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Abstract 

Although next-generation sequencing technologies have accelerated the discovery of novel gene-to-disease 

associations, many patients with suspected Mendelian diseases still leave the clinic without a genetic diagnosis. 

An estimated one third of these patients will have disorders caused by mutations impacting splicing. RNA-

sequencing has been shown to be a promising diagnostic tool, however few methods have been developed to 

integrate RNA-sequencing data into the diagnostic pipeline. Here, we introduce dasper, an R/Bioconductor 

package that improves upon existing tools for detecting aberrant splicing by using machine learning to 

incorporate disruptions in exon-exon junction counts as well as coverage. dasper is designed for diagnostics, 

providing a rank-based report of how aberrant each splicing event looks, as well as including visualization 

functionality to facilitate interpretation. We validate dasper using 16 patient-derived fibroblast cell lines 

harbouring pathogenic variants known to impact splicing. We find that dasper is able to detect pathogenic 

splicing events with greater accuracy than existing LeafCutterMD or z-score approaches. Furthermore, by only 

applying a broad OMIM gene filter (without any variant-level filters), dasper is able to detect pathogenic 

splicing events within the top 10 most aberrant identified for each patient. Since using publicly available 

control data minimises costs associated with incorporating RNA-sequencing into diagnostic pipelines, we also 

investigate the use of 504 GTEx fibroblast samples as controls. We find that dasper leverages publicly available 

data effectively, ranking pathogenic splicing events in the top 25. Thus, we believe dasper can increase 

diagnostic yield for a pathogenic splicing variants and enable the efficient implementation of RNA-sequencing 

for diagnostics in clinical laboratories. 
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Introduction 

 

Next-generation sequencing has greatly accelerated the discovery of novel gene-to-disease associations1,2. As a 

result, whole exome sequencing (WES) and more recently, whole genome sequencing (WGS) are increasingly 

incorporated into the genetic diagnostic routine. However, it is estimated that the success rate of such DNA-

sequencing approaches in Mendelian diseases is plateauing at 35-50%3,4. To an extent, this is due to the 

challenges of interpreting genetic variation beyond those that alter protein sequence or DNA structure5,6. In 

particular, non-coding regulatory variants remain difficult to assess and are more likely to be classified as 

variants of unknown significance (VUS), as compared to coding variants for which more analytic approaches 

exist7. Pathogenic variants that impact splicing are one class of non-coding variation, which are likely to 

account for a significant proportion of unsolved cases8. The splicing machinery is tightly regulated by 

numerous cis and trans signals; this complexity is crucial for generating transcript and phenotypic diversity, 

but also increases the likelihood that genetic variation will disrupt splicing9,10. In fact, variants distributed in 

non-coding regions of the genome disproportionately affect splicing, often through disruptions to intronic 

splicing enhancers, silencers or recognition sequences11. Furthermore, aberrant splicing has been shown to be 

a primary cause of rare diseases, with an estimated one third of pathogenic variants impacting splicing12,13.  

 

Given the prevalence of unsolved rare disease patients with putative genetic causes through disruptions to 

splicing, there has been growing interest in the application of RNA-sequencing (RNA-seq) for diagnostics to 

directly measure transcriptome-wide splicing14. Using RNA-seq, we can obtain a functional readout of splicing 

levels, gene expression and allele-specific expression (ASE) in patients relative to unaffected controls. This 

enables the discovery of aberrant molecular products, which can be used to resolve the list of candidate genes 

and variants identified through WGS/WES to an actionable number. Aberrant RNA-level events discovered in 

this way can be used to re-prioritise VUS, leading to assignment of pathogenicity. Previous publications have 

demonstrated the promising utility of RNA-seq for diagnostics, with success rates ranging from 7.5-21% for 

patients with no candidate genes after WES and/or WGS15–18. In principle, information on splicing, gene 

expression and ASE obtained from RNA-seq all have diagnostic potential. However, in practice the majority of 

genetic diagnoses made through RNA-seq have involved detection of aberrant splicing15,16.  

 

Since the first systematic application of RNA-seq for diagnostics by Cummings and colleagues in 2017, there 

has been growing interest in developing methods to detect pathogenic RNA events in rare disease 

patients19–22. Although numerous tools exist to perform differential splicing analysis, almost all are designed to 

identify global transcriptional differences between moderate-to-large case-control cohorts23,24. Few are 

specialised for genetic diagnosis, where success relies on distinguishing a pathogenic splicing event in a single 

patient (N of 1). Improvements to the methodologies to detect pathogenic splicing events will relieve clinical 

scientists of the requirement for manual curation, permitting the wider implementation of RNA-seq-based 

approaches within accredited diagnostic laboratories and increasing diagnostic success.  
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Here, we introduce dasper, a method which integrates disruptions in both exon-exon junction and base pair 

level coverage data through machine learning to detect aberrant splicing events in patient samples. We find 

that dasper detects pathogenic splicing events with greater accuracy than existing methods. After applying an 

OMIM-morbid gene filter, dasper is able to rank true pathogenic splicing events in the top 10 most aberrant 

splicing events. Furthermore, dasper is designed with diagnostic applications in mind and includes functionality 

to visualize candidate genes in the form of sashimi plots for manual inspection (Figure 1). Finally, we 

demonstrate that dasper is able to effectively leverage publicly-available control RNA-seq datasets, making 

RNA-seq a more cost-effective, standardized solution for diagnostics. dasper is released as an R package on 

Bioconductor (http://www.bioconductor.org/packages/dasper) and we believe that its use will improve the 

detection of pathogenic splicing events and, ultimately, the diagnostic yield for rare disease patients.  
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Methods 

 

Obtaining the set of OMIM-morbid and gene panel genes 

The full set of Online Mendelian Inheritance in Man (OMIM) morbid genes were obtained using the biomaRt R 

package (v2.40.5), with gene symbols taken from the Ensembl v100 database. The Genomics England panels for 

neuromuscular disorders (v5.9) and mitochondrial disorders (v2.12) were downloaded from the PanelApp 

website (https://panelapp.genomicsengland.co.uk/panels/). Only <green= level genes with a high degree of 
confidence of association with disease were retained for downstream analyses.   

 

Patient samples 

RNA-sequencing was performed on a total of 55 individuals. 16 of these were genetically diagnosed Mendelian 

disease patients with known pathogenic splicing variants detailed in Supplementary Table 1. The remaining 39 

samples were used as controls. Variant types were classified by their proximity to annotated acceptor or donor splice sites. Those within 10bp of an acceptor or donor site were classified as <acceptor= or <donor= variants 
respectively, whilst those further than 10bp away were termed deep intronic.  

 

Fibroblast culture and RNA extraction 

Fibroblast cell lines cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal 

Bovine Serum and 0.05 g/ml uridine. Fibroblasts were harvested by first detaching cells using TrypLE Enzyme, 

followed by washing with Dulbecco's Phosphate Buffered Saline (DPBS) prior to storage at -80°C. Total RNA was extracted from fibroblast pellets following the manufacturer9s protocol. In order to assess RNA quality, 
RNA integrity numbers (RIN) were measured using Agilent Technologies 2100 Bioanalyzer or Agilent 4200 

Tapestation with all RIN values found to exceed 8.0. 
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RNA-sequencing, alignment and quality control of patient samples 

We prepared libraries for sequencing using the Illumina TruSeq Stranded mRNA Library Prep kit by loading 50 

ng of total RNA into the initial reaction; fragmentation and PCR steps were undertaken as per the 

manufacturer's instructions. Final library concentrations were determined using Qubit 2.0 fluorometer and 

pooled to a normalized input library. Pools were sequenced using the Illumina NovaSeq 6000 Sequencing 

system to generate 150 bp paired-end reads with an average read depth of ~100 million reads per sample. Pre-

alignment quality control including adapter trimming, read filtering and base correction were performed using 

fastp, an all-in-one FASTQ preprocessor (v0.20.0)25. Reads were aligned using STAR 2-pass (v2.7.0) to the hg38 

build of the reference human genome (hg38) using gene annotation from Ensembl v9726. Novel junctions 

discovered in the 1st pass alignment were used as input to the 2nd pass to improve the sensitivity of junction 

detection. Reads were required to uniquely map to only a single position in the genome. The minimum required 

overhang length of an annotated and unannotated junction was set to be 3 and 8 base pairs, respectively. The 

output BAM files underwent post-alignment QC using RSeQC (v2.6.4), with all samples passing quality control 

after manual assessment27.  

 

Control RNA-seq data 

dasper analysis was conducted with two sets of controls samples; 504 GTEx (v8) fibroblast samples or a set of 

55 in-house samples (including the 16 patients). GTEx v8 fibroblast junction and BigWig data was downloaded 

via the recount3 R package (v1.1.2) and filtered for samples without large CNVs or chromosomal duplications and deletions (SMAFRZE = <RNASEQ=)28–30. In-house RNA-seq data in the form of BAM files were converted into 

the BigWig format using megadepth (v1.08b) for input into dasper (v1.1.3)31.  

In order to investigate the effect of changing the number of control samples used on the detection of pathogenic 

events, we down-sampled control numbers systematically. For GTEx control samples, 10, 20, 40, 80, 160, 320 

up to a maximum of 504 samples were used. For in-house control samples, analysis was performed using 2, 4, 

8, 16, 32 up to a maximum of 55 samples. For each size (N) and type of control samples, 5 iterations were 

executed. For each iteration, we used N randomly selected control samples of the appropriate type as input into 

the dasper pipeline. When using in-house samples, to ensure that we were not including related patients as 

controls, any controls with pathogenic variants matching the current patient of interest were removed prior to 

down-sampling. 

 

LeafCutterMD 

 

STAR outputted junctions were wrangled into a bed format for input into LeafCutterMD (v2.7). All 55 in-house 

samples were used for intron clustering. Introns were clustered matching the settings used on the 

LeafCutterMD documentation, namely requiring at least 50 junctions supporting a cluster and permitting 
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introns of up to 500kb in size. Outlier intron excision analysis was performed on the 16 patient samples using 

default settings. Outputted p-values were standardized to ranks for comparison with the output of dasper22.  

 

dasper 

 

Figure 2a depicts the top-level workflow for dasper described in the following section. The inputs for dasper 

(v1.1.3) were junction read files (containing reads mapping with a gapped alignment to the genome) and 

BigWig files (which store coverage data) for control samples and the case sample of interest. Junction reads 

were annotated based on: i) whether their start and/or end position precisely overlapped with an annotated 

exon boundary, and ii) whether that junction read matched an intron definition from existing annotation as 

defined by Ensembl v9732. Using this information together with the strand, junctions were categorised as: 

annotated, novel acceptor, novel donor, novel combination, novel exon skip, ambiguous gene and unannotated. 

Annotated junctions were those that matched an existing intron definition. Novel acceptor and novel donor 

junctions had a single end that overlapped with a known exon boundary. Novel combination, novel exon skip 

and ambiguous gene junctions had both ends overlapping known exon boundaries, however the resulting 

introns did not match an existing intron definition as defined within Ensembl v97 (SUPP FIG 1). Novel 

combination junctions connected to exons associated with multiple transcripts, whilst novel exon skip 

junctions were only associated with a single transcript. Ambiguous gene junctions were connected exons 

originating from 2 different genes. Unannotated junctions had neither end overlapping a known exon 

boundary.  Junctions were filtered for those that had at least 5 counts in at least 1 sample, a length between 20-

1,000,000 base pairs, did not overlap any ENCODE blacklist regions and were not classified as ambiguous gene 

or unannotated30. For each junction, any other junction that shared an acceptor or donor site with it was 

obtained to form a junction cluster. In order to normalize the junction counts to enable comparison between 

samples, the counts for each junction were divided by the total counts associated with its corresponding 

cluster.   

 

For each junction, 3 regions of interest were defined and used to obtain coverage information, namely the 

intron and the two flanking exons. Exon boundaries were based on exon definitions if the end of a junction 

overlapped an annotated exon. Otherwise, the putative unannotated exons were presumed to be 20bp in 

length. Coverage across these 3 regions was loaded from BigWig files. In order to normalize the coverage for 

comparison between samples, the mean coverage across each of the 3 regions was divided by the total 

coverage across the exons of the associated gene.  

 

We used z-scores to assess the degree to which junctions and coverage in each patient deviated from the 

corresponding distribution in controls. For each junction, the coverage z-score with the greatest absolute value 

across the 3 regions was retained, reducing the number of z-scores per junction from 4 to 2. Junctions were 

then split into those which had a junction count based z-score above 0 (up-regulated) and below 0 (down-

regulated). An isolation forest model was fitted on the up-regulated and the down-regulated junctions 
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separately, using the two z-scores as input. Isolation forests are an ensemble-based outlier detection method, 

that detect anomalies as those that require shorter paths to isolate33. The output of the isolation forest model 

was an outlier score per junction. Junction-level outlier scores were aggregated to a cluster-level rank in 3 

steps. First, clusters that did not contain at least 1 up-regulated and 1 down-regulated junction were omitted. 

Then, a mean was taken of the up-regulated and down-regulated junction with the greatest outlier scores in 

each cluster; this formed the cluster-level outlier score. Finally, within each patient, clusters were ranked based 

on this cluster-level outlier score, with a rank of 1 describing the cluster that had the lowest outlier score and 

so was predicted to be the most aberrant.  
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Results 

Pathogenic splicing events are characterized by abnormalities of annotated junction reads and 

coverage in associated regions  

 

Previous methods to detect aberrant splicing have often focused on up-regulated novel junctions that are never 

or very rarely present in controls15,18. However, studies have demonstrated that splicing disruptions have 

complex consequences, which can be difficult to predict from DNA sequence data alone31. For this reason, we 

first explored the consequences of pathogenic splicing variants using RNA-seq data derived from 16 well-

characterized and deeply-sequenced patient fibroblast samples. Importantly, this cohort was selected to be 

heterogenous with respect to disease and variant type [SUPP TABLE 1]. Patient samples were derived from 

individuals diagnosed with a range of neurological disease, focusing specifically on Mendelian mitochondrial 

disorders and rare neuromuscular conditions including Ullrich congenital muscular dystrophy [SUPP TABLE 1]. 

All patients had diagnostically-confirmed splicing variants impacting on acceptor sites, donor sites or located 

deep within intronic sequence. Detailed inspection using sashimi plots of the resulting sequence data 

demonstrated that all pathogenic splicing events were characterized by: i) up-regulated novel junction/s 

(termed UJs), ii) down-regulated annotated junction/s (termed DJs), and iii) changes in coverage within the 

associated exonic or intronic regions. For example, analysis of RNA-seq data from an individual with a 

pathogenic donor splice site variant in the gene, NDUFA4, confirmed that this variant resulted in the generation 

of an UJ due to use of an novel donor site 4bp downstream of the canonical splice site34 [FIGURE 1a]. However, 

based on the RNA-seq data we observed additional splicing changes, namely an almost complete absence of an 

annotated DJ, the appearance of another UJ as well as disruptions in coverage across the first intron [FIGURE 

1a]. Similarly, inspection of RNA-seq data derived from an individual with a pathogenic donor splice site 

variant in the gene HTRA2 [FIGURE 1b], showed that as well as causing retention of the intron 3 with loss of the 

canonical splicing event (DJ), there was also a novel UJ caused by use of an novel donor site which was not 

previously predicted or detected35 [FIGURE 1b].  

 

Next, we investigated the relationship between disruptions to junction usage (both UJs and DJ) and 

abnormalities in sequencing coverage over implied exonic and intronic regions for pathogenic splicing events. 

This was achieved by calculating corresponding z-scores for each of the four features of interest (UJ, UJ-related 

coverage, DJ and DJ-related coverage) and based on the distributions of counts and coverage in controls (~50 

in-house samples). We found that absolute UJ z-scores were significantly higher than DJ z-scores (median DJ: -

15.21, UJ: 27.82, p-value: 0.043) and that both types of junction z-scores tended to be higher than coverage z-

scores. Furthermore, we found that the correlation between junction and coverage z-scores was low (Pearson r 

= -0.1), suggesting that they contained distinct information. Similarly, UJ and DJ z-scores, though negatively 

correlated (Pearson r: -0.58), could be independently informative for detecting pathogenic splicing events 

[SUPP  FIGURE 2]. Thus, taken together our analysis suggested that pathogenic splicing events were 
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characterized by abnormalities in UJs, DJs and nearby coverage, and that all these features could be 

informative. 
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Development of a clinically accessible, machine-learning pathogenic splicing detection method  

 

Informed by our characterization of pathogenic splicing, we next sought to improve on existing approaches for 

the identification of aberrant splicing through development of a new tool, dasper. Given that we found that 

pathogenic splicing variants generate both DJs and UJs within a junction cluster, dasper explicitly requires each 

splicing event to have both features, reducing the search space for pathogenic events [FIGURE 2a]. 

Furthermore, dasper incorporates coverage information alongside junction counts to better inform the 

detection of pathogenic splicing events. These key improvements are embedded within the dasper workflow, 

which begins with the input of patient RNA-seq data, and a set of user-defined RNA-seq control samples. The 

formats of the files required for dasper are standard tabular junction data and BigWigs (Methods: dasper). This 

enables easy access to large publicly available control data sets through resources such as recount229 and 

recount330. Leveraging this advantage, dasper includes the functionality to download GTEx control data for all 

clinically-accessible tissues (fibroblasts, skeletal muscle, whole blood, adipose tissue, lymphocytes), permitting 

the running of dasper with only a single patient RNA-seq analysis sourced from any of these sample types. 

Within dasper the user can then load, locally normalize and score junctions and coverage counts in patients 

based on their deviation from the set of controls (Methods: dasper). After generating junction and coverage-

related features, dasper applies an outlier detection method, namely an isolation forest, to aggregate junction 

and coverage scores in a single metric describing the aberrancy of each splicing event33. Notably, dasper 

permits easy interchange of the statistical models used to score junctions and coverage as well as the addition 

of other features, enabling further optimisation of the pipeline in future.  Finally, the output of dasper is a 

ranked list of splicing events within each patient sample such that a rank of 1 represents the splicing event 

predicted to be most pathogenic [FIGURE 2a]. This is complemented by functions that enable visualisation of 

junctions and coverage of cases and controls in the form of sashimi plots to aid interpretation [FIGURE 1, 

FIGURE 2a].  

 

We assessed the utility of dasper and specifically the value of pairing the use of UJs and DJs, and incorporating 

coverage information to detect pathogenic splicing events, we compared the ranking of junctions generated on 

the basis of: i) UJs alone, ii) DJs alone, and dasper (UJs, DJs and coverage). This analysis demonstrated that 

dasper ranks pathogenic splicing events on average in the top 34 most aberrant, whilst use of only UJ or DJ 

information results in average similar ranks of 142 and 202 respectively [FIGURE 2b].  Overall, the use of 

information originating from both DJs and UJs, alongside the incorporation of coverage in dasper improves the 

detection of pathogenic splicing events. 
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dasper outperforms other methods used to detect pathogenic splicing  

 

Next, we evaluated and compared dasper9s performance in comparison to existing, commonly used approaches 
for pathogenic splicing detection, such as LeafCutterMD and z-score21. In order to enable comparison between 

tools, we converted LeafCutterMD p-values and z-scores to ranks such that the lowest p-value or highest 

absolute z-score was assigned a rank of 1. Based on the analysis of patient-derived fibroblast samples [SUPP 

TABLE 1], we found that the rankings for pathogenic splicing events produced by dasper were significantly 

lower than those generated by other methods (t-test p-value: vs LeafCutterMD 0.013; vs z-score: 0.0003) 

[FIGURE 3a]. However, given that pathogenic splicing can vary in its difficulty of detection, we also investigated 

the performance of dasper across different variant types both alone and relative to existing methods. We found 

that while dasper detected variants at donor versus acceptor sites with similar accuracy (wilcoxon p-value: 

0.482), pathogenic events caused by deep intronic variants received significantly higher ranks, indicating that 

they were more difficult to detect (wilcoxon p-value: 0.013) [FIGURE 3c]. Nonetheless, we noted that when 

compared to existing methodologies, dasper still had a significantly better performance across all variant types 

rather than being specific to certain classes. This suggests that dasper improves on the detection of pathogenic 

splicing compared to existing methods, including pathogenic splicing variants that are not in canonical splice 

sites and which can be difficult to detect.  

 

We recognized that the utility of dasper in diagnostic settings depends not only on how it compares to existing 

tools but on its performance in clinically-relevant contexts. To investigate this, we measured the absolute 

ranking of pathogenic splicing events using dasper. We found that pathogenic splicing events were ranked on 

average in the top 40 (median: 33.750) most aberrant events in each patient [FIGURE 3b], but note that these 

ranks were obtained without any gene, variant or phenotypic level filters. Given that in diagnostic settings only 

genetic variants in known disease-associated genes would be considered, we re-calculated rankings after 

filtering for splicing events that were connected to genes within the OMIM-morbid gene set or the appropriate 

Genomics England panels (see detailed methods). After filtering for OMIM-morbid genes, we found that dasper 

was able to rank pathogenic splicing events within the top 10 most aberrant in each patient (median: 6.750) 

[FIGURE 3b]. The more stringent gene panel-based filtering, which not only assumes the gene has to be known 

to cause disease but is also linked to the patient phenotype, further reduced rankings such that pathogenic 

events were within the top 5 most aberrant on average (median: 2.5) [FIGURE 3b]. In summary, dasper is able 

to rank pathogenic splicing events such that they would be identifiable with only minimal manual curation.
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dasper is able to leverage publicly available control data effectively 

While there is increasing evidence to show that paired patient-derived transcriptomic data can increase the 

diagnostic yield of WES/WGS, there remain significant barriers to implementing this approach in clinical 

settings. One such hurdle is the generation or identification of suitable control data. In the previous analyses, 

we have used ~50 in-house sequenced RNA samples as controls. We are aware that sequencing this number of 

RNA-seq samples would incur a substantial resource burden on diagnostic labs, which may not be feasible in 

practice. To address this issue, we assessed the performance of dasper when using publicly available GTEx v8 

data originating from 504 fibroblasts, matching the tissue of origin of patient-derived RNA-seq data in this 

study36. We found that, on average, using in-house samples resulted in more accurate calling of pathogenic 

splicing events, when compared to the use of GTEx samples as controls. The improvement in ranking of 

pathogenic events when using in-house controls was observed in 14/16 patients analysed. This pattern of 

improvement remained true following filtering for pathogenic splicing events within known disease genes 

(median no filter GTEx: 90, no filter in-house: 34) [FIGURE 4a, SUPP FIGURE 2]. However, this analysis also 

demonstrated that the absolute ranking when using publicly available controls may be sufficient to be useful 

when applied in a more clinically-relevant manner. After limiting splicing events to only those connected to 

genes already implicated in genetic disease as defined in OMIM, and using GTEx controls, dasper was still able 

to rank true pathogenic splicing events in the top 25 most abnormal events (median: 24.5). Overall, this 

suggests that while technical variability between patient and controls samples reduces our ability to detect 

pathogenic splicing events, publicly available control data is a viable alternative to costly, time-consuming in-

house data generation.  

 

Next, we explored the relationship between control sample number and the power to detect pathogenic 

splicing events, a significant concern for implementation in a diagnostic setting whether in-house or external 

control data is being used. To investigate this, we applied dasper while randomly down-sampling the number of 

control samples used, analysing GTEx and in-house control data separately. As would be expected, we found 

that an increase in the number of controls considerably improves the detection of pathogenic splicing events 

using either GTEx or in-house control data [FIGURE 4b]. Notably, while the rate of improvement in pathogenic 

splicing detection greatly diminishes with increasing control number suggesting a diminishing return, it does 

not appear to plateau at the maximum number of available samples for either control type. This analysis would 

suggest that further increases in the quantity of publicly available control samples could compensate against 

the technical differences between patient and control sample sets. Notably, we found that the ranking when 

using 504 GTEx controls matched the performance of using between 8 and 16 in-house samples [FIGURE 4b]. 

In summary, it is likely an increase in sample number would improve the detection of pathogenic events for 

both control types.  
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Discussion 

In this study, we present dasper, a user-friendly R/Bioconductor package used to detect aberrant splicing 

events from RNA-seq data. Here, we used a cohort of 16 patients with known pathogenic splicing variants to 

inform our development of dasper and demonstrate its utility. Uniquely, dasper pairs information from DJs with 

UJs as well as incorporating coverage changes across a gene to improve the detection of pathogenic splicing 

events. As a result, dasper outperformed the existing approaches, LeafCutterMD and z-score. Furthermore, 

dasper was able to rank pathogenic splicing events in the top 10 most aberrant after OMIM-morbid gene 

filtering. Designed with clinical accessibility and interpretation in mind, dasper uses standard RNA-seq data 

formats as input granting users flexibility to incorporate publicly available datasets as controls. Moreover, we 

demonstrated that dasper was able to leverage publicly available GTEx data effectively. Finally, dasper includes 

sashimi plot functionality to aid the manual inspection of candidate splicing events28,29,37. 

  

To the best of our knowledge, this is the first study to explore the impact of splicing variant subtypes and 

control sample selection. We demonstrate that dasper outperforms existing tools (LeafCutterMD and z-score) 

on splicing variants located not only at donor and acceptor sites, but also at deep intronic splicing variants, 

which are most challenging for all existing methods. Furthermore, our analyses highlighted that selection of 

control sample type and number greatly impacts on the power of pathogenic splicing detection. In particular, 

we compare two approaches to obtain control data; either the use of publicly available GTEx RNA-seq data or 

in-house sequencing data. While we find that the use of in-house samples improves the performance of dasper, 

presumably because of a reduction in the technical differences between patient and control data, this approach 

is associated with increased costs and reduced flexibility, creating barriers to the use of RNA-seq pipelines in 

diagnostic laboratories. In contrast, the use of publicly available datasets has minimal associated costs and is 

highly flexible, both in terms of the clinically-accessible tissue samples that can be analysed for a given patient, 

and the batching of samples which significantly affects turnaround times for laboratory results. Although 

dasper performed better when using in-house samples, GTEx samples still enabled pathogenic splicing events 

to be detected, on average, in the top 25 most aberrant after applying an OMIM-morbid filter alone. This 

ranking was equivalent to using 8-16 in-house samples suggesting that use of publicly available data is a viable, 

cost-effective alternative for the detection of pathogenic splicing. In this context, it is worth noting that public 

RNA-seq datasets are progressively increasing in size. In fact, for tissues such as blood, public datasets used 

collectively could provide RNA-seq profiles for >30,000 unrelated individuals which could be meta-analysed as 

elegantly demonstrated by the eQTLgen consortium38. Additionally, over 70,000 and 300,000 human RNA-seq 

samples are in recount2 and recount3 respectively28–30. Publicly available control data sets at this scale have 

the potential to both surpass the importance of large in-house control data sets, and permit different centers to 

use identical computational protocols for diagnoses that enable the standardization of pathogenic splicing 

identification across laboratories.  
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Together, through leveraging in-house or publicly available datasets effectively, we hope dasper will make 

RNA-seq a more affordable, effective and standardized tool for diagnostics and ultimately, lead to an increased 

rate of genetic diagnosis.
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Figures           
 

 
Figure 1 Pathogenic splicing is characterized by disruptions to junctions and coverage. Sashimi plots are split into two panels; the top 

representing the coverage and the bottom the junctions as well as gene body. Junctions are labelled with their counts and colored with 

respect to their annotation. The red cross represents the known pathogenic variant. The arrow represents the direction of transcription. a) 

In NDUFA4, the pathogenic splicing event can be observed through the appearance of 2 novel junctions; a novel acceptor (red) and a novel 

donor (green) junction, which are never found in control samples. Additionally, there is an almost complete loss of an annotated junction 

(blue), which is always present in control samples. Abnormalities can also be detected in the coverage data across introns associated with 

the aberrant junctions. First, we can see a slight shift in the right-most exon boundary, which matches the donor site that is represented by 

the novel donor junction. We can also see a lowly expressed, longer extension of the exon boundary, which is corroborated by the annotated 

junction that has a normalized count of 0.01 in the patient. b) Previous studies have demonstrated that the pathogenic splicing in HTRA2 

causes an intron retention event. From the RNA-seq data, we can observe that this is consistent with the loss of an annotated junction (blue) 

as well as a significant increase in coverage across the intron that is retained. Unexpectedly, there is also an appearance of a novel donor 

junction (green).
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a b

Supp Figure  SEQ Supp_Figure \* ARABIC 1  Figure 2 dasper applies an outlier detection method with junction and coverage information as input to detect aberrant Figure 2 dasper applies an outlier detection method with junction and coverage information as input to detect aberrant splicing events. a) 

dasper takes as input RNA-seq data from a set of cases and controls. Controls can be patient samples or publicly available data, of which dasper includes 

GTEx data originating from any clinical accessible tissue. Junctions and coverage data are extracted from the RNA-seq and processed. Specifically, this 

involves normalizing the junction and coverage counts to permit comparison between cases and controls. Then, scoring junctions and coverage by the 

deviation of their counts from the corresponding count distribution in control samples. These scores are aggregated using an outlier detection model. For 

each patient, the outputted outlier scores are ranked, generating a list of all splicing events in each patient ranked by their aberrancy. A rank of 1 

specifies the most aberrant splicing event in each patient. dasper includes functions to plot sashimi plots to permit manual inspection of candidate 

splicing events. b) Boxplots displaying the rank of 16 pathogenic splicing events across varying inputs. Each point represents a pathogenic splicing event 

from one of the 16 patients analyzed. The x-axis shows what information has been used for the ranking, either only up-regulated junctions (UJ), down-

regulated junctions (DJ) or the dasper method (UJs, DJs and coverage). The y-axis displays the rank outputted from dasper, with lower ranks specifying 

splicing events that are predicted to be more aberrant. 
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Figure 3 dasper is able to detect pathogenic splicing events more effectively than existing methods and in the top 5 most aberrant 

splicing events. a) Comparison of different methods used to detect aberrant splicing. dasper ranks pathogenic splicing lower or more 

aberrant than existing LeafCutterMD or z-score approaches. The y-axis represents the rank of pathogenic splicing events, whilst the x-axis 

specifies the method used. b) Ranking pathogenic events across different gene filters. The x-axis details the sets of gene sets that have been 

used for filtering; either no filter, splicing events connected to OMIM-morbid genes or splicing events associated with gene panels. After 

applying the OMIM-morbid and gene panel filter, pathogenic splicing events are ranked on average in the top 10 and top 5 most aberrant 

splicing events respectively. c) Pathogenic splicing events resulting from deep intronic variants are ranked higher than acceptor or donor 

variants, suggesting that they are more difficult to detect.
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Figure 4 dasper is able to leverage publicly available and in-house controls effectively. a) Rank of pathogenic splicing events across 

varying gene filters and control types. The colour of boxplot represents the control type used, either 504 GTEx v8 samples (blue) or 50 in-

house sequenced samples (yellow). In general, in-house samples are able to detect pathogenic splicing events easier than GTEx samples. 

However, after applying a gene panel filter, pathogenic splicing events are detected in the top 10 splicing events for either control type. b) 

Comparison of the performance of GTEx and in-house control data for detecting pathogenic splicing events. The x-axis describes the number 

of controls used. The colour of the points and lines describes which control type is used, namely up to 504 GTEx fibroblasts or up to 50 in-

house samples. At each N of controls analysed, the mean and standard deviation of the rank of the 16 pathogenic events for the 5 sets of 

randomly down-sampled controls is plotted.
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Supplementary figures 
 

 
Supp Figure 1 Schematic illustration of the different categories of splicing event. Junction reads used to define Leafcutter introns were 

annotated based on their relationship to the annotated transcriptome (Ensembl v97). Here, the annotated transcriptome is illustrated by 

the grey-filled boxes. Annotated junctions have donor and acceptor splice sites that match the boundaries of an existing intron. Likewise, 

novel exon skip and novel combination junctions have donor and acceptor splice sites that overlap known exon boundaries derived from 

exons contained within the same transcript, but, they represent introns which are not found in the set of annotated introns. They are 

distinguished by whether or not their donor and acceptor splice sites overlap exons derived from the same transcript. Novel donors and 

novel acceptors are junctions where only one end (3' or 5', respectively) matches the boundary of a known exon. All novel events are 

considered partially annotated. Unannotated junctions ("None") have neither end overlapping a known exon. Ambiguous gene junctions are 

have either end overlapping different genes. 
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Supp Figure 2 Correlation z-scores that were used as input into dasper Each point represents a particular patient sample. A Pearson 

correlation was run with the r values specified on the plot. a) Correlation between coverage and junction z-score. b) Correlation between 

the coverage z-scores for up and down regulated junctions. c) Correlation between junction z-scores for up and down regulated junctions.  
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