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Abstract 14 

Models of cognitive function typically focus on the cerebral cortex and hence overlook 15 

functional links to subcortical structures. This view neglects the highly-conserved ascending 16 

arousal system's role and the computational capacities it provides the brain. In this study, we 17 

test the hypothesis that the ascending arousal system modulates cortical neural gain to alter 18 

the low-dimensional energy landscape of cortical dynamics. Our analyses of spontaneous 19 

functional magnetic resonance imaging data and phasic bursts in both locus coeruleus and 20 

basal forebrain demonstrate precise time-locked relationships between brainstem activity, 21 

low-dimensional energy landscapes, network topology, and spatiotemporal travelling waves. 22 

We extend our analysis to a cohort of experienced meditators and demonstrate locus 23 

coeruleus-mediated network dynamics were associated with internal shifts in conscious 24 

awareness. Together, these results present a novel view of brain organization that highlights 25 

the ascending arousal system's role in shaping both the dynamics of the cerebral cortex and 26 

conscious awareness.      27 

28 
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Main Text 29 

It is often difficult to see the forest for the trees, but to fully understand a concept typically 30 

involves an accurate depiction of both. That is, we need to comprehend not only the detailed 31 

workings of a specific system, but also how that system functions within a broader context 32 

of interacting parts. Modern theories of whole-brain function exemplify this challenge. For 33 

instance, activity in the brain has been shown to incorporate signatures of both local 34 

computational specificity (e.g., specialized regions within the cerebral cortex) as well as 35 

system-wide integration (e.g., the interactions between the cortex and the rest of the brain)1,2. 36 

Anatomical evidence suggests that the balance between integration and segregation is 37 

mediated in part by the relatively fixed white matter connections between cerebral cortical 38 

regions1 – local connectivity motifs support segregated activity, whereas the axonal, re-39 

entrant connections between regions act to integrate the distributed signals via a highly 40 

interconnected structural backbone3. However, how the human brain is also capable of 41 

remarkable contextual flexibility given this relatively fixed connectivity remains poorly 42 

understood. 43 

 44 

During cognitive tasks, neural activity rapidly reconfigures the functional large-scale network 45 

architecture of the brain to facilitate coordination between otherwise segregated cortical 46 

regions. Precisely how this flexibility is implemented in the brain without altering structural 47 

connectivity remains an open question in systems neuroscience. Although it is often 48 

overlooked in theories of whole brain function, the neuromodulatory ascending arousal 49 

system is well-placed to mediate this role4. The arousal system is comprised of a range of 50 

nuclei spread across the brainstem and forebrain that send wide-reaching axons to the rest of 51 

the central nervous system5. At their target sites, arousal neurons release neuromodulatory 52 

neurotransmitters that shape and constrain a region9s processing mode – altering their 53 

excitability and responsivity without necessarily causing them to fire an action potential4,6. As 54 

a result, subtle changes in the concentration of neuromodulatory chemicals can cause 55 

massive alterations in the dynamics of the target regions, leading to nonlinear effects on the 56 

coordinated patterns of activity that emerge from 8simple9 neuronal circuits4. 57 

 58 

The ascending arousal system also contains substantial heterogeneity – unique cell 59 

populations project in diverse ways to the cerebral cortex and release distinct 60 
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neurotransmitters. One key dichotomy is the distinction between adrenergic 61 

neuromodulation (predominantly via the locus coeruleus [LC]), which promotes arousal and 62 

exploratory behaviour7, and cholinergic neuromodulation (such as via the basal nucleus of 63 

Meynert [BNM]), which is associated with attentional focus and vigilance8. These highly 64 

interconnected9 structures both promote wakefulness and arousal10,11, albeit via distinct 65 

topological projections to the cerebral cortex: the LC projects in a diffuse manner that 66 

crosses typical specialist boundaries, whereas the BNM projects in a more targeted, region-67 

specific manner12 (Fig. 1A). The two systems have also been linked with distinct and 68 

complimentary computational principles: the noradrenergic LC is presumed to modulate 69 

interactions between neurons (response gain)13, whereas the cholinergic BNM is presumed to 70 

facilitate divisive normalization (multiplicative gain)14. Based on these anatomical and 71 

computational features, we have hypothesized that the interaction between these two 72 

neuromodulatory systems is crucial for mediating the dynamic, flexible balance between 73 

integration and segregation in the brain15. 74 

 75 

Another crucial feature of the ascending arousal system is that the number of neurons that 76 

project to the cerebral cortex is several orders of magnitude smaller than those that project 77 

back to the brainstem and forebrain16–18. Based on this feature, we further hypothesize that 78 

shifts in arousal are realized through a low-dimensional modulation of the ongoing neural 79 

activity (8brain state9)17. Conceptually, low-dimensional neural dynamics can be depicted as 80 

evolving on a brain state energy landscape19, where the energy of a given state corresponds 81 

to the occurrence probability, e.g. high energy brain states have a low occurrence probability 82 

(and v. v.). That is brain states evolve along the energy landscape topography, much like a ball 83 

rolls under the influence of gravity down a valley and requires energy to traverse up a hill, 84 

this corresponds to an evolution towards an attractive or repulsive brain state, respectively. 85 

This technique can resolve what might otherwise be obscured states of attraction (and 86 

repulsion) in a multi-stable system and has been successfully applied to the dynamics of 87 

spiking neurons20,21, blood oxygenation level dependent (BOLD) functional magnetic 88 

resonance imaging (fMRI)22,23, and magnetoencephalography (MEG)24. The approach offers 89 

several conceptual advances, but perhaps most importantly, it renders the otherwise 90 

daunting task of systems-level interpretation relatively intuitive. Importantly, this framework 91 

is not a mere analogy30, as the topography of the energy landscape shares a 1-to-1 92 
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correspondence with the generative equations required to synthesize realistic neural 93 

timeseries data25. In this manuscript, we test these ideas by combining high-resolution resting 94 

state fMRI data with analytic techniques from the study of complex systems. 95 

 96 

Results 97 

To begin with, we extracted time series data from major subcortical hubs within the 98 

noradrenergic LC9 (Fig. 1A, red) and cholinergic BNM26 (Fig. 1A, green) systems from 59 99 

healthy participants who had undergone high-resolution, 7T resting-state functional 100 

magnetic resonance imaging (fMRI; 2 mm3 voxels; TR = 586 ms repetition time). Given the 101 

known spatiotemporal interactions between the ascending arousal system and fluctuations in 102 

cerebrospinal fluid, we first controlled for activity fluctuations in the nearby fourth ventricle, 103 

which contains no neural structures, but nonetheless can cause alterations in the BOLD 104 

signal over time. We next accounted for nearby gray-matter signals, by regressing the signal 105 

from the nearby pontine nuclei. Using the residuals from these regressions from the LC 106 

signal, τLC, and the BMN signal, τBNM, we focused on the difference between these signals 107 

(τLC-BNM and τBNM-LC; concatenated across subjects) and then identified time points associated 108 

with phasic bursts of LC activity that led to sustained adrenergic (versus cholinergic) 109 

influence over evolving brain state dynamics (and v.v. for phasic bursts of BNM; see 110 

Methods). Importantly, the phasic mode of firing within the noradrenergic arousal system 111 

has been specifically linked to systemic influences that occur on time-scales relevant to 112 

cognitive function8,27. Tracking the mean cortical BOLD response around these peaks 113 

identified a spatiotemporal travelling wave (Fig. 1B; velocity = 0.13ms-1) that propagated 114 

from frontal to sensory cortices and tracked closely with the known path of the dorsal 115 

noradrenergic bundle9, albeit with a preserved 8island9 within the parietal operculum (Fig. 116 

1B). A block-resampling null model was applied to ensure that the results were not due to 117 

spatial-autocorrelation (p < 0.05; see Methods). These results can be inverted for BNM 118 

activity (relative to LC) as ������� � ��������. Furthermore, these results confirm that 119 

coordinated macroscale activity patterns align to fluctuations in activity within the ascending 120 

arousal system of the brainstem28. 121 
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 122 

 123 
Figure 1. Sympathetic activity precedes network-level integration. A) regional time series were extracted 124 

from the locus coeruleus (red), which is thought to alter response gain, and the basal nucleus of Meynert 125 
(green), which is thought to alter multiplicative gain, and compared to BOLD signal and topological signatures 126 

during the resting state; B) we observed a anterior-to-posterior traveling wave (velocity ~ 0.13ms-1) following 127 

peaks in τLC-BNM, which are shown on both the left (LH) and right (RH) hemispheres of a cortical flat map; C) 128 

the lagged cross-correlation between  and PC – dotted line depicts the zero-lag correlation, and the 129 

black lines depict the upper (lower) bounds of a block-resampled null model (95% CI); D) mean cortical 130 

participation coefficient (PC) preceding (left) and following (right) the zero-lagged  value, only the 131 

right hemisphere is shown (mirrored for ‘Post’); E) the participation coefficient following peak  was 132 

higher in the right- (red) vs. the left- (blue) hemisphere (p < 0.001; green bar).  133 

  134 

Time-varying network topology 135 

Based on previous empirical29, modelling30 and theoretical15 work, we predicted that phasic 136 

bursts in τLC-BNM would facilitate network-level integration by modulating increased neural 137 

gain among regions distributed across the cerebral cortex. As predicted, we observed a 138 

strong positive correlation between τLC-BNM and network-level integration (p < 0.05, block-139 

resampling null model; Fig. 1C) across the brain (Fig. 1D). An increase in phasic activity 140 

within the LC (relative to the BNM) preceded an increase in the mean level of integration 141 

within the cerebral cortex that was dominated by the frontoparietal cortices (Fig. 1D; 142 

parcellated according to the 17 resting-state networks identified in31). Interestingly, this 143 
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global integration was opposed by a relative topological segregation of limbic, visual, and 144 

motor cortices (Fig. S2). This increase in the synchronisation of the frontoparietal cortices 145 

following an increase in sensory-limbic coordination and LC activity may reflect arousal-146 

enhanced processing of sensory stimuli32,33. Furthermore, regional integration occurred 147 

earlier in the right- vs. the left-hemisphere (p<0.001; Fig. 1E), which is consistent with the 148 

known anatomical bias of the LC system34,35. Together, these findings provide robust 149 

evidence for the hypothesis that the balance between ascending noradrenergic and 150 

cholinergic tone facilitates a transition towards topological integration across the 151 

frontoparietal network of the brain15. 152 

 153 

Neuromodulation of the Energy Landscape 154 

The results of our initial analysis demonstrate that coordinated distributed activity in the 155 

cortex align with changes in small groups of neuromodulatory cells activity in the brainstem 156 

and forebrain, which in turn are proposed to constrain brain dynamics onto a low-157 

dimensional energy landscape (Fig. 2A). The effects of noradrenaline and acetylcholine can 158 

also be easily viewed through this lens: by integrating the brain, noradrenaline should flatten 159 

the energy landscape (Fig. 2A, red) facilitating otherwise unlikely brain state transitions, 160 

whereas in contrast, the segregative nature of cholinergic activity should act to deepen 161 

energy valleys (Fig. 2A, green) decreasing the likelihood of a brain state transition. In 162 

previous work, we have shown a correspondence between low-dimensional brain state 163 

dynamics across multiple cognitive tasks and the heterogenous expression of metabotropic 164 

neuromodulatory receptors17. This implies that neuromodulators act similar to catalysts in 165 

chemical reactions, which lower (or raise) the activation energy (EA) required to transform 166 

chemicals from one steady state (or energy well) to another (Fig. 2B). In the context of the 167 

interconnected, heterarchical networks that comprise the cerebral cortex, this would have 168 

the effect of flattening (or deepening) the energy landscape, promoting variable (or rigid) 169 

brain states36 (Fig. 2A).  170 
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 171 
Figure 2 – LC and BNM mediated shifts in energy landscape brain state space dynamics. A) an energy 172 

landscape, which defines the energy required to move between different brain states: by increasing response 173 
gain, the LC should flatten the energy landscape (red); by increasing multiplicative gain, the BNM should 174 

deepen the energy wells (green); B) the topography of the energy landscape can be conceptualized as similar to 175 

the activation energy (EA) that must be overcome in order to convert one chemical to another; C) Empirical 176 

BOLD trajectory energy as a function of MSD and TR of the baseline activity (EA, black) and after phasic 177 
bursts in LC (ELC, red) and BNM (EBNM, green) – relative to the baseline energy landscape phasic bursts in LC 178 

(ELC - EA, red inset) lead to a flattening or reduction of the energy landscape, whereas peaks in BNM (EBNM - 179 

EA, green inset) lead to a raising of the energy landscape. D) Empirical activation energy as a function of MSD 180 

averaged over lags  TR during base baseline activity (EA, Left) and following phasic bursts in LC 181 

(ELC, red) and BNM (EBNM, green). 182 

 183 
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To elucidate the role of phasic activity from the neuromodulatory system in modifying the 184 

energy landscape, we first estimated the energy of BOLD signal transitions across the 185 

cerebral cortex. Importantly, the term 8energy9 here is used in reference to its definition in 186 

statistical physics and hence does not represent the biological use of the term, which instead 187 

stands for the energy used by the brain to maintain or change neural activity. Specifically, we 188 

define the energy landscape, � , as the natural logarithm of the inverse probability of 189 

observing a given BOLD  ���  at a given time-lag 	 , P����, 	
 , calculated as  E �190 

ln �

�	�
�,
�
, where ���
,
� � ���
��
 � �
�����   is the mean-squared displacement (MSD) of 191 

BOLD signal, �
 � ���,
, ��,
, … , ��,
� across � voxels and 	 is the number of time-lags of 192 

size TR from a reference timepoint 	�  20. The probability of a BOLD signal transition, 193 

P����, 	
 , was estimated from the sampled ���
,
� , and we used a Gaussian kernel 194 

density estimation P����, 	
 � �

��
 ∑ � ��
��,�

�
��

��� , where ���
 � �

�√�
 ��

�

�
 ��

 (see 195 

Methods). Our analysis is consistent with the statistical mechanics interpretation that the 196 

energy of a given state, �� , and its probability are related �� � �

�
��

��
	 , where   is the 197 

normalisation function and  !  is a scaling factor equivalent to temperature in 198 

thermodynamics, where we set ! � 1 and  � 120. In this framework, a highly probable 199 

relative change in BOLD (as quantified by the MSD) corresponds to a relatively low energy 200 

transition (i.e., low EA), whereas an infrequently visited state will require the most energy 201 

(i.e., high EA). 202 

 203 

By treating energy as inversely proportional to the probability of brain state occurrence, our 204 

approach resembles other studies that have been applied to spiking dynamics of neuronal 205 

populations, spiking neurons20,21, BOLD fMRI22,23, MEG24, and natural scene37. However, 206 

these studies binarized continuous signals to reduce the brain state space (to 2�  states), 207 

however this approach requires the fitting of a threshold, which can be problematic in 208 

continuously recorded data. In contrast, our approach reduces the dimensionality by 209 

analysing the likelihood of a change in BOLD activity (i.e., the MSD), and thus retains the 210 

dimensionality of the underlying signal without the need for thresholding. This approach 211 

overcomes a major limitation inherent to previous energy landscape studies that require a 212 

large sample size to sufficiently sample the brain state space. 213 
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 214 

With this in mind, we turned our attention to the relationship between the ascending arousal 215 

system dynamics and the MSD energy landscape. To test the hypothesis that the 216 

neuromodulatory system alters the topography of the energy landscape, we calculated BOLD 217 

MSD energetics following phasic bursts of both LC relative to BNM (�������), ���, and 218 

BNM relative to LC (�������), ����, i.e., 	� was the onset of a phasic burst, and compared 219 

these to sampled brain evolutions without large changes in LC and BNM arousal i.e., 	� was 220 

all timepoints outside of a phasic burst in LC and BNM, analogous to the baseline energy 221 

landscape ��. We identified phasic bursts as peaks in the second derivative of the arousal 222 

BOLD signals ������� and ������� that lead to a sustained increase in BOLD activity for 223 

each individual (see Methods) and using these criteria, we identified 148 τLC-BNM time points 224 

and 130 τBNM-LC time points. 225 

 226 

The energy landscapes for these three states are defined by the energy for a given BOLD 227 

MSD at a given TR delay. Figure 2C demonstrates the baseline energy landscape (Fig. 2C, 228 

black), which corresponds to the reaction pathway in Fig. 2B, and the MSD energy 229 

landscape following phasic bursts in the LC (Fig. 2C, red) and BNM (Fig. 2C, green). These 230 

figures demonstrate an MSD energy landscape across displacement and time, wherein the 231 

energy relates to the likelihood of seeing a given mean change in bold activity (i.e., MSD) at a 232 

given temporal displacement (i.e., TR). For example, all the MSD energy landscapes have a 233 

high energy peak for large MSD at a short timescale as it is extremely unlikely that the bold 234 

activity would change significantly (quantified by a large MSD) in one TR (~0.5s), and 235 

neuromodulation increases the energy of such an initial change. The utility of the MSD 236 

energy landscape can be seen when comparing large phasic bursts of LC and BNM relative 237 

to baseline fluctuations. We found the largest change occurs around 10-15 TR (~6-9s) 238 

following a phasic burst that typically corresponds to a peak in the LC or BNM BOLD 239 

signal. At this ~6-9s temporal delay we see direct evidence that a phasic burst of LC 240 

flattened the energy landscape (decreased the energy relative to baseline Fig. 2C, red inset), 241 

thus making previously unlikely large MSD trajectories far more probable (Fig. 2D red), 242 

whereas a phasic burst of BNM activity (increased energy relative to baseline Fig. 2C, green 243 

inset) caused the energy landscape to be elevated, thus promoting local trajectories, and 244 

making large MSD deviations unlikely (Fig. 2D green). These patterns are analogous to 245 
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modulating a physical landscape in which towns sit within valleys separated by impassable 246 

mountains – when BNM is high, the towns remain isolated, whereas when LC is high, the 247 

towns are separated by easily navigated rolling plains and transitions between towns (novel 248 

combinations of consecutive brain states) can be easily realised.  249 

 250 

We next asked whether LC and BNM combined synergistically to alter the energy landscape. 251 

To achieve this, we isolated simultaneous phasic peaks in both LC and BNM (�
��
��). We 252 

found that the LC + BNM energy landscape differed from either independent LC or BNM 253 

activation, shifting the brain state into divergent regimes than could be explained by the 254 

HRF. By comparing the MSD energy topography for a given TR slice we found that the 255 

landscape switched from an anti- to de-correlation with the HRF. In other words, the 256 

cooperative behaviour between the noradrenergic and cholinergic systems allowed the brain 257 

to reach unique BOLD MSDs that neither could facilitate individually. To examine how 258 

simultaneous LC+BNM activity altered the energy landscape, we compared the energy 259 

relative to the two individual landscapes. As demonstrated in Fig. S3, the energy landscape 260 

following phasic bursts of LC+BNM differed in magnitude from that expected from a linear 261 

superposition of the LC and BNM energy landscape – i.e., LC+BNM $ (LC) + (BNM). 262 

Furthermore, to explore the dominance of either LC or BNM in this signal, we minimised 263 

the relationship LC+BNM � % LC + &BNM (conditional upon % and &  being positive 264 

constants) and found that % � 0.16 and & � 0.84 gave the best match to the LC+BNM 265 

energy landscape. That is, the BNM dynamics dominates the simultaneous LC+BNM energy 266 

landscape, which is consistent with the unidirectional synaptic projections from the LC that 267 

synapse upon the BNM on their way through to the cortex12, and suggests that phasic 268 

LC+BNM bursts may be initiated by the LC in order to elicit a cascade of BNM activity. 269 

 270 

Conscious awareness of shifts in BOLD state 271 

Interpreting the relationship between neuroimaging data and conscious awareness is 272 

notoriously challenging. For instance, it is currently not possible to directly determine the 273 

contents of self-directed thought without intervening, and thus altering, the contents of 274 

consciousness38. Although we can9t determine the contents of consciousness directly, we can 275 

use task designs to modulate the state of consciousness. To this end, we leveraged data from 276 

a group of 14 expert meditators who were asked to meditate during an fMRI scanning 277 
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session39, and to press a button when they noticed that their focus had drifted from their 278 

breath (Fig. 3A). At this point, there is a mismatch between expectation and conscious 279 

awareness, which is an internal state that has been previously linked to the activation of the 280 

noradrenergic system, both in theoretical40,41and computational42 work. Based on these 281 

studies, we predicted that the switch in internal conscious awareness would be facilitated by 282 

increases in locus coeruleus-mediated integration and subsequent reconfiguration of low-283 

dimensional brain states. Analysing time-resolved network data with a finite impulse 284 

response model, we observed a peak in locus coeruleus activity (Fig. 3B), TR-to-TR mean 285 

squared displacement (Fig. 3C) and elevated network-level integration (Fig. 3D) surrounding 286 

the change in conscious awareness (all p
PERM

 < 0.05; 95% CI of null distribution). These 287 

results confirm that the locus coeruleus mediates energy landscape reconfigurations and that 288 

these changes modulate internal states of conscious awareness.  289 

 290 
Figure 3 – Awareness of intrinsic state changes. A) participants performing breath-awareness meditation 291 
(Focus; blue) were trained to respond with a Button Press (orange) when they became Aware (purple) that they 292 

had become Distracted (i.e., their attention had wandered from their breath) and to then re-focus their 293 
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Attention (blue) on their breath; B) we observed a peak in �
��
�� (i.e., LC > BNM; red) ~4 seconds before 294 

the button press, which then returned to low levels (i.e., BNM > LC) in the 2-4 seconds following the button 295 

press; C) the Mean Squared Displacement (MSD; dark orange) of TR-to-TR BOLD signal was increased above 296 

null values around the peak in �
��
�� , as well as following the re-establishment of attentional focus (in 297 

panels B & C, grey shading depicts 95% CI of block-resampled null distribution); D) we observed a peak in 298 

mean participation coefficient (PC) ~4 seconds (2 TRs) prior to the Button Press during the task. All: grey 299 

shading depicts 97.5th and 2.5th percentile of null distribution i.e., outside grey shading indicates a value 300 

different than null [p < 0.05]; and lower: red shading represents SEM error bars).  301 

 302 

Discussion 303 

Our results provide evidence for an arousal-mediated macroscopic network and energy 304 

landscape reconfiguration which tracks with moment-to-moment alterations in conscious 305 

awareness. By tracking  fluctuations in BOLD signal within the noradrenergic LC and the 306 

cholinergic BNM, we were able to demonstrate fundamental ways in which the low-307 

dimensional, dynamic, and topological signature of cortical dynamics was related to changes 308 

within the ascending arousal system. Furthermore, we demonstrated a link between these 309 

dynamic reconfigurations and alterations in conscious awareness in a cohort of experienced 310 

meditators. In this way, our results provide a novel, systems-level perspective on the 311 

distributed dynamics of the human brain. 312 

 313 

There is growing evidence that distributed neural dynamics in the brain are well described by 314 

relatively low-dimensional models17,18,43–45, however the biological constraints that impose 315 

these features on the brain remain poorly understood. Due to the low number of cells in the 316 

arousal system and their broad projections to the rest of the brain, we theorized that 317 

neuromodulatory regions are well-placed to shape and constrain the vast number of neurons 318 

in the cerebral cortex into low-dimensional dynamic modes. Our results support this 319 

prediction by showing that patterns of activity in key regions within the brainstem and 320 

forebrain relate to fundamental alterations in a dynamically evolving energy landscape. In 321 

other words, neural state space trajectories are a powerful framework that extends beyond 322 

that of mere analogy, and the ascending arousal system is well-placed to mediate 323 

deformations in the energy landscape.  324 

 325 
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Much in the same way that there are many different reference frames for navigation – e.g., 326 

egocentric (i.e., straight, left, right directions), which is independent of the environment; and 327 

allocentric (i.e., following compass directions and visual cues), which is dependent on the 328 

environment – we can interrogate energy landscapes using different vantage points on 329 

BOLD dynamics. Our displacement framework is consistent with an egocentric (or 8first-330 

person9) frame of reference, wherein MSD is used to track BOLD trajectories from an initial 331 

state which maps out the topology of the energy landscape (i.e., a BOLD MSD implies a 332 

BOLD trajectory). Nonetheless, the method does not distinguish between two different 333 

neural trajectories that possess the same MSD. In comparison, other methods have evaluated 334 

the energy landscape for a given pre-defined state estimated from thresholded BOLD 335 

timeseries22,23 a framework consistent with an allocentric (or 8third-person9) reference frame. 336 

This framework has the advantage of calculating energy for a given state, however, it also 337 

requires substantial exploration of the state-space – which is typically unfeasible – or the 338 

need to resort to severe coarse-graining (such as the binarization of BOLD activity) which 339 

further diminishes interpretability. Furthermore, the allocentric view does not provide 340 

insights into the transitions between each energy state, whereas this information is inherent 341 

to the egocentric reference. Along these lines, we found that the egocentric reference frame 342 

clearly demonstrated the flattening and deepening of the energy landscape, providing indirect 343 

evidence that the ascending arousal system is well set-up to control brain-state dynamics 344 

8egocentrically9 (as opposed to specific neural activity patterns). Nevertheless, given 345 

improvements in recording length and novel analytic techniques to probe the brains 346 

dynamical landscape, we expect that the field will ultimately discover even more optimal 347 

mappings between neurobiology and low-dimensional brain state dynamics. 348 

 349 

The results of our state-space analysis have important implications for the biological 350 

mechanisms underlying cognition. For instance, the concept of locus coeruleus-mediated 351 

energy landscape flattening is reminiscent of the α1 receptor-mediated notion of a 8network 352 

reset940. By increasing response gain (Fig. 1A) through the modulation of second-messenger 353 

cascades4, noradrenaline released by the LC would augment inter-regional coordination30. 354 

Importantly, this capacity could confer adaptive benefits across a spectrum, potentially 355 

facilitating the formation of flexible coalitions in precise cognitive contexts46, while also 356 

forcing a broader landscape flattening (i.e., a 8reset9) in the context of large, unexpected 357 
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changes27,40.  Similarly, the idea that phasic cholinergic bursts deepens energy wells is 358 

consistent with the idea that the cholinergic system instantiates divisive normalization within 359 

the cerebral cortex14. Numerous cognitive neuroscience studies have shown that heightened 360 

acetylcholine levels correspond to improvements in attentional precision8,8. By deepening 361 

energy wells, acetylcholine from the BNM could ensure that the brain remains within a 362 

particular state and is hence not diluted by other (potentially distracting) brain states. 363 

Determining the specific rules that govern the links between the neuromodulation of the 364 

energy landscape and cognitive function47–49 is of paramount importance, particularly given 365 

the highly integrated and degenerate nature of the ascending arousal system50. 366 

 367 

Our results also provide a systems-level perspective on an emerging corpus of work that 368 

details the microscopic circuit level mechanisms responsible for conscious phenomena51. In 369 

particular, a number of recent studies have highlighted the intersection between the axonal 370 

projections of the ascending arousal system and pyramidal cell dendrites in the supragranular 371 

regions of the cerebral cortex as a key site for mediating conscious awareness. For instance, 372 

optogenetic blockage of the connections between the cell bodies and dendrites of thick-373 

tufted layer V pyramidal cells in the sensory cortex causally modulated conscious arousal in 374 

mice52. Other work has shown that both the noradrenergic53 and cholinergic54 systems alter 375 

this mechanism, albeit in distinct ways: noradrenaline would promote burst firing due to the 376 

α2a receptor-mediated closure of Ih HCN leak-channels53, whereas the cholinergic system 377 

instead prolongs the time-scale of firing via M1 cholinergic receptor activation on pyramidal 378 

cell dendrites54. In this way, coordinated activity in the ascending arousal system can mediate 379 

alterations in microcircuit processing that ultimately manifest as alteration in macroscopic 380 

brain network dynamics. 381 

 382 

The vascular nature of the T2* fMRI signal is such that it is impossible to rule out the role of 383 

haemodynamics in the results we obtained in our analysis. Indeed, there is evidence that 384 

noradrenaline causes a targeted hyperaemia through the augmentation of G-protein-coupled 385 

receptors on vascular smooth muscle cells55,56. However, it is also clear that the 386 

haemodynamics and massed neural action in the cerebral cortex are inextricably linked57,58. In 387 

addition, there is evidence that stimulation of the locus coeruleus leads to the high-388 

frequency, low-amplitude electrophysiological activity patterns characteristic of the awake 389 
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state10. Together, these results argue that the locus coeruleus mediates a combination of 390 

haemodynamic and neural responses that facilitate integrative neural network interactions 391 

and subsequently mediate alterations in conscious awareness. 392 

 393 

In this manuscript, we have argued that the ascending arousal system provides crucial 394 

constraints over normal brain function, however there are numerous examples wherein 395 

pathology within the ascending arousal system leads to systemic impairments in cognition. In 396 

addition to disorders of consciousness59, dementia syndromes are also crucially related to 397 

dysfunction within the ascending arousal system. For instance, Alzheimer9s disease has been 398 

linked to tau pathology within the BNM26, however individuals with Alzheimer9s disease also 399 

often have pathological involvement of the LC as well60. Similarly, individuals with 400 

Parkinson9s disease often have extra-dopaminergic pathology in the LC61, as well as in the 401 

cholinergic tegmentum62. Given the pathological processes at play in these disorders, we 402 

expect that other neuromodulatory systems will also be impaired, and in turn effect the 403 

macroscopic dynamics of the system in ways that remain to be elucidated. 404 

 405 

In conclusion, we leveraged a high-resolution 7T resting state fMRI dataset to test the 406 

hypothesis that activity within the ascending arousal system shapes and constrains patterns 407 

of systems-level network reconfiguration. Our results support specific predictions from a 408 

recent hypothetical framework15, and further delineate the manner in which the autonomic 409 

nervous system shapes and constraints ongoing, low-dimensional brain state dynamics in the 410 

central nervous system in a manner that supports changes in conscious awareness. 411 

412 
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Methods 413 

7T resting state fMRI  414 

Sixty-five healthy, right-handed adult participants (mean, 23.35 years; SD, 3.6 years; range 415 

18–33 years; 28 females) were recruited, of whom 59 were included in the final analysis (four 416 

participants were excluded due to MR scanning issues, one participant was excluded due to 417 

an unforeseen brain structure abnormality, and one was excluded due to inconsistent BOLD 418 

dynamics following global-signal regression). Participants provided informed written consent 419 

to participate in the study. The research was approved by The University of Queensland 420 

Human Research Ethics Committee. These data were originally described in Hearne et al., 421 

201763. 1050 (~10 minutes) whole-brain 7T resting state fMRI echo planar images were 422 

acquired using a multiband sequence (acceleration factor = 5; 2 mm3 voxels; 586 ms TR; 423 

23 ms TE; 400 flip angle; 208 mm FOV; 55 slices). Structural images were also collected to 424 

assist functional data pre-processing (MP2RAGE sequence – 0.75 mm3 voxels 4,300 ms TR; 425 

3.44 ms TE; 256 slices). 426 

 427 

DICOM images were first converted to NIfTI format and realigned. T1 images were 428 

reoriented, skull-stripped (FSL BET), and co-registered to the NIfTI functional images using 429 

statistical parametric mapping functions. Segmentation and the DARTEL algorithm were 430 

used to improve the estimation of non-neural signal in subject space and the spatial 431 

normalization. From each grey-matter voxel, the following signals were regressed: linear 432 

trends, signals from the six head-motion parameters (three translation, three rotation) and 433 

their temporal derivatives, white matter, and CSF (estimated from single-subject masks of 434 

white matter and CSF). The aCompCor method (Behzadi et al., 2007) was used to regress 435 

out residual signal unrelated to neural activity (i.e., five principal components derived from 436 

noise regions- of-interest in which the time series data were unlikely to be modulated by 437 

neural activity). Participants with head displacement > 3 mm in > 5% of volumes in any one 438 

scan were excluded (n = 5). A temporal band pass filter (0.01 < f < 0.15 Hz) was applied to 439 

the data.  440 

 441 

Brain parcellation 442 

Following pre-processing, the mean time series was extracted from 400 pre-defined cortical 443 

parcels using the Schaefer atlas (Schaefer et al., 2018). Probabilistic anatomical atlases were 444 
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used to define the location of the noradrenergic LC64 and the cholinergic BNM (Ch4 cell 445 

group)65. The mean signal intensity from each region was extracted and then used for 446 

subsequent analyses. To ensure that the BOLD data were reflective of neuronal signals, we 447 

statistically compared LC and BNM time series with a number of potential nuisance signals 448 

from: i) the cerebrospinal fluid; ii) the cortical white matter; iii) mean framewise 449 

displacement; and iv) a 2mm3 sphere in the fourth ventricle (centred at MNI co-ordinates: 0 450 

-45 -30)66. All signals were unrelated to LC and BNM activity (|r| < 0.05 in each case), 451 

however given the spatial proximity of the LC to the fourth ventricle, we opted to use a 452 

linear regression to residualize the signal from the fourth ventricle. To ensure that BOLD 453 

signals from nearby grey matter structures were not influencing the locus coeruleus 454 

timeseries, we extracted the mean activity of the locus coeruleus mask after shifting the mask 455 

anteriorly such that it overlapped with an area of the pons that harbours the nuclei (i.e., 456 

+8mm in the Y direction). In the same manner in which we previously regressed the 457 

dynamics of the fourth ventricle, we regressed the activity of this non-LC pontine region, 458 

and then re-analysed our data. Each of the results was statistically identical following this 459 

approach, providing confidence that the original conclusions were not biased by a lack of 460 

regional specificity. 461 

 462 

Phasic increases in neuromodulatory BOLD signal 463 

To identify phasic increases in neuromodulatory BOLD signal, we calculated the second 464 

derivative (i.e., the acceleration) of the LC and BNM time series, and then identified points 465 

in time that fulfilled three criteria: 1) value greater than or equal to 2 s.d. above the mean 466 

acceleration; 2) value of the original time series, i.e., LC or BNM, was greater than or equal 467 

to 2 s.d. above the mean of the time series within the following 10 TRs (i.e., 5.8 seconds); 468 

and 3) the time point was not present within the first or last 20 TRs of an individual subjects9 469 

trial (so as to avoid potential boundary effects). Using these criteria, we identified 148 τLC-BNM 470 

time points, 130 τBNM-LC time points and 316 τLC+BNM time points across all 59 subjects. To 471 

ensure that the choice of 2 s.d. threshold was reflective of the underlying dynamics, we 472 

altered this threshold between 1-3 s.d. and found robustly similar patterns. For subsequent 473 

analyses, we identified time points in the 21 TR window surrounding these peaks, and then 474 

used these to conduct statistical comparisons of the low-dimensional, complex network 475 

signature of brain network dynamics as a function of phasic ascending arousal system 476 
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activity. Each of these patterns was confirmed using a lag-based cross-correlation analysis, 477 

which demonstrated similar phenomena to those that we present in the manuscript. 478 

 479 

To monitor the propagation of cortical signals with respect to τLC-BNM, τBNM-LC and τLC+BNM, we 480 

extracted the time-to-peak of the cross-correlation between these signals and each of the 400 481 

cortical parcels within the 10 TR (i.e., 5.8 second) windows following each identified phasic 482 

peak. These patterns were mapped onto the cortex (Fig. 1B) for visualization and clearly 483 

demonstrated anterior-to-posterior direction for the wave. We then used the volumetric 484 

MNI co-ordinates of the Schaefer parcellation scheme to calculate the average velocity of the 485 

travelling wave (0.13m s-1). 486 

 487 

In order to obtain an appropriate null model against which to compare our data, we 488 

identified 5,000 random timepoints within the concatenated dataset that did not substantially 489 

overlap with the already identified τLC-BNM, τBNM-LC and τLC+BNM time series, and used these to 490 

populate a null distribution67. Outcome measures were deemed significant if they were more 491 

extreme than the 95th (or 5th) percentile of the null distribution. Crucially, this ensured that 492 

our data could not be explained by the characteristic spatial and temporal autocorrelation 493 

present in BOLD timeseries data. 494 

 495 

Time-resolved functional connectivity. 496 

To estimate functional connectivity between the 400 regions of interest, we used the 497 

multiplication of temporal derivatives (MTD) technique. Briefly, MTD is computed by 498 

calculating the point-wise product of temporal derivative of pair-wise time series. The 499 

resultant score is then averaged over a temporal window, w (a window length of 20 TRs was 500 

used in this study, though results were consistent for w = 10–50 TRs). 501 

 502 

Modularity Maximization 503 

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT73) was used 504 

on the neural network edge weights to estimate community structure. The Louvain 505 

algorithm iteratively maximizes the modularity statistic, Q, for different community 506 

assignments until the maximum possible score of Q has been obtained: 507 
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where v is the total weight of the network (sum of all negative and positive connections), wij 508 

is the weighted and signed connection between regions i and j, eij is the strength of a 509 

connection divided by the total weight of the network, and δMiMj is set to 1 when regions are 510 

in the same community and 0 otherwise. 8+9 and 8–9 super-scripts denote all positive and 511 

negative connections, respectively. The modularity of a given network is therefore a 512 

quantification of the extent to which the network may be subdivided into communities with 513 

stronger within-module than between-module connections. 514 

 515 

For each epoch, we assessed the community assignment for each region 500 times and a 516 

consensus partition was identified using a fine-tuning algorithm from the Brain Connectivity 517 

Toolbox (BCT; http://www.brain-connectivity-toolbox.net/). We calculated all graph 518 

theoretical measures on un-thresholded, weighted and signed connectivity matrices73. The 519 

stability of the γ parameter was estimated by iteratively calculating the modularity across a 520 

range of γ values (0.5-2.5; mean Pearson9s r = 0.859 +-0.01) on the time-averaged 521 

connectivity matrix for each subject – across iterations and subjects, a γ value of 1.0 was 522 

found to be the least variable, and hence was used for the resultant topological analyses. 523 

 524 

Participation Coefficient 525 

The participation coefficient, PC, quantifies the extent to which a region connects across all 526 

modules (i.e., between-module strength) and has previously been used to successfully 527 

characterize hubs within brain networks (e.g. see 75). The PC for each region was calculated 528 

within each temporal window as,  529 

PC � 1 � . 56� �

6��
7

�
��

 ��

 

where kisT is the strength of the positive connections of region i to regions in module s at 530 

time T, and kiT is the sum of strengths of all positive connections of region i at time T. 531 

Negative connections were discarded prior to calculation. The participation coefficient of a 532 

region is therefore close to 1 if its connections are uniformly distributed among all the 533 

modules and 0 if all of its links are within its own module. 534 
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                   535 

 536 

Brain State Displacement and the Energy Landscape 537 

To quantify the change in BOLD activity following phasic bursts of neuromodulation we 538 

calculated the BOLD mean-squared displacement (MSD). The MSD is a measure of the 539 

deviation in BOLD activity, 8
 � 9��,
, ��,
, … , ��,
:  for �  parcels, with respect to the 540 

activity at the phasic onset, 	�. The MSD is calculated as the average change of each voxel 541 

���
,
�  �  ��8
��
 � 8
�����, 
and it is calculated for different 	� , where 	�  are the onset of a subcortical phasic burst, 542 

across 	  TRs. We are interested in the probability, P�
� , that we will observe a given 543 

displacement in BOLD at a given time-lag 	 . We estimated the probability distribution 544 

function P����, 	
 from ;  ���
,
�  samplings, – e.g., the identified ;  phasic bursts of 545 

subcortical structures (as above) – using a Gaussian kernel density estimation P����, 	
 �546 

�

��
 ∑ � ��
��,�

�
��

��� , where ���
 � �

�√�
 ��

�

�
 ��and we display the results for 	 between 1 to 547 

15 TR and ��� between 0 to 50. As is typical in statistical mechanics the energy of a given 548 

state, �� , and its probability are related ��<
 � �

�
��

��
	 , where   is the normalisation 549 

function and ! is a scaling factor equivalent to temperature in thermodynamics 20. In our 550 

analysis  ∑ ��� � 1 by construction and we can set ! � 1 for the observed data. Thus, the 551 

energy of each BOLD MSD for a given at a given time-lag 	, E, is then equal to the natural 552 

logarithm of the inverse probability, P����, 	
, of its occurrence: 553 

E � ln 1
P����, 	
. 

 554 

Meditation Dataset 555 

Fourteen healthy right-handed non-smoking meditation practitioners (11 female; age 28-66) 556 

underwent Siemens 3T MRI scanning (T1: TR = 2600 msec, TE = 3.9 msec, TI = 900 msec, 557 

FOV = 24 cm, 256 x 256 matrix, voxel dimensions = 1 x 1 x 1 mm3; T2*:  weighted gradient-echo 558 

pulse sequence, TR = 1500 msec, TE = 30 msec, flip angle = 90 deg, FOV = 192 cm, 64 x 64 559 

matrix, voxel dimensions = 3 x 3 x 4 mm3). All participants signed a consent form approved by 560 

the Institutional Review Board at Emory University and the Atlanta Veterans Affairs 561 
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Research and Development Committee as an indication of informed consent. Participants 562 

were asked to meditate for 20 min in the MRI scanner by maintaining focused attention on 563 

the breath and keeping the eyes closed. They were instructed to press a button whenever 564 

they realized their mind had wandered away from the breath, and then return their focus to 565 

the breath. The epoch of time immediately prior to the button press was thus the moment in 566 

time in which each individual recognized that their focus had deviated from their breath. 567 

This information was used to construct a finite impulses response model that mapped the 5 568 

TRs prior-to and following each button press. We then modelled LC>BNM activity, low-569 

dimensional dynamics and network topology around this epoch to construct a model of 570 

state-space reconfiguration as a function of intrinsic conscious awareness. Non-parametric, 571 

block-resampling null distributions were utilized for statistical testing (p < 0.05). 572 

 573 

Data availability 574 

The BOLD data was obtained from (Hearne et al., 2017)63 and  575 

The BOLD data that support the findings of this study were obtained from (Hearne et al., 576 

2017)63 and they are available from the authors upon reasonable request. The subcortical 577 

timeseries ( ���  and ���� ) that support the findings of this study are available at 578 

(github.com/Bmunn/BSI). 579 

 580 

 581 

Code availability 582 

All the code required to conduct the analysis can be found on Github at 583 

(github.com/Bmunn/BSI). 584 

585 
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Supplementary Figures 586 

 587 
Figure S1. The locus coeruleus. Left: The anatomical locus coeruleus mask projected onto MNI 0.5mm 588 
standard brain (orange); Right: The anatomical locus coeruleus mask down-sampled onto an example 7T Echo 589 

Planar Image from a single subject (red). 590 

 591 
Figure S2. Time-varying correlations. Average correlation preceding (left) and following (middle) the zero-592 

lagged  value, along with the difference between the two (right); squares represent eight pre-defined 593 

sub-networks: Vis – visual, SM – somatomotor, DAN – dorsal attention, VAN – ventral attention, LIM – 594 

limbic, CON – control, DMN – default and TP – temporal pole. 595 
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 596 
Figure S3 – LC and BNM move dynamics to differing regimes than unaroused activity and their 597 
simultaneous combination LC+BNM. The energy landscape of simultaneous LC+BNM phasic bursts 598 

relative to their linear superposition, suggesting the simultaneous combination may allow the system to reach 599 

particularly unique brain-states that neither individually could reach.  600 

601 
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