much in the same way that there are many different reference frames for navigation – e.g.,
327 egocentric (i.e., straight, left, right directions), which is independent of the environment; and
328 allocentric (i.e., following compass directions and visual cues), which is dependent on the
329 environment – we can interrogate energy landscapes using different vantage points on
330 BOLD dynamics. Our displacement framework is consistent with an egocentric (or ‘first-
331 person’) frame of reference, wherein MSD is used to track BOLD trajectories from an initial
332 state which maps out the topology of the energy landscape (i.e., a BOLD MSD implies a
333 BOLD trajectory). Nonetheless, the method does not distinguish between two different
334 neural trajectories that possess the same MSD. In comparison, other methods have evaluated
335 the energy landscape for a given pre-defined state estimated from thresholded BOLD
336 timeseries^{22,23} a framework consistent with an allocentric (or ‘third-person’) reference frame.
337 This framework has the advantage of calculating energy for a given state, however, it also
338 requires substantial exploration of the state-space – which is typically unfeasible – or the
339 need to resort to severe coarse-graining (such as the binarization of BOLD activity) which
340 further diminishes interpretability. Furthermore, the allocentric view does not provide
341 insights into the transitions between each energy state, whereas this information is inherent
342 to the egocentric reference. Along these lines, we found that the egocentric reference frame
343 clearly demonstrated the flattening and deepening of the energy landscape, providing indirect
344 evidence that the ascending arousal system is well set-up to control brain-state dynamics
345 ‘egocentrically’ (as opposed to specific neural activity patterns). Nevertheless, given
346 improvements in recording length and novel analytic techniques to probe the brains
347 dynamical landscape, we expect that the field will ultimately discover even more optimal
348 mappings between neurobiology and low-dimensional brain state dynamics.

349
350 The results of our state-space analysis have important implications for the biological
351 mechanisms underlying cognition. For instance, the concept of locus coeruleus-mediated
352 energy landscape flattening is reminiscent of the $\alpha 1$ receptor-mediated notion of a ‘network
353 reset’⁴⁰. By increasing response gain (Fig. 1A) through the modulation of second-messenger
354 cascades⁴, noradrenaline released by the LC would augment inter-regional coordination³⁰.
355 Importantly, this capacity could confer adaptive benefits across a spectrum, potentially
356 facilitating the formation of flexible coalitions in precise cognitive contexts⁴⁶, while also
357 forcing a broader landscape flattening (i.e., a ‘reset’) in the context of large, unexpected

358 changes^{27,40}. Similarly, the idea that phasic cholinergic bursts deepens energy wells is
359 consistent with the idea that the cholinergic system instantiates divisive normalization within
360 the cerebral cortex¹⁴. Numerous cognitive neuroscience studies have shown that heightened
361 acetylcholine levels correspond to improvements in attentional precision^{8,8}. By deepening
362 energy wells, acetylcholine from the BNM could ensure that the brain remains within a
363 particular state and is hence not diluted by other (potentially distracting) brain states.
364 Determining the specific rules that govern the links between the neuromodulation of the
365 energy landscape and cognitive function⁴⁷⁻⁴⁹ is of paramount importance, particularly given
366 the highly integrated and degenerate nature of the ascending arousal system⁵⁰.

367

368 Our results also provide a systems-level perspective on an emerging corpus of work that
369 details the microscopic circuit level mechanisms responsible for conscious phenomena⁵¹. In
370 particular, a number of recent studies have highlighted the intersection between the axonal
371 projections of the ascending arousal system and pyramidal cell dendrites in the supragranular
372 regions of the cerebral cortex as a key site for mediating conscious awareness. For instance,
373 optogenetic blockage of the connections between the cell bodies and dendrites of thick-
374 tufted layer V pyramidal cells in the sensory cortex causally modulated conscious arousal in
375 mice⁵². Other work has shown that both the noradrenergic⁵³ and cholinergic⁵⁴ systems alter
376 this mechanism, albeit in distinct ways: noradrenaline would promote burst firing due to the
377 α 2a receptor-mediated closure of *I*_b HCN leak-channels⁵³, whereas the cholinergic system
378 instead prolongs the time-scale of firing via M1 cholinergic receptor activation on pyramidal
379 cell dendrites⁵⁴. In this way, coordinated activity in the ascending arousal system can mediate
380 alterations in microcircuit processing that ultimately manifest as alteration in macroscopic
381 brain network dynamics.

382

383 The vascular nature of the T2* fMRI signal is such that it is impossible to rule out the role of
384 haemodynamics in the results we obtained in our analysis. Indeed, there is evidence that
385 noradrenaline causes a targeted hyperaemia through the augmentation of G-protein-coupled
386 receptors on vascular smooth muscle cells^{55,56}. However, it is also clear that the
387 haemodynamics and massed neural action in the cerebral cortex are inextricably linked^{57,58}. In
388 addition, there is evidence that stimulation of the locus coeruleus leads to the high-
389 frequency, low-amplitude electrophysiological activity patterns characteristic of the awake

390 state¹⁰. Together, these results argue that the locus coeruleus mediates a combination of
391 haemodynamic and neural responses that facilitate integrative neural network interactions
392 and subsequently mediate alterations in conscious awareness.

393

394 In this manuscript, we have argued that the ascending arousal system provides crucial
395 constraints over normal brain function, however there are numerous examples wherein
396 pathology within the ascending arousal system leads to systemic impairments in cognition. In
397 addition to disorders of consciousness⁵⁹, dementia syndromes are also crucially related to
398 dysfunction within the ascending arousal system. For instance, Alzheimer's disease has been
399 linked to tau pathology within the BNM²⁶, however individuals with Alzheimer's disease also
400 often have pathological involvement of the LC as well⁶⁰. Similarly, individuals with
401 Parkinson's disease often have extra-dopaminergic pathology in the LC⁶¹, as well as in the
402 cholinergic tegmentum⁶². Given the pathological processes at play in these disorders, we
403 expect that other neuromodulatory systems will also be impaired, and in turn effect the
404 macroscopic dynamics of the system in ways that remain to be elucidated.

405

406 In conclusion, we leveraged a high-resolution 7T resting state fMRI dataset to test the
407 hypothesis that activity within the ascending arousal system shapes and constrains patterns
408 of systems-level network reconfiguration. Our results support specific predictions from a
409 recent hypothetical framework¹⁵, and further delineate the manner in which the autonomic
410 nervous system shapes and constraints ongoing, low-dimensional brain state dynamics in the
411 central nervous system in a manner that supports changes in conscious awareness.

412

413 **Methods**

414 **7T resting state fMRI**

415 Sixty-five healthy, right-handed adult participants (mean, 23.35 years; SD, 3.6 years; range
416 18–33 years; 28 females) were recruited, of whom 59 were included in the final analysis (four
417 participants were excluded due to MR scanning issues, one participant was excluded due to
418 an unforeseen brain structure abnormality, and one was excluded due to inconsistent BOLD
419 dynamics following global-signal regression). Participants provided informed written consent
420 to participate in the study. The research was approved by The University of Queensland
421 Human Research Ethics Committee. These data were originally described in Hearne et al.,
422 2017⁶³. 1050 (~10 minutes) whole-brain 7T resting state fMRI echo planar images were
423 acquired using a multiband sequence (acceleration factor = 5; 2 mm³ voxels; 586 ms TR;
424 23 ms TE; 40° flip angle; 208 mm FOV; 55 slices). Structural images were also collected to
425 assist functional data pre-processing (MP2RAGE sequence – 0.75 mm³ voxels 4,300 ms TR;
426 3.44 ms TE; 256 slices).

427

428 DICOM images were first converted to NIfTI format and realigned. T1 images were
429 reoriented, skull-stripped (FSL BET), and co-registered to the NIfTI functional images using
430 statistical parametric mapping functions. Segmentation and the DARTEL algorithm were
431 used to improve the estimation of non-neural signal in subject space and the spatial
432 normalization. From each grey-matter voxel, the following signals were regressed: linear
433 trends, signals from the six head-motion parameters (three translation, three rotation) and
434 their temporal derivatives, white matter, and CSF (estimated from single-subject masks of
435 white matter and CSF). The aCompCor method (Behzadi et al., 2007) was used to regress
436 out residual signal unrelated to neural activity (i.e., five principal components derived from
437 noise regions- of-interest in which the time series data were unlikely to be modulated by
438 neural activity). Participants with head displacement > 3 mm in > 5% of volumes in any one
439 scan were excluded ($n = 5$). A temporal band pass filter ($0.01 < f < 0.15$ Hz) was applied to
440 the data.

441

442 **Brain parcellation**

443 Following pre-processing, the mean time series was extracted from 400 pre-defined cortical
444 parcels using the Schaefer atlas (Schaefer et al., 2018). Probabilistic anatomical atlases were

445 used to define the location of the noradrenergic LC⁶⁴ and the cholinergic BNM (Ch4 cell
446 group)⁶⁵. The mean signal intensity from each region was extracted and then used for
447 subsequent analyses. To ensure that the BOLD data were reflective of neuronal signals, we
448 statistically compared LC and BNM time series with a number of potential nuisance signals
449 from: i) the cerebrospinal fluid; ii) the cortical white matter; iii) mean framewise
450 displacement; and iv) a 2mm³ sphere in the fourth ventricle (centred at MNI co-ordinates: 0
451 -45 -30)⁶⁶. All signals were unrelated to LC and BNM activity ($|r| < 0.05$ in each case),
452 however given the spatial proximity of the LC to the fourth ventricle, we opted to use a
453 linear regression to residualize the signal from the fourth ventricle. To ensure that BOLD
454 signals from nearby grey matter structures were not influencing the locus coeruleus
455 timeseries, we extracted the mean activity of the locus coeruleus mask after shifting the mask
456 anteriorly such that it overlapped with an area of the pons that harbours the nuclei (i.e.,
457 +8mm in the Y direction). In the same manner in which we previously regressed the
458 dynamics of the fourth ventricle, we regressed the activity of this non-LC pontine region,
459 and then re-analysed our data. Each of the results was statistically identical following this
460 approach, providing confidence that the original conclusions were not biased by a lack of
461 regional specificity.

462

463 **Phasic increases in neuromodulatory BOLD signal**

464 To identify phasic increases in neuromodulatory BOLD signal, we calculated the second
465 derivative (i.e., the acceleration) of the LC and BNM time series, and then identified points
466 in time that fulfilled three criteria: 1) value greater than or equal to 2 s.d. above the mean
467 acceleration; 2) value of the original time series, i.e., LC or BNM, was greater than or equal
468 to 2 s.d. above the mean of the time series within the following 10 TRs (i.e., 5.8 seconds);
469 and 3) the time point was not present within the first or last 20 TRs of an individual subjects'
470 trial (so as to avoid potential boundary effects). Using these criteria, we identified 148 τ_{LC-BNM}
471 time points, 130 τ_{BNM-LC} time points and 316 τ_{LC+BNM} time points across all 59 subjects. To
472 ensure that the choice of 2 s.d. threshold was reflective of the underlying dynamics, we
473 altered this threshold between 1-3 s.d. and found robustly similar patterns. For subsequent
474 analyses, we identified time points in the 21 TR window surrounding these peaks, and then
475 used these to conduct statistical comparisons of the low-dimensional, complex network
476 signature of brain network dynamics as a function of phasic ascending arousal system

477 activity. Each of these patterns was confirmed using a lag-based cross-correlation analysis,
478 which demonstrated similar phenomena to those that we present in the manuscript.

479

480 To monitor the propagation of cortical signals with respect to τ_{LC-BNM} , τ_{BNM-LC} and τ_{LC+BNM} , we
481 extracted the time-to-peak of the cross-correlation between these signals and each of the 400
482 cortical parcels within the 10 TR (i.e., 5.8 second) windows following each identified phasic
483 peak. These patterns were mapped onto the cortex (Fig. 1B) for visualization and clearly
484 demonstrated anterior-to-posterior direction for the wave. We then used the volumetric
485 MNI co-ordinates of the Schaefer parcellation scheme to calculate the average velocity of the
486 travelling wave (0.13m s^{-1}).

487

488 In order to obtain an appropriate null model against which to compare our data, we
489 identified 5,000 random timepoints within the concatenated dataset that did not substantially
490 overlap with the already identified τ_{LC-BNM} , τ_{BNM-LC} and τ_{LC+BNM} time series, and used these to
491 populate a null distribution⁶⁷. Outcome measures were deemed significant if they were more
492 extreme than the 95th (or 5th) percentile of the null distribution. Crucially, this ensured that
493 our data could not be explained by the characteristic spatial and temporal autocorrelation
494 present in BOLD timeseries data.

495

496 **Time-resolved functional connectivity.**

497 To estimate functional connectivity between the 400 regions of interest, we used the
498 multiplication of temporal derivatives (MTD) technique. Briefly, MTD is computed by
499 calculating the point-wise product of temporal derivative of pair-wise time series. The
500 resultant score is then averaged over a temporal window, w (a window length of 20 TRs was
501 used in this study, though results were consistent for $w = 10\text{--}50$ TRs).

502

503 **Modularity Maximization**

504 The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT⁷³) was used
505 on the neural network edge weights to estimate community structure. The Louvain
506 algorithm iteratively maximizes the modularity statistic, Q , for different community
507 assignments until the maximum possible score of Q has been obtained:

$$Q_T = \frac{1}{\nu^+} \sum_{ij} (w_{ij}^+ - e_{ij}^+) \delta_{M_i M_j} - \frac{1}{\nu^+ + \nu^-} \sum_{ij} (w_{ij}^- - e_{ij}^-) \delta_{M_i M_j},$$

508 where ν is the total weight of the network (sum of all negative and positive connections), w_{ij}
509 is the weighted and signed connection between regions i and j , e_{ij} is the strength of a
510 connection divided by the total weight of the network, and $\delta_{M_i M_j}$ is set to 1 when regions are
511 in the same community and 0 otherwise. ‘+’ and ‘-’ super-scripts denote all positive and
512 negative connections, respectively. The modularity of a given network is therefore a
513 quantification of the extent to which the network may be subdivided into communities with
514 stronger within-module than between-module connections.

515

516 For each epoch, we assessed the community assignment for each region 500 times and a
517 consensus partition was identified using a fine-tuning algorithm from the Brain Connectivity
518 Toolbox (BCT; <http://www.brain-connectivity-toolbox.net/>). We calculated all graph
519 theoretical measures on un-thresholded, weighted and signed connectivity matrices⁷³. The
520 stability of the γ parameter was estimated by iteratively calculating the modularity across a
521 range of γ values (0.5-2.5; mean Pearson’s $r = 0.859 \pm 0.01$) on the time-averaged
522 connectivity matrix for each subject – across iterations and subjects, a γ value of 1.0 was
523 found to be the least variable, and hence was used for the resultant topological analyses.

524

525 **Participation Coefficient**

526 The participation coefficient, PC , quantifies the extent to which a region connects across all
527 modules (i.e., between-module strength) and has previously been used to successfully
528 characterize hubs within brain networks (e.g. see⁷⁵). The PC for each region was calculated
529 within each temporal window as,

$$PC = 1 - \sum_{s=1}^{n_M} \left(\frac{\kappa_{isT}}{\kappa_{iT}} \right)^2$$

530 where κ_{isT} is the strength of the positive connections of region i to regions in module s at
531 time T , and κ_{iT} is the sum of strengths of all positive connections of region i at time T .
532 Negative connections were discarded prior to calculation. The participation coefficient of a
533 region is therefore close to 1 if its connections are uniformly distributed among all the
534 modules and 0 if all of its links are within its own module.

535

536

537 **Brain State Displacement and the Energy Landscape**

538 To quantify the change in BOLD activity following phasic bursts of neuromodulation we
539 calculated the BOLD mean-squared displacement (MSD). The MSD is a measure of the
540 deviation in BOLD activity, $\mathbf{x}_t = [x_{1,t}, x_{2,t}, \dots, x_{r,t}]$ for r parcels, with respect to the
541 activity at the phasic onset, t_0 . The MSD is calculated as the average change of each voxel

$$MSD_{t,t_0} = \langle |\mathbf{x}_{t_0+t} - \mathbf{x}_{t_0}|^2 \rangle_r,$$

542 and it is calculated for different t_0 , where t_0 are the onset of a subcortical phasic burst,
543 across t TRs. We are interested in the probability, P_{MSD} , that we will observe a given
544 displacement in BOLD at a given time-lag t . We estimated the probability distribution
545 function $P(MSD, t)$ from n MSD_{t,t_0} samplings, – e.g., the identified n phasic bursts of
546 subcortical structures (as above) – using a Gaussian kernel density estimation $P(MSD, t) =$
547 $\frac{1}{4n} \sum_{i=1}^n K\left(\frac{MSD_{t,i}}{4}\right)$, where $K(u) = \frac{1}{2\sqrt{\pi}} e^{-\frac{1}{2}u^2}$ and we display the results for t between 1 to
548 15 TR and MSD between 0 to 50. As is typical in statistical mechanics the energy of a given
549 state, E_σ , and its probability are related $P(\sigma) = \frac{1}{Z} e^{-\frac{E_\sigma}{T}}$, where Z is the normalisation
550 function and T is a scaling factor equivalent to temperature in thermodynamics ²⁰. In our
551 analysis $\sum_\sigma P_\sigma = 1$ by construction and we can set $T = 1$ for the observed data. Thus, the
552 energy of each BOLD MSD for a given at a given time-lag t , E , is then equal to the natural
553 logarithm of the inverse probability, $P(MSD, t)$, of its occurrence:

$$E = \ln \frac{1}{P(MSD, t)}.$$

554

555 **Meditation Dataset**

556 Fourteen healthy right-handed non-smoking meditation practitioners (11 female; age 28-66)
557 underwent Siemens 3T MRI scanning (T1: TR = 2600 msec, TE = 3.9 msec, TI = 900 msec,
558 FOV = 24 cm, 256 x 256 matrix, voxel dimensions = 1 x 1 x 1 mm³; T2*: weighted gradient-echo
559 pulse sequence, TR = 1500 msec, TE = 30 msec, flip angle = 90 deg, FOV = 192 cm, 64 x 64
560 matrix, voxel dimensions = 3 x 3 x 4 mm³). All participants signed a consent form approved by
561 the Institutional Review Board at Emory University and the Atlanta Veterans Affairs

562 Research and Development Committee as an indication of informed consent. Participants
563 were asked to meditate for 20 min in the MRI scanner by maintaining focused attention on
564 the breath and keeping the eyes closed. They were instructed to press a button whenever
565 they realized their mind had wandered away from the breath, and then return their focus to
566 the breath. The epoch of time immediately prior to the button press was thus the moment in
567 time in which each individual recognized that their focus had deviated from their breath.
568 This information was used to construct a finite impulses response model that mapped the 5
569 TRs prior-to and following each button press. We then modelled LC>BNM activity, low-
570 dimensional dynamics and network topology around this epoch to construct a model of
571 state-space reconfiguration as a function of intrinsic conscious awareness. Non-parametric,
572 block-resampling null distributions were utilized for statistical testing ($p < 0.05$).
573

574 **Data availability**

575 The BOLD data was obtained from (Hearne et al., 2017)⁶³ and
576 The BOLD data that support the findings of this study were obtained from (Hearne et al.,
577 2017)⁶³ and they are available from the authors upon reasonable request. The subcortical
578 timeseries (τ_{LC} and τ_{BNM}) that support the findings of this study are available at
579 (github.com/Bmunn/BSI).

580

581

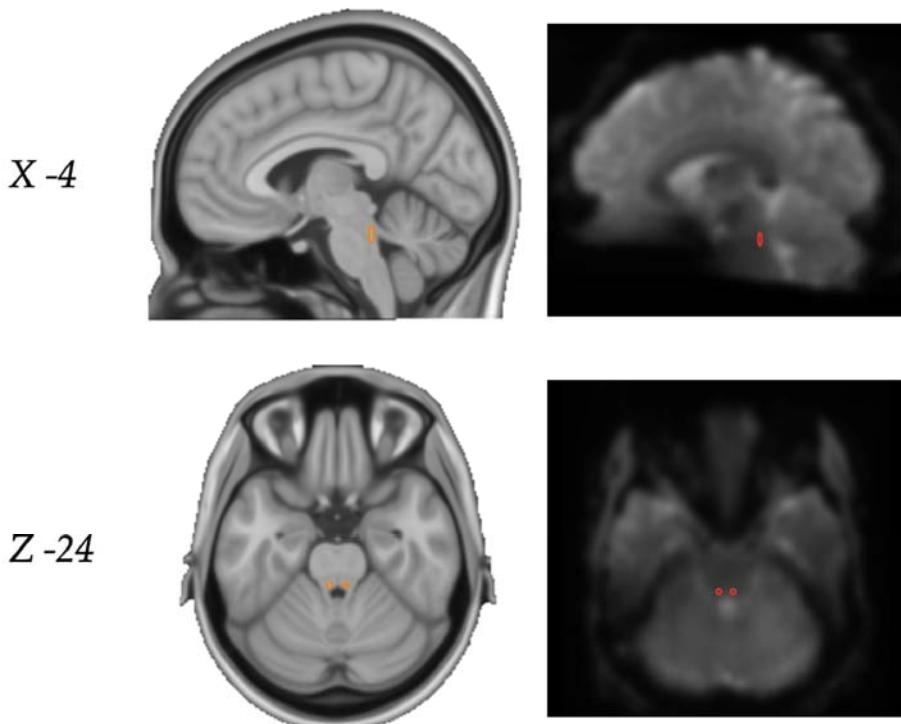
582 **Code availability**

583 All the code required to conduct the analysis can be found on Github at
584 (github.com/Bmunn/BSI).

585

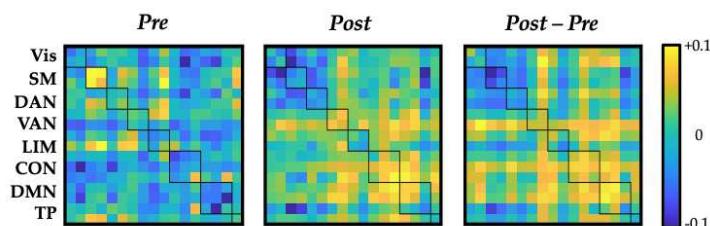
586 **Supplementary Figures**

0.5mm MNI Template Echo Planar Image



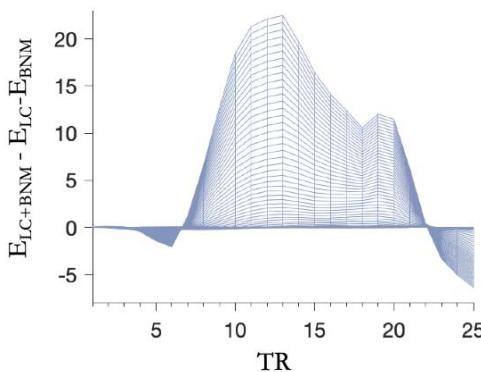
587

588 **Figure S1.** The locus coeruleus. Left: The anatomical locus coeruleus mask projected onto MNI 0.5mm
589 standard brain (orange); Right: The anatomical locus coeruleus mask down-sampled onto an example 7T Echo
590 Planar Image from a single subject (red).



591

592 **Figure S2. Time-varying correlations.** Average correlation preceding (left) and following (middle) the zero-
593 lagged value, along with the difference between the two (right); squares represent eight pre-defined
594 sub-networks: Vis – visual, SM – somatomotor, DAN – dorsal attention, VAN – ventral attention, LIM –
595 CON – control, DMN – default and TP – temporal pole.



596

597 **Figure S3 – LC and BNM move dynamics to differing regimes than unaroused activity and their**
598 **simultaneous combination LC+BNM.** The energy landscape of simultaneous LC+BNM phasic bursts
599 relative to their linear superposition, suggesting the simultaneous combination may allow the system to reach
600 particularly unique brain-states that neither individually could reach.

601

602 **References**

- 603 1. Sporns, O. Network attributes for segregation and integration in the human brain.
604 *Current Opinion in Neurobiology* **23**, 162–171 (2013).
- 605 2. Shine, J. M. The thalamus integrates the macrosystems of the brain to facilitate complex,
606 adaptive brain network dynamics. *Progress in Neurobiology* 101951 (2020)
607 doi:10.1016/j.pneurobio.2020.101951.
- 608 3. Bullmore, E. & Sporns, O. The economy of brain network organization. *Nature Reviews
609 Neuroscience* **13**, 336–349 (2012).
- 610 4. Shine, James M *et al.* Computational models link cellular mechanisms of
611 neuromodulation to large-scale brain dynamics. *Nature Neuroscience* **Ahead of Print**,
- 612 5. Brown, E. N., Purdon, P. L. & Van Dort, C. J. General Anesthesia and Altered States of
613 Arousal: A Systems Neuroscience Analysis. *Annu. Rev. Neurosci.* **34**, 601–628 (2011).
- 614 6. Salinas, E. & Sejnowski, T. J. Book Review: Gain Modulation in the Central Nervous
615 System: Where Behavior, Neurophysiology, and Computation Meet. *Neuroscientist* **7**, 430–
616 440 (2001).
- 617 7. Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. *Nature Reviews
618 Neuroscience* **10**, 211–223 (2009).
- 619 8. Hasselmo, M. E. & Sarter, M. Modes and models of forebrain cholinergic
620 neuromodulation of cognition. *Neuropharmacology* **53** (Pt 1): official publication of the American
621 College of Neuropharmacology **36**, 52–73 (2011).
- 622 9. Samuels, E. R. & Szabadi, E. Functional neuroanatomy of the noradrenergic locus
623 coeruleus: its roles in the regulation of arousal and autonomic function part II:
624 physiological and pharmacological manipulations and pathological alterations of locus
625 coeruleus activity in humans. *Current neuropharmacology* **6**, 254–285 (2008).

626 10. Carter, M. E. *et al.* Tuning arousal with optogenetic modulation of locus coeruleus
627 neurons. *Nature Neuroscience* **13**, 1526–1533 (2010).

628 11. Lin, S.-C., Brown, R. E., Hussain Shuler, M. G., Petersen, C. C. H. & Kepcs, A.
629 Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical
630 Activation, Plasticity, and Cognition. *The Journal of Neuroscience* **35**, 13896–13903 (2015).

631 12. Zaborszky, L. *et al.* Neurons in the basal forebrain project to the cortex in a complex
632 topographic organization that reflects corticocortical connectivity patterns: an
633 experimental study based on retrograde tracing and 3D reconstruction. *Cerebral cortex*
634 (*New York, N.Y.* **1991**) **25**, 118–137 (2015).

635 13. Servan-Schreiber, D., Printz, H. & Cohen, J. A network model of catecholamine effects-
636 Gain, signal-to-noise ratio, and behavior. *Science* **249**, 892–895 (1990).

637 14. Schmitz, T. W. & Duncan, J. Normalization and the Cholinergic Microcircuit: A Unified
638 Basis for Attention. *Trends in Cognitive Sciences* **22**, 422–437 (2018).

639 15. Shine, J. M. Neuromodulatory Influences on Integration and Segregation in the Brain.
640 *Trends in Cognitive Sciences* **23**, 572–583 (2019).

641 16. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural
642 recordings. *Nature Neuroscience* **17**, 1500–1509 (2014).

643 17. Shine, J. M. *et al.* Human cognition involves the dynamic integration of neural activity
644 and neuromodulatory systems. *Nat Neurosci* **22**, 289–296 (2019).

645 18. Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term
646 stability of cortical population dynamics underlying consistent behavior. *Nat Neurosci*
647 (2020) doi:10.1038/s41593-019-0555-4.

648 19. Miller, P. Dynamical systems, attractors, and neural circuits. *F1000Res* **5**, 992 (2016).

650 20. Tkačik, G. *et al.* Thermodynamics and signatures of criticality in a network of neurons.
651 *Proc Natl Acad Sci USA* **112**, 11508–11513 (2015).

652 21. Bialek, W. Perspectives on theory at the interface of physics and biology. *Rep. Prog. Phys.*
653 **81**, 012601 (2018).

654 22. Watanabe, T. *et al.* A pairwise maximum entropy model accurately describes resting-state
655 human brain networks. *Nat Commun* **4**, 1370 (2013).

656 23. Ezaki, T., Watanabe, T., Ohzeki, M. & Masuda, N. Energy landscape analysis of
657 neuroimaging data. *Phil. Trans. R. Soc. A.* **375**, 20160287 (2017).

658 24. Krzemiński, D. *et al.* Energy landscape of resting magnetoencephalography reveals
659 fronto-parietal network impairments in epilepsy. *Network Neuroscience* **4**, 374–396 (2020).

660 25. Breakspear, M. Dynamic models of large-scale brain activity. *Nature Neuroscience* **20**, 340–
661 352 (2017).

662 26. Mesulam, M. M. Cholinergic circuitry of the human nucleus basalis and its fate in
663 Alzheimer's disease. *Journal of Comparative Neurology* **521**, 4124–4144 (2013).

664 27. Aston-Jones, G. & Cohen, J. D. An Integrative Theory of Locus Coeruleus-
665 Norepinephrine Function: Adaptive Gain and Optimal Performance. *Annual Review of
666 Neuroscience* **28**, 403–450 (2005).

667 28. Muller, L., Chavane, F., Reynolds, J. & Sejnowski, T. J. Cortical travelling waves:
668 mechanisms and computational principles. *Nat Rev Neurosci* **19**, 255–268 (2018).

669 29. Shine, J. M. *et al.* The Dynamics of Functional Brain Networks: Integrated Network
670 States during Cognitive Task Performance. *Neuron* **92**, 544–554 (2016).

671 30. Shine, J. M., Aburn, M. J., Breakspear, M. & Poldrack, R. A. The modulation of neural
672 gain facilitates a transition between functional segregation and integration in the brain.
673 *Elife* **7**, e31130 (2018).

674 31. Thomas Yeo, B. T. *et al.* The organization of the human cerebral cortex estimated by
675 intrinsic functional connectivity. *Journal of Neurophysiology* **106**, 1125–1165 (2011).

676 32. Mather, M. & Sutherland, M. R. Arousal-Biased Competition in Perception and
677 Memory. *Perspect Psychol Sci* **6**, 114–133 (2011).

678 33. Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local
679 hotspots of neuronal excitation: How arousal amplifies selectivity in perception and
680 memory. *Behav Brain Sci* **39**, e200 (2016).

681 34. Robinson, R. Differential behavioral and biochemical effects of right and left
682 hemispheric cerebral infarction in the rat. *Science* **205**, 707–710 (1979).

683 35. Tona, K.-D. *et al.* In vivo visualization of the locus coeruleus in humans: quantifying the
684 test–retest reliability. *Brain Struct Funct* **222**, 4203–4217 (2017).

685 36. Kanamaru, T., Fujii, H. & Aihara, K. Deformation of attractor landscape via cholinergic
686 presynaptic modulations: a computational study using a phase neuron model. *PLoS one* **8**,
687 e53854 (2013).

688 37. Munn, B. & Gong, P. Critical Dynamics of Natural Time-Varying Images. *Phys. Rev. Lett.*
689 **121**, 058101 (2018).

690 38. Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M. & Valera, E. M. Dynamic Brain
691 Network Correlates of Spontaneous Fluctuations in Attention. *Cerebral cortex (New York,*
692 *N.Y.□: 1991)* **27**, 1831–1840 (2016).

693 39. Hasenkamp, W., Wilson-Mendenhall, C. D., Duncan, E. & Barsalou, L. W. Mind
694 wandering and attention during focused meditation: a fine-grained temporal analysis of
695 fluctuating cognitive states. *NeuroImage* **59**, 750–760 (2012).

696 40. Sara, S. J. & Bouret, S. Orienting and reorienting: the locus coeruleus mediates cognition
697 through arousal. *Neuron* **76**, 130–141 (2012).

698 41. Jahn, C. I., Varazzani, C., Sallet, J., Walton, M. E. & Bouret, S. Noradrenergic But Not
699 Dopaminergic Neurons Signal Task State Changes and Predict Reengagement After a
700 Failure. *Cerebral Cortex* bhaa089 (2020) doi:10.1093/cercor/bhaa089.

701 42. Sales, A. C., Friston, K. J., Jones, M. W., Pickering, A. E. & Moran, R. J. Locus
702 Coeruleus tracking of prediction errors optimises cognitive flexibility: an Active
703 Inference model. *PLoS computational biology* **15**, e1006267 (2019).

704 43. Gotts, S. J., Gilmore, A. W. & Martin, A. Brain networks, dimensionality, and global
705 signal averaging in resting-state fMRI: Hierarchical network structure results in low-
706 dimensional spatiotemporal dynamics. *NeuroImage* **205**, 116289 (2020).

707 44. Shine, J. M. *et al.* The Low-Dimensional Neural Architecture of Cognitive Complexity Is
708 Related to Activity in Medial Thalamic Nuclei. *Neuron* **104**, 849-855.e3 (2019).

709 45. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent
710 computation by recurrent dynamics in prefrontal cortex. *Nature* **503**, 78–84 (2013).

711 46. Müller, E. J., Munn, B. R. & Shine, J. M. Diffuse neural coupling mediates complex
712 network dynamics through the formation of quasi-critical brain states. *Nat Commun* **11**,
713 6337 (2020).

714 47. de Gee, J. W. *et al.* Pupil-linked phasic arousal predicts a reduction of choice bias across
715 species and decision domains. *eLife* **9**, e54014 (2020).

716 48. Pfeffer, T. *et al.* Catecholamines alter the intrinsic variability of cortical population
717 activity and perception. *PLoS Biology* **16**, e2003453 (2018).

718 49. Kosciessa, J. Q., Lindenberger, U. & Garrett, D. D. *Thalamocortical excitability adjustments*
719 *guide human perception under uncertainty.*

720 <http://biorxiv.org/lookup/doi/10.1101/2020.06.22.165118> (2020)

721 doi:10.1101/2020.06.22.165118.

722 50. Brezina, V. Beyond the wiring diagram: signalling through complex neuromodulator
723 networks. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* **365**,
724 2363–2374 (2010).

725 51. Aru, J., Suzuki, M. & Larkum, M. E. Cellular Mechanisms of Conscious Processing.
726 *Trends in Cognitive Sciences* **24**, 814–825 (2020).

727 52. Suzuki, M. & Larkum, M. E. General Anesthesia Decouples Cortical Pyramidal
728 Neurons. *Cell* **180**, 666-676.e13 (2020).

729 53. Labarrera, C. *et al.* Adrenergic Modulation Regulates the Dendritic Excitability of Layer 5
730 Pyramidal Neurons In Vivo. *Cell reports* **23**, 1034–1044 (2018).

731 54. Williams, S. R. & Fletcher, L. N. A Dendritic Substrate for the Cholinergic Control of
732 Neocortical Output Neurons. *Neuron* **101**, 486-499.e4 (2019).

733 55. Bekar, L. K., Wei, H. S. & Nedergaard, M. The Locus Coeruleus-Norepinephrine
734 Network Optimizes Coupling of Cerebral Blood Volume with Oxygen Demand. *J Cereb
735 Blood Flow Metab* **32**, 2135–2145 (2012).

736 56. Lecrux, C. & Hamel, E. Neuronal networks and mediators of cortical neurovascular
737 coupling responses in normal and altered brain states. *Phil. Trans. R. Soc. B* **371**, 20150350
738 (2016).

739 57. Moore, C. I. & Cao, R. The Hemo-Neural Hypothesis: On The Role of Blood Flow in
740 Information Processing. *Journal of Neurophysiology* **99**, 2035–2047 (2008).

741 58. Chow, B. W. *et al.* Caveolae in CNS arterioles mediate neurovascular coupling. *Nature*
742 **579**, 106–110 (2020).

743 59. Snider, S. B. *et al.* Disruption of the ascending arousal network in acute traumatic
744 disorders of consciousness. *Neurology* **93**, e1281–e1287 (2019).

745 60. Robertson, I. H. A noradrenergic theory of cognitive reserve: implications for
746 Alzheimer's disease. *Neurobiology of Aging* **34**, 298–308 (2013).

747 61. Rommelfanger, K. S. & Weinshenker, D. Norepinephrine: The redheaded stepchild of
748 Parkinson's disease. *Biochemical pharmacology* **74**, 177–190 (2007).

749 62. Bohnen, N. I. & Albin, R. L. The cholinergic system and Parkinson disease. *Behavioural*
750 *Brain Research* **221**, 564–573 (2011).

751 63. Hearne, L. J., Cocchi, L., Zalesky, A. & Mattingley, J. B. Reconfiguration of Brain
752 Network Architectures between Resting-State and Complexity-Dependent Cognitive
753 Reasoning. *J. Neurosci.* **37**, 8399–8411 (2017).

754 64. Keren, N. I., Lozar, C. T., Harris, K. C., Morgan, P. S. & Eckert, M. A. In vivo mapping
755 of the human locus coeruleus. *NeuroImage* **47**, 1261–1267 (2009).

756 65. Eickhoff, S. B. *et al.* A new SPM toolbox for combining probabilistic cytoarchitectonic
757 maps and functional imaging data. *NeuroImage* **25**, 1325–1335 (2005).

758 66. Li, R. *et al.* A pulse of transient fMRI increases in subcortical arousal systems during
759 transitions in attention. *63*.

760 67. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional
761 neuroimaging: a primer with examples. *Human brain mapping* **15**, 1–25 (2002).

762

763 **Author contributions**

764 MS conceived, funded, and directed the project. MS Curated the data. BM, EM, MS
765 Conducted the analysis. BM, MS Wrote the original draft. BM, EM, GW, MS Reviewed and
766 edited the manuscript.