

Integrated population genomic analysis and numerical simulation to estimate larval dispersal of *Acanthaster cf. solaris* between Ogasawara and other Japanese regions

1 **Mizuki Horoiwa¹, Takashi Nakamura², Hideaki Yuasa³, Rei Kajitani³, Yosuke Ameda⁴,**
2 **Tetsuro Sasaki⁴, Hiroki Taninaka⁵, Taisei Kikuchi⁶, Takehisa Yamakita⁷, Atsushi Toyoda⁸,**
3 **Takehiko Itoh³, Nina Yasuda^{9,*}**

4 ¹ Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan

5 ² School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan

6 ³ School of Life Science and Technology, Department of Life Science and Technology, Tokyo
7 Institute of Technology, Tokyo, Japan

8 ⁴ Institute of Boninology, Chichijima, Ogasawara, Tokyo, Japan

9 ⁵ Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki,
10 Miyazaki,

11 ⁶ Faculty of Medicine, University of Miyazaki, Miyazaki, Japan

12 ⁷ Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

13 ⁸ Department of Genomics and Evolutionary Biology, National Institute of Genetics, Shizuoka, Japan

14 ⁹ Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan

15

16 *** Correspondence:**

17 Corresponding Author

18 nina27@cc.miyazaki-u.ac.jp

19 **Keywords:** crown-of-thorn starfish, larval dispersal, secondary outbreak, population genetics,
20 Ogasawara, Kuroshio current, oceanographic dispersal simulation

21

22 Word count: 4928

23 Number of figures and tables: 4

24 Article type: Full paper

25 **Abstract**

26 The estimation of larval dispersal of marine species occurring on an ecological timescale is
27 significant for conservation. In 2018, a semi-population outbreak of crown of thorns starfish,
28 *Acanthaster cf. solaris* was observed on a relatively isolated oceanic island, Ogasawara. The aim of
29 this study was to assess whether this population outbreak was caused by large-scale larval
30 recruitment (termed secondary outbreak) from the Kuroshio region. We estimated larval dispersal of
31 the coral predator *A. cf. solaris* between the Kuroshio and Ogasawara regions using both population
32 genomic analysis and oceanographic dispersal simulation. Population genomic analysis revealed
33 overall genetically homogenized patterns among Ogasawara and other Japanese populations,
34 suggesting that the origin of the populations in the two regions is the same. In contrast, a simulation
35 of 26-year oceanographic dispersal indicated that larvae are mostly self-seeded in Ogasawara
36 populations and have difficulty reaching Ogasawara from the Kuroshio region within one generation.
37 However, a connectivity matrix produced by the larval dispersal simulation assuming a Markov chain
38 indicated gradual larval dispersal migration from the Kuroshio region to Ogasawara in a stepping-
39 stone manner over multiple years. These results suggest that, while large-scale larval dispersal from
40 an outbreak of the Kuroshio population spreading to the Ogasawara population within one generation
41 is unlikely. This study also highlighted the importance of using both genomic and oceanographic
42 methods to estimate larval dispersal, which provides significant insight into larval dispersal that
43 occurs on ecological and evolutionary timescales.

44

45 1 Introduction

46 Many benthic marine invertebrates in coral reef ecosystems exhibit planktonic larval dispersal during
47 their early life history. Such larval dispersal connects different populations and forms a meta-
48 population structure (Shanks, 2009). Thus, for effective conservation and management of benthic
49 marine invertebrates, assessment of larval dispersal is important (Botsford et al., 2009; Almany et al
50 2009). Because it is challenging to directly track the movement of tiny, numerous larvae in the field,
51 several different indirect methods, including population genomic analysis (e.g. Yasuda et al., 2015;
52 Arndt and Smith, 2002), oceanographic simulation (e.g. Miyake et al., 2009; Storlazzi et al., 2017),
53 plankton-netting in the field (e.g. Yasuda et al., 2015; Suzuki et al., 2016), and drifting buoys (e.g.
54 Fukuda and Hanamura, 1996), have been employed to estimate larval dispersal. Although each
55 method has advantages and disadvantages, the first two methods can be applied to relatively large
56 spatial scales and thus have been used more frequently than the other methods. On the one hand, the
57 data obtained by population genomic analysis reflect the biological processes of larval dispersal and
58 recruitment. However, they not only include larval dispersal occurring on an ecological timescale but
59 also reflect historical gene flow and genetic breaks caused by past climate change and plate tectonics
60 (Benzie, 1999; Crandall et al., 2014). Oceanographic simulation, on the other hand, can capture
61 snapshots of larval dispersal, while even a sophisticated biophysical model cannot accurately
62 simulate larval behavior, recruitment, and survival in the ocean (White et al., 2019). It is therefore
63 important to integrate different methods to estimate larval dispersal (Marko and Hart, 2017),
64 although few studies have attempted to do so (but see Schunter et al., 2011; Alberto et al., 2011;
65 Nakabayashi et al., 2019; Taninaka et al., 2019).

66 In this study, we targeted the crown-of-thorns starfish, *Acanthaster cf. solaris*, to estimate larval
67 dispersal. Chronic outbreaks of the coral predator *A. cf. solaris* and its siblings have been the major
68 management issue in coral reef ecosystems in the Indian and Pacific oceans (Baird et al., 1990; Baird
69 et al., 2013). With high fecundity and a larval stage that lasts a few to several weeks (Yamaguchi,
70 1977; Lucas, 1973), a population outbreak can cause successive population outbreaks, termed
71 secondary outbreaks (reviewed in Birkeland and Lucas, 1990; Pratchett et al., 2014; Yasuda, 2018),
72 via larval dispersal in neighboring regions, especially in the western Pacific region. Assessment of
73 the spatial range of secondary outbreaks of *A. cf. solaris* is necessary for coral reef conservation.

74 Many population genomic and phylogeographic studies of *A. cf. solaris* have been conducted using
75 various molecular markers (e.g., Benzie, 1992, 1999; Vogler et al., 2013; Timmers et al., 2011;
76 Yasuda et al., 2009; 2015). These studies have indicated strong gene flow over a long distance along
77 western boundary currents such as the Kuroshio Current region (genetic homogeneity from across the
78 Ryukyu Islands to the temperate Pacific coast of mainland Japan, Yasuda et al., 2009) and the
79 Eastern Australian Current region (the Great Barrier Reef, Nash et al., 1988; Benzie et al., 1999;
80 Vogler et al., 2013; Harrison et al., 2017), while relatively limited gene flow and genetic
81 differentiation were observed among distant Pacific islands (Yasuda et al., 2009; Timmers et al.,
82 2012; Vogler et al., 2013). Overall, the studies found strong gene flow and genetic homogeneity in
83 regions where strong currents are associated, although genetic data strongly reflect historical gene
84 flow that was formed during past climate change, and the spatial extent of secondary outbreaks could
85 be overestimated (Benzie 1999, Yasuda et al. 2009, Yasuda et al. 2015). Larval dispersal simulation
86 studies in the Great Barrier Reef (GBR) have indicated southward larval dispersal along the Eastern
87 Australian Current, which is consistent with historically observed patterns of secondary outbreaks of
88 *A. cf. solaris*. (Dight et al., 1990a, b, James and Scandol, 1992; Scandol and James, 1992). Plankton
89 netting survey has also showed evidence of large-scale larval dispersal of *A. cf. solaris* in the GBR
90 (Uthicke et al., 2015). While intensive connectivity studies of *A. cf. solaris* have been conducted at

91 the Indo-Pacific scale and in some localized regions where secondary outbreaks were suspected (e.g.,
92 the Kuroshio region and the GBR), connectivity between such regions and relatively isolated oceanic
93 island regions is yet to be examined.

94 In 2018, a population outbreak of *A. cf. solaris* on Ogasawara Island was reported (Biodiversity
95 Center of Japan, 2019), which was the second population outbreak on Ogasawara since 1979 (Kurata,
96 1984). Ogasawara Island is an oceanic island situated ca. 1000 km south of the Tokyo urban center
97 and is out of the mainstream of the Kuroshio Current. It is therefore still unknown whether this
98 population outbreak is attributed to a secondary outbreak in the Kuroshio region.

99 The aim of this study was to estimate larval dispersal between the Kuroshio region and Ogasawara to
100 determine whether the population outbreak in Ogasawara was caused by a secondary outbreak in the
101 Kuroshio region. To meet this aim, we used both a method of population genomic analysis called
102 multiplexed ISSR genotyping by sequencing (MIG-seq) and oceanographic larval dispersal
103 simulation based on the Global HYbrid Coordinate Ocean Model (HYCOM).

104 2 Material and Methods

105 2.1 Sampling and DNA extraction

106 A total of 187 starfish samples were collected from six Kuroshio regions (Tatsukushi, Miyazaki,
107 Sakurajima, Onna Village, Miyako, and Sekisei Lagoon) and Ogasawara via scuba diving (Fig. 1).
108 The tube feet were preserved in 99.5% ethanol prior to DNA extraction. Genomic DNA extraction
109 was carried out using a modified heat alkaline method (Meeker et al., 2007; Nakabayashi et al., 2019).

110 2.2 Whole-genome sequencing and nuclear genome assembly as the reference

111 We obtained a new high-quality whole-genome sequence for mapping analysis. Whole-genome
112 sequencing of the sample collected from Miyazaki (BioSample ID, SAMD00056692) was performed
113 using Sequel, which is a single-molecule real-time sequencer from Pacific Biosciences (PacBio;
114 Menlo Park, CA, USA), according to the manufacturer's protocol. Previously published whole-
115 genome short-read sequencing data (Wada et al., 2020) were downloaded from the BioProject
116 PRJDB4009 in the ENA/Genbank/DDBJ database. Briefly, we obtained two paired-end (PE)
117 libraries (insert sizes: 300 and 500 bp) and six mate-pair (MP) libraries (insert sizes: 3k, 5k, 8k, 10k,
118 12k, and 15k).

119 For the *in silico* procedures in this section, default parameters were used except where otherwise
120 noted. Illumina PE and MP reads were filtered and trimmed using Platanus_trim v1.0.7,
121 (http://platanus.bio.titech.ac.jp/platanus_trim). We assembled trimmed PE and MP reads using
122 Platanus v1.2.5 (Kajitani et al., 2014) with the commands "assemble," "scaffold," and "gap_close,"
123 resulting in the scaffolds.

124 In addition to the short-read assembly, PacBio long-read assembly was conducted using Canu v1.7
125 (Koren et al., 2017). We polished the Canu contigs with the PacBio long reads using Pbalign v0.3.1
126 (<https://www.pacb.com/support/software-downloads/>) and Arrow in the GenomicConsensus package
127 v2.2.2 (<https://github.com/PacificBiosciences/GenomicConsensus>). We additionally polished the
128 contigs with Illumina (Illumina, San Diego, CA, USA) short reads using Bowtie2 v2.3.5.1
129 (Langmead and Salzberg, 2012) and Pilon v.1.22 (Walker et al., 2014). The short read-based
130 polishing was iterated until the number of corrected sites did not increase (number of iterations: 18).

131 Gaps of the short read-based scaffolds (Platanus result) were filled with polished long read-based
132 contigs using an in-house program. The procedure is as follows (Suppl. Fig. 1):

133 (1) Fixed-length regions flanking the gaps in scaffolds were extracted.

134 (2) The flanking sequences were aligned (queried) to the long read-based contigs using Minimap2
135 v2.17 (Li, 2018) with the options of "-c -k 19."

136 (3) The alignment results were filtered out if sequence identity <90%, query coverage <25%, or
137 multiple best-scoring hits were identified.

138 (4) Each gap was filled with a region between the alignments in the contig if the following conditions
139 were satisfied:

140 (i) The flanking region pair was aligned to the same contig.

141 (ii) The distance between alignments <50 kbp.

142 (iii) The strands of the alignments were consistent.

143 (iv) There was no 'N' in the corresponding regions in the contig.

144 (5) Steps (1) to (4) were iterated eight times. Here, the specific length of the flanking regions was
145 applied for each iteration (500, 1k, 5k, 10k, 20k, 40k, 80k, and 160k).

146 (6) Step (5) was iterated twice.

147 Finally, to eliminate contamination, we performed homology searches of the assembly against the
148 NCBI genome database (human, bacteria, and virus), the mitochondrial genome of *A. planci*
149 (accession no. NC007788), and the chromosome sequence of the COTS symbiont (COTS27,
150 accession no. AP019861) using BLASTN v2.7.1 (Altschul et al., 1990). The assembled sequences
151 (scaffolds or contigs) were eliminated as contamination if sequence identity ≥90% and query
152 coverage ≥50% (Suppl. Table 1). We assessed the completeness of the draft genome using BUSCO
153 v.4.0.6 with the Metazoa Odb10 dataset (Seppey et al. 2019). K-mer-based (k = 17) estimations of
154 the sizes of the genome and duplicated regions were also conducted using Jellyfish v.2.2.10 (Marçais
155 and Kingsford, 2011) and GenomeScope v.2.0 (Ranallo-Benavidez et al. 2020).

156

157 2.3 MIG-seq Analysis

158 MIG-seq is a population genomic method that can easily detect a moderate number of neutral single
159 nucleotide polymorphisms (SNPs) (Suyama and Matsuki, 2015). Previous studies using MIG-seq on
160 marine species successfully discovered species boundaries and genetic structures that were
161 undetectable using traditional genetic markers such as mitochondrial DNA and nuclear ribosomal
162 internal transcribed spacer 2 (Nakabayashi et al. 2019; Takata et al. 2019).

163 We used eight pairs of multiplex ISSR primers (MIG-seq primer set 1; Suyama and Matsuki, 2015)
164 with the Multiplex PCR Assay Kit Ver. 2 (TaKaRa Bio Inc., Shiga, Japan) for the first PCR; we
165 slightly modified the protocol by Suyama and Matsuki (2015) and used a total reaction volume of 7
166 µL in a T100™ Thermal Cycler (Bio-Rad, Hercules, CA, USA) under the following conditions:

167 initial denaturation at 94 °C for 1 min; followed by 25 cycles of 94 °C for 30 s, 38 °C for 1 min, and
168 72 °C for 1 min; and final extension at 72°C for 10 min. The samples were indexed in the second
169 PCR, which was performed with PrimeSTAR GXL DNA polymerase (TaKaRa Bio Inc.) using a total
170 reaction volume of 12 μ L in a thermal cycler under the following conditions: 21 cycles of 98 °C for
171 10 s, 54 °C for 15 s, and 68 °C for 1 min. PCR products were run on an agarose gel, and 350–800 bp
172 PCR products were extracted from the gel. The gel-extracted DNA was pooled and sequenced using
173 MiSeq Control Software v2.0.12 (Illumina) with the MiSeq Reagent v3 150 cycle kit (Illumina).
174 Image analysis and base calling were performed using Real-Time Analysis Software v1.17.21
175 (Illumina).

176 To eliminate low-quality reads and primer sequences from the raw data, we used the FASTX-Toolkit
177 v0.0.14 (Gordon and Hannon, 2012; http://hannonlab.cshl.edu/fastx_toolkit/index.html) with a fastq-
178 quality-filter setting of $-q$ 30 $-p$ 40. We removed adapter sequences for the Illumina MiSeq run from
179 both the 5' end (GTCAGATCGGAAGAGCACACGTCTGAACCTCCAGTCAC) and the 3' end
180 (CAGAGATCGGAAGAGCGTCGTAGGGAAAGAC) using Cutadapt v1.13 (Martin, 2011), and
181 then we excluded short reads less than 80 bp. We used Stacks v2.2 (Catchen et al., 2013; Rochette
182 and Catchen, 2017) to stack the reads and extract the SNPs. We used the newly sequenced *A. cf.*
183 *solaris* genome as a reference, as described below. We used the Gstacks option
184 ($-rm$, $-pcr$, $-duplicates$) in Stacks v2.2 to remove PCR duplicates by randomly discarding all but one
185 pair of each set of reads. We used population software in Stacks to prepare the dataset. We used the
186 minimum percentage of individuals required to process a locus across all data (r) equal to 0.95. After
187 excluding individuals missing more than 10% of SNP data, we used a single SNP option to avoid
188 strong linkage between loci for Structure analysis. We used all SNPs for the remaining genetic
189 analyses.

190 2.4 Population Genetics

191 BayeScan v2.1 (Narum and Hess, 2011) was used to detect possible SNPs under natural selection
192 with a default setting. Genetic diversity (expected and observed heterozygosities, H_E and H_O ,
193 respectively), Hardy-Weinberg Equilibrium, global F_{ST} including and excluding Ogasawara samples,
194 and pairwise F_{ST} values across different populations were calculated using GenAlEx v6.502 (Peakall
195 and Smouse, 2012) with 9999 permutations.

196 To test whether the Ogasawara population is genetically different from other populations, a
197 hierarchical analysis of molecular variance (AMOVA) was conducted with prior grouping
198 (Ogasawara vs other populations) using Arlequin v3.5 (Excoffier and Lischer, 2010).

199 Bayesian clustering analysis was conducted using Structure software v2.3.4 (Prichards et al., 2000)
200 with 500,000 burn-in followed by 500,000 steps of Markov chain Monte Carlo simulations and 10
201 iterations. We used admixture- and allele frequency-correlated models that were expected to best
202 explain the data set. The LOCPRIOR model (Hubisz et al. 2009) was used with Ogasawara vs
203 other populations and without prior regional grouping, and the number of putative clusters (K) was
204 set from 1 to 7. The online software Structure Harvester (Earl and von Holdt, 2012) was used to
205 summarize the likelihood value. Structure plots were summarized using the online software
206 CLUMPAK (Kopelman et al., 2015). To further visualize the genetic relationships among different
207 populations, principal coordinate analysis (PCoA) was conducted using GenAlEx v6.502 based on
208 pairwise genetic distances among populations.

209 PGDspider v2.0.8.3 (Lischer & Excoffier, 2012) was used to convert the data formats.

210 **2.5 Oceanographic larval dispersal simulation**

211 We conducted a Lagrangian larval dispersal simulation to elucidate the oceanographic connectivity
 212 between the regions. For this simulation, we used Connectivity Modeling System v2.0 (Paris et al.,
 213 2013) with the ocean analysis/reanalysis products produced by the Global Ocean Forecasting System
 214 3.0 of Global HYCOM (Chassignet et al., 2007), which are 1/12° resolution (~9 km) daily products
 215 archived from 1993 to 2018 (<https://www.hycom.org/>). The surface water current and sea surface
 216 temperature (SST) in the Global HYCOM products ranged from 115°E–155°E longitude and 15°N–
 217 40°N latitude. Thirty source and sink sites fitting the purpose of this study were chosen to create
 218 source sink polygons (see Figure 1A). The particles regarded as COTS larvae were numerically
 219 released from ocean areas inside the polygons and tracked. Once the particle entered a polygon, the
 220 particle was removed and judged as larval settlement success, and the connection between the source
 221 polygon and sink polygon was counted. The particle release timing (start time of COTS mass
 222 spawning) and duration of the spawning at each site were determined by the following rules using a
 223 history of SST at the site provided by Global HYCOM analysis/reanalysis products based on Yasuda
 224 et al. (2010): (1) If SST at the site rose above 28 °C, the particles were released until SST dropped
 225 below 26 °C or 30 days passed; (2) If SST at the site did not reach 28 °C, the particles were released
 226 while SST was higher than 26 °C. A total of 100 particles per day were released from each source
 227 polygon under the above conditions. Finally, we obtained a connectivity matrix that was created
 228 based on larval dispersal simulations of 26 years (1993 to 2018).

229 Because the connectivity based on the larval dispersal simulation is a one-generation direct linkage,
 230 indicating that stepping-stone migration had not been considered, we conducted back-tracing of the
 231 origin site through a discrete-time Markov chain using the connectivity matrix. To this end, we first
 232 set the following form of the connectivity matrix $\mathbf{N}(m \times m)$:

$$233 \quad \mathbf{N} = \begin{matrix} & \text{source} \\ \begin{pmatrix} n_{1,1} & \cdots & n_{1,j} & \cdots & n_{1,m} \\ \vdots & \ddots & & & \vdots \\ n_{i,1} & & n_{i,j} & & n_{i,m} \\ \vdots & & \ddots & & \vdots \\ n_{m,1} & \cdots & n_{m,j} & \cdots & n_{m,m} \end{pmatrix} & \text{sink} \end{matrix} \quad (1)$$

234 The matrix elements were normalized by the total number of sink particles as follows:

$$235 \quad \mathbf{P} = \begin{pmatrix} p_{1,1} & \cdots & p_{1,j} & \cdots & p_{1,m} \\ \vdots & \ddots & & & \vdots \\ p_{i,1} & & p_{i,j} & & p_{i,m} \\ \vdots & & \ddots & & \vdots \\ p_{m,1} & \cdots & p_{m,j} & \cdots & p_{m,m} \end{pmatrix}, \quad (2)$$

236 where

237

$$p_{i,j} = \frac{n_{i,j}}{\sum_{j=1}^m n_{i,j}}. \quad (3)$$

238 The normalized connectivity matrix can be regarded as the transition matrix of the Markov chain.
239 The n -th power of the transition matrix \mathbf{P}^n represents the n time-step back-trace to the origin source.

240

241 **3 Results**

242 **3.1 Sequencing and SNP metrics**

243 In total, 11,461,866 raw reads ranging from 9,190 to 281,474 reads per sample were obtained for 187
244 *A. cf. solaris* samples. After filtering out the low-quality reads, 6,125,996 reads ranging from 5,996
245 to 107,468 reads per sample remained. On average, 189,536 reads per individual remained after two-
246 step filtering. We excluded seven samples missing more than 10% data and used a total of 180
247 samples for analysis. Using all SNP options, we obtained a total of 464 SNPs, which were used for
248 all subsequent analyses except for Structure analysis. For Structure analysis, 115 SNPs using a single
249 SNP option were used. BayeScan indicated that all loci were neutral (q -values >0.05).

250 **3.2 Genetic diversity and genetic differentiation**

251 Genetic diversity (H_O and H_E) of the studied populations, including that from Ogasawara, were
252 comparable and ranged from 0.039–0.044 and 0.039–0.045 for H_O and H_E , respectively (Suppl. Table
253 2). Global F_{ST} values were significant ($P < 0.001$) but small both for groups including ($F_{ST} = 0.005$)
254 and excluding the Ogasawara population ($F_{ST} = 0.006$). Likewise, AMOVA with prior grouping
255 (Ogasawara vs other populations) indicated that F_{CT} was low and not significant (0.00167, $P = 0.219$).
256 Pairwise F_{ST} values across the studied populations were also small, and only two pairs (Sekisei
257 Lagoon [SKS] and Tatsukushi [TTK], Miyazaki [MYZ] and Ogasawara [OGS]) became significant
258 after sequential Bonferroni correction ($\alpha < 0.05$) (Table 1).

259 Mean log likelihood values (mean lnP(D)) were highest at $K = 1$ without prior grouping and
260 comparable at K from 1 to 7 with prior grouping, with the lowest standard deviation value of mean
261 lnP(D) found at $K = 1$ (Suppl. Table 3). Structure bar plots with and without prior geographic
262 grouping suggested genetic homogeneity across the populations (Fig. 2A, Suppl. Fig. 2). PCoA
263 indicated that, along the x-axis, SKS, MYK and Sakurajima [SKR] were divided from the others,
264 although it was not related to geographic location or the year of sampling (Fig. 2B).

265

266 **3.3 The larval dispersal simulation**

267 The results of the larval dispersal simulations are shown as a connectivity matrix (Fig. 1B). The
268 diagonal elements of the matrix indicate self-seeding. Basically, site numbers from 1 to 20 were
269 assigned from south to north along the Kuroshio Current; site numbers from 21 to 25 were assigned
270 from Nii-Jima and Shikine islands, which are closer to Japan's main island, to the Ogasawara and
271 Iwo-Jima Islands, which are further; and site numbers from 26 to 30 were assigned along the
272 Tsushima Warm Current. The linkage of the site numbers for numerical simulation to site names for

273 genomic analysis was as follows: 5 = Sekisei Lagoon (SKS), 6 = Miyako (MYK), 7 = Onna Village
274 (ONN), 11 = Miyazaki (MYZ), 13 = Tatsukushi (TTK), 25 = Ogasawara (OGS), and 27 =
275 Sakurajima (SKR). The results of this analysis confirmed that the larvae were transported from south
276 to north by following the Kuroshio Current. However, they also confirmed that self-seeding
277 dominated in the Ogasawara area, and it is very rare for larvae from the other sites to reach the
278 Ogasawara area directly or for larvae from the Ogasawara area to reach the other sites directly.

279 Figure 3 shows the back-tracing results obtained using Markov chains. The bar of each site indicates
280 the ratio of the number of particles released from the source site (laws of transition matrix \mathbf{P}^n). The
281 results indicate that the origin sites gradually converged with some of the upstream sites of the
282 Kuroshio Current. The population in the Ogasawara area is not well mixed with that of the Kuroshio
283 region, but the 200–500 time-steps, which may be regarded as representing over a few hundred
284 generations, confirmed that the populations in the Kuroshio region and the Ogasawara region are
285 almost mixed.

286

287 4 Discussion

288 This study examined larval dispersal of the coral predator *A. cf. solaris* between the Kuroshio region
289 and Ogasawara using population genomic analysis and oceanographic simulation to test the
290 secondary outbreak hypothesis. Contrasting results were obtained using different methods.

291 Population genomic analysis indicated genetic homogeneity between the populations of the two
292 regions, and oceanographic numerical simulation indicated that multiple-generation stepping-stone
293 migration was required to disperse larvae from the Kurshio region to Ogasawara. These results
294 indicate that the Ogasawara population of *A. cf. solaris* has the same genetic origin as that of the
295 Kuroshio region, but a large amount of one-generation larval dispersal, such as a secondary outbreak
296 from the Kuroshio region to Ogasawara, is unlikely. Rather, the data suggest that the population
297 outbreak in Ogasawara might have been caused by successful self-seeding. This study highlights the
298 importance of an integrated approach for estimating larval dispersal, including its timescale, for
299 conservation purposes.

300 4.1 Potential of secondary outbreak between Ogasawara and Kuroshio region

301 In this study, all population genomics results indicated genetic similarity and no genetic structure
302 between *A. cf. solaris* populations in the Ogasawara and Kuroshio regions. The AMOVA and
303 Structure results indicate that the origins of *A. cf. solaris* populations in the Ogasawara and Kuroshio
304 regions are genetically similar. Low F_{ST}/F_{CT} values between the Ogasawara and Kuroshio regions
305 indicate (1) a contemporary, large amount of larval dispersal, (2) accumulation of stepping-stone
306 migrants over multiple years, or (3) recent separation of a population with no or limited ongoing gene
307 flow. Based on the oceanographic numerical simulation analysis results and historical records of *A. cf.*
308 *solaris* in Ogasawara, the latter two are more likely than contemporary, large amounts of larval
309 dispersal.

310 The result of the 26-year oceanographic simulation suggests that the chance of direct one-generation
311 larval dispersal between the Kuroshio region and Ogasawara is very low, although stepping-stone
312 migration (e.g. via Hachijyo-jima in Izu islands) between the two regions over multiple generations is
313 physically possible. The Markov chain simulation, which simulated stepping-stone migration over
314 multiple generations, indicated that the Ogasawara population is dominated by migrants from the
315 Kuroshio region after 200–500 generations. This implies that the accumulation of larvae from low

316 levels of migration between the Kuroshio and Ogasawara regions over multiple years would result in
317 genetic homogeneity. Given that there are no observed reports of population outbreaks of *A. cf.*
318 *solaris* in stepping-stone regions (e.g., Izu islands) in the last 40 years (Yasuda 2018), genetic
319 homogeneity between the Ogasawara and Kuroshio regions observed by *F*-statistics and
320 STRUCTURE analysis could be attributed to stepping-stone larval migration over multiple
321 generations. Crandall et al. (2018) demonstrated observed results of the marine species along Hawaii
322 archipelagos where F_{ST} is not significantly different from zero were not actually panmictic but having
323 weak hierarchical structure of isolation-by-distance caused by stepping stone migration. Coalescent
324 simulation including *A. cf. solaris* samples from Izu islands would confirm this hypothesis.

325 Alternatively, it is possible that the observed strong gene flow resulted from recent colonization.
326 According to a literature survey, there was no record of *A. cf. solaris* in the Ogasawara region before
327 1945, and the first record of this species in Ogasawara was in 1968 (Kurata, 1984; Yasuda, 2018).
328 Since then, the density of *A. cf. solaris* in Ogasawara has been low (Yasuda 2018). However, a lack
329 of a record of *A. cf. solaris* in Ogasawara before 1945 does not necessarily mean a complete absence
330 of this species in the region, given that almost no studies or surveys were conducted before 1945. In
331 addition, recent migration with a small population size would predict low genetic diversity due to the
332 founder effect, although we observed almost the same genetic diversity in the Ogasawara and
333 Kuroshio regions. Therefore, high genetic diversity in Ogasawara and strong gene flow between the
334 Ogasawara and Kuroshio regions is more likely caused by stepping-stone larval migration over
335 multiple generations, as suggested by the oceanographic simulation.

336 Whichever may be the case, the oceanographic simulation suggests that contemporary, one-
337 generation larval dispersal between the Ogasawara and Kuroshio regions is limited, and thus direct
338 secondary population outbreaks that require a large amount of larval dispersal within a generation
339 from the Kuroshio region to Ogasawara are unlikely.

340 Kurata (1984) speculated that *A. cf. solaris* in Ogasawara might have colonized either from the
341 Kuroshio region or from Mariana regions such as Guam. According to a population genetics analysis
342 using microsatellite markers, genetic differentiation between the Kuroshio and Guam regions has
343 been identified (Tusso et al., 2016), implying that colonization and/or secondary population
344 outbreaks from Guam to the Ogasawara region are less likely than from the Kuroshio region.

345 Only one previous study examined the genetic connectivity of coral reef organisms between the
346 Kuroshio and Ogasawara regions. A reef-building coral species, *Acropora* sp., which has a shorter
347 (average 3–4 days) larval stage than that of *A. cf. solaris*, showed genetic differentiation between the
348 Ogasawara and Kuroshio regions (Nakajima et al., 2012). This implies that larval dispersal from the
349 Kuroshio region to the Ogasawara region of coral reef organisms with short larval stages is quite
350 limited.

351 **4.2 Possible causes of population outbreak in Ogasawara**

352 Oceanographic simulation suggests that many larvae are self-recruited in Ogasawara compared with
353 other *A. cf. solaris* populations in the Kuroshio region (Suppl. Table 4). This fact indicates that the
354 observed population outbreak in Ogasawara in 2018 was caused by a sudden increase in regional
355 self-seeding (which is termed “primary outbreak” as opposed to “secondary outbreak”; Birkeland and
356 Lucas, 1990). While several hypotheses have been proposed to explain the primary outbreak of *A. cf.*
357 *solaris*, the causes of primary outbreaks are still unclear (Pratchett et al., 2014). While the larval
358 survival hypothesis in association with an elevated level of nutrients is widely accepted in GBR,

359 causes of outbreak would also depend on several regional environmental conditions being met
360 simultaneously (Okaji et al., 2019): elevated levels of larval nutrition and subsequent higher survival
361 rates; lower predation on larvae and juveniles; and physical processes acting on larvae that increase
362 their survival, such as weather conditions and current patterns (Keesing and Halford, 1992; Okaji et
363 al., 2019).

364 The population outbreak in Ogasawara in 2018 could be attributed to successful local larval
365 recruitment in 2016, given that it takes two years for *A. cf. solaris* larvae to become adults (Birkeland
366 and Lucas 1990). Oceanographic simulation also suggests that the number of self-recruited larvae in
367 Ogasawara was larger (397) in 2016, which exceeded the average (252) over 26 years (Suppl. Table
368 5). This might be partly due to the smaller number of typhoons during the larval period (July to
369 October, estimated by the spawning period associated with water temperature; Yasuda et al., 2010);
370 in 2016, three typhoons passed through the Ogasawara region, which is below the 70-year average
371 (4.47) (data from Japan Meteorological Agency, Suppl. Table 6). A previous field survey discovered
372 dense clouds of *A. cf. planci* larvae before one typhoon, but they were scattered and disappeared from
373 the coral reef area after the typhoon (Suzuki et al., 2016), implying that typhoons prevent mass
374 settlement of larvae. However, in some years with a higher number of self-recruits and fewer
375 typhoons, no population outbreak was observed in Ogasawara. Thus, other factors such as higher
376 success of fertilization, higher nutrient levels during the larval stage, and less predation during the
377 post-settlement stage might also be associated with the demographic fluctuation of *A. cf. solaris* in
378 the Ogasawara area.

379 For conservation of corals in the Ogasawara area, caution should be taken two years after the
380 observation of local retention of ocean current systems and preferable conditions for the increase in *A.*
381 *cf. solaris*, such as a large amount of terrestrial run-off and a fewer number of typhoons during
382 spawning periods. Local monitoring of juvenile starfish would be useful for predicting population
383 outbreaks (Okaji et al. 2019).

384 **4.3 Multiple approach to estimate larval dispersal in marine organisms**

385 This study estimated larval dispersal of *A. cf. solaris* between Kuroshio and Ogasawara using two
386 different approaches: population genomic analysis and larval dispersal simulation. Gene flow
387 estimation by the population genomic approach often reflects both contemporary and evolutionary
388 processes, rendering the interpretation of the amount of contemporary dispersal difficult because of
389 the long evolutionary timescale. Genetic homogeneity can be observed due to a large amount of
390 contemporary larval dispersal (secondary population outbreak), or stepping-stone migrants over
391 multiple generations, or recent divergence with no contemporary dispersal. Our study is unique in
392 that it included an oceanographic model with Markov chain simulation. Such a simulation was useful
393 for testing these alternative hypotheses. A simple oceanographic simulation averaged over 26 years
394 first rejected the secondary population outbreak hypothesis by indicating limited physical larval
395 transport from the Kuroshio to the Ogasawara region within a generation. This result supports the
396 idea that stepping-stone migrants over multiple generations is responsible for the genetic
397 homogeneity observed in the F_{ST} and STRUCTURE analysis between the Kuroshio and Ogasawara
398 populations.

399 This may give the impression that oceanographic simulation alone is enough for testing the
400 secondary population hypothesis; however, it is generally imperfect for estimating larval dispersal.
401 Our model regarded larvae as neutral passive particles without any of the biological characteristics of
402 larvae that may influence actual larval dispersal, such as vertical movement, natural selection, food

403 availability, and mortality. In addition, the model only simulates the dispersal process, which does
404 not include post-settlement survival. In some marine species, genetic connectivity is quite limited
405 despite having long pelagic larval duration possibly caused by several biological features of larvae
406 and juveniles (e.g. Barber et al. 2000; Barber et al. 2002). Thus, a comparison with genetic
407 connectivity that reflects all the biological characteristics of the species is also important. While
408 several previous studies have reported good agreement between oceanographic models and genetic
409 analysis and have provided robust and straightforward interpretations of larval dispersal occurring on
410 an ecological timescale (e.g. Galindo et al. 2006; White et al. 2010; Sunday et al. 2014; Taninaka et
411 al. 2019), only a few have discussed the usefulness of oceanographic modeling for identifying
412 alternative hypotheses or provided additional insights into the causes of observed population genetic
413 structure (Galindo et al. 2010; Crandall et al. 2014). By applying Markov chain simulation in the
414 numerical simulation, we could also include the effect of migration over multiple generations, which
415 is easier to compare with genetic results than a single generation simulation result in terms of time-
416 scale. This method underlines the usefulness and importance of using both genetic and oceanographic
417 methods to estimate larval dispersal and provides significant insight into larval dispersal that occurs
418 on ecological and evolutionary timescales.

419 5 Author Contributions

420 NY conceived the study. MH, NY, RK, HY, and TY drafted the manuscript. RK, HY, TI, and AT
421 sequenced, assembled, and reconstructed the reference genome. NY, YA, and TS collected the
422 *Acanthaser* samples. MH, HT, HY, TK, and NY conducted the MIG-seq analysis. TN and TY
423 conducted oceanographic simulations. All authors edited the draft and approved it for publication.

424 6 Funding

425 Funding for this study was provided by the Environmental Research and Technology Development
426 Fund (4RF-1501 and 4-1304) of the Ministry of the Environment, Japan; a Grant-in-Aid for Young
427 Scientists (A) (17H04996), JSPS KAKENHI 221S0002, 16H06279 (PAGS); and a Grant-in-Aid for
428 Research Fellows (19J21342, 18J23317) from the Japan Society for the Promotion of Science
429 (JSPS).

430 7 Acknowledgments

431 We are grateful for Ms. Eriko Nagahiro for her help in the molecular experiment.

432 8 Figure legends

433 **Figure 1 (A):** The site numbers for numerical simulation including sampling sites for genomic
434 analysis (5 = Sekisei Lagoon [SKS], 6 = Miyako [MYK], 7 = Onna Village [ONN], 11 = Miyazaki
435 [MYZ], 13 = Tatsukushi [TTK], 25 = Ogasawara [OGS], and 27 = Sakurajima [SKR]). **(B):** The
436 connectivity matrix of the simulation of 26-year larval dispersal. The sink location is indicated on the
437 x-axis, and the source location is indicated on the y-axis. Colors indicate numbers of particles.

438 **Figure 2 (A):** Bar plot from Structure analysis at $K = 2$. **A1:** without prior geographic grouping. **A2:**
439 with prior geographic grouping (Ogasawara vs other regions), indicating the population structure
440 estimated by Structure v2.3.4 (Pritchard et al., 2000). The x-axis indicates individuals, and the y-axis
441 indicates the proportion of hypothetical clusters, shown in different colors. **(B):** Results of PCoA
442 based on a covariance matrix with standardized data. The first and second axes explain 70.03% and
443 21.20% of the variation, respectively.

444 **Figure 3** The ratio of the number of particles originating from each source site. **(A)** Simulation of 26-
445 year larval dispersal (see sites, Fig. 1A and connectivity matrix, Fig. 1B). The ratio determined by
446 Markov chains with **(B)** time-step $n = 2$, **(C)** $n = 10$, **(D)** $n = 50$, **(E)** $n = 200$, and **(F)** $n = 500$. Site
447 numbers are assigned as follows: 5 = Sekisei Lagoon (SKS), 6 = Miyako (MYK), 7 = Onna Village
448 (ONN), 11 = Miyazaki (MYZ), 13 = Tatsukushi (TTK), 25 = Ogasawara (OGS), and 27 =
449 Sakurajima (SKR).

450

451 **9 Reference**

452 Alberto, F., Raimondi, P.T., Reed, D.C., Watson, J.R., Siegel, D.A., Mitarai, S., et al. (2011).
453 Isolation by oceanographic distance explains genetic structure for *Macrocystis pyrifera* in the
454 Santa Barbara Channel. *Mol. Ecol.* 20, 2543-2554. doi: 10.1111/j.1365-294X.2011.05117.x.

455 Almany, G.R., Connolly, S.R., Heath, D.D., Hogan, J.D., Jones, G.P., McCook, L.J., et al. (2009).
456 Connectivity, biodiversity conservation and the design of marine reserve networks for coral
457 reefs. *Coral Reefs* 28, 339-351. doi: /10.1007/s00338-009-0484-x.

458 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment
459 search tool. *J. Mol. Biol.* 215, 403-410. doi: 10.1016/S0022-2836(05)80360-2.

460 Arandt, A., and Smith, M.J. (2002). Genetic diversity and population structure in two species of sea
461 cucumber: differing patterns according to mode of development. *Mol. Ecol.* 7, 1053-1064. doi:
462 /10.1046/j.1365-294x.1998.00429.x.

463 Baird, A.H., Pratchett, M.S., Hoey, A.S., Herdiana, Y., and Campbell, S.J. (2013). *Acanthaster*
464 *planci* is a major cause of coral mortality in Indonesia. *Coral Reefs* 32, 803-812. doi:
465 10.1007/s00338-013-1025-1.

466 Barber, P. H., Palumbi, S. R., Erdmann, M. V., & Moosa, M. K. (2000). A marine Wallace's line?.
467 *Nature*, 406(6797), 692-693.

468 Barber, P. H., Palumbi, S. R., Erdmann, M. V., & Moosa, M. K. (2002). Sharp genetic breaks among
469 populations of *Haptosquilla pulchella* (Stomatopoda) indicate limits to larval transport: patterns,
470 causes, and consequences. *Mol. Ecol.* 11, 659-674

471 Benzie, J.A.H. (1992). Review of the genetics, dispersal and recruitment of crown-of-thorns starfish
472 (*Acanthaster planci*). *Aust. Mar. Freshw. Res.* 43, 597-610. doi: 10.1071/MF9920597.

473 Benzie, J.A.H. (1999). Genetic Structure of Coral Reef Organisms: Ghosts of Dispersal Past. Am.
474 Zool. 39, 131-145. doi: /10.1093/icb/39.1.131.

475 Benzie, J.A.H. (1999). Major Genetic Differences between Crown-of-Thorns Starfish (*Acanthaster*
476 *planci*) Populations in the Indian and Pacific Oceans. Evolution 53, 1782-1795. doi:
477 10.1111/j.1558-5646.1999.tb04562.x.

478 Biodiversity Center of Japan (2019). Reconnaissance report of coral reefs, monitoring 1000. Ministry
479 of the Environment Japan.62-67. (In Japanese with English Summary)

480 https://www.biodic.go.jp/moni1000/findings/reports/pdf/h30_coral_reef.pdf

481 Birkeland, C., and Lucas, J. (1990). *Acanthaster planci: Major Management Problem of Coral Reefs.*
482 (Boca Ranton, Ann Arbor: CRC Press), 272.

483 Botsford, L.W., White, J.W., Coffroth, M.A., Paris, C.B., Planes, S., Shearer, T.L., et al. (2009).
484 Connectivity and resilience of coral reef metapopulations in marine protected areas: matching
485 empirical efforts to predictive needs. Coral Reefs 28, 327-337. doi: /10.1007/s00338-009-0466-z.

486 Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A., and Cresko, W.A. (2013) Stacks: an analysis
487 tool set for population genomics. Mol. Ecol. 22, 3124-3140. doi: 10.1111/mec.12354.

488 Chassagnet, E.P., Hurlburt, H.E., Smedstad, O.M., Halliwell, G.R., Hogan, P.J., Wallcraft, A.J.,
489 Baraille, R. and Bleck, R. (2007). The HYCOM (HYbrid Coordinate Ocean Model) data
490 assimilative system. J. Mar. Syst. 65, 60-83. doi: 10.1016/j.jmarsys.2005.09.016.

491 Crandall, E.D., Treml, E.A., Liggins, L., Gleeson, L., Yasuda, N., Barber, PH., et al. (2014). Return
492 of the ghosts of dispersal past: historical spread and contemporary gene flow in the blue sea star
493 *Linckia laevigata*. B. Mar. Sci. 90, 399-425. doi: /10.5343/bms.2013.1052.

494 Crandall, E. D., Toonen, R. J., ToBo Laboratory, & Selkoe, K. A. (2019). A coalescent sampler
495 successfully detects biologically meaningful population structure overlooked by F - statistics.
496 Evol. Appl. 12, 255-265.

497 Dight, I.J., James, M.K., and Bode, L. (1990a). Modelling the larval dispersal of *Acanthaster planci*
498 I. Large scale hydrodynamics, Cairns Section, Great Barrier Reef Marine Park. Coral Reefs 9,
499 115-123. doi: 10.1007/BF00258222.

500 Dight, I.J., James, M.K., and Bode, L. (1990b). Modelling the larval dispersal of *Acanthaster planci*.
501 II. Patterns of reef connectivity. *Coral Reefs* 9, 125-134. doi: 10.1007/BF00258224.

502 Earl, D.A., and vonHoldt, B.M. (2012). STRUCTURE HARVESTER: a website and program for
503 visualizing STRUCTURE output and implementing the Evanno method. *Conserv. Genet. Resour.*
504 4, 359-361 doi: 10.1007/s12686-011-9548-7.

505 Excoffier, L., and Lischer, H.E.L. (2010). Arlequin suite ver 3.5: a new series of programs to perform
506 population genetics analyses under Linux and Windows. *Mol. Ecol. Resour.* 10, 564-567. doi:
507 10.1111/j.1755-0998.2010.02847.x.

508 Fukuda, M., and Hanamura, Y. (1996). Small scale distribution and transport of the Japanese
509 anchovy, *Engraulis japonica*, larvae determined from a free-drifting buoy survey in Iyo-Nada,
510 Seto inland sea [Japan] [1995]. *J. Agric. Sci. Technol.* 28, 9-20.

511 Galindo, H. M., Olson, D. B., and Palumbi, S. R. (2006). Seascape genetics: a coupled
512 oceanographic-genetic model predicts population structure of Caribbean corals. *Curr. Biol.* 16,
513 1622-1626.

514 Galindo, H. M., Pfeiffer - Herbert, A. S., McManus, M. A., Chao, Y. I., Chai, F. E. I., and Palumbi,
515 S.R. (2010). Seascape genetics along a steep cline: using genetic patterns to test predictions of
516 marine larval dispersal. *Mol. Ecol.* 19, 3692-3707.

517 Gordon, A., and Hannon, G.J. (2012). FASTX-Toolkit. FASTQ/A short-reads pre-processing tools.
518 http://hannonlab.cshl.edu/fastx_toolkit/. [Unpublished].

519 Harrison, H.B., Pratchett, M.S., Messmer, V., Saenz-Agudelo, P., and Berumen, M.L. (2017).
520 Microsatellites Reveal Genetic Homogeneity among Outbreak Populations of Crown-of-Thorns
521 Starfish (*Acanthaster cf. solaris*) on Australia's Great Barrier Reef. *Diversity* 9, 16. doi:
522 10.3390/d9010016.

523 Hubisz, M., Falush, D., Stephens, M., and Pritchard, J. (2009). Inferring weak population structure
524 with the assistance of sample group information. *Mol. Ecol. Resour.* 9, 1322–1332. doi:
525 10.1111/j.1755-0998.2009.02591.x.

526 James, M.K., and Scandol, J.P. (1992). Larval dispersal simulations: correlation with the crown-of-
527 thorns starfish outbreaks database. Mar. Freshw. Res. 43, 569-581. doi: 10.1071/MF9920569.

528 Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods
529 9, 357-359. doi: 10.1038/nmeth.1923.

530 Lucas, J.S. (1973). Reproductive and larval biology of *Acanthaster planci* (L.) in Great Barrier Reef
531 waters. Micronesica-Series 9, 197-203.

532 Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., et al. (2014). Efficient
533 de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads.
534 Genome Res. 24, 1384-1395. doi: 10.1101/gr.170720.113.

535 Keesing, J.K., and Halford, A.R. (1992). Importance of postsettlement processes for the population
536 dynamics of *Acanthaster planci* (L.). Aust. Mar. Freshw. Res. 43, 635-651. doi:
537 10.1071/MF9920635.

538 Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A., and Mayrose, I. (2015). Clumpak: a
539 program for identifying clustering modes and packaging population structure inferences across K.
540 Mol. Ecol. Resour. 15, 1179-1191. doi: 10.1111/1755-0998.12387.

541 Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017).
542 Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
543 separation. Genome Res. 27, 722-736. doi: 10.1101/gr.215087.116.

544 Kurata, Y. (1984). Crown-of-thorns starfish of Ogasawara Island. Marine park information 61, 7-9.
545 In Japanese.

546 Lischer, H.E.L., and Excoffier, L. (2012). PGDSpider: an automated data conversion tool for
547 connecting population genetics and genomics programs. Bioinformatics 28, 298-299. doi:
548 10.1093/bioinformatics/btr642.

549 Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–
550 3100. doi: 10.1093/bioinformatics/bty191.

551 Marçais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of
552 occurrences of k-mers. Bioinformatics 27, 764–770. doi: 10.1093/bioinformatics/btr011.

553 Marko, P.B., and Hart, M.W. (2017). Genetic Analysis of Larval Dispersal, Gene Flow, and
554 Connectivity. *Evolutionary Ecology of Marine Invertebrate Larvae*.
555 doi:/10.1093/oso/9780198786962.003.0012.

556 Martin, M. (2011). Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads.
557 *EMBnet* 17. doi: 10.14806/ej.17.1.200

558 Meeker, N.D., Hutchinson, S.A., Ho, L., and Trede, N.S. (2007). Method for isolation of PCR-ready
559 genomic DNA from zebrafish tissues. *Biotechniques* 43, 610-614. doi: 10.2144/000112619

560 Miyake, Y., Kimura, S., Kawamura, T., Horii, T., Kurogi, H., and Kitagawa, T. (2009). Simulating
561 larval dispersal processes for abalone using a coupled particle-tracking and hydrodynamic model:
562 implications for refugium design. *Mar. Ecol. Prog. Ser.* 387, 205-222. doi: 10.3354/meps08086.

563 Nakabayashi, A., Yamakita, T., Nakamura, T., Aizawa, H., Kitano, Y.F., Iguchi, A., et al. (2019).
564 The potential role of temperate Japanese regions as refugia for the coral *Acropora hyacinthus* in
565 the face of climate change. *Sci. Rep.* 9, 1892. doi: 10.1038/s41598-018-38333-5.

566 Nakajima, Y., Nishikawa, A., Iguchi, A., and Saka, K. (2012). Regional genetic differentiation
567 among northern high-latitude island populations of a broadcast-spawning coral. *Coral Reefs* 31,
568 1125-1133. doi: 10.1007/s00338-012-0932-x.

569 Narum, S.R., and Hess, J.E. (2011). Comparison of FST outlier tests for SNP loci under selection.
570 *Mol. Ecol. Resour.* 11, 184-194. doi: 10.1111/j.1755-0998.2011.02987.x.

571 Nash, W.J., Goddard, M. and Lucas, J.S. (1988). Population genetic studies of the crown-of-thorns
572 starfish, *Acanthaster planci* (L.), in the Great Barrier Reef region. *Coral Reefs* 7, 11-18. doi:
573 10.1007/BF00301976.

574 Okaji, K., Ogasawara, K., Yamakita, E., Kitamura, M., Kumagai, N., Nakatomi, N., et al. (2019).
575 Comprehensive management program of crown-of-thorns starfish outbreaks in Okinawa. The
576 Japanese Coral Reef Society 21, 91-110. doi: 10.3755/jcrs.21.91. In Japanese.

577 Paris, C.B., Helgers, J., van Sebille, E., and Srinivasan, A. (2013) Connectivity Modeling System: A
578 probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the
579 ocean. *Environ. Model. Softw.* 42, 47-54. doi: 10.1016/j.envsoft.2012.12.006.

580 Peakall, R., and Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic
581 software for teaching and research—an update. *Bioinformatics* 28, 2537-2539. doi:
582 10.1093/bioinformatics/bts460.

583 Pratchett, M.S., Caballes, Ciemon, F., Rivera-Posada, Jairo, A., et al. (2014). Limits to understanding
584 and managing outbreaks of crown-of-thorns starfish (*Acanthaster* spp.). *Oceanogr. Mar. Biol.* 52,
585 133-200. doi: 10.1201/b17143-4.

586 Pritchard, J.K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using
587 multilocus genotype data. *Genetics* 155, 945-959. doi: 10.1093/genetics/155.2.945.

588 Ranallo-Benavidez, T.R., Jaron, K.S., and Schatz, M.C. (2020). GenomeScope 2.0 and Smudgeplot
589 for reference-free profiling of polyploid genomes. *Nat. Commun.* 11, 1432. doi: 10.1038/s41467-
590 020-14998-3.

591 Rochette, N., and Catchen, J. (2017). Deriving genotypes from RAD-seq short-read data using
592 Stacks. *Nat. Protoc.* 12, 2640-2659. doi: 10.1038/nprot.2017.123.

593 Scandol, J.P., and James, M.K. (1992). Hydrodynamics and larval dispersal: a population model of
594 *Acanthaster planci* on the Great Barrier Reef. *Mar. Freshw. Res.* 43, 583-595. doi:
595 10.1071/MF9920583.

596 Schunter, C., Carreras-Carbonell, J., Macpherson, E., Tintoré, J., Vidal-Vijande, E., Pascual, A., et al.
597 (2011). Matching genetics with oceanography: directional gene flow in a Mediterranean fish
598 species. *Mol. Ecol.* 20, 5167-5181. doi: 10.1111/j.1365-294X.2011.05355.x.

599 Seppey M., Manni M., and Zdobnov E.M. (2019). BUSCO: Assessing Genome Assembly and
600 Annotation Completeness. In: *Gene Prediction. Methods Mol. Biol.* 1962, eds. M. Kollmar
601 (Humana, New York, NY). doi: 10.1007/978-1-4939-9173-0_14.

602 Shanks, A.L. (2009). Pelagic larval duration and dispersal distance revisited. *Biol. Bull.* 216, 373-
603 385. doi: 10.1086/BBLv216n3p373.

604 Storlazzi, C.D., van Ormondt, M., Chen, Y-L., and Elias, E.P.L. (2017). Modeling Fine-Scale Coral
605 Larval Dispersal and Interisland Connectivity to Help Designate Mutually-Supporting Coral Reef

606 Marine Protected Areas: Insights from Maui Nui, Hawaii. *Front. Mar. Sci.* 4. doi:
607 10.3389/fmars.2017.00381.

608 Sunday, J. M., Popovic, I., Palen, W. J., Foreman, M. G. G., and Hart, M. W. (2014). Ocean
609 circulation model predicts high genetic structure observed in a long - lived pelagic developer.
610 *Mol. Ecol.* 23, 5036-5047.

611 Suyama, Y., and Matsuki, Y. (2015). MIG-seq: an effective PCR-based method for genome-wide
612 single-nucleotide polymorphism genotyping using the next-generation sequencing platform. *Sci.*
613 *Rep.* 5, 16963. doi: 10.1038/srep16963

614 Suzuki, G., Yasuda, N., Ikehara, K., Fukuoka, K., Kameda, T., Kai, S., et al. (2016). Detection of a
615 High-Density Brachiolaria-Stage Larval Population of Crown-of-Thorns Sea Star (*Acanthaster*
616 *planci*) in Sekisei Lagoon (Okinawa, Japan). *Diversity* 8, 9. doi: 10.3390/d8020009.

617 Takata, K., Taninaka, H., Nonaka, M., Iwase, F., Kikuchi, T., Suyama, Y., et al. (2019). Multiplexed
618 ISSR genotyping by sequencing distinguishes two precious coral species (Anthozoa:
619 Octocorallia: Coralliidae) that share a mitochondrial haplotype. *Peer J* Life and Environment. doi:
620 10.7717/peerj.7769.

621 Taninaka, H., Bernardo, L.P.C., Saito, Y., Nagai, S., Ueno, M., Kitano, Y.F., et al. (2019). Limited
622 fine-scale larval dispersal of the threatened brooding corals *Heliopora* spp. as evidenced by
623 population genetics and numerical simulation. *Conserv. Genet.* 20, 1449-1463. doi:
624 10.1007/s10592-019-01228-7.

625 Timmers, M.A., Andrews, K.R., Bird, C.E., deMantenton, M.J., Brainard, R.E., and Toonen, R.J.
626 (2011). Widespread Dispersal of the Crown-of-Thorns Sea Star, *Acanthaster planci*, across the
627 Hawaiian Archipelago and Johnston Atoll. *Mar. Sci.* doi: 10.1155/2011/934269.

628 Timmers, M.A., Bird, C.E., Skillings, D.J., Smouse, P.E., and Toonen, R.J. (2012). There's No Place
629 Like Home: Crown-of-Thorns Outbreaks in the Central Pacific Are Regionally Derived and
630 Independent Events. *PLoS ONE* 7, e31159. doi: 10.1371/journal.pone.0031159.

631 Tusso, S., Morcinek, K., Vogler, C., Schupp, P.J., Caballes, C.F., Vargas, S., et al. (2016). Genetic
632 structure of the crown-of-thorns seastar in the Pacific Ocean, with focus on Guam. *Peer J*
633 27168979. doi: 10.7717/peerj.1970.

634 Uthicke, S., Doyle, J., Duggan, S., Yasuda, N., and McKinnon, A.D. (2015). Outbreak of coral-eating
635 Crown-of-Thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef. *Sci. Rep.* 5, 16885. doi: 10.1038/srep16885.

637 Vogler, C., Benzie, J.A.H., Tenggardjaja, K., Barber, P.H., and Wörheide, G. (2013).
638 Phylogeography of the crown-of-thorns starfish: genetic structure within the Pacific species.
639 *Coral Reefs* 32, 515-525. doi: 10.1007/s00338-012-1003-z.

640 Wada, N., Yuasa, H., Kajitani, R., Gotoh, Y., Ogura, Y., Yoshimura, D., et al. (2020). A ubiquitous
641 subcuticular bacterial symbiont of a coral predator, the crown-of-thorns starfish, in the Indo-
642 Pacific. *Microbiome* 8, 123. doi: 10.1186/s40168-020-00880-3.

643 Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., et al. (2014). Pilon: An
644 Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly
645 Improvement. *PLoS ONE* 9, e112963. doi: 10.1371/journal.pone.0112963.

646 White, C., Selkoe, K. A., Watson, J., Siegel, D. A., Zacherl, D. C., and Toonen, R. J. (2010). Ocean
647 currents help explain population genetic structure. *Proc. R. Soc. B.* 277, 1685-1694.

648 White, J.W., Carr, M.H. Caselle, J.E. Palumbi, S.R. Warner, R.R. Menge, B.A., et al. (2019).
649 Empirical approaches to measure connectivity. *Oceanography* 32, 60-61. doi:
650 10.5670/oceanog.2019.31.

651 Yamaguchi, M. (1977). Larval Behavior and Geographic Distribution of Coral Reef Asteroids in the
652 Indo-West Pacific. *Micronesica-Series* 13, 283-296.

653 Yasuda, N., Kajiwara, K., Nagai, S., Ikehara, K., and Nadaoka, K. (2015). First report of field
654 sampling and identification of crown-of-thorns starfish larvae. *Galaxea, Journal of Coral Reef*
655 *Studies* 17, 15-16. doi: 10.3755/galaxea.17.15.

656 Yasuda, N., Nagai, S., Hamaguchi, M., Okaji, K., Gerard, K., and Nadaoka, K. (2009). Gene flow of
657 *Acanthaster planci* (L.) in relation to ocean currents revealed by microsatellite analysis. *Mol. Ecol.* 18, 1574-1590. doi: 10.1111/j.1365-294X.2009.04133.x.

659 Yasuda, N., Ogasawara, K., Kajiwara, K., Ueno, M., Oki, K., Taniguchi, H., et al. (2010). Latitudinal
660 differentiation in the reproduction patterns of the crown-of-thorns starfish *Acanthaster planci*

661 through the Ryukyu Island Archipelago. *Plankton Benthos Res.* 5, 156-164. doi:
662 10.3800/pbr.5.156.

663 Yasuda, N., Taquet, C., Nagai, S., Yoshida, T., and Adjeroud, M. (2015). Genetic connectivity of the
664 coral - eating sea star *Acanthaster planci* during the severe outbreak of 2006–2009 in the Society
665 Islands, French Polynesia. *Mar. Ecol.* 36, 668-678. doi: 10.1111/maec.12175.

666 Yasuda, N. (2018). Distribution Expansion and Historical Population Outbreak Patterns of Crown-of-
667 Thorns Starfish, *Acanthaster planci* sensu lato, in Japan from 1912 to 2015. *Coral Reef Studies of*
668 *Japan. Coral Reefs of the World* 13, 125-148. doi: 10.1007/978-981-10-6473-9_9.

669

670 **9. Conflict of Interest**

671 To the best of our knowledge, the named authors have no conflict of interest, financial or otherwise.

672 **Data Availability Statement**

673 The whole genome sequencing data (BioSample ID, SAMD00056692) and MIG-seq data
674 (BioSample: SSUB016768, SAMD00282440-SAMD00282626) were submitted to DDBJ and
675 available.

676 **Table Caption**
677

678 **Table 1.** Pairwise F_{ST} values (below) and their probability values (above). Significantly
679 differentiated pairs after sequential Bonferroni correction ($\alpha < 0.05$) are shown in bold face.

	TTK	MYZ	SKR	ONN	MYK	SKS	OGS
TTK		0.295	0.224	0.105	0.003	0.000	0.107
MYZ	0.003		0.400	0.142	0.023	0.000	0.141
SKR	0.004	0.001		0.465	0.484	0.21	0.473
ONN	0.006	0.002	0.000		0.370	0.031	0.447
MYK	0.018	0.007	0.000	0.001		0.355	0.045
SKS	0.028	0.014	0.002	0.004	0.001		0.004
OGS	0.006	0.003	0.000	0.000	0.005	0.008	

680

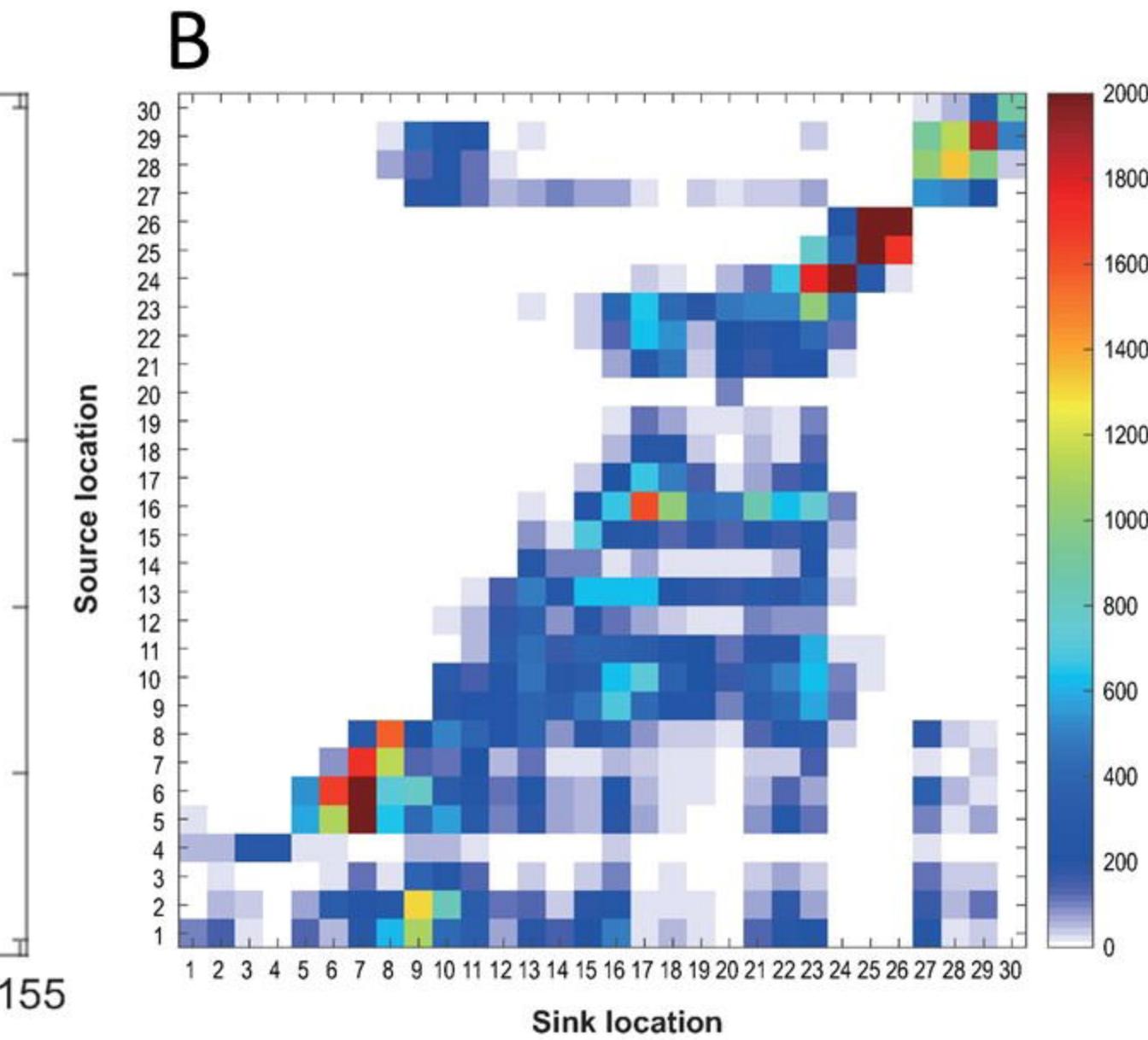
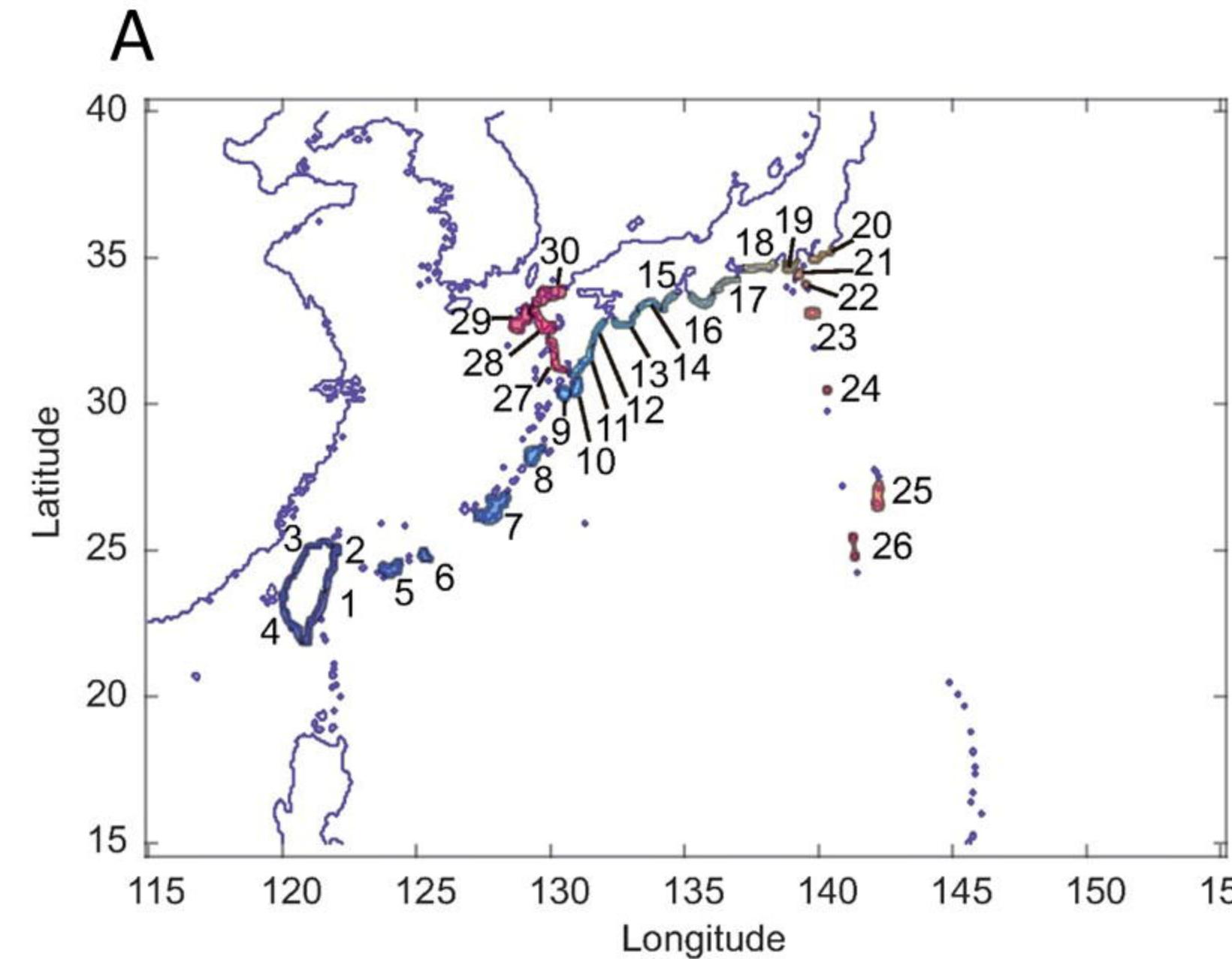
681

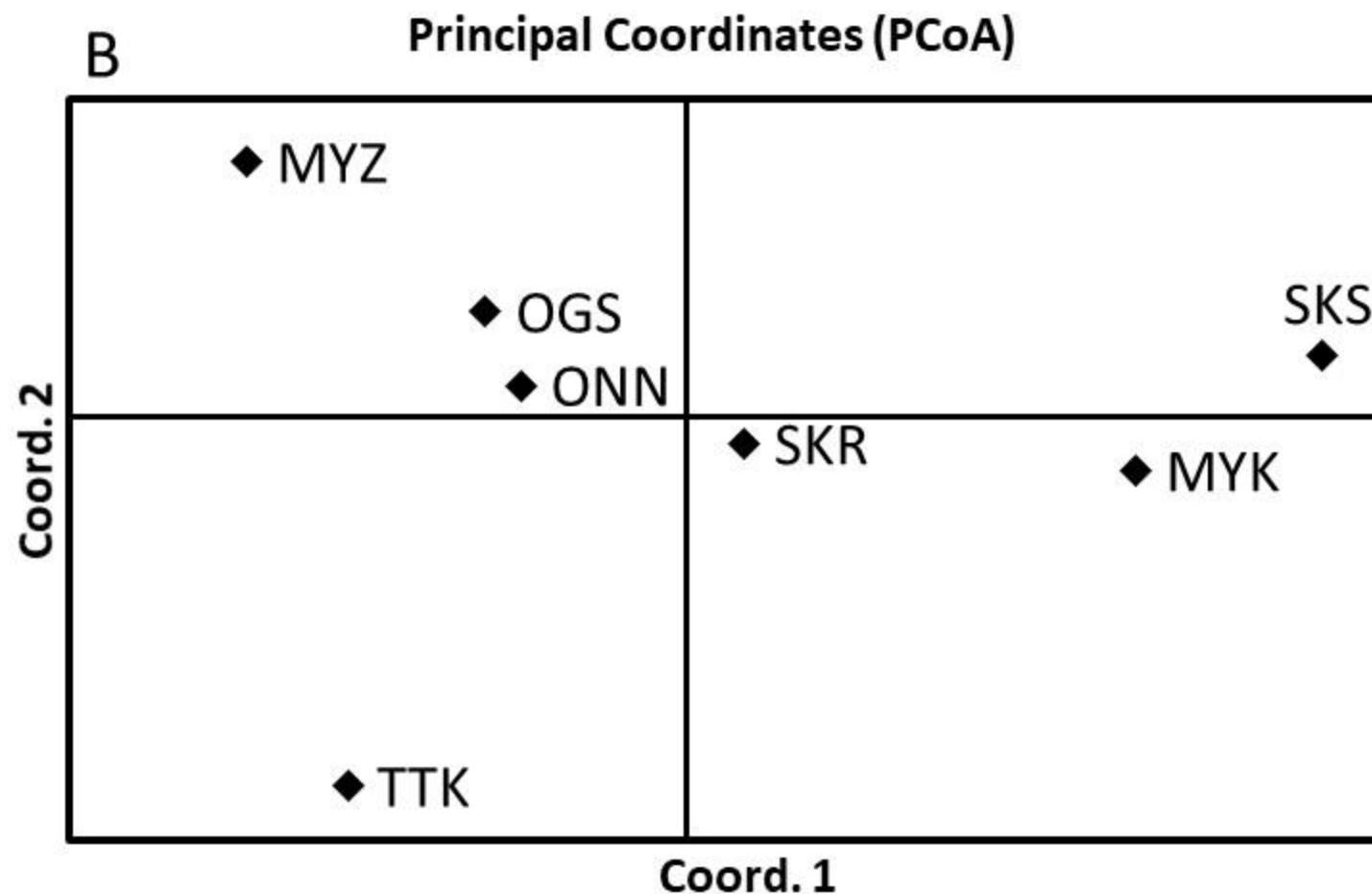
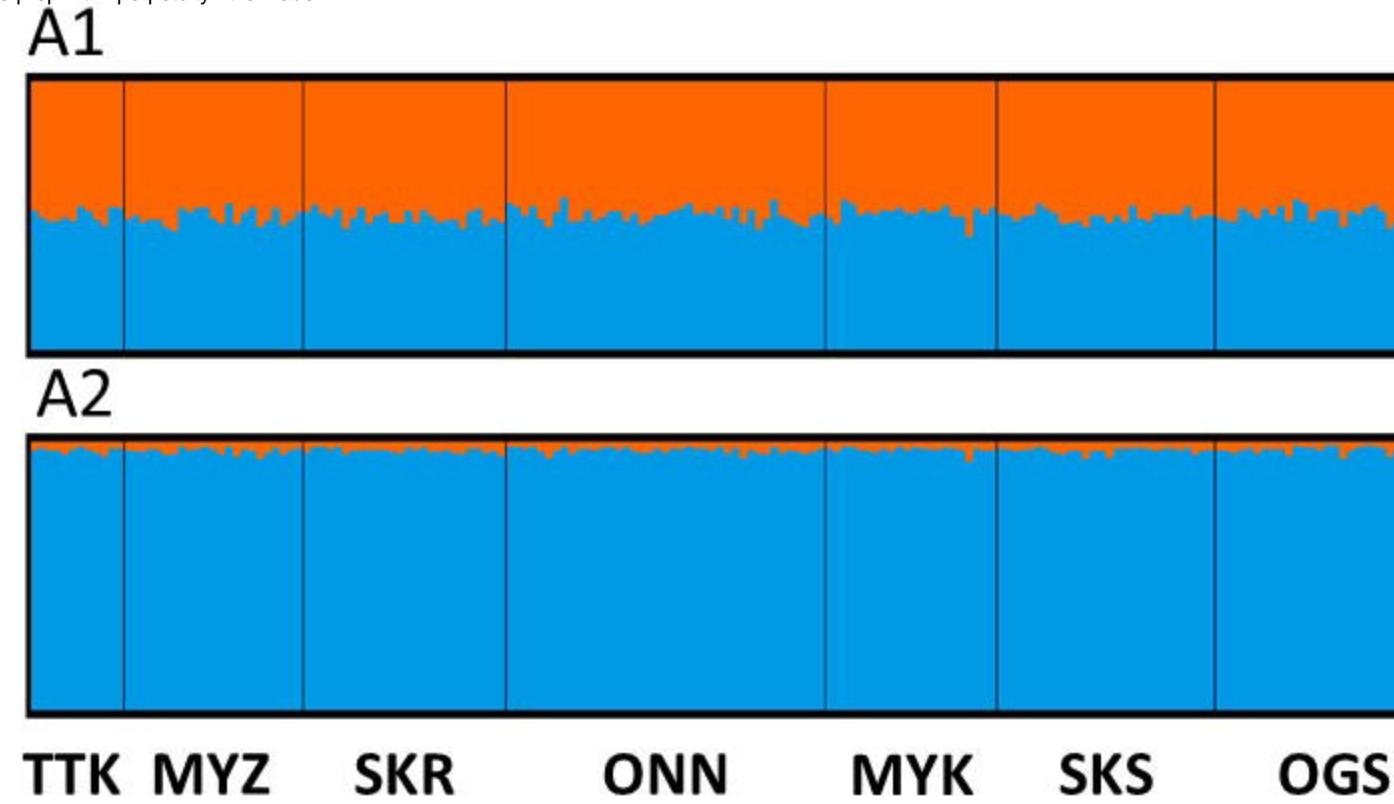
682 12. Supplementary Captions

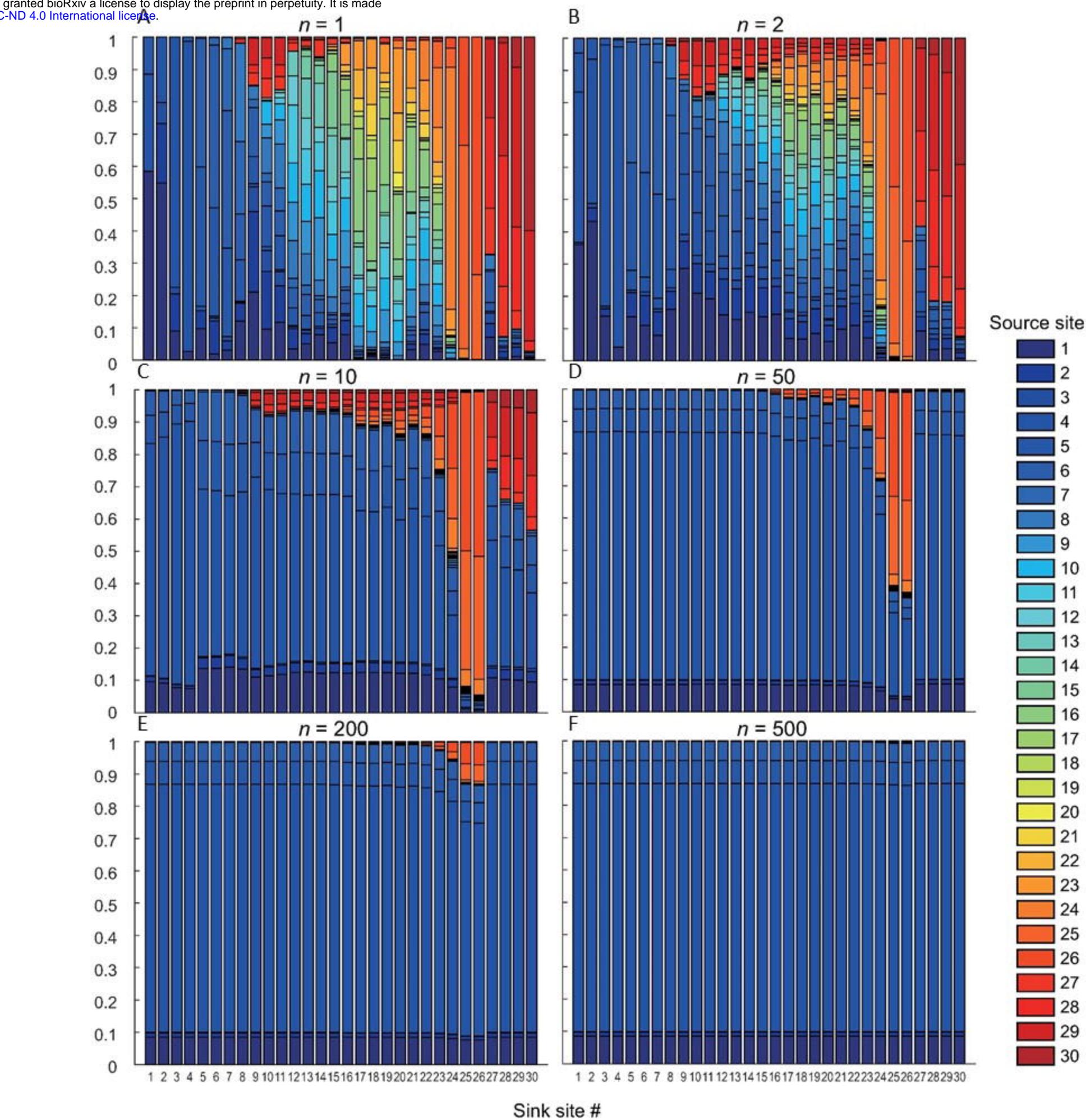
683 **Suppl. Fig. 1** Schematic model of gap-filling with long read-based contigs. Flanking-region lengths:
684 500, 1k, 5k, 10k, 20k, 40 kbp, 80 kbp, 160 kbp (multiple values are applied). Gap-closing step
685 is iterated two times.

686 **Suppl. Table 1.** Statistics of the draft genome.

687 **Suppl. Table 2** Sample information and genetic diversity inbreeding coefficient. N = number of
688 individuals analyzed. H_o = observed heterozygosity, H_e = expected heterozygosity, F =
689 inbreeding coefficient.



690 **Suppl. Table 3.** The results from Structure Harvester to calculate ΔK . K is the number of
691 hypothetical clusters assumed in Structure analysis.



692 **Suppl. Figure 2. Structure analysis at comparable K from 3 to 7** (1 = Tatsukushi [TTK], 2 =
693 Miyazaki [MYZ], 3 = Sakurajima [SKR], 4 = Onna Village [ONN], 5 = Miyako [MYK], 6 =
694 Sekisei Lagoon [SKS], 7 = Ogasawara [OGS]). (A): without prior and (B): with prior grouping
695 for Ogasawara. In $K = 6$, each pattern was supported in five out of ten iterations. The x-axis
696 indicates sampling sites. The y-axis indicates the probability of membership.


697 **Suppl. Table 4. The total number of arrived particles over 26 years.** Bold face numbers indicate
698 self-seeding. Self-seeding at Ogasawara is highlighted in yellow. Vertical columns indicate
699 source populations, and horizontal rows indicate sink sites.

700 **Suppl. Table 5.** The average number of arrived particles over 26 years. Bold face numbers indicate
701 self-seeding. Self-seeding at Ogasawara is highlighted in yellow. Vertical columns indicate
702 source populations, and horizontal rows indicate sink sites.

703 **Suppl. Table 6.** The number of typhoons approaching Ogasawara and Izu Islands over a 70-year
704 span (1951–2020).

