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Abstract 161 

Understanding the variation in community composition and species abundances, i.e., ³-diversity, is 162 

at the heart of community ecology. A common approach to examine ³-diversity is to evaluate 163 

directional turnover in community composition by measuring the decay in the similarity among pairs 164 

of communities along spatial or environmental distances. We provide the first global synthesis of 165 

taxonomic and functional distance decay along spatial and environmental distance by analysing 149 166 

datasets comprising different types of organisms and environments. We modelled an exponential 167 

distance decay for each dataset using generalized linear models and extracted r² and slope to analyse 168 

the strength and the rate of the decay. We studied whether taxonomic or functional similarity has 169 

stronger decay across the spatial and environmental distances. We also unveiled the factors driving 170 

the rate of decay across the datasets, including latitude, spatial extent, realm, and organismal features. 171 

Taxonomic distance decay was stronger along spatial and environmental distances compared with 172 

functional distance decay. The rate of taxonomic spatial distance decay was the fastest in the datasets 173 

from mid-latitudes while the rate of functional decay increased with latitude. Overall, datasets 174 

covering larger spatial extents showed a lower rate of decay along spatial distances but a higher rate 175 

of decay along environmental distances. Marine ecosystems had the slowest rate of decay. This 176 

synthesis is an important step towards a more holistic understanding of patterns and drivers of 177 

taxonomic and functional ³-diversity. 178 

Introduction 179 

Biodiversity on Earth is shrinking1. Understanding its distribution is therefore paramount to inform 180 

conservation efforts, and to evaluate the links between biodiversity, ecosystem functioning, 181 

ecosystem services and human well-being2,3. The variation in the occurrence and abundance of 182 

species in space and time, i.e., ³-diversity, is at the heart of community ecology and biogeography as 183 

it provides a direct link between local (³) and regional (³) diversity4,5. Moreover, ³-diversity has 184 
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become an essential currency in spatial6,7 and temporal8 comparisons of biodiversity patterns and their 185 

underlying drivers. ³-diversity is also informative in the context of biodiversity conservation and 186 

practical management decisions in rapidly changing environments9,10. 187 

A common approach to examine spatial ³-diversity is to consider directional turnover in community 188 

composition with distance, i.e., distance decay 4,11. The similarity among the pairs of biological 189 

communities typically decreases (<decays=) with increasing spatial or environmental distance 11,12. 190 

This pattern stems mainly from dispersal limitation (related to physical barriers and dispersal 191 

ability13) and species-specific responses to spatially structured environmental variation (related to 192 

environmental filters and evolutionary processes14) and is well-documented in observational15317 and 193 

theoretical studies18 as well as meta-analyses19. Such studies offer interesting insights into the patterns 194 

and drivers of spatial taxonomic ³-diversity and often provide information about the effects of 195 

environmental changes on ecosystem processes and associated functionality. Even if the patterns and 196 

drivers of taxonomic ³-diversity are relatively well-documented in the biogeographic literature, it is 197 

much less understood whether the same patterns occur for functional ³-diversity20322. Therefore, 198 

functional biogeography emerges as a field to solve questions related to the distribution of forms and 199 

functions of individuals, populations, communities, ecosystems, and biomes across spatial scales23. 200 

Understanding functional diversity relies on trait-based approaches, which are built on the idea that 201 

the environment selects species based on their ecological requirements, and that functional traits 202 

capture these requirements better than species identity24. Thus, a trait-based approach should reflect 203 

the functional response of biotic communities to environmental gradients better than an approach 204 

based on species9 taxonomic identities only, and better predict how biotic communities respond to 205 

environmental changes25. Even if functional diversity has been investigated widely at the ³-diversity 206 

level26,27, our understanding of functional ³-diversity is much more limited and fragmented28332. 207 

Comparing the patterns of functional and taxonomic ³-diversity across different biotic groups, 208 
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ecosystems and geographic contexts has the potential to greatly contribute to a better mechanistic 209 

understanding of the drivers behind the spatial variation in ecosystem functionality and shed further 210 

light on how environmental change may affect ecological communities.   211 

Niche filtering along environmental gradients induces coupling of taxonomic and functional diversity 212 

patterns because dominant functional strategies dictate along the environmental gradient33,34. 213 

However, high taxonomic ³-diversity does not necessarily mean high functional ³-diversity25,35 (Fig. 214 

1a), and the gain or loss of species does not inform about variations in functional ³-diversity whenever 215 

trait redundancy is high36. For example, taxonomic homogenization does not lead to functional 216 

homogenization if the newly introduced species in the assemblages are functionally similar to each 217 

other30,37,38. The most pressing question is whether functional features explain more of the distance 218 

decay along environmental gradients than species identities, as suggested by some earlier studies393219 

43. 220 

Hypotheses 221 

Since the emergence of the first comprehensive distance decay meta-analysis19, our understanding of 222 

community turnover along spatial and environmental gradients has increased notably. Here, based on 223 

existing ecological literature and theory, and as an initial step towards synthesising knowledge, we 224 

tested four hypotheses concerning the differences between taxonomic and functional distance decay 225 

along the spatial and environmental distances. The master hypothesis is that the distance decay along 226 

spatial gradients is stronger for taxonomic similarity than for functional similarity (H1a). This is 227 

because spatial factors relate with taxonomic more than functional composition as a result of dispersal 228 

processes, dispersal history and speciation42. Such a hypothesis should be valid when functional traits 229 

do not comprise dispersal related traits. In contrast, distance decay along environmental gradients is 230 

stronger for functional similarity than for taxonomic similarity because functional composition 231 

should respond more strongly to environmental variation27,39,40,42 (H1b) (Fig. 1b). 232 
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Latitudinal gradients 233 

We also generalize the effects of major geographic and environmental factors in the three hypotheses, 234 

which are tested across the datasets. For example, latitudinal effect has been recognized as a relevant 235 

factor in meta-analyses44 and case studies45,46, and these studies suggest that ³-diversity should 236 

decrease with increasing latitude (Fig. 1c). This is indicated by the faster latitudinal decline in ³-237 

diversity than in ³-diversity47,48, and the slopes of the species-area relationships (proxy for turnover) 238 

decrease with latitude49. Moreover, Rapoport9s rule50 postulates that species range sizes are larger at 239 

high latitudes leading to lower ³-diversity. Therefore, we hypothesize that the rate of taxonomic 240 

distance decay along spatial gradients is generally slower in the datasets that originate from higher 241 

latitudes (H2a). In contrast, functional distance decay may show faster rates in the datasets from higher 242 

latitudes. This is because the high diversity of tropical areas stems mainly from niche overlap51, which 243 

increases the functional redundancy within communities and reduces the functional turnover52. 244 

Regarding the environmental gradients, large-scale environmental heterogeneity tends to increase 245 

towards poles19,53,54, leading to a faster rate of functional distance decay along environmental 246 

gradients at higher latitudes (H2b). An alternative hypothesis is that extreme climatic conditions at 247 

high latitudes decrease functional diversity because abiotic filtering limits the number of possible 248 

ecological strategies found in a biotic community55,56, resulting in relatively slow rate of functional 249 

distance decay. 250 

Spatial extent 251 

Distance decay is also likely to be affected by the spatial extent of a given study57. It has been shown 252 

that distance decay has a power-law shape at spatial extents that do not exceed regional species pools 253 

and exponential shape when extent encompasses multiple species pools12. This suggests that the slope 254 

of the relationship becomes flatter with increasing spatial extent11,19, mainly because regional species 255 

diversity is limited with a certain upper boundary58. Furthermore, environmental heterogeneity affects 256 
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the diversity of species59 and functional traits at regional level60,61, but such effects are likely to be 257 

scale-dependent62364. To summarize, we hypothesize that the rate of distance decay along spatial 258 

gradients is generally slower in the datasets covering larger spatial extent (H3a). In contrast, we 259 

hypothesize that the rate of distance decay along environmental gradients is generally faster when 260 

spatial extent is larger, especially for functional similarities, which are considered more sensitive to 261 

environmental variation (H3b). 262 

Realms 263 

We also expect that the patterns of distance decay vary among the realms. In general, marine 264 

ecosystems are environmentally more homogeneous than terrestrial or freshwater ecosystems, at least 265 

in the open ocean65, and typically show weaker dispersal barriers than terrestrial or freshwater 266 

ecosystems66. Therefore, we hypothesize that the datasets from marine ecosystems have generally 267 

slower rate of taxonomic and functional distance decay than the other ecosystems (H4). 268 

Here, we tested these hypotheses using datasets that cover a wide range of biotic groups from 269 

unicellular diatoms to vascular plants, fungi, invertebrates, fish, birds, amphibians and mammals, and 270 

that originate from marine, terrestrial and freshwater ecosystems spanning broad latitudinal gradients 271 

(Fig. 2). To account for major biological differences in biotic groups, we also investigated if distance 272 

decay varied among different sized taxa or among taxa with different dispersal mode67,68. By using 273 

such a comprehensive, multi-realm and multi-taxon dataset, we will explore patterns at more general 274 

level, compared with case studies that have examined both taxonomic and functional ³-diversity, but 275 

only considered a single or few biotic groups.      276 
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Material and methods 277 

Data collection. We gathered our data by directly contacting data owners or using the existing data 278 

sources, such as sPlot69 and CESTES70. We included datasets that provided raw data of species 279 

abundances, functional traits, environmental variables and spatial coordinates of the study sites. A 280 

few datasets (n = 6) provided only species occurrence rather than abundance information (Appendix 281 

S1). The traits included in the datasets were chosen by data owners from a suite of traits that should 282 

respond well to environmental variation. For plant datasets compiled from the sPlot database, trait 283 

information was commonly derived from the TRY database71. Regarding the CESTES database, we 284 

compiled 48 datasets, specifically from: fish communities22,72374, terrestrial vascular plants75386, 285 

aquatic macroinvertebrates87389, terrestrial arthropods86,90398, birds83,90,993102, bats102,103, bryophytes85, 286 

butterflies98,104, corals105, and foraminifera106. We only included datasets with at least ten sites, two 287 

environmental variables and three traits or trait categories. In some cases, more than one dataset 288 

representing different taxonomic groups with different responses to environment and dispersal 289 

abilities (e.g., stream macroinvertebrates and diatoms) were collected in the same study area. In total, 290 

149 datasets representing 17 major biotic groups from terrestrial (n = 87), freshwater (n = 41) and 291 

marine (n = 21) environments were assembled amounting to over 17,000 study sites around the globe 292 

(Fig. 2). From the 149 datasets, 118 were published in peer reviewed journals (Appendix S1).Taxa 293 

were mostly identified to species or morphospecies level but, in a few cases, we used data at genus 294 

level if existing taxonomic knowledge did not allow distinguishing individual species. Finally, each 295 

dataset included (i) a sites-by-species abundances matrix, (ii) a species-by-traits table, (iii) a sites-by-296 

spatial coordinates table, and (iv) a sites-by-environmental variables table (Fig. 3a). Detailed 297 

information about collected datasets can be found in Appendix S1. 298 

Data curation. For each dataset, we removed the sites with less than two observed species, and the 299 

species with lower than three traits considered. Trait data included ordered, categorical and 300 
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continuous traits, the latter of which were log transformed (Log10) when needed. Environmental 301 

variables were log-transformed (Log10) to approximate normality (except for e.g., temperature, pH 302 

and variables given as eigenvectors), and the environmental variables showing strong inter-303 

correlations (pairwise rp < 0.7) were excluded from further analyses107. Spatial coordinates were 304 

converted to the World Geodetic System 1984 (WGS84) datum and geographic coordinate system 305 

and expressed in decimal degrees with an accuracy up to five decimals. All the data curation and 306 

further analyses were performed in the software R v.4.0.2 (ref.108) using the appropriate R packages. 307 

We will consistently refer to the functions used and their respective packages from here on. 308 

Taxonomic and functional similarities. Pairwise between-site taxonomic and functional similarities 309 

were obtained for each dataset following the tree-based approach implemented in the function beta 310 

in the package 8BAT9 v.2.1.0 (ref.109). We used the tree-based approach because it provides an 311 

unequivocal comparison of taxonomic and functional similarities110. Community similarity (S) ranges 312 

between zero and one and	is commonly calculated for the pairs of communities as the sum of the 313 

unique features of each community over the sum of the shared features between communities and the 314 

unique features of each community. In the tree-based approach, these features are edges, which may 315 

have different lengths and be shared by different species that may be present in different 316 

communities110. Taxonomic and functional similarities were calculated for species occurrences and 317 

abundances based on a Podani family of Sørensen-based indices111. Here, we estimated S between 318 

communities j and k as 	�!" = 1 2
#$%

&'$#$%
  (1), where a is the sum of the length of the edges shared 319 

between the communities j and k, b is the sum of the length of the edges unique to the community j, 320 

and c is the sum of the length of the edges unique to the community k.  321 

When estimating taxonomic similarities, each species is a unique entity that share no edges with 322 

others and, therefore, all the edges of the tree have same length (Fig. 3b). Thus, the sum of the length 323 

of the edges equals the sum of the number of the observed species. For functional similarities, the 324 
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length of the edge shared between two species depends on how similar species are with respect to 325 

their traits. To estimate the length of the edges shared by species, we first construct a global (i.e. 326 

considering all the species within the dataset) matrix of species similarities by applying the Gower 327 

similarity index112 to the species-by-traits table using the function gowdis of the package 8FD9 v.1.0 328 

(ref.113,114). We used a modified version of the Gower index extended to accommodate variables in 329 

ordinal scales115. Using the species similarity matrix, we built a global tree of species similarities 330 

based on an unweighted pair group method with arithmetic mean (UPGMA) hierarchical cluster using 331 

function hclust of package 8stats9 v.4.0.2 (ref.108). The length of the edge shared by two species was 332 

estimated as the distance between the intersection of two species in the global tree to the root of the 333 

tree (Fig. 3b). Based on the length of those edges, functional similarities between the pairs of 334 

communities were estimated using the equation 1. Therefore, even if two communities do not share 335 

any species, taxonomic similarity would be lower than functional similarity in case of the comparison 336 

of a continuous functional trait (e.g., body size; Fig. 3b). Note that the calculation of similarities was 337 

carried out within each dataset separately. Details of the calculation of similarities using the Sørensen-338 

based indices for occurrence and abundance (i.e., percentage differences index) data can be found in 339 

the Appendix S2. We used both occurrence and abundance data because occurrences should be very 340 

informative about the drivers and patterns of communities along geographic gradients while 341 

abundances should inform well patterns along environmental gradients116. Main results are given for 342 

occurrence data in the main text, and abundance-based results can be found in Appendix S3. 343 

Spatial and environmental distances. We estimated the spatial and environmental distances 344 

between all the pairs of sites separately for each dataset. Spatial distances within each dataset were 345 

calculated as the geographic distance in kilometres between the pairs of sites using the function 346 

earth.dist of the package 8fossil9 v.0.4.0 (ref.117; Fig. 3b). To estimate environmental distances, we 347 

first standardized the environmental variables to µ = 0 and Ã = 1. Then, we calculated the 348 

environmental distance between sites as the Euclidean distance using the measured and standardized 349 
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environmental variables for all the pairs of sites within each dataset (Fig. 3b) using the function 350 

vegdist of the package 8vegan9 v.2.5-6 (ref.118). Because the datasets comprised different number and 351 

types of environmental variables, the values of environmental distance were context-dependent and 352 

not very informative for comparison across datasets. We therefore assumed that the environmental 353 

gradient scaled positively with spatial extent and rescaled the actual environmental distance to range 354 

between zero and one in each dataset by dividing actual values by the average environmental distance 355 

of the dataset.  356 

Distance decay of similarity. We modelled the distance decay of similarity following a negative 357 

exponential curve between the community similarity and distance12. This is because maximum spatial 358 

distances within our datasets were on average 795.5 kilometres; 95% CI [506.08, 1084.95], and 359 

therefore, it is highly likely that many of the datasets encompassed multiple species pools. One of the 360 

main assumptions of the distance decay is that Sij > Sjk if the distance between the sites i and j is 361 

shorter than the distance between j and k12. That is, the slope of the relationship should be negative, 362 

and positive slopes suggest either periodicity in the environmental gradient or a mismatch between 363 

the communities and the measured environmental variables11. Here, we calculated distance decay 364 

separately for taxonomic and functional similarities along spatial and environmental distance using a 365 

generalized linear model (GLM) following a binomial distribution of errors with a log link119 (Fig. 366 

3c). Following Latombe et al.120, we included a negative constraint in GLMs such that the slopes are 367 

forced to be negative (i.e., slope <= 0). Besides, we included a negative constraint to the intercept of 368 

the model such that intercept <= 0. Therefore, because e0
 = 1, we avoided intercept values that fall 369 

outside the range of taxonomic and functional similarities. We forced the negative coefficients via a 370 

non-positive least-square regression121,122 within the iterative re-weighted least-square algorithm123 371 

implemented in the function glm.cons of the package 8zetadiv9 v.1.2.0 (ref.120,124). We estimated a 372 

pseudo-R² (hereafter r²) as �& = 1 2
()*+,	*+./'0%+

()*+,	01,,2*+./'0%+
	(2). Because of the pairwise structure of the 373 
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data, similarities are non-independent, so we performed a leave-one-out Jack knife procedure to 374 

obtain the mean and confidence interval of the intercepts and slopes for each model119. Within such 375 

framework, the slope represents the rate of decay, that is, the proportion of similarity loss per unit 376 

distance, and the r² represents the strength of the relationship between similarity and distance. 377 

Although it can be argued that slopes and r² are highly correlated, the correlation between slopes and 378 

r² in this study was small (Pearson9s r = 0.10; p-value = 0.240). 379 

Statistical analysis. We tested our hypothesis using two different approaches. Firstly, we 380 

investigated whether taxonomic or functional distance decay is stronger along spatial and 381 

environmental distances (H1) by performing a pairwise t-test to compare r² drawn from GLMs using 382 

taxonomic similarity and the GLMs using functional similarity for each dataset (Fig. 3d). Totally, we 383 

carried out two pairwise t-tests, one considering the r² from the models using spatial distances, and a 384 

second considering the r² from the models using environmental distances. 385 

We also investigated the ecological and geographical factors driving the rate of the distance decay 386 

across datasets. Each dataset was characterized with respect to (i) latitude, recorded as the absolute 387 

mean value of all the sites of the dataset; (ii) spatial extent, expressed as the largest pairwise distance 388 

(in km) between study sites; (iii) realm, classified into freshwater, marine and terrestrial 389 

environments; (iv) body size, estimated at organism-level as the log transformed fresh weight (g) 390 

drawn from literature47,125; (v) dispersal mode, classified as active and passive modes and organisms 391 

dispersed by seeds; (vi) taxonomic ³-diversity expressed as the total number of species in the dataset; 392 

(vii) functional ³-diversity, measured as the total volume of the union of the n-dimensional 393 

hypervolumes estimated within the dataset; (viii) total number of study sites in the dataset and (ix) 394 

the number of environmental variables in the dataset. For body sizes, we note that although the size 395 

range within the biotic group may be large (up to five orders of magnitude), it is small compared to 396 

the overall variation obtained across organism groups (twelve orders of magnitude). For more details 397 
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on body size approximations, see refs.47,49. The taxonomic ³-diversity was included to study if there 398 

is a typical positive relationship between ³-diversity (taxonomic and functional) and ³-diversity7,52. 399 

Functional ³-diversity was estimated based on geometrical n-dimensional hypervolumes126,127. We 400 

used the species functional similarity matrix based on Gower9s index (see the 8taxonomic and 401 

functional similarities9 section) to extract orthogonal synthetic trait axes through a principal 402 

coordinate analysis128. Then, the hypervolume of each site within the dataset was calculated using a 403 

gaussian kernel density estimate via the function kernel.alpha of the package 8BAT9129. The 404 

hypervolume of all sites were sequentially merged using the function hypervolume_set of the package 405 

8hypervolume9 v.2.0.12 (ref.130), and the united-hypervolume was used to estimate the total amount 406 

of functional space occupied by all the species within the dataset using the function get_volume of 407 

the package 8hypervolume9. Because trait dimensionality affects the accuracy of the functional 408 

separation of species131,132, we standardized the number of dimensions to seven synthetic traits axes 409 

for all datasets. Hypervolumes are expressed in units of SDs to the power of the number of trait 410 

dimensions used (i.e., seven). The number of study sites and the number of environmental variables 411 

for each dataset were included to explore their potential effect on distance decay. 412 

Finally, we used boosted regression trees (BRT) to test the effects of latitude (H2), spatial extent (H3) 413 

and realm (H4) on the rate of taxonomic and functional distance decay along spatial and 414 

environmental distance across the datasets. In addition, we included dispersal mode, body size, 415 

taxonomic and functional ³-diversity, number of sites, and number of environmental variables in the 416 

dataset as predictors in the BRTs (Fig. 3d). BRT is a regression modelling technique able to fits 417 

nonlinear relationships between predictor and response variables, including interaction among 418 

variables by using a boosting strategy to combine results from a large number (usually thousands) of 419 

simple regression tree models133. Our BRT outputs included graphs of the shapes of relationships 420 

between predictors and the response variable (e.g., linear, curvilinear and sigmoidal response shapes) 421 

and a relative importance of predictor variables. We also plotted a LOESS line on these plots to allow 422 
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for easy visualization of the central tendency of the predicted values. Relative importance is 423 

constructed by counting the number of times a variable is selected for splitting in each tree, weighted 424 

by the squared improvement of the model as a result of each split, and averaged over all trees (see 425 

ref.1333135 for more details). BRT parameters were selected to amplify the deviance explained by the 426 

model. We tested interaction depth between 2 and 5, and the learning rates of 0.1, 0.01, and 0.001. 427 

The best models were the ones with learning rate of 5 and interaction depth of 0.001.We performed 428 

a 50350 cross-validation procedure and estimated the model performance (�& =429 

	
!"#$%&'"()*%+,!"#$%&'"-.)//,#%+$0%*$)&

!"#$%&'"()*%+

) following Leathwick et al.107. As the datasets in this study have 430 

not always followed the same sampling methodology, and show different functional traits and 431 

environmental variables, we fitted the BRT models following a Laplace distribution of the errors to 432 

reduce the absolute error loss from the variation among datasets. BRT models were fitted using the 433 

function gbm.step of the package 8dismo9 v.1.1-4 (ref.136).  434 

Main results show the distance decay results based on total similarities (equation 1), but we also 435 

partitioned the similarities into replacement and richness difference components following the 436 

methodology described in the Appendix S2. Replacement gives the variation as a result of the 437 

substitution of species (turnover) or functional traits (functional replacement), and richness 438 

differences accounts for the variation as a result of net differences induced by the loss/gain of species 439 

or traits137. We only show the results of the partitioned components using occurrence data for 440 

simplicity. The final figures were prepared using the tools from the tidyverse environment138 in the 441 

R software v.4.0.2 (ref.108).  442 

Results  443 

Strength of the distance decay 444 
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The taxonomic and functional similarities had a mean correlation of 0.74 (sd ± 0.20) within datasets. 445 

The distance decays showed a wide range of shapes, from very steep decays to almost flat 446 

relationships (Fig. 4). The average r² using occurrence data for taxonomic similarities was 0.099 (sd 447 

± 0.129) and 0.061 (sd ± 0.091) for functional similarities. Spatial distance decays of taxonomic 448 

similarities were significantly stronger than the distance decays of functional similarities when 449 

considering both occurrence (Fig 4a; t = 6.330, p < 0.001, df = 148) and abundance data (Appendix 450 

S3, Fig. S1), supporting H1a 3 spatial distance decay is stronger for taxonomic than functional 451 

similarities (Fig. 4a).  452 

However, our results did not support H1b as the distance decay for taxonomic similarities (mean r² = 453 

0.103, sd ± 0.095) were also, on average, stronger than for functional similarities (mean r² = 0.076, 454 

sd ± 0.086) along environmental distances (Fig 4b; t = 6.935, p < 0.001, df = 148). Note, however, 455 

that 41 out of 149 datasets had stronger distance decay of functional similarities than taxonomic 456 

similarities along environmental gradients. Most of the biotic groups had at least one dataset with a 457 

stronger relationship for functional similarities than for taxonomic similarities, except for corals, 458 

foraminifera, lichens, amphibians and fungi each of which comprised only one dataset. 459 

Rate of the distance decay 460 

The mean slope of the spatial distance decay was 0.009 (sd ± 0.027) for taxonomic similarities, and 461 

0.004 (sd ± 0.015) for functional similarities (Fig 4a). For environmental distances, the mean slope 462 

of the distance decay was 1.073 (sd ± 1.063) for taxonomic similarities and 0.365 (sd ± 0.361) for 463 

functional similarities (Fig 4b). Regarding the biotic groups, terrestrial plants had the steepest slopes 464 

along spatial distance both for taxonomic and functional similarities (Fig. 5). Along environmental 465 

distance, corals had the steepest slopes (Fig. 5). Similar patterns were found for abundance-based 466 
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similarities, except for the biotic groups, where aquatic plants had the steepest slopes along spatial 467 

distances (Appendix S3). 468 

Across datasets, BRT explained 36.51% of the deviance of the slopes of the spatial distance decay 469 

for taxonomic similarities, and 36.86% for functional similarities using occurrence data. For the 470 

distance decay along environmental distances, BRT explained 14.43% of the deviance of the slopes 471 

of the decay of taxonomic similarities and 20.40% for functional similarities. Spatial extent and ³-472 

diversity contributed most to the variation in slopes along either spatial or environmental distance 473 

using both occurrence and abundance-based similarities (Fig. 6 3 7a, Appendix S3).  474 

Latitudinal patterns 475 

The slopes of spatial distance decay of both taxonomic and functional similarities were the steepest 476 

in datasets centred at ca. 35345º, partly supporting H2a that distance decay was flatter at high latitudes 477 

(Fig. 6a). However, note that taxonomic spatial distance decay sharply decreased towards the poles. 478 

The slopes of environmental distance decay were flatter in the datasets from high latitudes (Fig. 6b), 479 

providing no support to hypothesis H2b.  480 

Spatial extent 481 

The distance decay of taxonomic and functional similarities was flatter in the datasets that covered 482 

larger spatial extent both for occurrence (Fig. 6a) and abundance data (Appendix S3, Fig. S3a), 483 

supporting hypothesis H3a 3 distance decay becomes flatter with increasing spatial extent. For 484 

environmental distances, distance decay was steeper in the datasets that covered larger spatial extents 485 

for both taxonomic and functional similarities, agreeing thus with H3b that distance decay would 486 

become steeper with larger spatial extent. 487 

Realms 488 
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Marine ecosystems had flatter slopes compared to freshwater or terrestrial ecosystems considering 489 

environmental distances, but not for spatial distances, thus partly agreeing with H4 (Fig. 6). However, 490 

the importance of the realms in BRTs was overall low. A similar pattern emerged for abundance-491 

based similarities (Appendix S3, Fig. S3). 492 

Organismal variables and dataset features 493 

The slopes of both spatial and environmental distance decays were steeper for larger-bodied 494 

organisms in taxonomic and functional similarity (Fig. 7a3b). Organisms relying on seed dispersal 495 

had steeper slopes along spatial and environmental distances than other dispersal types, but the overall 496 

importance of dispersal mode was low (Fig. 7b). Taxonomic ³-diversity had a U-shaped relationship 497 

with slopes for distance decay along spatial and environmental distances (Fig. 7b). Slopes of distance 498 

decay had an overall decreasing trend for functional ³-diversity for both spatial and environmental 499 

distances (Fig. 7a3b). Generally, slopes were steeper in the datasets where the number of study sites 500 

was higher (Fig. 7a), and flatter when datasets comprised only a few environmental variables (Fig 501 

7b). 502 

Replacement and richness differences 503 

The slopes of taxonomic replacement along spatial distance decreased rapidly in the datasets above 504 

35º while the functional replacement peaked at ca. 45º (Appendix S4, Fig. S1a). Along environmental 505 

distance, the taxonomic replacement increased towards higher latitudes while the functional 506 

replacement did not vary notably along latitude (Appendix S4, Fig. S1b). For the richness differences 507 

component, the slopes of both taxonomic and functional similarities were the steepest in the datasets 508 

at ca. 45º degrees for the spatial distance decay (Appendix S4, Fig. S2a). For environmental distances, 509 

slopes became flatter from low to high latitudes up to ca. 50º degrees for taxonomic similarities while 510 

for functional similarities, slopes did not vary along latitude (Appendix S4, Fig. S2b). Both 511 
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replacement and richness differences showed flatter spatial slopes with increasing spatial extent 512 

(Appendix S4, Fig S1-S2). In contrast, environmental slopes increased with spatial extent only 513 

replacement (Appendix S4, Fig. S1b) while the effects of spatial extent for the slopes of richness 514 

differences along environment was very low (Appendix S4, Fig. S2b). Furthermore, marine 515 

ecosystems showed the flattest slopes of replacement along environmental gradients (Appendix S4, 516 

Fig. S1b) while freshwater ecosystems had the flattest slopes of richness differences (Appendix S4, 517 

Fig. S2b). Details about the organismal variables and datasets features can be found in the Appendix 518 

S4. 519 

Discussion 520 

Community ecology and biogeography have lacked a comprehensive evaluation of functional ³-521 

diversity across different taxa and ecosystems globally. Earlier studies suggest that functional ³-522 

diversity better reflects environmental variability compared with taxonomic ³-diversity, and that 523 

focusing on functional ³-diversity may help, for example, understand how humans impact ecosystems 524 

by modifying the local environment33,39341. This is because functional traits should reflect best the 525 

ecological requirements of species. Using a comparative analysis across biotic groups, ecosystem 526 

types and realms, we show here that (i) taxonomic distance decay is generally stronger along spatial 527 

gradients than functional distance decay, and that (ii) the decay of functional similarities along 528 

environmental gradients is typically not stronger than the decay of taxonomic similarities, unlike 529 

previously suggested.  530 

The strength of the distance decay of taxonomic and functional similarities 531 

The stronger taxonomic than functional distance decay along space provides empirical evidence for 532 

the idea that the taxonomic distance decay is a robust approach for ecological and biogeographical 533 

studies, supporting H1a. Compositional differences effectively summarize dispersal-related factors as 534 
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well as species responses to climatic and other spatially structured environmental variables. However, 535 

spatial distance decay of functional similarities may not reflect well geographic differences in biotic 536 

communities. This probably stems from the different roles played by deterministic and stochastic 537 

drivers when shaping taxonomic and functional composition: functional composition mirrors mostly 538 

local environmental filtering and typically does not strongly reflect dispersal limitations or species 539 

pool effects that influence stronger taxonomic composition42. Yet, the specific outcomes of any 540 

analysis of functional diversity depends on the functional traits included in the analysis139 and how 541 

researchers handle individual trait variability140. Also, some morphological or size-related traits with 542 

no clear functional meaning may turn out informative when exploring geographic patterns in 543 

functional composition42. For example, functional traits rather than species identities explained more 544 

variability of tree communities along broad spatial gradients141 or the variation of phytoplankton 545 

communities along a large South America gradient142. Such findings point to the fact that the 546 

decisions about which functional traits to include in the analysis is critical.  547 

Our analysis suggests that, overall, functional distance decay is also somewhat weaker than 548 

taxonomic distance decay along environmental gradients. However, this result is likely context-549 

dependent, and the stronger functional than taxonomic distance decay depends on whether the species 550 

replaced from one community to another are a random subsample of functionally redundant species 551 

from the regional pool or not34. In fact, in 40 datasets, distance decay of functional similarities was 552 

stronger than taxonomic similarities along environmental gradients. The datasets with stronger 553 

distance decay of functional than taxonomic similarities spanned a broad range of latitudes, number 554 

of study sites and environmental variables. Therefore, for using such heterogeneous datasets, we are 555 

not able to provide any strict guidance on the choice of functional traits or environmental variables 556 

to be measured in future studies. For example, the dataset on grassland arthropods from the 557 

Biodiversity exploratories project had standardized traits and environmental variables, but only 558 

Homoptera out of four different taxa showed stronger functional than taxonomic distance decay along 559 
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environmental gradients. One explanation is that the whole organisms are susceptible to 560 

environmental filtering, and each species comprises a set of traits that cannot be physically filtered 561 

as a response to the environment. Therefore, environmental filtering on a given trait of a species may 562 

also filter other traits simultaneously, or a given species may comprise a trait not filtered by the 563 

environment, which tends to increase the community similarity among sites. Yet, we emphasize that 564 

the variation in the rate of distance decay of functional similarities along environmental gradients 565 

across datasets was better explained in BRT than the variation in the rate of the distance decay of 566 

taxonomic similarities. This suggests that the taxonomic metrics may be more context dependent than 567 

the functional metrics along environmental gradients and that functional features may be more useful 568 

to generalize across taxa and ecosystems24. Furthermore, functional distance decay should not be 569 

much affected by dispersal effects and regional species pools as compared to taxonomic distance 570 

decay. 571 

The effects of latitude on the rate of distance decay  572 

In addition to our master hypothesis, we investigated whether the rate of distance decay showed 573 

consistent variation across ecosystems, along geographic gradients and among major taxonomic 574 

groups. We did not find slower rates of decay in the datasets at higher latitudes, but rather, concurring 575 

with the recent meta-analysis of species turnover143, we found that taxonomic similarities decayed 576 

the fastest at mid latitudes, above which the rate lowered down. Traditionally, this pattern has been 577 

explained with the Rapoport9s rule, whereby there is an increase in species range size at higher 578 

latitudes144 and hence lower taxonomic turnover. Yet, such finding may also stem from landscape 579 

fragmentation that increases ³-diversity145, especially at mid latitudes prone to strong human impact 580 

and at local spatial scales50. We also observed a faster rate of functional spatial distance decay towards 581 

poles, agreeing with our hypothesis. This may reflect the fact that the high species diversity of the 582 

tropics is mainly due to niche overlap51, which increases the functional redundancy and reduces the 583 
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functional turnover52. Furthermore, the latitudinal decrease in the rate of abundance-based functional 584 

distance decay (Appendix S3, Fig. S1) suggests an optimal utilization of the functional space, as have 585 

been observed earlier exclusively for marine organisms146.  586 

Taxonomic and functional distance decay along environmental gradients exhibited a clear minimum 587 

in the datasets near 50° while increasing notably from 60° towards the poles especially for taxonomic 588 

similarities. This result points to a breakpoint in total similarities that stems from richness differences, 589 

as the replacement component did not have similar breakpoints but, rather, had similar replacement 590 

levels in the tropics with decreasing trend at mid- and high latitudes. Latitudinal breakpoints in 591 

turnover have been found earlier147 in terrestrial vertebrates at ca. 30°, where turnover decreased 592 

substantially, while nestedness component increased. Soininen et al.143 found a breakpoint for 593 

turnover component at 41°, whereas there was no breakpoint in nestedness component. Present results 594 

suggest that the rate of distance decay is relatively similar through the extensive tropical region, 595 

whereas it either increases or decreases rapidly at mid latitudes, depending on ³-diversity metric or 596 

whether this phenomenon is examined along spatial or environmental gradients.  597 

The effect of spatial extent on the rate of distance decay  598 

The rate of spatial distance decay was slower in the datasets covering larger spatial extent as we 599 

hypothesized, perhaps suggesting that regional species pools are limited, and new species are not 600 

found constantly at the same frequency when extent is larger. Lower decay rates in larger study areas 601 

could also result from repeated patterns in environmental variation, that is, environmental patchiness 602 

or natural periodicity in the environment11. Agreeing with our hypothesis, we also found that the rate 603 

of decay along environmental distance was higher in the datasets covering larger spatial extent. These 604 

findings indicate that spatial distance decay is more affected by species pool effects and dispersal 605 

processes than environmental distance decay, possibly because the latter reflects more strongly the 606 

level of local deterministic environmental filtering processes. Similar evidence has accumulated from 607 
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case studies conducted in various ecosystems33,39,41,148. The finding that the rate of distance decay 608 

along environmental distance was higher in the datasets covering larger extents indicates the stronger 609 

environmental filtering at larger study areas. We also note that, in our BRT models, extent and ³-610 

diversity had by far the largest relative importance, suggesting that their interplay plays a key role in 611 

shaping distance decay.  612 

The effect of realm on the distance decay  613 

We found evidence for a lower rate of distance decay in marine versus terrestrial or freshwater 614 

ecosystems. Moreover, we found very comparable distance decay slopes for terrestrial and 615 

freshwaters, and the factor 8realm9 showed low relative importance in the BRT models. Overall, this 616 

finding agrees with earlier meta-review on ³-diversity19, suggesting that large-scale diversity patterns 617 

are generally weaker in marine ecosystems149. However, marine ecosystems would have lower 618 

species turnover than freshwater or terrestrial systems49. As connectivity, energy flows, dispersal 619 

modes, body size structure and trophic dynamics differ substantially between dry and wet 620 

ecosystems150, it would be vital to investigate possible differences in turnover among the realms more 621 

closely. 622 

Organismal variables and dataset features 623 

Organism size did seem to affect taxonomic or functional distance decay along spatial and 624 

environmental gradients as the slopes typically increased with organism body size. This may be 625 

because ³-diversity should be low among the small microbial taxa with efficient passive dispersal19. 626 

The rationale behind such idea is that efficient dispersal homogenizes communities among sites 627 

resulting in lower ³-diversity151. Body size is also a key driver of organisms9 biological complexity152, 628 

and it may be that smaller organisms show a much more limited set of trait combinations than 629 

macroorganisms, leading to a lower functional redundancy among larger species. Furthermore, our 630 
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knowledge about the taxonomy and functional traits of organisms is typically size-dependent. For 631 

example, the identification of larger species is much easier than that of microorganisms, which also 632 

applies to the identification and measurement of soft functional traits153,154. Therefore, the values of 633 

³-diversity of small organisms may be typically underestimated.  634 

Patterns in environmental distance decay were relatively congruent with spatial distance decay 635 

regarding dispersal mode, suggesting that taxa which disperse passively do not seem to track 636 

environmental gradients more efficiently compared with less dispersive taxa. It may also be that 637 

small-sized taxa were filtered along some unmeasured spatially-structured environmental gradients, 638 

and the pattern was thus detected as spatial turnover even if caused by some underlying unmeasured 639 

environmental factors. Forthcoming studies would greatly benefit from disentangling the signal of 640 

unmeasured environmental variables from true dispersal limitation155. 641 

Study design 642 

There are also some possibly influential aspects in our study design that should be discussed. 643 

Although the study is global in its extent, the availability of datasets was not evenly distributed 644 

geographically. This is a well-known problem in biodiversity research156 that calls for 645 

complementary studies to verify that these trends hold true in poorly sampled regions. 646 

Also, we relied on the suite of traits and environmental variables included in the original datasets 647 

and, thus, the collection of traits and environmental variables used differed somewhat among 648 

datasets even for the same focal taxonomic groups. This increases the uncertainty on how 649 

environmental variables filter the functional structure of communities in different contexts and how 650 

strong the taxonomic community-environment relationships are. An alignment of key traits and 651 

environmental variables is therefore desirable, but requires a suite of sister studies following the 652 

same protocol, which is unfortunately not yet available. Moreover, the fact that some of the biotic 653 
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groups (e.g., corals, foraminifera) were underrepresented in our analysis with only one dataset 654 

included (Fig. 2), or the total lack of some taxa (e.g. aquatic and terrestrial mammals, bacteria), 655 

makes it more difficult to generalize distance decay across taxa. 656 

Concluding remarks 657 

In summary, we believe our analysis is an important step towards a more comprehensive 658 

understanding of patterns and drivers of functional ³-diversity, particularly in comparison with the 659 

patterns and drivers of taxonomic ³-diversity that have so far attracted much more research interest 660 

compared with functional ³-diversity. Here, we found that functional distance decay is scale-661 

dependent and a product of large-scale geographic factors (latitude) and taxonomic and functional 662 

g-diversity, but is also driven by organisms9 biology to some degree. In general, taxonomic distance 663 

decay provides a better tool for many aspects of biogeographical research, because it reflects 664 

dispersal-related factors as well as species responses to climatic and other typically spatially-665 

structured environmental variables. However, functional distance decay may be a cost-effective 666 

option for investigating how humans impact ecosystems via modifying the environment. Overall, 667 

the present findings and data shed light into the congruence between the functional and taxonomic 668 

diversity patterns and provide useful new information to the field of functional biogeography. 669 
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 1068 

Figure 1. (a) Taxonomic and functional distance decay. Two scenarios of distance decay of 1069 

taxonomic and functional similarities along spatial and environmental distances. In scenario 1 (for 1070 

simplicity, we consider here replacement only), the replacement occurs among species that have 1071 

different traits (i.e., colours), which leads to both taxonomic and functional distance decay. In 1072 

scenario 2, the replacement occurs among species that have similar traits, which leads to zero 1073 

functional distance decay measured by the slope. (b) Master hypothesis: spatial distance decay is 1074 

stronger for taxonomic similarities than for functional similarities, while environmental distance 1075 
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decay is stronger for functional similarities. (c) Specific hypotheses (higher values indicate steeper 1076 

slopes) across datasets: Latitude: spatial distance decay is flatter in the datasets from higher latitude 1077 

and more notably for taxonomic similarities than for functional similarities. Environmental distance 1078 

decay is steeper in datasets from higher latitude for functional similarities, while it does not vary 1079 

notably with latitude for taxonomic similarities. Spatial extent: Both taxonomic and functional 1080 

spatial distance decay are flatter in the datasets covering larger spatial extent, while environmental 1081 

distance decay is steeper in datasets covering larger extent. Realm: Marine ecosystems show flatter 1082 

spatial and environmental distance decay than terrestrial and freshwater systems. FRE= freshwater 1083 

systems, TER = terrestrial systems, MAR = marine systems. 1084 
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 1085 

Figure 2. Study design highlighting (a) map of the study sites coloured according to the realms 1086 

(FRE = Freshwater, TER = Terrestrial, MAR = Marine); (b) the number of data sets for major biotic 1087 

groups; and (c) the distribution of the datasets with respect to spatial extent, number of study sites, 1088 

functional g-diversity (log hypervolume sd7), taxonomic g-diversity (number of species), number of 1089 

environmental variables, and latitude. 1090 
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 1091 

Figure 3. The analytical framework described step-wisely. The blocks a-c hierarchically describe 1092 

the methods performed at dataset level, including the estimation of similarities and distances as well 1093 

as the distance decay models of each dataset. The block d describes the tests performed after the 1094 
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compilation of the metrics from all datasets. The first block (a) shows the four objects used in the 1095 

analyses: a species-by-traits table, a sites-by-species matrix, a sites-by-coordinates table and a sites-1096 

by-environment table. The second block (b) illustrates the calculation of taxonomic and functional 1097 

similarities, and spatial and environmental distances. In the first example, only species identities are 1098 

taken into account and as sites i and j do not share any species, community similarity (blue) equals 1099 

zero. In the second example, sites i and j do not share any species, but as two species have same 1100 

body size, community similarity (orange) is higher than zero. Similarity is estimated using the 1101 

length of the edge of the dendrograms as S = 1-[(b+c)/(2a+b+c)]. The third example shows how 1102 

spatial distances were calculated as the geographic distances among sites using spatial coordinates. 1103 

The fourth example illustrates how sites far from each other may show similar environmental 1104 

conditions and therefore small environmental distance. Environmental distances were calculated as 1105 

the Euclidean distances of standardized environmental variables. The third block (c) illustrates the 1106 

metrics extracted to study the distance decay across datasets. The strength (r²) and rate (slope) of 1107 

decay were extracted from each dataset using log-binomial generalized linear models (GLM). The 1108 

models were built separately for each response variable (taxonomic or functional similarity) and 1109 

explanatory variables (spatial or environmental distance), totalling four r² values and four slopes.  1110 

Also, the data of marine fish from the Mediterranean Sea is shown as an example where the 1111 

distance decay of similarity along environmental distance is stronger (higher r²) for functional 1112 

similarity than for taxonomic similarity, irrespectively of the rate of decay (slope). The fourth block 1113 

(d) describes the analyses used to test the hypotheses and which metrics were considered for each 1114 

analysis. The strength (r²) of decay was used to test hypothesis H1 while the rate of decay (slope) 1115 

was used to hypotheses H2-H4. 1116 
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 1117 

Figure 4. The distance decay along (a) spatial distance, and (b) environmental distance. Each line in 1118 

the panels of left and middle columns shows the shape of the distance decay of an individual 1119 

dataset. The mean and standard deviation of slopes are given in the plots. The blue lines show the 1120 

distance decay of taxonomic similarity while the orange lines show the distance decay of functional 1121 

similarity. The panels on the right column show the strength of the distance decay of taxonomic (y-1122 

axis) and functional (x-axis) similarity. The 1:1 line marks the equivalence of r² between taxonomic 1123 

and functional similarities. The dots below the line indicate a dataset with stronger decay of 1124 

functional than taxonomic similarity, whereas circles above the line indicates stronger decay of 1125 

taxonomic than functional similarities. 1126 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.17.435827doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435827
http://creativecommons.org/licenses/by/4.0/


 1127 

Figure 5.  The average rate of decay of biotic groups using occurrence data along spatial and 1128 

environmental distance. The vertical dotted lines highlight the zero rate (absence of decay) and the 1129 

horizontal lines indicate the standard deviation of the mean. The blue circles show the rate of decay 1130 

of taxonomic similarities while the orange circles show the rate of decay of functional similarities.  1131 
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 1132 

Figure 6. Relative effects (%) of geographic factors on the rate of decay along spatial (a) and 1133 

environmental (b) distance decay of the total component of taxonomic (TAX - blue) and functional 1134 

(FUN - orange) similarities using occurrence data across datasets. Partial dependence plots show the 1135 

effects of a predictor variable on the response variable after accounting for the average effects of all 1136 

other variables in the model. Semi-transparent lines represent the actual predicted effects; solid lines 1137 

represent LOESS fits to predicted values from BRT. We show here only the variables related to the 1138 

specific hypotheses, i.e., latitude, spatial extent, and realms (FRE = Freshwater, TER = Terrestrial, 1139 

MAR = Marine).  1140 
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Figure 7. Relative effects (%) of organismal variables and dataset features on the rate of decay 1142 

along spatial (a) and environmental (b) distance considering the total component of taxonomic (blue 1143 

lines) and functional (orange lines) similarities using occurrence data across datasets. Partial 1144 

dependence plots show the effects of a predictor variable on the response variable after accounting 1145 

for the average effects of all other variables in the model. Semi-transparent lines represent the actual 1146 

predicted effects; solid lines represent LOESS fits to predicted values from BRT. We show here the 1147 

organismal variables and the variables related to the dataset features. 1148 
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