

# 1 Revisiting the evolutionary history of pigs via de novo mutation rate estimation by deep

## 2 genome sequencing on a three-generation pedigree

3

4 Mingpeng Zhang<sup>1</sup>, Qiang Yang<sup>1</sup>, Huashui Ai<sup>1\*</sup>, Lusheng Huang<sup>1\*</sup>.

5

6

7 <sup>1</sup>State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi  
8 Agricultural University, Nanchang, China, 330045.

9

10 \*The corresponding authors.

11

12

13 State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi  
14 Agricultural University, Nanchang, China, 330045

15

16

17

18

19

20

21 **Abstract**

22 The mutation rate used in the previous analyses of pig evolution and demographics was cursory  
23 and brought potential bias in inferring its history. Herein, we estimated de novo mutation rate  
24 of pigs using high-quality whole-genome sequencing data from nine individuals in a three-  
25 generation pedigree through stringent filtering and validation. The estimated mutation rate was  
26  $3.6 \times 10^{-9}$  per generation, corresponding to  $1.2 \times 10^{-9}$  per site per year. Using this mutation  
27 rate, we re-investigated the evolutionary history of pigs. Our estimates agreed to the divergence  
28 time of  $\sim$ 10 kiloyears ago (Kya) between European wild and domesticated pigs, consistent with  
29 the domestication time of European pigs based on archaeological evidence. However, other  
30 divergence events inferred here were not as ancient as previously described. Our estimates  
31 suggested that: Sus speciation occurred  $\sim$ 1.36 Million years ago (Mya); European pigs split up  
32 with Asian ones only  $\sim$ 219 Kya; South and North Chinese wild pig split  $\sim$ 25 Kya. Meanwhile,  
33 our results showed that the most recent divergence event between Chinese wild and  
34 domesticated pigs occurred in the Hetao plain, North China, approximately 20 Kya, supporting  
35 the possibly independent domestication in North China along the middle Yellow River. We  
36 also found the maximum effective population size of pigs was  $\sim$ 6 times larger than the previous  
37 estimate. Notably by simulation, we confirmed an archaic migration from other Sus species  
38 originating  $\sim$  2 Mya to European pigs during pigs' western colonization, which possibly  
39 interfered with the previous demographic inference. Our findings advance the understanding  
40 of pig evolutionary history.

41

42 **Key words:** pigs, de novo mutation rate, three-generation pedigree, evolutionary history,  
43 archaic migration.

44 **Introduction**

45 *Sus scrofa* (wild boars and domestic pigs) is a subfamily of Suidae, a widespread pig species  
46 group of Cetartiodactyla originated in the Oligocene at least 20 million years ago (Mya).  
47 Larson et al. (2005), Groenen et al. (2012) and Frantz et al. (2013) made a significant  
48 contribution to and systemically illustrated the evolutionary history of pigs. *Sus scrofa*  
49 originated on the Island South East Asia (ISEA) during the early Pliocene climatic fluctuations  
50 about 3 to 4 Mya (Groenen et al. 2012). The oldest diverging lineage of pigs found to date is  
51 of a wild boar population from the North of Sumatra, which split from the Eurasian wild boars  
52 around 1.6 to 2.4 Mya (Frantz et al. 2013). Over the past one million years, *Sus scrofa* spread  
53 into and colonized almost the entire Eurasian continent (Frantz et al. 2013; Groenen 2016).  
54 North and South Chinese *Sus scrofa* populations separated from each other during the Ionian  
55 stage approximately 0.6 Mya (Frantz et al. 2013). The domestication of pigs is one of the  
56 critical events in the history of human agricultural civilization. Pigs were domesticated in at  
57 least two locations: Anatolia (Near East) and China. Pig domestication in Anatolia was well  
58 documented, which was indicated at ~10 kiloyears ago (Kya) based on archaeological evidence  
59 (Giuffra et al. 2000; Larson et al. 2005; Frantz et al. 2019), while pig domestication in China  
60 happened at least 8 Kya based on zooarchaeological analyses from middle China (Jing and  
61 Flad 2002; Larson et al. 2007). However, studies on domestication of Chinese wild boars based  
62 on genomic analyses were still limited. Nowadays, pigs distribute almost all over the world  
63 (Yang et al. 2017). Pigs have lived closely with humans for at least 10,000 years (Larson et al.  
64 2010; Frantz et al. 2013), have been one of the essential providers of animal protein for humans  
65 (Huang et al. 2020), and serve as ideal biomedical models for human diseases (Walters et al.  
66 2017).

67 An accurate mutation rate plays a significant role in understanding many critical questions  
68 in evolutionary and population genetics, including effective population size, divergence time,

69 and migration between populations (Lynch 2010a). The two conventional methods used to  
70 estimate the mutation rate are: (1) phylogenetic approaches, in which the rate of neutral  
71 sequence divergence is equal to the rate of mutation (Kimura 1968); (2) direct detection of the  
72 spontaneous germline mutations in a known pedigree (Keightley et al. 2014; Smeds et al. 2016;  
73 Pfeifer 2017; Koch et al. 2019), which was used in this study. The latter method, benefiting  
74 from the popularity of high-throughput sequencing technologies, has many advantages over  
75 the former one (Smeds et al. 2016; Koch et al. 2019). A directed per-generation mutation rate  
76 derived from a known pedigree has taken an essential part in effectively revising human history  
77 (Scally and Durbin 2012) and dogs (wolves) evolutionary history (Koch et al. 2019).

78 However, at present, there is still no research specializing in the mutation rate of pigs. The  
79 mutation rate used in almost all previous demographics of pigs was set as  $2.5 \times 10^{-8}$  per  
80 generation same to the default one of humans, and 5 years was used as one generation time of  
81 pigs (Groenen et al. 2012; Frantz et al. 2013; Li et al. 2013; Bosse et al. 2014; Nijtten et al.  
82 2016). This resulted in an abnormally sizeable annual mutation rate ( $5 \times 10^{-9}$ ) of pigs, which is  
83 twice the average value of mammals (Kumar and Subramanian 2002) and is specifically 3.3-  
84 and 2.6-fold to that of wolves (Koch et al. 2019) and yaks (Qiu et al. 2015), respectively (fig.  
85 1). The inaccuracy of mutation rate may bring bias in the inference of pig demographic  
86 parameters and evolutionary history. This study aims to estimate the mutation rate of pigs  
87 directly using the genomes of nine individuals from a three-generation pig pedigree. Based on  
88 this mutation rate, we re-investigated the evolutionary and domestication history of pigs  
89 through genomic analyses.

## 90 **Results**

### 91 **Identification and validation of de novo mutations**

92 A complete three-generation pedigree consisting of nine pigs (4 parents, 2 children, and 3  
93 grandchildren; fig. 2) was re-sequenced with depth more than 20 $\times$ . In the pedigree, two boars

94 in the parent generation (F0) were White Duroc, and two F0 sows were Erhualian. We applied  
95 highly stringent filtering criteria as previously described (Smeds et al. 2016) to carefully screen  
96 for de novo mutations (DNMs). In total, 44 DNM (supplementary table S1 and S2,  
97 Supplementary Material online) were identified in the child (F1) and grandchild (F2)  
98 generation pigs (7 to 11 DNM per individual), which were homozygous for the reference allele  
99 in all F0 individuals. None of these DNM sites were known to segregate when searching in the  
100 *Sus scrofa* dbSNPs 150.

101 In the F1 generation, 7 and 9 variants in F1-180 and F1-35, respectively, passed manual  
102 curation (supplementary table S1, Supplementary Material online). F1-180 transmitted all 7  
103 mutations to the F2 offspring, while one mutant out of 9 in F1-35 was not transmitted to any  
104 of 3 offspring (supplementary table S1, Supplementary Material online). We detected a total  
105 of 28 mutants passed all the bioinformatic filtering criteria in the F2 generation and these  
106 mutants also passed manual curation (fig. 2; supplementary table S1 and S2, Supplementary  
107 Material online).

108 We applied Sanger sequencing to check the de novo mutations further. 40 out of the 44  
109 mutants were validated by Sanger sequencing, including the mutant in F1 that was not  
110 transmitted to any of 3 offspring (supplementary table S1 and S2, Supplementary Material  
111 online). The remaining 4 mutants (1, 1, and 2 in F1-35, F2-1135 and F2-1139, respectively)  
112 were invalidated and detected as homozygotes for the reference allele by Sanger sequencing.  
113 In the mapping results of resequencing data, the ratios of the mapped reads supporting  
114 alternative allele to all the reads at these 4 sites were 6/17, 10/30, 4/14 and 3/11, respectively  
115 (supplementary fig. S1, S2, S3 and S4, Supplementary Material online). Among them, the  
116 mutant at chr7:46553490 was even supported by stable inheritance in the F2 generation  
117 (supplementary fig. S1, Supplementary Material online). We found the mutant at chr3:9293354  
118 with the ratio of 3/11, same to the ratio value of the invalidated mutant at chr15:107528000,

119 was detected as real (supplementary table S2, Supplementary Material online). Thus, we did  
120 not exclude these four mutants. One possible explanation might be the bias in the sequencing  
121 results caused by PCR errors before Sanger sequencing (Ikegawa et al. 2002).

122 Furthermore, we explored the characteristics of the 44 DNMs. There were 14 mutations in  
123 intergenic regions, 25 in introns, one in 3'-UTR regions, one in splicing regions and three in  
124 the coding sequence. Among the three exonic sites (supplementary table S1, Supplementary  
125 Material online), one mutation was non-synonymous in Piccolo Presynaptic Cytomatrix  
126 Protein (PCLO), a part of the presynaptic cytoskeletal matrix. There were 13 A:T>G:C and 28  
127 G:C>A:T mutations (supplementary table S1, Supplementary Material online), confirming a  
128 mutation pressure in the direction of A+T previously seen in both eukaryotes (Lynch 2010b;  
129 Smeds et al. 2016) and prokaryotes (Hershberg and Petrov 2010).

130 **The mutation rate in pigs**

131 A total of 44 DNMs were observed in 10 transmissions, with an average of 4.4 mutations  
132 per transmission. Among the five offspring, the effective sequences for screening after filtering  
133 ranged between 1.17-1.28 Gb, with an average size of 1.23 Gb, approximately representing  
134 54.6% of pig autosomal genome (see details in Methods; supplementary table S3,  
135 Supplementary Material online). The parts containing repetitive and not meeting filter criteria  
136 for coverage and quality were excluded. Finally, the mutation rate was calculated to be  $3.6 \times$   
137  $10^{-9}$  per base pair per generation.

138 Pigs are typically social animals, living in the form of polygamy (Canu et al. 2015). The  
139 ages of estrus in sows and boars in the wild are different. Age at first pregnancy varies in the  
140 wild from about 10-20 months (Singer 1981), while boars begin rut when they are 3-5 years.  
141 The first rut age of 4-5 years was documented in Russian wild boars by Heptner et al. (1988)  
142 and 3-4 years was recorded in Chinese wild boars (Wang 2012). Pigs are multiparous animals,  
143 and the gestation period lasts about 114-130 days (Comer and Mayer 2009). Comparing to the

144 animals with single birth, like cattle and yak, we think the generation transmission of pigs is of  
145 good continuity. Therefore, we set the generation interval of pigs as 3 years, which is roughly  
146 equivalent to the average age of the first pregnancy in sows and the beginning rut in boars plus  
147 the pregnant gestation period of sows. We noticed that evolutionary studies of dogs (wolves)  
148 and yak, which are in a close phylogenetic distance with pigs, also adopted 3 years as their  
149 generation interval (Freedman et al. 2014; Qiu et al. 2015), suggesting the reasonableness of 3  
150 years as generation interval of pigs. Based on this generation interval, we obtained an annual  
151 mutation rate of  $1.2 \times 10^{-9}$ , close to the mutation rate ( $1.5 \times 10^{-9}$ ; the mutation rate was  
152 estimated via a known pedigree) of wolves (Koch et al. 2019). The annual mutation rate of pigs  
153 is in the same order of magnitude as those of mammals (fig. 1) and lower than the mean  
154 mutation rate ( $2.2 \times 10^{-9}$ ) of mammals (Kumar and Subramanian 2002).

155 Additionally, we employed the phylogenetic approach to estimate the mutation rate of pigs,  
156 following the procedure of mutation rate estimation used in dogs (Wang et al. 2016). The  
157 mutation rate of pigs was estimated to be  $1.53 \times 10^{-9}$  per year (supplementary table S4,  
158 Supplementary Material online). In humans, the mutation rate obtained from whole-genome  
159 pedigree data is lower than those obtained from the phylogenetic approaches (Nachman and  
160 Crowell 2000), coinciding with the results in dogs and wolves (Wang et al. 2016; Koch et al.  
161 2019). Here we obtained a slightly lower mutation rate from whole-genome pedigree data than  
162 the estimate using the phylogenetic approach, which is in line with those previous studies in  
163 humans and dogs and also suggesting the high accuracy of the de novo mutation rate in pigs.

#### 164 **Demography of Sus species**

165 We took the de novo mutation rate as a parameter in the pairwise sequentially Markovian  
166 coalescent model (PSMC) (Li and Durbin 2011) and the multiple sequential Markovian  
167 coalescent model (MSMC) (Schiffels and Durbin 2014) to reconstruct the population history  
168 of Sus (see details in Methods). Sumatran wild boar (SMW), European wild boar (EUW),

169 North Chinese wild boar (NCW) and South Chinese wild boar (SCW) represented *Sus scrofa*  
170 of different geographic distributions in this study. *Sus cebifrons*, as an outgroup, was involved  
171 to date the speciation of *Sus scrofa* from Sus. Each breed contained two individuals  
172 (supplementary table S5, Supplementary Material online).

173 PSMC exhibited messy-looking demographic trajectories: demographic trajectories of  
174 different pigs began to separate at 2 Mya, except for that of North and South China pigs, which  
175 began to separate from each other ~200 Kya (fig. 3A). Such messy curves possibly suggested  
176 a short common history among different breeds of pigs, and indicated they diverged from each  
177 other million years ago. However, we could find common points like all pigs peaked with  
178 effective population size (Ne) during 1 ~ 2 Mya. *Sus cebifrons*, SMW and EUW have a similar  
179 Ne of  $\sim 2.7 \times 10^5$  during the peak period, while Chinese pigs have a lower Ne then. The  
180 maximum estimation of effective population size here is ~6 times larger than that estimated  
181 before (Groenen et al. 2012; Frantz et al. 2013). Thereafter, *Sus cebifrons* and SMW  
182 experienced a rapid population decline. EUW and SCW experienced a lighter decline and then  
183 stayed population stability or rising beginning 400 Kya. Notably, the trajectory of EUW was  
184 similar in trends with that of Chinese pigs before ~ 300 Kya but showed relatively higher Ne.  
185 All pigs suffered a bottleneck during the Last Glacial Maximum (LGM; 20 Kya; fig. 3A).

186 MSMC let us study the genetic separation between two populations as a function of time  
187 based on relative cross-coalescent rates (RCCR). The RCCR curve reached a value of 0.5 at ~  
188 1.36 Mya for the comparison of *Sus cebifrons* and *Sus scrofa* (SCW; fig. 3B; supplementary  
189 table S6, Supplementary Material online), indicating Sus speciation occurred during this period  
190 on ISEA. According to the 0.5 RCCR cutoff defined as the divergence time, we could also  
191 judge that the divergence time between SMW and SCW was ~ 275 Kya, EUW and Asian wild  
192 boar (ASW) separated ~ 219 Kya, NCW and SCW split ~ 25 Kya, and European wild and

193 domesticated pig diverged ~ 1.3 Kya (fig. 3B; supplementary table S5, Supplementary Material  
194 online).

195 We noticed that the divergence time indicated by MSMC was largely more recent than that  
196 implied by trajectories of PSMC. To further explore this issue, we took the comparison of EUW  
197 and SCW as an example. Although the results of PSMC showed that the demographic curves  
198 of EUW and SCW separated ~ 2 Mya (Supplementary fig. S5A, Supplementary Material  
199 online), RCCR in MSMC hasn't reached 0.5 until ~ 219 Kya, indicating that Eurasian pigs did  
200 not really split ~ 2 Mya, but split 219 Kya (supplementary fig. S5B, Supplementary Material  
201 online). We applied MSMC-IM software, fitting a continuous model to coalescence rates to  
202 estimate gene flow within and across pairs populations, to confirm the time of divergence event.  
203 It still showed a peak at ~ 200 Kya rather than 2 Mya, indicating Eurasian pigs' split time was  
204 ~ 200 Kya (supplementary fig. S5C, Supplementary Material online).

205 We estimated the divergence time between wild boar and domesticated pig in Europe and  
206 China, respectively. We used EUW (Netherlands wild pigs) paired with two different  
207 domesticated pig breeds (Large White and Mangalica pigs), which are located at the most  
208 proximal and distal branch relative to the cluster of European wild pigs, respectively  
209 (supplementary fig. S6, Supplementary Material online). Their divergence times were  
210 estimated to be 13,482 and 11,204 years ago, respectively, coinciding with the generally  
211 accepted domestication time of ~10 Kya (Groenen et al. 2012; Frantz et al. 2013; Frantz et al.  
212 2019). However, the direct ancestors of European domestic pigs are not the existing European  
213 wild boars, but the extinct wild boars from the Middle East (Larson et al. 2005). The divergence  
214 time is expected to be older than the domestication period of 10 Kya, in line with the estimated  
215 date of Large White and Mangalica pigs splitting from European wild boars. We also tested  
216 divergence time between the different geographical distributed Chinese domesticated pig  
217 breeds and Chinese wild pigs, including ones from North China and South China

218 (supplementary fig. S7 and table S5, Supplementary Material online). We found the  
219 domesticated pig breed on Hetao plain, located at the intersection of the middle Yellow River  
220 and Inner Mongolia, most recently split up with North and South Chinese wild pigs at around  
221 20 Kya (fig. 3B, supplementary fig. S7 and table S6, Supplementary Material online).  
222 Interestingly, several studies addressed the possibility of domestication along the middle  
223 Yellow River ~8 Kya based on the ancient mitochondrial DNA (Xiang et al. 2017) and  
224 archaeological evidence (Larson et al. 2010). Our results further confirmed North China along  
225 the middle Yellow River could be a domestication site in Asia. But here we cannot decide  
226 domestication time according to the divergence time for the same reason as in European pigs  
227 that the ancestor of domesticated pigs might not be the extant wild boars. We also detect a  
228 severe bottleneck during the LGM in all domesticated pigs (supplementary fig. S8,  
229 Supplementary Material online).

230 To sum up, we can summarize the evolutionary history of Sus (fig. 3C): Sus speciation  
231 occurred on ISEA ~ 1.36 Mya, leading to the emergence of the oldest *Sus scrofa*; then pigs  
232 arrived in Eurasia from ISEA and colonized Southeast Asia at ~ 275 Kya; the spread of wild  
233 boars into Europe was ~ 219 Kya; the pigs in South China didn't migrate to North China until  
234 ~ 25 Kya. Additionally, North China along the middle Yellow River could be an independent  
235 domestication site in Asia where the wild pigs and domesticated pigs split ~20 Kya. The  
236 divergence time between European wild and domesticated pig was first estimated at around 10  
237 Kya using genomic data.

### 238 **Contradictions in previous evolutionary history of pigs**

239 Frantz et al. (2013) applied an approximate likelihood method as implemented in MCMCTree  
240 to estimate divergence time between Sus species, in which they set the splitting time between  
241 *Phacochoerus africanus* and Sus as a root age at 10.5 Mya based on phylogenetic research on  
242 mitochondrial DNA of extant sub-Saharan African suids (Gongora et al. 2011). This ancient

243 root age was used to adjust the prior of the mutation rate, which was set to obey a gamma  
244 distribution as  $G(1,125)$ , in Bayesian clock dating. Their divergence time estimates suggested  
245 that populations of *Sus scrofa* from Asia migrated west approximately 1.2 Mya. Groenen et al.  
246 (2012) and Frantz et al. (2013) also used the result of PSMC (Li and Durbin 2011), in which  
247 the population sizes of European and Asian lineages started to diverge around  $\sim 1$  Mya  
248 (supplementary fig. S5D, Supplementary Material online), as a vital supporting for the distinct  
249 Asian and European pig lineages splitting  $\sim 1.2$  Mya and illustrated an increase in the European  
250 population after pigs arrived from Asia.

251 In this study, we repeated PSMC analyses on Eurasian wild pigs and further applied MSMC  
252 software (Schiffels and Durbin 2014) and MSMC-IM (Wang et al. 2020) to make forward and  
253 backward arguments for the above studies. First, we used the divergence time between  
254 European and Chinese wild pigs (1.2 Mya) estimated by Frantz et al. (2013) to infer the  
255 mutation rate for pigs. This resulted in a mutation rate estimation of  $\sim 6.5 \times 10^{-10}$  per site per  
256 generation (fig. 4A), which is an order of magnitude less than the mutation rate of other  
257 mammals (fig. 1). We also tried to use this mutation rate to estimate divergence time between  
258 European wild boars and domesticated pigs (European wild pigs and Large White). This  
259 resulted in a more ancient divergence at  $\sim 70$  Kya than the domestication time around 10 Kya  
260 indicated by archaeological evidence. We noticed the mutation rate applied in PSMC by  
261 Groenen et al. (2012) was  $2.5 \times 10^{-8}$  per site per generation. This means that two significantly  
262 different mutation rates (fig. 4B) reflect a similar divergence history of Eurasian pigs. All of  
263 these possibly suggested there were some biases in the previously estimated pig history.

264 Then, we run the PSMC, MSMC and MSMC-IM with the mutation rate set as  $2.5 \times 10^{-8}$  per  
265 generation. In order to compare with the previous results, we only used EUW and SCW here.  
266 Surprisingly, we identified four possible contradictions between the previous estimation and  
267 the results of MSMC and MSMC-IM here: firstly, both results of MSMC and MSMC-IM

268 indicated a totally different divergence time between European and Chinese wild pigs as before  
269 discussed (Groenen et al. 2012): the event of divergence appears at the first cross-over of lines  
270 corresponding to the time of  $\sim 40$  Kya (see supplementary fig. S5D, E, and F, Supplementary  
271 Material online), rather than the corresponding intersection point at approximately one million  
272 years; second, if the event of divergence actually happened at the first cross-over, the date is  
273 only 40 Kya, an illogical split time compared to the declared 1 Mya (Groenen et al. 2012;  
274 Frantz et al. 2013); third, the divergence time of European wild and domesticated pigs was  
275 estimated to only  $\sim 2$  Kya, an unreasonable recent date compared to the domestication time  
276 around 10 Kya, via MSMC and MSMC-IM. Last but not least, compared to other mammals,  
277 the effective population size of pigs (the maximum  $N_e$  was  $\sim 4 \times 10^4$ ; see supplementary fig.  
278 S5D, Supplementary Material online) was largely lower than those of dogs (the maximum  $N_e$   
279 of  $\sim 15 \times 10^4$ ) (Wang et al. 2020) and yak (the maximum  $N_e$  of  $\sim 16 \times 10^4$ ) (Qiu et al. 2015).  
280 The ratio of non-synonymous to synonymous heterozygosity ( $\pi_N/\pi_S$ ), as a measure of the  
281 mutation load, can be applied to the  $N_e$  comparisons among distantly related species and was  
282 found to be negatively correlated to population size (Galtier and Rousselle 2020). The  $\pi_N/\pi_S$   
283 ratio of 0.62 - 0.80 in pigs was found lower than that of 1.04 - 1.19 in dogs (Takashi et al.  
284 2018), which meant that pigs had a larger  $N_e$  when compared to dogs. This is also contrary to  
285 the small  $N_e$  estimation of pigs using previous commonly used mutation rate of  $2.5 \times 10^{-8}$  per  
286 site per generation. We thought the reason why these contradictions occurred could be the use  
287 of abnormal large mutation rate in the previous studies.

## 288 **Validation of archaic admixture in European *Sus scrofa* by simulations**

289 When we applied the mutation rate of  $3.6 \times 10^{-9}$  per site per generation to infer pig  
290 demographic history, the MSMC-IM results approximately displayed two pulses  
291 (supplementary fig. S5C, Supplementary Material online): one pulse corresponding to the place  
292 where RCCR was equal to 0.5, and the other pulse appearing between 1 and 4 Mya, which

293 indicated a migration into SCW or EUW from an archaic population. Correspondingly, recent  
294 evidence showed pygmy hogs and a now-extinct *Sus* species interbred with *Sus scrofa*,  
295 suggesting that inter-species admixture accompanied the rapid spread of wild boars across  
296 mainland Eurasia and North Africa (Liu et al. 2019). Thus, wild boar had greater chances of  
297 encountering and temporal co-existing with local species during the expansion to Europe,  
298 enabling possible inter-species hybridization. The phenomenon that the Ne of EUW at the peak  
299 of the PMSC curve is similar to those of pigs on ISEA (fig. 3A) possibly further suggested a  
300 migration from an archaic pig or another *Sus* species to European pigs, instead of to SCW,  
301 during the colonization across Eurasian mainland. We suspected that this introgression from  
302 the archaic population possibly contributed to the difference in the curve of Ne between EUW  
303 and SCW before the point of their separation. To test this hypothesis, we performed a series of  
304 simulations in which two populations separated 219 kya, with one receiving a varying level of  
305 gene flow from an archaic population (fig. 5). We assumed the third population diverged from  
306 the ancestor of the former two populations 500 Kya (fig. 5A) and 2 Mya (fig. 5C), respectively,  
307 to check how the different archaic donors could affect the trajectories of Ne of receptor. With  
308 simulations under this *split-with-archaic-admixture* model (fig. 5), we found archaic admixture  
309 did lead to the uplift of Ne of a period when varying different extent of migration (fig. 5B and  
310 D). Specifically, the receptor with archaic admixture from the donor that separates from the  
311 ancestral population at 2 Mya (fig. 5D), instead of 500 Kya (fig. 5B) in our simulations,  
312 exhibited a similar trajectory with that of EUW. Thus, it is most likely to be another *Sus* species,  
313 diverging ~2 Mya, introgressed into EUW. The uplift of Ne curve attributed to the admixture  
314 from an archaic population explained the variation trend of the curves of the EUW and SCW  
315 is almost same, but Ne of EUW before the divergence happened at the first cross-over of the  
316 curves in PSMC is relatively larger (supplementary fig. S5A and D, Supplementary Material  
317 online). This uplift of the regional Ne curve of EUW gave us the illusion of deep divergence

318 between EUW and ASW, which possibly brought the bias on previous inference of pig  
319 evolutionary history.

320 **Discussion**

321 **The accuracy of DNM<sub>s</sub> detected in a three-generation pedigree by high-quality  
322 resequencing**

323 Previous studies have shown that the bioinformatic pipeline we refer to can guarantee the  
324 high accuracy of DNM<sub>s</sub> (Keightley et al. 2014; Keightley et al. 2015; Smeds et al. 2016; Pfeifer  
325 2017). All candidate mutations passed a stringent two-step manual curation by the Integrated  
326 Genomics Viewer (IGV) (Robinson et al. 2011). Several procedures were applied to validate  
327 mutations during the DNM<sub>s</sub> identification, including following the stable inheritance of new  
328 mutations to subsequent generations and Sanger sequencing. Pfeifer (2017) validated the  
329 manually curated candidate mutations in the F1 generation using their stable Mendelian  
330 inheritance to the next generation (F2) to exclude the false-positive mutations, even though  
331 there was only one individual in F2 of that pedigree. This study had 3 grandchildren with high  
332 depths of coverage (21 $\times$  - 45 $\times$ ) to exclude the false-positive mutations. Additionally, we used  
333 another individual F1-43 (with coverage of 40 $\times$ ), only sharing the same father (F0-73) with  
334 F1-35, to check the independent genotyping status of the other two individuals (F1-35 and F1-  
335 180) in F1, following the criteria that no other individuals in the same generation are  
336 heterozygous or homozygous for the alternative allele. We could judge that the false-positive  
337 rate of two individuals in the F1 generation was very low based on the following reasons: (1)  
338 the use of a stringent bioinformatic pipeline; (2) the final manual inspection by a two-step  
339 approach to avoid the interference of the insertion and deletion around candidate mutant; (3)  
340 validation by independent genotyping in the same or the previous generation(s); (4) the fact  
341 that sites of mutation events were monomorphic in large population samples (dbSNPs 150); (5)  
342 the fact that stable inheritance was confirmed for mutants appearing in the F2 generation.

343 Notably, there is one mutant in F1 that was not transmitted to any of the 3 offspring. We  
344 detected a total of 28 mutants passed the manual curation in three F2 generation individuals.  
345 The proportions of mutations identified in the F1 ( $16/44 = 36.4\%$ ) and F2 generations ( $63.6\%$ )  
346 were approximately in agreement with the proportions of meiosis scored in the F0 ( $4/10 = 40\%$ )  
347 and F1 ( $6/10 = 60\%$ ) generations (supplementary table S1, Supplementary Material online).  
348 The slightly higher ratio ( $63.6\%$ ) in the F2 than expected could be attributed to all male  
349 individuals, while there is one female, containing 7 mutants, the lowest number of mutants  
350 among all the individuals, in the F1 generation. The mutation rate was reported a pronounced  
351 male bias in humans and chimpanzee (Kong et al. 2012; Francioli et al. 2015), which possibly  
352 explained the slightly lower ratio ( $36.4\%$ ) in F1. Wang and Zhu (2014) also adopt a similar  
353 pedigree design to solve the false-positive problem. In this study, we totally identified 44 de  
354 novo mutants following the pipeline, of which 40 mutants were validated by Sanger sequencing.  
355 Even though validation of four mutants failed by Sanger sequencing, we determined to keep  
356 those four ones for the subsequent analysis after balancing the possible unknown errors in  
357 sanger sequencing (e.g. PCR errors) and the low false-positive rate following the pipeline.

358 Keightley et al. (2014) addressed the rate of false negatives by adding synthetic mutations  
359 to read data from a *D. melanogaster* pedigree containing 14 individuals when using a very  
360 similar bioinformatic pipeline for mutation identification as in our study. They detected 99.4%  
361 of all callable synthetic mutations following the bioinformatic pipeline, suggesting that the rate  
362 of false negatives was negligible. Smeds et al. (2016) considered the filtering of both  
363 heterozygous sites in the parental generation and candidate mutations in the F1 or F2  
364 generations that corresponded to known segregating alleles in the known SNPs dataset (e.g.  
365 *Sus scrofa* dbSNP dataset) as the reason for the low false-negative rate in the above filter  
366 criteria. Similarly, Pfeifer (2017) also found a low false-negative rate after the highly stringent  
367 computational filters, particularly for those mutations stably inherited to subsequent

368 generations. Strictly following the mutation-detection procedure of Smeds et al. (2016), we  
369 find no reason to expect that the false-negative rate should be significantly different in our  
370 study. Given the relatively high depth of coverage, we also consider the rate of false negatives  
371 as very low.

372 In general, high-quality resequencing, stringent bioinformatic pipeline, IGV manual curation  
373 and validation via Sanger sequencing ensure the accuracy of DNM we detected.

### 374 **The evolutionary history of *Sus scrofa* revisited through the de novo mutation rate**

375 We took into account of the results of PSMC and two other methods (MSMC and MSMC-  
376 IM), and found some contradictions in previous studies: 1. Two extremely different mutation  
377 rates (fig. 4B) were used in the different methods, but the results of divergence time of EUW  
378 from ASW were similar; 2. the mutation rates in previous studies led to an incredibly advanced  
379 or delayed split of European domesticated pigs from EUW; 3. The Ne of pigs was an order of  
380 magnitude less than the other domesticated animals like dogs (Wang et al. 2020), yak (Qiu et  
381 al. 2015) and horses (Librado et al. 2015). Additionally, MSMC-IM exhibited ancient evidence  
382 of gene flow introgression. Correspondingly, it was reported that at least two events of inter-  
383 species admixture occurred when wild boars rapidly spread into Europe, including the  
384 migration from Pygmy hogs and a wave of gene flow contributed by an unknown ancient ghost  
385 population (Liu et al. 2019). Based on our simulation, we found that the complex gene flow  
386 from another *Sus* species into EUW might uplift the Ne curve and interfere the previous  
387 judgment of divergence events based on PSMC. In our case, the date estimation suggested that  
388 EUW and ASW actually shared a long history, but the complex migration from an archaic  
389 population into EUW mislead us to the deep divergence between EUW and ASW. The  
390 phenomenon of introgression influencing the effective population size seems to be common.  
391 Hawks (2017) found that the effective population size inferred for particular intervals of time  
392 in the past is strongly affected by the history of introgression or gene flow, such as gene flow

393 between non-Africans and Neanderthalian or Denisovan. Inside Africa, introgression also was  
394 detected and was suspected from other archaic human groups, with approximately the same  
395 inferred divergence date as Neandertals, as suggested by Lachance et al. (2012). Therefore, all  
396 modern humans have a clear “wave” of larger inferred effective population size with a “crest”,  
397 including Africans (Hawks 2017). A study in dogs also detected imported gene flow lifted the  
398 estimated evolutionary trajectory of the target population in PSMC by simulation (Wang et al.  
399 2020). In another recent study, a hump in the historical population size ( $Ne$ ) estimated with  
400 PSMC was attributed to admixture events occurred in donkey (Wang, Li et al. 2020). Hawks  
401 (2017) found that the longer the introgression donor diverged from its ancestor, the greater  
402 amplitude of the “wave” in the effective population size occurred for the target population.  
403 This is consistent with our simulation results. When  $M = 0.1$ , the larger  $Ne$  rise of target  
404 population resulted from introgression from the donor population separates from the ancestral  
405 population at 2 Mya ( $\sim 6 \times 10^5$ , fig. 5D) than that at 500 Kya ( $\sim 3 \times 10^5$ , fig. 5B). The Sus species  
406 introgressing into EUW can be traced to at least 1 Myr based on this study (1 - 4 Mya suggested  
407 by MSMC-IM, supplementary fig. S5C, Supplementary Material online) and the previous one  
408 (Liu et al. 2019). The receptor with archaic admixture from the donor that separates from the  
409 ancestral population at 2 Mya in our simulations exhibited a similar trajectory with that of  
410 EUW. This probably suggested the origin of introgression donor Sus population can be traced  
411 to 2 Mya, and introgression from it into EUW further caused the demographic curves of EUW  
412 and SCW separated  $\sim 2$  Mya (supplementary fig. S5A, Supplementary Material online). This  
413 independent introgression from archaic population into European wild boars results in a unique  
414 phenomenon of PSMC in pigs that the  $Ne$  trajectories of SCW and EUW separated significantly  
415 before their separated. Therefore, it reminds us to make a demographic inference based on  
416 multiple shreds of evidences to avoid the interference of introgression or gene flow.

417 The de novo mutation rate directly estimated from the pedigree can be used to characterize  
418 the demographic history of *Sus scrofa* reliably (Scally and Durbin 2012; Koch et al. 2019).  
419 Herein, we used the de novo mutation rate to reconstruct the population history of pigs. Sus  
420 speciation occurred on ISEA ~ 1.36 Mya, leading to the emergence of the oldest *Sus scrofa*,  
421 then pigs arrived in Eurasia from ISEA and colonized Southeast Asia at ~ 275 Kya. Next, the  
422 spread of wild boars into Europe was ~ 219 Kya. The colonization of North China, where the  
423 climate was cold, of pigs happened ~ 25 Kya. These estimated population histories were much  
424 more recent than the generally accepted history (Frantz et al. 2013), but they were consistent  
425 with some evidences, including documentary records about domestication. The new date  
426 estimation also could give us new thinking regarding to population genetics of pigs.

427 The divergence time between European wild and domesticated pig was estimated around  
428 10 Kya using the de novo mutation, which perfectly coincided with the generally accepted  
429 domestication time ~10 Kya based on documentary records (Groenen et al. 2012; Frantz et al.  
430 2013; Frantz et al. 2019). We first validated the domestication of pigs ~10Kya by genetic data.  
431 The Asian and European wild pigs split 219 Kya (fig. 3B and C; supplementary table S6,  
432 Supplementary Material online), far less than the 1.2 Mya (Groenen et al. 2012; Frantz et al.  
433 2013) and suggesting Eurasian wild pigs shared a considerably long same history than we  
434 thought before. South (Nanchang, Jiangxi province) and North Chinese wild pigs diverged at  
435 25 Kya, less than 600 Kya (Frantz et al. 2013). Based on this recent split time, we could make  
436 a hypothesis that human hunting and domestication activities might accelerate the divergence  
437 of North and South Chinese wild pigs and force pigs to migrate into a cold environment, which  
438 is a severe challenge to their survival.

439 The new estimated mutation rate also revealed a maximum effective population size of  
440  $2.7 \times 10^5$  in pigs, ~6 times larger than that estimated before (Groenen et al. 2012; Frantz et al.  
441 2013) (fig. 3A; supplementary fig. S8, Supplementary Material online) and similar to the

442 population size of other mammals like dogs (Wang et al. 2020), yak (Qiu et al. 2015) and horses  
443 (Librado et al. 2015). Our results also revealed a bottleneck in the European wild pigs after  
444 colonizing Europe (fig. 3A) rather than a population expansion (Groenen et al. 2012). Similar  
445 bottlenecks observed in non-African human populations (Li and Durbin 2011) and Western  
446 Eurasian dogs (Frantz et al. 2016) have been interpreted as signs of migration to a new living  
447 environment. Penultimate Glacial Period (PGP, 135-194 Kya) followed the western-spread of  
448 pigs. Cold climate exacerbated the bottleneck of the western-spreading pigs. Instead, during  
449 this period, pigs in Southeast Asia had not yet started to spread northward, and the cold made  
450 the pigs gather more in warm areas, which led to a temporary increase of  $N_e$ . We have  
451 previously found that a 52-Mb segment on X chromosome of European pigs from another  
452 genus of pigs may lead to their cold adaptability (Ai et al. 2015). Combined with the results of  
453 this study, we speculate that after pigs came out of Southeast Asia, due to the new environment  
454 and the following PGP, the western-spreading pigs experienced a great population bottleneck.  
455 During this period, the pig hybridized with the other pig genera and got the “gift” to adapt to  
456 the cold to a certain extent, then the beneficial introgressed fragment further fixed in the  
457 population during their colonization on the European continent. All *Sus* populations  
458 investigated here, even including *Sus cebifrons*, suffered bottlenecks during the Last Glacial  
459 Maximum (LGM; 20 Kya; fig. 3A; supplementary fig. S8, Supplementary Material online).  
460 The bottleneck of *Sus cebifrons* was not found during LGM in the previous study (Frantz et al.  
461 2013). The bottlenecks observed here were more severe than those reported before (Groenen  
462 et al. 2012). Notably, the wild sow is the only ungulate that must build a nest to provide the  
463 litter with a warm microenvironment (Algers and Jensen 1990), due to an essential gene, *UCP1*,  
464 participating in brown adipose tissue -mediated adaptive nonshivering thermogenesis has been  
465 lost ~20 Mya (Berg et al. 2006). The cold climate during the glacial period was fatal to pigs.  
466 As expected, we found the lowest  $N_e$  of pigs during the LGM.

467      Altogether, we found some irrationalities and contradictions in the previous estimated  
468      evolutionary history of pigs. To address these incompatibilities, we estimated the de novo  
469      mutation rate of pigs via a whole-genome three-generation pedigree with nine individuals,  
470      which is another non-primate mammalian species obtaining the direct mutation rate after  
471      wolves (dogs) and mice. The estimated mutation rate of pigs using a pedigree ultimately didn't  
472      show an abnormally large or small value but one at the same order of magnitude as the mutation  
473      rate of other common mammals like wolves (dogs) and yak (fig. 1). This mutation rate enables  
474      us to study the population genetics of pigs better than ever before and we re-investigated the  
475      population history of pigs with the new mutation rate. Besides, complex ancient admixture  
476      could lead to misjudgment of population history, so it is necessary to make a demographic  
477      inference based on multiple shreds of evidence. Our results advance the understanding of the  
478      population history of pigs.

479

## 480      **Materials and Methods**

### 481      **Samples and sequencing**

482      We used whole genomes for a known pedigree of nine pigs from a three-generation pedigree  
483      (fig. 2; supplementary table S3, Supplementary Material online). Among them, two boars in  
484      the parent generation (F0) were White Duroc, sows in the F0 generation were Erhualian. The  
485      two boars F0-73 and F0-75 were sequenced (Ai, H. *et al.* manuscript submitted) using the  
486      HiSeq 2000 platform. The other seven individuals were sequenced in the same way as the  
487      former two pigs. Briefly, genomic DNA was extracted from ear tissues using a standard phenol-  
488      chloroform method and then sheared into fragments of 200-800 bp according to the Illumina  
489      DNA sample preparation protocol. These treated fragments were end-repaired, A-tailed,  
490      ligated to paired-end adaptors and PCR amplified with 500 bp (or 350 bp) inserts for library

491 construction. Sequencing was performed to generate 100 bp (or 150 bp) paired-end reads on a  
492 HiSeq 2000 (or 2500) platform (Illumina) according to the manufacturer's standard protocols.

493 The reads were aligned to the *Sus scrofa* reference genome (build 11.1) using BWA (Li and  
494 Durbin 2009) with default options. The mapped reads were subsequently processed by sorting,  
495 indel realignment, duplicate marking, and low-quality filtering using Picard  
496 (<http://picard.sourceforge.net>) and GATK 3.5.0 (McKenna et al. 2010; DePristo et al. 2011).  
497 To generate an initial trial set of variants for recalibrating base quality scores, we used GATK's  
498 UnifiedGenotyper and SAMtools (Li et al. 2009) to call variant sites, separately, and then took  
499 the intersection of variant sites from these two methods. Next, we kept SNP sites if they passed  
500 the recommended hard filtering thresholds (QD > 2, FS < 60, MQ > 40, MQRankSum > -12.5,  
501 and ReadPosRankSum > 15) as described before (Koch et al. 2019) and filtered sites in  
502 repetitive regions from this set using RepeatMasker 4.0.6 (Smit 2013-2015). Finally, we treat  
503 the remaining SNPs as a "known" good quality variants set to recalibrate base quality scores  
504 using GATK 3.5.0.

505 After recalibrating base quality scores, the genotypes of all sites were called with GATK's  
506 UnifiedGenotyper with the "emit all sites" options. We did not perform variant quality  
507 recalibration (VQSR) suggested by GATK's best practices since the fact that de novo mutations  
508 should only occur in a single individual and are therefore more likely to be filtered out as low-  
509 quality variants. Instead, we applied a set of highly stringent hard filter criteria to weed out  
510 potential false positives (supplementary table S3, Supplementary Material online). Following  
511 Smeds et al. (2016), repetitive regions were masked with a combination of RepeatMasker  
512 v3.2.9 (Smit 2013-2015), Tandem Repeats Finder v4.07 (Benson 1999), and a custom Shell  
513 script to remove any homopolymers >10 bp that were not already masked (this criterion  
514 excluded ~43.4% of the autosomes genome). Then sites passing GATK's CallableLoci level  
515 were kept, and genotype quality (GQ) of each site had to be at least 30 (96.2% - 97.5% of the

516    autosomes genome met this criterion). A hard coverage threshold of 10 was used to minimize  
517    false variant calls due to insufficient read data (90.6%–99.1% of the autosomes genome met  
518    this criterion) following Keightley et al. (2014). These procedures ensured enough sufficient  
519    data to obtain accurate de novo mutations and filter false positives. A total of 1.17-1.28 Gb  
520    sequence per individual (51.8% - 56.7% of the autosomes genome) was kept for further quality  
521    control of de novo mutations. Finally, we excluded nonvariant sites and indels, only keeping  
522    the single nucleotide variants (SNV) in this study (supplementary table S7, Supplementary  
523    Material online).

524    **Identification of de novo mutations**

525    We applied extremely stringent bioinformatic filtering in attempts to have high confidence on  
526    the de novo mutations following the previous studies (Kong et al. 2012; Keightley et al. 2014;  
527    Smeds et al. 2016; Pfeifer 2017; Koch et al. 2019). Before filtering, we detected a total of 24.3  
528    million SNPs that segregate in the pedigree, concordant with expectations based on previously  
529    reported nucleotide levels (Choi et al. 2015). For each individual in the F1 and F2 generations,  
530    heterozygous positions were extracted from the background and had to meet the following  
531    criteria to be considered as potential de novo mutations:

532    1) Both parents were required to be homozygous for reference allele with no reads  
533       supporting the alternative allele (wipe out the possibility of potential parental  
534       mosaicism),

535    2) No other individuals in the same or the previous generation(s) are heterozygous or  
536       homozygous for the alternative allele,

537    3) At least 25% of the reads support the alternative allele,

538    4) Does not overlap with the known SNPs from Build 150 of the *Sus scrofa* dbSNP dataset  
539       (Sherry et al. 2001) from the NCBI database (Since de novo mutations are rare events,

540 candidates also detected as variation segregating in unrelated individuals are likely false  
541 positives).

542 The filtering criteria in the F2 generation was stricter than that in the F1, which helped reduce  
543 more background. The de novo mutations in the F2 generation must simultaneously be  
544 homozygous for the reference allele with no reads present that supported the alternative allele  
545 in the F0 and the F1 generation. While for the mutation candidates in F1 generation, only F0  
546 individuals are required to be homozygous for reference allele with no potential parental  
547 mosaicism.

548 After all these filters, the SNPs left in F1-180, F1-35, F2-1135, F2-1139 and F2-1143 were  
549 393, 360, 180, 213 and 227, respectively.

## 550 **Manual curation and annotation of de novo mutations**

551 Candidate mutations were manually curated using the Integrated Genomics Viewer (IGV)  
552 (Robinson et al. 2011), similar to Keightley et al. (2014) to visually detect false positives  
553 caused by misaligned reads, sequencing errors, insertions, and deletions. The type of false  
554 positives detected is excluded as described in the examples shown in the supplemental figures  
555 S1 through S4 by Keightley et al. (2014). In the curation process, we applied a two-step  
556 approach: firstly, we used a 141 bp-wide window in IGV to screen for the reliable de novo  
557 mutations; second, we enlarged the window to 261 bp to further confirm whether the mutation  
558 was robustly true based on the status of linked loci on the same read of the candidate mutation,  
559 and further to determine whether the mutation origin from the father or the mother  
560 (supplementary table S1, Supplementary Material online). Sites were annotated using  
561 ANNOVAR v2020Apr28 (Wang et al. 2010) with the annotation of the *Sus scrofa* genome  
562 (build 11.1).

## 563 **PCR for the detection of the de novo mutations**

564 In this study, we designed a pair of specific primers for each of 44 de novo mutations  
565 identified in a family composed of 9 individuals (supplementary table S8, Supplementary  
566 Material online). The PCR reaction included 2.5  $\mu$ L of 10X buffer (Mg<sup>2+</sup> plus) (TaKaRa,  
567 Japan), 1.5  $\mu$ L of 25 mM MgCl<sub>2</sub>, 2.0  $\mu$ L of 2.5 mM dNTP, 1.0  $\mu$ L of each primer (10  $\mu$ M),  
568 0.4  $\mu$ l of Taq DNA polymerase (5U/ $\mu$ l), 50 ng of the genomic DNA, and the final volume was  
569 made up to 25  $\mu$ l with ddH<sub>2</sub>O. The mixture was then run in a thermocycler under the following  
570 conditions: 94°C for 5 min; 26 cycles of 94°C for 30 s, 68°C (-0.5°C/cycle) for 30 s, 72°C for  
571 45 s; 14 cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 45 s; 72°C for 10 min. The PCR  
572 products were sequenced on the 3130XL Genetic Analyzer (Applied Biosystem, USA).

### 573 **History inferring methods and models**

574 We used PSMC (Li and Durbin 2011) and MSMC (Schiffels and Durbin 2014) to infer  
575 population sizes and split times for Sus populations. The Sus populations are all downloaded  
576 from the NCBI SRA database (<https://www.ncbi.nlm.nih.gov/sra>), including *Sus cebifrons* and  
577 *Sus scrofa* (supplementary table S5, Supplementary Material online). Among the data of *Sus*  
578 *cebifrons* in the public database, there are two good-quality individuals, allowing us to estimate  
579 the split time. *Sus scrofa* consists of wild pigs (Sumatran wild pigs, South China (Nanchang,  
580 Jiangxi Province) wild pigs, North China wild pigs, European (Netherlands) wild pigs) and  
581 domesticated pigs (Europe: Large White and Mangalica pigs; China: Hetao, Bamei, Min,  
582 Jinhua, Bamaxiang and Wuzhishan). The reads from all the above individuals were aligned to  
583 the *Sus scrofa* reference genome (build 11.1) using BWA (Li and Durbin 2009). The  
584 subsequent steps, including sorting, indel realignment, deduplication are processed via GATK  
585 3.5.0 (McKenna et al. 2010; DePristo et al. 2011).

586 For population sizes inferring, PSMC requires diploid consensus sequences. The consensus  
587 was generated from the 'pileup' command of SAMtools software package (Li et al. 2009). Read  
588 depth threshold was set as recommended by PSMC's manual. Then we used the tool 'fq2psmcfa'

589 from the PSMC package to create the input file. We used  $T_{\max} = 20$ ,  $n = 64$  ("4+50\*1+4+6")  
590 following Groenen et al. (2012). Here we adopted the mutation rate and generation time  
591 updated in this study.

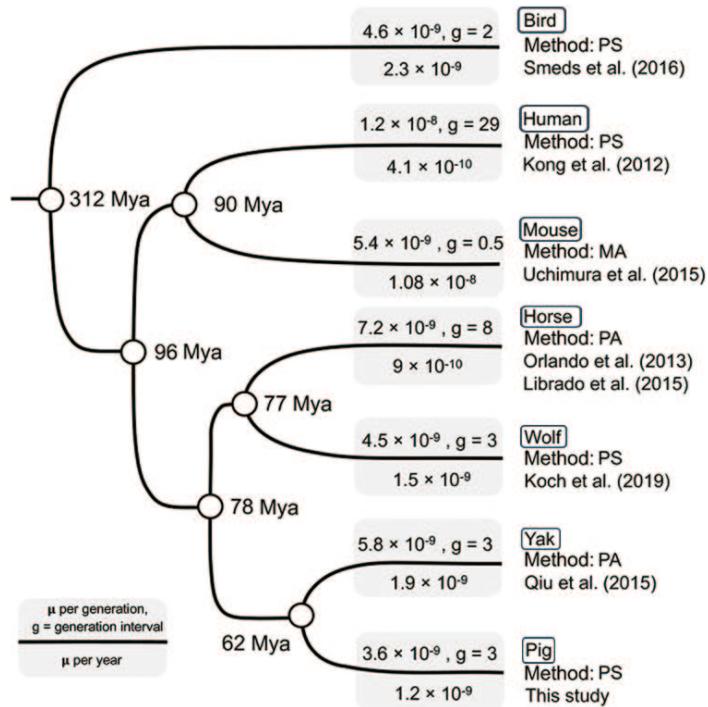
592 Split time estimated by MSMC2 requires two-phased genomes each population. SNPs-  
593 calling and low-quality filtering were conducted as previously described (Ai et al. 2015). We  
594 phased the samples using SHAPEIT (Delaneau et al. 2013). Besides, there were two masks  
595 applied here: one was derived by the tool 'bamCaller.py' from the MSMC-tools package; the  
596 other one included the sites that were masked using Heng Li's SNPable mask. Then, MSMC  
597 was run on four haplotypes (two from each of the two populations) with the "--skipAmbiguous"  
598 argument to skip unphased segments of the genome. The time segments were also set to 64, as  
599 in PSMC above. Results were scaled to real time by applying a mutation rate of  $3.6 \times 10^{-9}$  per  
600 site per generation and a generation time of 3 years derived in this study. MSMC-IM, fitting a  
601 continuous Isolation-Migration model to coalescence rates to obtain a time-dependent estimate  
602 of gene flow within and across pairs of populations based on the results of MSMC, was also  
603 used to decide the time of a split event, presented by a signal of strong gene flow (Wang et al.  
604 2020).

605 A *split-with-archaic-admixture* model, in which two populations of varying sizes were  
606 assumed separated 219 Kya, with one receiving a varying level of gene flow from more deeply  
607 diverged population (fig. 5A and C), was built to check how the archaic admixture would affect  
608 the shape of PSMC. The ms software (Hudson 2002) was adopted to perform a series of  
609 simulations under the *split-with-archaic-admixture* model. We run the simulations under two  
610 different scenes where the third population diverged from the ancestor of the former two  
611 populations 500 Kya and 2 Mya, respectively. 10,000 was set as the initial population size used  
612 to scale the parameters in the simulation.

613

614 **Conflict of interest**

615 The authors declare that they have no conflict of interest.

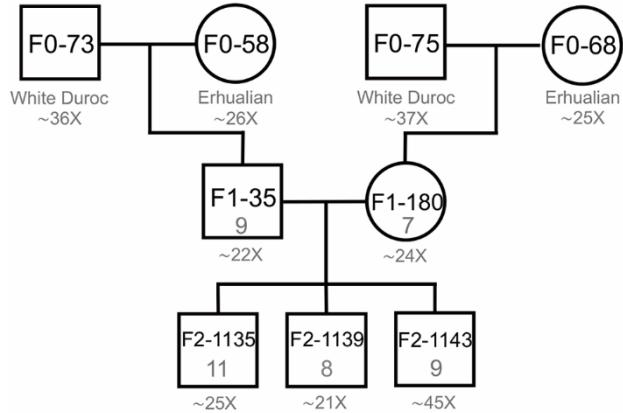

616 **Acknowledgments**

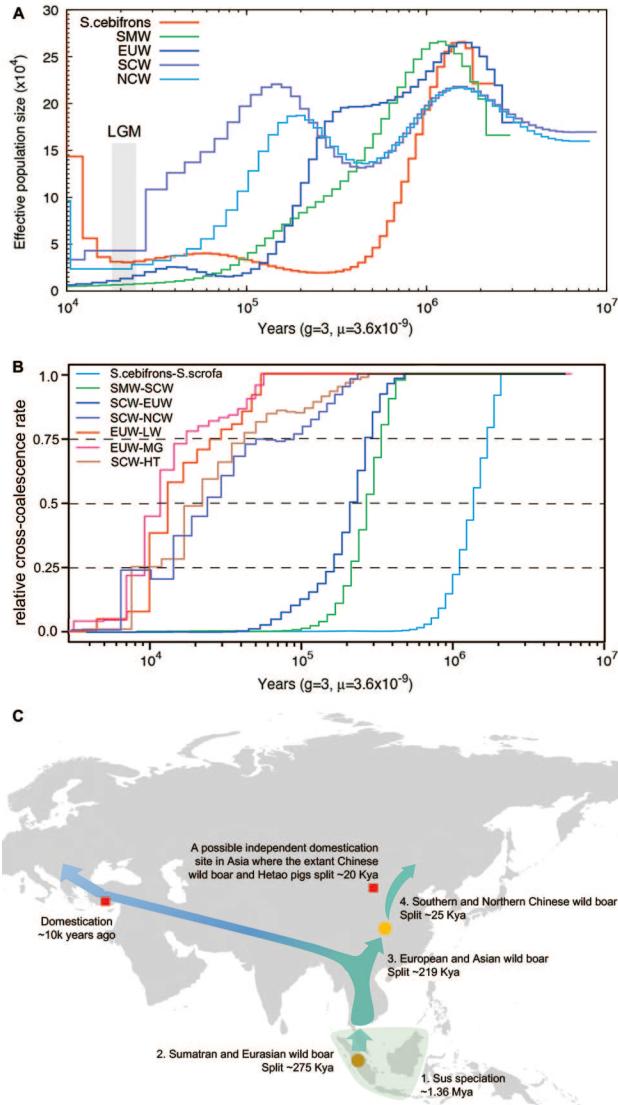
617 This work was financially supported by Innovative Research Team in University (IRT1136),  
618 the National Natural Science Foundation of China (31672383), and the National Swine  
619 Industry and Technology system of China (nycytx-009). We thank Mingshan Wang from UC,  
620 Santa Cruz for helpful comments and suggestions. M.Z. thanks Rasmus Nielsen for useful  
621 comments and for hosting him from Januray 2019 to September 2020 at the Center for  
622 Theoretical Evolutionary Genomics, UC Berkeley. We also thank for Jiaqi Chen for help on  
623 IGV application.

624 **Author contributions**

625 L.H. organized and coordinated the research. L.H. and H.A. designed the study. M.Z. and H.  
626 A. performed the bioinformatics and evolutionary history analyses. Q.Y. was in charge of the  
627 DNMs validation by Sanger sequencing. L.H, H.A. and M.Z. analyzed the results. H.A. and M.  
628 Z. wrote the draft manuscript. L.H. and H.A. revised the paper.

629 **Figures**





630

631 **Figure 1. The mutation rate and generation interval used in the demographic inference**  
632 **in birds and several mammals.** Different methods were used to estimate mutation rate: PS,  
633 pedigree sequencing; MA, sequencing of mutation accumulation lines; PA, Phylogenetic  
634 approach.

635

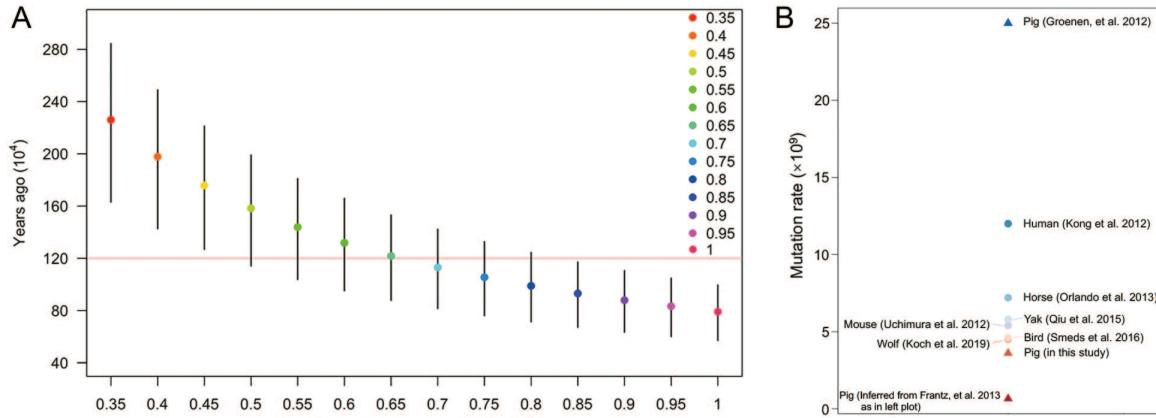
636





647

648 **Figure 3. Population history of *Sus* species.** (A) show the changes in effective population  
649 size of *Sus cebifrons* and the wild pigs over past year inferred by PSMC. The Last Glacial  
650 Maximum (LGM) is highlighted in grey. (B) Split time for population pairs estimated by  
651 MSMC. A relative cross-coalescence rate of 0.5 is defined as the divergence time. The cold  
652 color lines indicated the split time of wild pig breeds in different regions; the warm color lines  
653 could somehow reflect the domestication time, even though the extant wild pigs may not be  
654 the domesticated breeds' direct ancestors. See Supplementary information, Table S6, for more  
655 detail of per breed. (C) A map depicting the hypothetical spread of wild pigs across Eurasia  
656 and the domestication events of pigs happened in the Middle East and China. The shade  
657 covered in Southeast Asia indicates Sus originated here. The circles represent the “node”

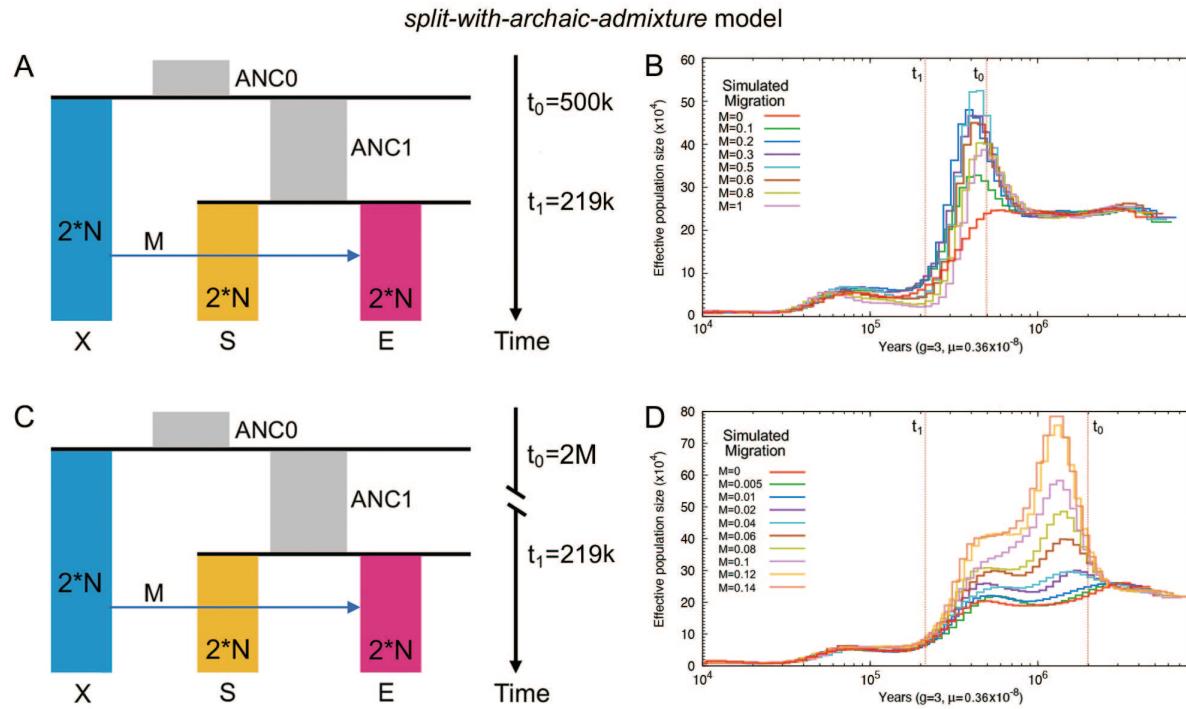

658 groups, connecting two different groups. The brown circle depicts Sumatran wild pigs. The

659 yellow circle depicts South Chinese wild pigs. The red squares refer to the domestication events.

660

661

662




663

664 **Figure 4. The abnormal mutation rate in the past population studies of pigs.** (A) The Pig  
665 mutation rate inferred using MSMC when fixing the divergence time between SCW and EUW  
666 at 1.2 Million years ago. SCW - EUW divergence time inferred by MSMC using various  
667 mutation rates with 3 years fixed as generation interval. Dots, lower and upper bar represents  
668 the time at which cross-coalescence rate dropped below, 50%, 25% and 75%, respectively. The  
669 red horizontal line represents the SCW - EUW divergence time from Frantz et al. (2013). (B)  
670 Scatter plot shows the mutation rate of pigs (triangles) estimated in our study and used in the  
671 past research, and exhibits the mutation rate of other species (circles) in Figure 1. Mutation rate  
672 here is in a unit of per site per generation.

673

674



685 **References**

686 Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, Zhang F, Zhang L, Cui L, He W, et al. 2015.  
687 Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome  
688 sequencing. *Nat. Genet.* 47(3):217-225.

689 Algers B, Jensen P. 1990. Thermal microclimate in winter farrowing nests of free-ranging  
690 domestic pigs. *Livest. Prod. Sci.* 25(1-2):177-181.

691 Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids  
692 Res.* 27(2):573-580.

693 Berg F, Gustafson U, Andersson L. 2006. The uncoupling protein 1 gene (UCP1) is disrupted  
694 in the pig lineage: a genetic explanation for poor thermoregulation in piglets. *PLoS Genet.*  
695 2(8):e129.

696 Bosse M, Megens HJ, Madsen O, Frantz LA, Paudel Y, Crooijmans RP, Groenen MA. 2014.  
697 Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically  
698 distinct and highly divergent *Sus scrofa* populations. *Mol. Ecol.* 23(16):4089-4102.

699 Canu A, Scandura M, Merli E, Chirichella R, Bottero E, Chianucci F, Cutini A, Apollonio M.  
700 2015. Reproductive phenology and conception synchrony in a natural wild boar population.  
701 *Hystrix* 26(2).

702 Choi J-W, Chung W-H, Lee K-T, Cho E-S, Lee S-W, Choi B-H, Lee S-H, Lim W, Lim D, Lee  
703 Y-G. 2015. Whole-genome resequencing analyses of five pig breeds, including Korean wild  
704 and native, and three European origin breeds. *DNA Res.* 22(4):259-267.

705 Comer CE, Mayer JJ. 2009. Wild pig reproductive biology. *Wild pigs: biology, damage,  
706 control techniques, and management* 51-75.

707 Delaneau O, Zagury JF, Marchini J. 2013. Improved whole-chromosome phasing for disease  
708 and population genetic studies. *Nat. Methods* 10(1):5-6.

709 DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del  
710 Angel G, Rivas MA, Hanna M. 2011. A framework for variation discovery and genotyping  
711 using next-generation DNA sequencing data. *Nat. Genet.* 43(5):491.

712 Francioli LC, Polak PP, Koren A, Menelaou A, Chun S, Renkens I, Van Duijn CM, Swertz M,  
713 Wijmenga C, Van Ommen G. 2015. Genome-wide patterns and properties of de novo  
714 mutations in humans. *Nat. Genet.* 47(7):822-826.

715 Frantz LA, Haile J, Lin AT, Scheu A, Geörg C, Benecke N, Alexander M, Linderholm A,  
716 Mullin VE, Daly KG. 2019. Ancient pigs reveal a near-complete genomic turnover following  
717 their introduction to Europe. *Proc. Natl. Acad. Sci. USA.* 116(35):17231-17238.

718 Frantz LA, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M, Perri A, Linderholm A,  
719 Mattiangeli V, Teasdale MD, Dimopoulos EA. 2016. Genomic and archaeological evidence  
720 suggest a dual origin of domestic dogs. *Science* 352(6290):1228-1231.

721 Frantz LA, Schraiber JG, Madsen O, Megens HJ, Bosse M, Paudel Y, Semiadi G, Meijaard E,  
722 Li N, Crooijmans RP. 2013. Genome sequencing reveals fine scale diversification and  
723 reticulation history during speciation in *Sus*. *Genome Biol.* 14(9):1719-1728.

724 Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, Galavotti  
725 M, Fan Z, Marx P, Lorente-Galdos B. 2014. Genome sequencing highlights the dynamic early  
726 history of dogs. *PLoS Genet.* 10(1):e1004016.

727 Galtier N, Rousselle M. 2020. How much does *N*e vary among species? *bioRxiv*861849.

728 Giuffra E, Kijas JM, Amarger V, Carlborg O, Jeon JT, Andersson L. 2000. The origin of the  
729 domestic pig: independent domestication and subsequent introgression. *Genetics* 154(4):1785-  
730 1791.

731 Gongora J, Cuddahee RE, Nascimento FFd, Palgrave CJ, Lowden S, Ho SY, Simond D,  
732 Damayanti CS, White DJ, Tay WT. 2011. Rethinking the evolution of extant sub-Saharan  
733 African suids (Suidae, Artiodactyla). *Zool. Scr.* 40(4):327-335.

734 Groenen MA. 2016. A decade of pig genome sequencing: a window on pig domestication and  
735 evolution. *Genet Sel Evol* 48:23.

736 Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-  
737 Gaillard C, Park C, Milan D, Megens HJ, et al. 2012. Analyses of pig genomes provide insight  
738 into porcine demography and evolution. *Nature* 491(7424):393-398.

739 Hawks J. 2017. Introgression makes waves in inferred histories of effective population size.  
740 *Hum. Biol.* 89(1):67-80.

741 Heptner VG, Nasimovich A, Bannikov AGe, Hoffmann RS. 1988. Mammals of the soviet  
742 union: Adams Media.

743 Hershberg R, Petrov DA. 2010. Evidence that mutation is universally biased towards AT in  
744 bacteria. *PLoS Genet.* 6(9):e1001115.

745 Huang Y, Zhou L, Zhang J, Liu X, Zhang Y, Cai L, Zhang W, Cui L, Yang J, Ji J. 2020. A  
746 large-scale comparison of meat quality and intramuscular fatty acid composition among three  
747 Chinese indigenous pig breeds. *Meat Sci.* 108:182.

748 Hudson RR. 2002. Generating samples under a Wright–Fisher neutral model of genetic  
749 variation. *Bioinformatics* 18(2):337-338.

750 Ikegawa S, Mabuchi A, Ogawa M, Ikeda T. 2002. Allele-specific PCR amplification due to  
751 sequence identity between a PCR primer and an amplicon: is direct sequencing so reliable?  
752 *Hum. Genet.* 110(6):606-608.

753 Jing Y, Flad RK. 2002. Pig domestication in ancient China. *Antiquity* 76(293):724-732.

754 Keightley PD, Ness RW, Halligan DL, Haddrill PR. 2014. Estimation of the spontaneous  
755 mutation rate per nucleotide site in a *Drosophila melanogaster* full-sib family. *Genetics*  
756 196(1):313-320.

757 Keightley PD, Pinharanda A, Ness RW, Simpson F, Dasmahapatra KK, Mallet J, Davey JW,  
758 Jiggins CD. 2015. Estimation of the spontaneous mutation rate in *Heliconius melpomene*. *Mol.*  
759 *Biol. Evol.* 32(1):239-243.

760 Kimura M. 1968. Evolutionary rate at the molecular level. *Nature* 217(5129):624-626.

761 Koch EM, Schweizer RM, Schweizer TM, Stahler DR, Smith DW, Wayne RK, Novembre J.  
762 2019. De novo mutation rate estimation in wolves of known pedigree. *Mol. Biol. Evol.*  
763 36(11):2536-2547.

764 Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA,  
765 Sigurdsson A, Jonasdottir A, Jonasdottir A. 2012. Rate of de novo mutations and the  
766 importance of father's age to disease risk. *Nature* 488(7412):471-475.

767 Kumar S, Subramanian S. 2002. Mutation rates in mammalian genomes. *Proc. Natl. Acad. Sci.*  
768 *USA*. 99(2):803-808.

769 Lachance J, Vernot B, Elbers CC, Ferwerda B, Froment A, Bodo J-M, Lema G, Fu W, Nyambo  
770 TB, Rebbeck TR. 2012. Evolutionary history and adaptation from high-coverage whole-  
771 genome sequences of diverse African hunter-gatherers. *Cell* 150(3):457-469.

772 Larson G, Cucchi T, Fujita M, Matisoo-Smith E, Robins J, Anderson A, Rolett B, Spriggs M,  
773 Dolman G, Kim T-H. 2007. Phylogeny and ancient DNA of *Sus* provides insights into neolithic  
774 expansion in Island Southeast Asia and Oceania. *Proc. Natl. Acad. Sci. USA*. 104(12):4834-  
775 4839.

776 Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson  
777 H, Brand T, Willerslev E. 2005. Worldwide phylogeography of wild boar reveals multiple  
778 centers of pig domestication. *Science* 307(5715):1618-1621.

779 Larson G, Liu R, Zhao X, Yuan J, Fuller D, Barton L, Dobney K, Fan Q, Gu Z, Liu XH, et al.  
780 2010. Patterns of East Asian pig domestication, migration, and turnover revealed by modern  
781 and ancient DNA. *Proc Natl Acad Sci USA* 107(17):7686-7691.

782 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.  
783 *Bioinformatics* 25(14):1754-1760.

784 Li H, Durbin R. 2011. Inference of human population history from individual whole-genome  
785 sequences. *Nature* 475(7357):493-496.

786 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.  
787 2009. The sequence alignment/map format and SAMtools. *Bioinformatics* 25(16):2078-2079.

788 Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung CK, Chen L, Ma J. 2013. Genomic  
789 analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. *Nat.*  
790 *Genet.* 45(12):1431.

791 Librado P, Der Sarkissian C, Ermini L, Schubert M, Jónsson H, Albrechtsen A, Fumagalli M,  
792 Yang MA, Gamba C, Seguin-Orlando A. 2015. Tracking the origins of Yakutian horses and  
793 the genetic basis for their fast adaptation to subarctic environments. *Proc. Natl. Acad. Sci. USA.*  
794 112(50):E6889-E6897.

795 Liu L, Bosse M, Megens H-J, Frantz LA, Lee Y-L, Irving-Pease EK, Narayan G, Groenen MA,  
796 Madsen O. 2019. Genomic analysis on pygmy hog reveals extensive interbreeding during wild  
797 boar expansion. *Nat. Commun.* 10(1):1992.

798 Lynch M. 2010a. Evolution of the mutation rate. *Trends Genet.* 26(8):345-352.

799 Lynch M. 2010b. Rate, molecular spectrum, and consequences of human mutation. *Proc. Natl.*  
800 *Acad. Sci. USA.* 107(3):961-968.

801 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,  
802 Altshuler D, Gabriel S, Daly M, et al. 2010. The Genome Analysis Toolkit: a MapReduce  
803 framework for analyzing next-generation DNA sequencing data. *Genome Res.* 20(9):1297-  
804 1303.

805 Nachman MW, Crowell SL. 2000. Estimate of the mutation rate per nucleotide in humans.  
806 *Genetics* 156(1):297-304.

807 Nuijten RJ, Bosse M, Crooijmans RP, Madsen O, Schaftenaar W, Ryder OA, Groenen MA,  
808 Megens H-J. 2016. The use of genomics in conservation management of the endangered  
809 visayan warty Pig (*Sus cebifrons*). *International journal of genomics* 2016.

810 Pfeifer SP. 2017. Direct estimate of the spontaneous germ line mutation rate in African green  
811 monkeys. *Evolution* 71(12):2858-2870.

812 Qiu Q, Wang L, Wang K, Yang Y, Ma T, Wang Z, Zhang X, Ni Z, Hou F, Long R. 2015. Yak  
813 whole-genome resequencing reveals domestication signatures and prehistoric population  
814 expansions. *Nat. Commun.* 6(1):1-7.

815 Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP.  
816 2011. Integrative genomics viewer. *Nat. Biotechnol.* 29(1):24-26.

817 Scally A, Durbin R. 2012. Revising the human mutation rate: implications for understanding  
818 human evolution. *Nat. Rev. Genet.* 13(10):745-753.

819 Schiffels S, Durbin R. 2014. Inferring human population size and separation history from  
820 multiple genome sequences. *Nat. Genet.* 46(8):919.

821 Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigelski EM, Sirotnik K. 2001.  
822 dbSNP: the NCBI database of genetic variation. *Nucleic Acids Res.* 29(1):308-311.

823 Singer FJ. 1981. Wild pig populations in the national parks. *Environmental Management*  
824 5(3):263-270.

825 Smeds L, Qvarnström A, Ellegren H. 2016. Direct estimate of the rate of germline mutation in  
826 a bird. *Genome Res.* 26(9):1211-1218.

827 Smit A, Hubley, R. & Green, P. 2013-2015. RepeatMasker Open-4.0.  
828 <<http://www.repeatmasker.org>>.

829 Takashi M, Carl-Johan R, Miguel C, Erik A, Leif A, Webster MT. 2018. Elevated proportions  
830 of deleterious genetic variation in domestic animals and plants. *Genome Biol. Evol.*(1):276-  
831 290.

832 Walters EM, Wells KD, Bryda EC, Schommer S, Prather RS. 2017. Swine models, genomic  
833 tools and services to enhance our understanding of human health and diseases. *Lab Anim.*  
834 46(4):167-172.

835 Wang C, Li H, Guo Y, Huang J, Sun Y, Min J, Wang J, Fang X, Zhao Z, Wang S. 2020.  
836 Donkey genomes provide new insights into domestication and selection for coat color. *Nat.*  
837 *Commun.* 11(1):1-15.

838 Wang G-D, Zhai W, Yang H-C, Wang L, Zhong L, Liu Y-H, Fan R-X, Yin T-T, Zhu C-L,  
839 Poyarkov AD. 2016. Out of southern East Asia: the natural history of domestic dogs across the  
840 world. *Cell Res.* 26(1):21-33.

841 Wang H, Zhu X. 2014. De novo mutations discovered in 8 Mexican American families through  
842 whole genome sequencing. *BMC Proc.* 8(S1):S24.

843 Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants  
844 from high-throughput sequencing data. *Nucleic Acids Res.* 38(16):e164-e164.

845 Wang K, Mathieson I, O'Connell J, Schiffels S. 2020. Tracking human population structure  
846 through time from whole genome sequences. *PLoS Genet.* 16(3):e1008552.

847 Wang MS, Wang S, Li Y, Jhala Y, Thakur M, Otecko NO, Si J-F, Chen H-M, Shapiro B,  
848 Nielsen R, et al. 2020. Ancient Hybridization with an Unknown Population Facilitated High-  
849 Altitude Adaptation of Canids. *Mol. Biol. Evol.*

850 Wang X. 2012. A breeding method of Wannan wild boar in China. In: CN102630633A, editor.  
851 Xiang H, Gao J, Cai D, Luo Y, Yu B, Liu L, Liu R, Zhou H, Chen X, Dun W. 2017. Origin  
852 and dispersal of early domestic pigs in northern China. *Scientific reports* 7(1):1-9.

853 Yang B, Cui L, Perez-Enciso M, Traspov A, Crooijmans RP, Zinovieva N, Schook LB,  
854 Archibald A, Gatphayak K, Knorr C. 2017. Genome-wide SNP data unveils the globalization  
855 of domesticated pigs. *Genetics Selection Evolution* 49(1):71.

856