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Abstract

The compound eyes of insects exhibit extensive variation in ommatidia number and size,
which affects how they see and underlies adaptations in their vision to different
environments and lifestyles. However, very little is known about the genetic and
developmental bases underlying differences in compound eye size. We previously showed
that the larger eyes of Drosophila mauritiana compared to D. simulans is caused by
differences in ommatidia size rather than number. Furthermore, we identified an X-linked
chromosomal region in D. mauritiana that results in larger eyes when introgressed into D.
simulans. Here, we used a combination of fine-scale mapping and gene expression
analysis to further investigate positional candidate genes on the X chromosome. We found
that orthodenticle is expressed earlier in D. mauritiana than in D. simulans during
ommatidial maturation in third instar larvae, and we further show that this gene is required
for the correct organisation and size of ommatidia in D. melanogaster. Using ATAC-seq,
we have identified several candidate eye enhancers of otd as well as potential direct
targets of this transcription factor that are differentially expressed between D. mauritiana
and D. simulans. Taken together, our results suggest that differential timing of otd
expression contributes to natural variation in ommatidia size between D. mauritiana and D.
simulans, which provides new insights into the mechanisms underlying the regulation and

evolution of compound eye size in insects.
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Introduction

Understanding the genetic and genomic basis of phenotypic diversity is one of the central
themes of evolutionary biology. While the causative genes and even mutations have been
identified underlying evolutionary changes in a growing list of phenotypes (e. g. (Arif et al.,
2013; Arnoult et al., 2013; Hagen et al., 2019; Klaassen et al., 2018; Ramaekers et al.,
2019; Santos et al., 2017) and see (Courtier-Orgogozo et al., 2019) for a more
comprehensive list) we still know relatively little about the genetic basis for the evolution of
organ size. Identifying such genes will not only broaden our understanding of
morphological change but provide further insights into the mechanisms underlying the
control of organ size.

Insects exhibit remarkable variation in the size and shape of their compound eyes,
which has allowed these animals to adapt to different environments and lifestyles (Land
and Nilsson, 2012). This variation greatly affects optical parameters and visual sensation,
such as the detection of different intensities, polarization and wavelengths of light to
varying degrees of contrast sensitivity and acuity (Land and Nilsson, 2012). Compound
eyes vary in the size and/or number of ommatidia: wider ommatidia capture more light,
which can increase contrast sensitivity; however, larger interommatidial angles can lead to
decreased acuity (Land, 1997; Land and Nilsson, 2012). Conversely, having many small
ommatidia with narrow interommatidial angles can enhance acuity, but this may decrease
contrast sensitivity (Currea et al., 2018; Palavalli-Nettimi and Theobald, 2020; Warrant,
1999, 2006). Differences in ommatidia number and size, as well as trade-offs between
these structural features of compound eyes, have been described for a range of different
insects (Duncan et al., 2020; Gonzalez-Bellido et al., 2011; Horridge, 1977; Posnien et al.,
2012; Wakakuwa et al., 2007). Furthermore, variation in ommatidia size across the eye
within species is also widely documented (Land, 1989). This size variation demonstrates
areas of regional specialisation, where different visual tasks are performed by different
parts of the eye. For example, killer flies, Coenosia sp., have evolved wider, flattened,
anterior ommatidia to maximise contrast sensitivity and acuity as an adaptation to hunting
(Gonzalez-Bellido et al., 2011). A number of studies have also found extensive variation in
eye size within and between closely related species of Drosophila, caused by differences
in ommatidia number and/or ommatidia area (Arif et al., 2013; Buchberger et al., 2021;
Gaspar et al., 2020; Hilbrant et al., 2014; Keesey et al., 2019; Norry and Gomez, 2017;
Posnien et al., 2012; Ramaekers et al., 2019; Reis et al., 2020). Despite the pervasive

variation in eye morphology and detailed knowledge about eye development in Drosophila
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(Casares and Almudi, 2016; Casares and McGregor, 2021; Kumar, 2018), little is known
about the genetic and developmental bases for variation in eye size even among
Drosophila species with a few exceptions (e.g. Ramaekers et al., 2019).

We previously showed that D. mauritiana has larger eyes than D. simulans due to
larger ommatidia rather than an increase in ommatidia number (Arif et al., 2013; Posnien
et al., 2012). Quantitative trait loci (QTL) mapping of this difference identified a large-effect
QTL that explains 33% of the species difference. Introgression of this X-linked region from
D. mauritiana into D. simulans increased the eye size and ommatidial size of the latter
species (Arif et al., 2013). Here, we combine higher resolution mapping of this previously
characterised X-linked QTL, with transcriptomic analysis of eye imaginal discs of D.
simulans and D. mauritiana, to identify positional candidate genes that are differentially
expressed in the developing ommatidia between these two species. We then carry out
ATAC-seq to compare putative regulatory regions of the candidate gene orthodenticle
(otd) that may contribute to differences in ommatidia diameter between D. mauritiana and
D. simulans. Our results suggest that differential regulation of ofd results in earlier
expression of this homeobox gene in D. mauritiana compared to D. simulans. We
hypothesise that this heterochrony in ofd expression and consequently longer exposure to
this transcription factor (TF) in maturing ommatidia in D. mauritiana contributes to the

development of larger ommatidia in this species.

Results

Enlarged ommatidia in D. mauritiana

We previously found that the larger eyes of D. mauritiana compared to those of D.
simulans are caused by wider diameter of central ommatidia in the former species (Arif et
al., 2013; Posnien et al., 2012). To examine whether this phenotypic difference is
prevalent in all ommatidia across the eye, we imaged the eyes of these two species using
synchrotron radiation micro CT (SRuCT) and measured the facet diameter of ommatidia in
different regions of the eye using a 3D reconstruction of each species (Fig. 1). We
corroborated that while the number of ommatidia is similar between D. mauritiana and D.
simulans the former has larger facets. This is consistent across anterior, central and
posterior facets but is particularly pronounced in the antero-ventral region of the eye (Fig.
1 and Suppl. Table 1) (Arif et al., 2013; Posnien et al., 2012).
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Figure 1. 3D reconstruction and ommatidia size measurements from SRuCT data of female
D. simulans (left) and D. mauritiana (right). Facet areas of the ommatidia highlighted in the
antero-ventral, central and dorsal-posterior region of the eye are plotted in corresponding colours
(far right). Ommatidia number is 996 for the D. simulans and 1018 for the D. mauritiana. Scale bar
is 100 um.

Differentially expressed genes in a candidate region on the X chromosome
Previously we detected a QTL region located between 2.6 Mb and 8 Mb on the X
chromosome, which is responsible for 33% of the difference in ommatidia size (Arif et al.,
2013). Furthermore, introgression of approximately 8.3 Mb of this X-linked region (between
the yellow (y) and the vermillion (v) loci) from D. mauritiana TAM16 into D. simulans YVF
significantly increased the eye size of the latter, consistent with the direction of the species
difference (Arif et al., 2013). Further analysis of recombinant males with breakpoints within
the introgressed region revealed significant genotype-phenotype associations towards the
distal end of the introgressed region near marker v, providing a conservative interval of
about 2 Mb wherein the X QTL is likely to reside (Fig. 2a). To map the candidate region to
higher resolution we generated introgression lines with breakpoints in the 2 Mb interval
and compared eye area and central ommatidia diameter of yf male progeny (with some D.
mauritiana DNA in the 2Mb interval) to that of their yvf sibling males (i.e., without D.
mauritiana DNA). We found that yf males had significantly larger eye size than their yvf
siblings in introgression lines IL9.1a (one tailed t=1.80, df=11, p=.026) IL9.1b (one tailed
t=1.80, df=11, p<.001) and IL9.2 (one tailed t=1.80, df=11, p=.035) but ommatidia
diameter was only significantly different for IL9.1 (one tailed t=1.80, df=11, p=.014) and b
(one tailed t=1.80, df=11, p=.005) (Fig. 2a). Ommatidia number and body size did not differ
between yf males and their respective yvfsibling males for any of the IL lines (Suppl.
Table 2). These data suggest the candidate QTL is located in a maximum region of just
over 662 kb (ChrX: 7,725,195-8,387,618 in D. simulans).
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Figure 2. Differential and spatial gene expression. (a) Fine-scale mapping of X chromosome
QTL. Marker-phenotype association in male recombinant progeny from three replicate
introgression lines (IL1, 3, and 4, single-marker ANOVA analysis). Red dashed line indicates the
Bonferroni corrected significance threshold of 0.05. Shaded grey area represents a conservative
interval of ~ 2 Mb encompassing the X linked QTL. Recombination breakpoints of the new
introgression lines (IL9.1-9.3) on the X chromosome (shown for D. simulans Flybase R2.02) define
the maximum 662 kb candidate region. White, black, and grey boxes indicate DNA regions from D.
simulans YVF, D. mauritana TAM16 or not determined, respectively (the latter define the
maximum candidate region). The table indicates the number of protein coding genes that are
present in the candidate region in D. simulans and D. melanogaster. Distribution of eye area (left)
and ommatidia diameter (right) measurements by genotype and introgression line. Asterisks
indicate significance differences between genotypes where p <.05 (Suppl. Table 2). (b) Differential
expression of 49 protein coding genes located in the introgressed region from (a) and expressed at
72 h AEL, 96 h AEL and 120 hAEL. Genes which expression is significantly higher at 120 h AEL in
D. simulans are highlighted in blue. Genes significantly upregulated in D. mauritiana at 120 h AEL
are shown in red. (c) Expression of differentially expressed genes at 120 h AEL in L3 eye-antenna
imaginal discs of D. simulans and D. mauritiana. Open arrowheads indicate the MF, a: antenna, e:
eye in (c).

This mapped region contains 62 protein coding positional candidate genes. To
assay which positional candidates are actually expressed during the generation of
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ommatidia, we performed RNA-seq experiments on the eye-antennal imaginal discs of 3rd
instar larvae (L3). We extracted RNA from D. mauritiana and D. simulans eye-antennal
discs at three different developmental points: at 72 hours after egg laying (AEL; late L2, at
the onset of the morphogenetic furrow (MF)), when the eye primordium is proliferating and
specification of the ommatidial cells has not yet started; at 96 h AEL stage (mid L3) when
the MF has moved half way through the eye disc) and the most posterior ommatidia are
already determined, and finally, at 120 h AEL (late L3), when the larvae are about to
pupariate and most ommatidia are already determined whilst their final size, structure and
shape are being arranged (Torres-Oliva et al., 2016; Torres-Oliva et al., 2018).

Comparison of the RNA-seq data among these three developmental timepoints
showed that transcriptomes of 72 h AEL eye imaginal discs were the most different in
comparison to transcriptomes from both 96 h AEL and 120 h AEL for both species (Suppl.
Fig. 1). This reflects the distinctive processes that are occurring at these developmental
stages (Torres-Oliva et al., 2018). We next focused on the expression of genes located
within the mapped 0.66 Mb X-linked region and, in particular, on expression differences at
120 h AEL, when at least the most posterior ommatidia are acquiring their final size. Of the
62 genes located in this region, 49 were expressed in at least one of our RNA-seq
datasets and only eight of these genes were differentially expressed between the eye
discs of these two species at this timepoint (Suppl. Table 3): spirit, otd and Ppt1 showed
higher expression in D. mauritiana, whereas CG1632, Es2, Sptr, CG12112 and CG1885
were more highly expressed in D. simulans (Fig. 2b).

We next performed in situ hybridization experiments of these eight candidate genes
to investigate if they are expressed in the eye field where the ommatidia are being
assembled. These assays were carried out in both D. mauritiana and D. simulans, which
allowed us to determine whether the differences in expression levels observed in the RNA-
seq datasets are related to differences in spatial expression (Fig. 2c). Sptr, CG12112 and
spirit had no detectable expression in the relevant region posterior to the MF (Fig. 2c).
Ppt1 and CG1885 were expressed both anterior to and immediately posterior to the MF.
CG1632 and Es2 were ubiquitously expressed in the eye disc, with no clear regional
differences. Finally, otd was expressed in the ocellar region of the disc and in the most
posterior region of the eye field, where the ommatidia are already determined and are
being assembled (Vandendries et al., 1996). Otd is already expressed in several rows of
most posterior ommatidia of D. mauritiana eye discs, whereas, ofd expression is
undetectable in the most posterior regions of the eye discs of D. simulans (Fig. 2c). These

results were consistent with our differential expression (DE) analysis, as there appeared to
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be detected qualitative differences in expression levels for most of the genes investigated.
Taken together, these results showed that otd is the only differentially expressed positional

candidate gene that is expressed in maturing ommatidia (Fig. 2c).

Differences in otd gene expression during eye development between D. simulans
and D. mauritiana

Our results suggested that ofd transcription in the maturing ommatidia initiates earlier in D.
mauritiana than in D. simulans eye discs (Fig. 2c). To investigate this further, we
performed additional in situ hybridizations at 110 hAEL to compare the onset of otd
expression in the developing ommatidia of these two species. At this developmental stage,
we found that ofd is already expressed in D. mauritiana eye discs, whereas there was no
detectable expression in D. simulans discs (Fig. 3a-d). To confirm this heterochrony in otd
expression we performed immunostainings against Otd protein in developing eye discs
(Fig. 3e, f). We measured the number of ommatidial rows that were already specified (i.e.
with positive Elav staining) as a proxy of developmental stage and then which of these
ommatidial rows showed Otd expression. We observed that D. mauritiana discs displayed
more Otd-positive ommatidia than D. simulans discs at the same stage (Elav positive
ommatidia rows, Fig. 3e-g, Suppl. Table 4, F 147 = 30.3, p-value=1.48 x 10). Thus, D.
mauritiana cells in maturing ommatidia are exposed to the action of the TF Otd for longer
since the expression of this protein extends into the pupal stage of both species (Suppl.
Fig. 2).

- D. mau (TAM16)
D. sim (YVF)

[

D. mau (TAM16)

Otd positive rows
~
: |

D. sim (YVF)

25

5 10 15 20
developmental time (ommatidia rows)

Figure 3. otd expression in L3 eye imaginal discs. (a-d) otd mRNA at 110 h AEL and 120 h
AEL in D. mauritiana (a-b) and D. simulans (c-d). Arrowhead indicates the MF. Asterisks indicate
expression in the ocellar region. D. mauritiana already exhibits ofd mRNA at 110h (red arrowhead).
(e-f’) Immunostaining showing Otd protein (magenta, €’) in mature ommatidia (marked in green by
Elav) and the ocellar region (marked by an asterisk) in D. mauritiana (e-e’) and D. simulans (f-f’).
Staining against actin (in blue) was used to mark the MF. (g) Plot showing the number of Otd-
positive ommatidia rows (X axis) at different developmental time points (y axis, developmental
points infer by number of ommatidia rows). Asterisks represent statistical significance p< 0.001.
Scale bars: 50 pm.
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otd is required for the correct arrangement and size of ommatidia in Drosophila

It was previously shown in D. melanogaster that otd is expressed in the photoreceptor
cells and is required during early pupal stages for morphogenesis of the rhabdomeres, and
subsequently rhodopsin expression, as well as synaptic-column and layer targeting of
these cells (Fichelson et al., 2012; Mencarelli and Pichaud, 2015; Vandendries et al.,
1996). We carried out further analysis of otd function during eye development using RNAI
knockdown and by generating mitotic clones of homozygous otd mutant cells. Decreasing
otd mRNA by overexpressing ofd-miRNA construct (Wang et al., 2010), resulted in defects
in the final ommatidia organisation that were rescued by adding a copy of UAS-otd (Suppl!.
Fig. 3a-c). Loss of otd in clones resulted in disorganised ommatidia with perturbed shapes
and sizes — often smaller than those of ommatidia of controls (Suppl. Fig. 3d). These
results show that ofd expression in the photoreceptor cells of maturing ommatidia is
required for the proper regulation of ommatidial organisation and size.

Differences in chromatin accessibility in the otd locus during eye development
between D. simulans and D. mauritiana

Our mapping and expression analyses indicate that the differences in otd expression likely
contribute to differences in ommatidia size between D. simulans and D. mauritiana. Given
that there is only 1 amino acid difference in the Otd sequence between our focal strains of
D. simulans and D. mauritiana, our data suggest that the causative changes are located in
otd regulatory regions. Due to the microsyntenic conservation between D. melanogaster,
D. simulans and D. mauritiana, we considered the regulatory landscape of otd as the
region between its two flanking genes, Caf71-180 and CG12772, revealed by the presence
of a Topological Associated Domain (TAD) in the corresponding D. melanogaster region (a
region of 69 kb in D. mauritana and 70 kb D. simulans, Fig. 4a, Suppl. Fig. 4;
http://chorogenome.ie-freiburg.mpg.de/).

To investigate the regulation of otd in the developing eyes of D. simulans and D.
mauritiana further, we performed ATAC-seq (Buchberger et al., 2021; Buenrostro et al.,
2013; Kittelmann et al., 2018) on D. simulans and D. mauritiana eye imaginal discs at 96
and 120 h AEL. We mapped our datasets against both genomes in order to detect
common, differentially accessible and species-specific regulatory regions (Fig. 4a). The
ATAC-seq peak calling of the four datasets (two developmental stages and two species)
revealed a total of 22 peaks in the ofd locus, all of which were located within alignable
orthologous regions in the two species (Fig. 4a).
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Figure 4. Chromatin accessibility at the otd locus. (a) Open chromatin peaks at the otd locus in
96 h AEL and 120 h AEL D. mauritiana and D. simulans eye-antenna imaginal discs. (b) Detail of
differential peaks: 6, 11, 16, 17 and 19. (c) Alignment of the sequence of the first D. mauritiana
specific region in peak 16 with D. simulans. (d) Alignment of the sequence of the second D.
mauritiana specific region in peak 16 with D. simulans.

Four of these peaks showed significant differences in accessibility between D.
mauritiana and D. simulans: peak 6 (D. sim chrX: 8,100,587- 8,100,808, padj = 0.00155)
and peak 11 (D. sim chrX: 8,107,881-8,108,402, padj = 0.00976) in the 3rd and 1st introns
of otd, respectively, and peaks 17 (D. sim chrX: 8,125,765 - 8,126,410, padj = 0.0418) and
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19 (D. sim chrX: 8,129,876 - 8,131,170, padj = 0.0317) located upstream of otd (Fig. 4).
We aligned the orthologous sequences of these differential peaks and found that each of
them contained several sequence variants (peak 6: 8 SNPs and 2 small indels; peak 11: 8
SNPs and 5 small indels; peak 17: 4 SNPs and 1 small indel and peak 19: 29 SNPs and 4
small indels, Suppl. Fig. 5). Furthermore, we found a fifth peak (peak 16) upstream of otd,
which did not show differential accessibility within the alignable regions, but high
accessibility specifically in two D. mauritiana stretches that are disrupted by two insertions
of 55 and 106 nucleotides respectively in D. simulans (Fig. 4b-d).

We next looked for transcription factor binding motifs (TFBMs) corresponding to the
variant sequences within the four differential accessible peaks and in the two D.
mauritiana-specific regions in peak 16. We predicted 164 putative TFBM in D. simulans
and D. mauritiana in Peak 6 using JASPAR with a threshold of 85%. This included
predicted TFBMs for Cut (Ct), Odd-paired (Opa), Optix, Sine oculis (So) and the Iroquois
complex TFs (Araucan (Ara), Caupolican (Caup) and Mirror), which all have detectable
expression in our RNA-seq datasets (Suppl. Table 3) and are known to be involved in eye-
antennal disc development. Peak 11 encompasses 412 putative TFBMs in D. mauritiana
and 411 putative sites in D. simulans, including Mad, So, Optix, Exd motifs exclusively in
D. mauritiana, and Trl and Ttk predicted specifically in D. simulans. For the D. mauritiana-
specific peak 16, 37 TFBM were predicted in the first D. mauritiana-specific peak (peak
16a, threshold 85%) for TFs such as Brk, Caup and Mirror, Clamp and Trl but only 8
TFBMs were predicted for the second D. mauritiana-specific peak (peak 16b, threshold
80%) including sites for CTCF, Mad, Brk and Trl. Peak 17 contained 269 predicted TFBMs
in D. mauritiana and 275 predicted TFBMs in D. simulans, including Dichaete (D) and
CTCF motifs, only present in the later species. Regarding peak 19, which covers the
longest sequence, 790 and 754 TFBM were predicted for D. mauritiana and D. simulans,
respectively. From those, 57 were D. mauritiana-specific (Eip74EF, Inv, DI, Mirr, Al, Lim1,
Vvl, Suppl. Table 5) and 60 were D. simulans-specific (Trl, DIl, Optix, lroquois Complex,
Dref, BEAF-32, Ems, Cut, Deaf1, E5, Ovo, Sd, Bgb::run). Overall, we identified several
regions in the otd locus that may function as new eye enhancers for this gene in D.
mauritiana and D. simulans, and that their differential activity could be responsible for the

temporal differences in the onset of otd activation between these two species.
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Differences in otd targets during eye development between D. simulans and D.
mauritiana

Next, we investigated whether differences in the onset of expression of otd between D.
simulans and D. mauritiana promoted further changes in its Gene Regulatory Networks
(GRNs) that ultimately may be responsible for the differences in the final size of
ommatidia. To this end, we called open chromatin peaks in each sample and searched for
the Otd-binding motif in these accessible regions of genes expressed during eye
development. Based on this analysis, we found 1,148 putative Otd target genes. We next
examined which of these accessible chromatin peaks were associated with genes that
were differentially expressed in our transcriptome datasets. We found that peaks
associated with 161 of the 1330 genes that are upregulated in D. mauritiana contained Otd
binding motifs, and 111 out of 1249 genes upregulated in D. simulans had associated

peaks containing Otd binding motifs (Fig. 5a, c, Suppl. Table 6).

a b
logP values
2 2 4 ; 8 iy
regulation of developmental process
cellular component morphogenesis
1330 genes axonogenesis
upregulated D. mauritiana cell morphogenesis
regulation of cell differentiation
growth
neuron projection extension
developmental growth
developmental cell growth
positive regulation of cell migration
d
logP values
? - 2 3 i
MAPK targets/ Nuclear events mediated by MAP kinases
MAP kinase activation
1249 genes Signaling by Interleukins
upregulated D. simulans MyD88-independent TLR4 cascade

cytoplasmic translation

cellular response to insulin stimulus
secondary metabolite biosynthetic process
pigment metabolic process

response to nutrient levels

multicellular organism aging

Figure 5. Otd downstream targets. (a) 161 genes upregulated in D. mauritiana have an
associated peak that contains at least one Otd motif. (b) GO enrichment for those genes with Otd
motifs in D. mauritiana (c) 111 genes upregulated in D. simulans have an associated peak that
contains Otd motif. (d) GO enrichment for those genes with Otd motifs in D. simulans.

We then performed Gene Ontology (GO) term enrichment analysis for these
differentially expressed genes with accessible chromatin containing Otd binding motifs.
The D. mauritiana dataset exhibited enrichment in terms related to developmental
processes, cell morphogenesis, axonogenesis, regulation of differentiation or growth,
among others (Fig. 5b). By contrast, genes that were upregulated in D. simulans with
associated Otd-peaks were enriched in terms such as the MAP kinase network, signalling

by interleukins and cellular response to insulin stimulus (Fig. 5d).
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Ommatidia size differences related to Rh3 expression

Given that Otd directly regulates the expression of rh3 (Tahayato et al., 2003) and we
have previously shown higher levels of rh3 expression in adult eyes in D. mauritiana
(Hilbrant et al., 2014; Posnien et al.,, 2012), we tested if the expression of Rh3 in
ommatidia may have an impact on the ommatidia diameter. We used immunohistology to
detect Rh3" ommatidia and applied confocal microscopy as well as 3D reconstructions to
measure ommatidia in a 10x10 quadrant in the central eye region (Fig. 6a, b). This
analysis showed that Rh3" ommatidia were wider in both species, while this difference was
more pronounced in D. mauritiana (Fig. 6d). Note that we did not find differences in the
ratio of Rh3"/Rh3" ommatidia between species (Fig. 6¢). This data suggested exposing
maturing ommatidia longer to the action of Otd may quantitatively influence the Rh3
content, rather than the ratio of ommatidia subtypes.

P =0.0144 P =0.0366

Cc 191

501

®

401

percent Rh3* ommatidia

Framteal M‘-*g‘aw—:’—:{

ommatidia diameter [um]

307

Rh3- Rh3* RA3- Rh3* D. mauritiana D. simulans
D. mauritiana D. simulans

Figure 6. Differences in size of Rh3 positive ommatidia. (a) Three-dimensional reconstruction
(volume rendering) of a representative D. simulans compound eye after clearing and cLSM
imaging showing Rh3 expressing ommatidia. a — anterior, p — posterior, d — dorsal, v — ventral. (b)
Isosurface reconstruction based on the autofluorescence (volume rendering). The 10x10 central
ommatidia that were counted are labelled with yellow dots. (c) Boxplot showing the diameter of
Rh3" and Rh3 ommatidia in both species. Differences in diameter were statistically tested applying
one-way ANOVA (F33s2 = 8.571, P = 0.0000164) followed by Tukey multiple comparisons (P-
values). (d) Boxplot showing the percentage of Rh3* ommatidia based on the 10x10 central
ommatidia counted. The differences are not significantly different (;° = 3.0523, df = 1, p-value =
0.08062). The raw data for ¢c and d are available in Suppl. Table 7.
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Discussion

In Drosophila, ommatidia are produced in a posterior-to-anterior hexagonal pattern in the
wake of the morphogenetic furrow (MF), which passes the presumptive retinal field during
L3 to trigger photoreceptor cell specification and differentiation, and subsequently the
formation of cone cells and other ommatidial cells (reviewed in (Casares and Almudi,
2016; Casares and McGregor, 2021; Gaspar et al., 2019; Kumar, 2018)). Then in pupal
stages, the cone cells are placed above the photoreceptor cells and this, in combination
with apoptosis and further rearrangement of pigment and other cells, produces the final
number and arrangement of ommatidial cells. Final ommatidia size is specified by about
40 hours after puparium formation (hAPF), the lens is secreted from 60 hAPF, and the
rhodopsins are expressed from 96 hAPF (Cagan and Ready, 1989; Earl and Britt, 2006;
Kim et al., 2016).

While much is known about the specification and differentiation of ommatidia, very
little is known about the regulation and evolution of their size. To investigate the genetic
basis of the difference in ommatidia size between D. mauritiana and D. simulans, we
carried out high-resolution introgression mapping of a previously identified X linked QTL
previously mapped that explains about 33% of the difference in eye size between these
two species (Arif et al., 2013). We identified eight positional candidate genes in this region
that differed in expression between the developing eye-antennal discs of D. mauritiana
and D. simulans. Our analysis of the spatial expression of these eight genes strongly
suggests ofd as the best candidate gene in this region for the underlying difference in
ommatidia size and thus overall eye size between these species.

otd/Otx genes play several important roles during eye development in both
invertebrates and vertebrates (Ragge et al., 2005; Ranade et al., 2008; Sen et al., 2013;
Tahayato et al., 2003; Vandendries et al., 1996). During eye development, Otd regulates
genes for cell adhesion and cytoskeletal organisation and this is essential for the correct
development of the photoreceptor cells and ommatidia maturation (Fichelson et al., 2012;
Ranade et al., 2008). Mutations in otd perturb morphogenesis of the photoreceptor cells
which affects the spacing of the more apical cone cells (Fichelson et al., 2012;
Vandendries et al.,, 1996). Intriguingly, the removal of photoreceptor cells changes
ommatidia size (Miller and Cagan, 1998). We propose that although otd is not expressed
in the lens-secreting cone cells, it indirectly affects the organisation of these cells and thus
ommatidia size through regulating the maturation and organisation of the underlying
photoreceptor cells. We have shown that knockdown or loss of ofd in D. melanogaster

perturbs ommatidia size specification, but it remains to be directly tested if variation in the
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expression of this gene underlies larger and smaller ommatidia in D. mauritiana and D.
simulans respectively and if otd contributes to the observed variation in ommatidia size in
different regions of the eye.

Changes in developmental timing, or heterochrony, have played an essential role in
the evolution of morphologies in multiple taxa (Alberch and Alberch, 1981; Alberch et al.,
1979; Gould, 1977; McKinney, 1988). Classically, the term heterochrony has been used to
refer to differences in the timing of developmental events and several examples of
heterochrony have been described (Briscoe and Small, 2015; Ebisuya and Briscoe, 2018;
Keyte and Smith, 2014). Most of these characterised cases showed that the mechanism
responsible for the heterochrony acts downstream of its underlying genetic cause, such as
changes in proliferating rates, differences in the initial size of the primordium or distinct
rates of protein stability and biochemistry (Gomez et al., 2008; Kicheva et al., 2014;
Matsuda et al., 2019; Rayon et al., 2020). Heterochronic shifts can also occur as direct
consequence of the causative genetic change, such as those that affect regulatory regions
altering the timing of gene expression (Ramaekers et al., 2019). Although differences in
gene expression of single transcription factors have the potential to completely modify the
subsequent GRN, the relative contribution of such direct heterochrony is in generating
morphological diversity remains unknown. Our data indicate that ofd is generally
expressed more highly during ommatidial maturation in D. mauritiana than D. simulans.
Further analysis shows that ofd is actually expressed earlier during ommatidial maturation
in D. mauritiana compared to D. simulans. This suggests that cis-regulatory changes in otd
lead to ommatidial cells being exposed to Otd for longer in D. mauritiana resulting in larger
ommatidia. Together with Ramaerkers and colleagues (Ramaekers et al., 2019), our study
shows how morphological diversity in closely related species can be achieved by subtlety
altering the temporal expression of a single TF. Importantly, in both cases, these
transcription factors, Ey and Otd, act upstream in the GRN controlling the process, thus
changes in their expression may promote major differences in downstream effectors.

Further exploration and comparison of the regulatory landscape of ofd between D.
mauritiana than D. simulans allowed us to identify several candidate cis-regulatory regions
that could regulate the eye development of this gene and may contain changes that
underlie the differential expression of ofd between these two species. These regions may
represent novel eye enhancers of otd because they do not overlap with a previously
characterised eye enhancer (Hauck et al., 1999; Vandendries et al., 1996), but their
activity requires further testing.
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We also investigated how these changes in otd expression might alter target gene
expression to change ommatidia size. We identified a set of genes that are differentially
expressed between these two species when the ommatidia are acquiring their final size
that may be acting downstream of Otd, as they have accessible chromatin regions
containing putative Otd binding motifs. We compared this set of genes to known and
putative targets of Otd which have been characterised later in eye development during
pupal stages (Fichelson et al., 2012; Ranade et al., 2008). This comparison showed that a
subset of genes for with altered expression in ofd mutants are also differentially expressed
between D. mauritiana and D. simulans in late L3. In particular, several genes involved in
phototransduction (e.g. rh3, slo, Slob, ninaG, inaD, ninaA), genes encoding cytoskeleton
and adhesion proteins (Act88F), and other TFs (Dve, vnd, MED10, etc., Suppl. Table 6).
This further suggests that the network downstream of Otd varies between these two
species and that ultimately, these changes in the GRN promote differences in ommatidia
size between D. mauritiana and D. simulans. Intriguingly, otd also regulates rhodopsin
expression in D. melanogaster (Tahayato et al., 2003), and we have shown that several
rhodopsins differ in their levels and spatial expression between D. mauritiana and D.
simulans (Hilbrant et al., 2014; Posnien et al., 2012). We showed that Rh3" ommatidia
tend to be larger in diameter than Rh3™ ommatidia. Since rhodopsin 3 expression is higher
in D. mauritiana (Hilbrant et al., 2014; Posnien et al., 2012) and Otd directly activates
transcription of rhodopsin 3 (Tahayato et al., 2003), a direct link between differences in
rhodopsin expression and ommatidia diameter may exist. Therefore, it is possible that
differences in otd expression between these two species causes differences in rhodopsin
expression as well as ommatidial size, which has important implications for the vision of
these flies: increased ommatidium diameter and higher rhodopsin expression could both
increase photon capture, potentially resulting in greater contrast sensitivity in eyes with
higher ofd expression. Conversely, acuity is likely to be reduced due to the inherent trade-
off with sensitivity. This trade-off is heavily influenced by various aspects of visual ecology,
such as habitat type, circadian activity patterns, and lifestyle. Thus, substantial functional
consequences with strong ecological implications could be linked to changes in the
expression of a single gene such as ofd.

Conclusions
Our data suggest that changes in the timing of ofd expression underlie differences in
ommatidia size and thus overall eye size between D. mauritiana and D. simulans. Our

work provides new insights into ommatidia size regulation and the evolution of eye size.
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Together with evidence from other studies showing that changes in the timing of ey
expression contributes to differences in ommatidia number in Drosophila (Ramaekers et
al., 2019), we now have a better understand the genetic and developmental mechanisms
that underlie the large diversity in Drosophila eye size (Arif et al., 2013; Buchberger et al.,
2021; Gaspar et al., 2020; Hilbrant et al., 2014; Keesey et al., 2019; Norry and Gomez,
2017; Posnien et al., 2012; Ramaekers et al., 2019; Reis et al., 2020). Moreover, this
evidence suggests that changes in the temporal expression of upstream TFs is a
widespread mechanism responsible for morphological evolution. What is also clear is the
the potential this system has to build on our existing knowledge of Drosophila eye
development (Casares and Almudi, 2016; Casares and McGregor, 2021; Dominguez and
Casares, 2005; Gaspar et al.,, 2019; Kumar, 2018) to ultimately better understand the

specification and evolution of organ size more generally.

Materials and Methods
Fly stocks and clonal analysis
D. simulans yellow (y), vermillion (v), forked (f) (hereafter YVF) was obtained from the
Drosophila Species Stock Center, San Diego, California (Stock no.14021-0251.146). D.
mauritiana TAM16 is a wild-type inbred strain. UAS-miR-otd and UAS-otd (lll) were kindly
provided by Henry Sun (Wang et al., 2010). GMR-Gal4 (Hay et al., 1994) was used to
drive expression of the transgenes. To generate mitotic clones of mutant otd in developing
eyes we used the stocks Ofd[YH13], neoFRT19A/FM7c and RFP, neoFRT19A; ey-Flp
which were obtained from Bloomington Stock Centre (Stock nos. #8675 and #67173
respectively).

Ofd mutant clones were induced in developing eyes using the FIp/FRT system.
Female flies of the genotype Otd[YH13], neoFRT19A/FM7c were crossed with males of
the genotype RFP, neoFRT19A; ey-FIp. Female F1 progeny were examined for the lack of

the Fm7c balancer and these flies were prepared for SEM analysis (see below).

Synchrotron radiation microtomography

Fly heads were removed from the body and placed into fixative (2% PFA, 2.5% GA in 0.1
M sodium cacodylate buffer over night at 4°C. Heads were washed in water, then placed
into 1% osmium tetroxide for 48 hours at 4°C, then washed and dehydrated in increasing
concentrations of ethanol up to 100%. Heads were then infiltrated with increasing 812
Epon resin concentrations up to 100 % over 5 days and polymerised in embedding moulds
for 24 hrs at 70°C.
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Heads were scanned at the TOMCAT beamline of the Swiss Light Source (Paul
Scherrer Institute, Switzerland; (Stampanoni et al., 2006). Scans were performed using a
16 keV monochromatic beam with a 20 ym LuAG:Ce scintillator. Resin blocks were
trimmed and mounted using soft wax and scanned using 20x combined magnification
(effective pixel size 325 nm) and a propagation distance of 25 mm. Two thousand
projections were taken as the heads rotated through 180°, each with 200 ms exposure.
Projections were reconstructed into 8-bit tiff stacks and Paganin filtered (delta = 178, beta =
2% (Paganin et al., 2002) using custom in-house software (Marone and Stampanoni,
2012). Tiff stacks were segmented in Amira (v2019.2, Thermo Fisher) for measurements
of facet diameter.

SEM microscopy

Fly heads were fixed in Bouin’s for 2 hours. After 2 hrs, 1/3 of total volume was replaced
by 100% ethanol to fully immerse heads in Bouin’s and left to fix overnight. Heads were
washed and dehydrated 2x 70% EtOH overnight, 2x in 100% ethanol and finally critical
point dried and mounted onto sticky carbon tabs on SEM stubs, gold coated and imaged in
a Hitachi S-3400N SEM with secondary electrons at 5kV.

Markers and Introgression lines

Males were collected at backcross 7 of three replicate introgression lines (IL1, IL3 and IL4)
that were recombinant within the introgressed region (males with phenotypes: yf or vf).
These individuals were genotyped with eleven new additional markers (Suppl. Table 2).
Significant association between each marker and eye size was tested (F-test, type Ill sum
of squares SS) by performing a single-marker ANOVA on the residuals of eye area
regressed onto T1 tibia length for each replicate (introgression line (IL 1,3 and 4; n = 20 —
60, Suppl. Table 2). Multiple testing was corrected for using Bonferroni correction. All
ANOVA models were fitted in the R statistical environment (R Development Core Team
2012) using the CAR package (Fox and Weisberg, 2010).

To narrow down the 2 Mb region the X chromosome region between y and v from D.
mauritiana TAM16 into D. simulans YVF was re-introgressed as in (Arif et al., 2013) yf
females were backcrossed from multiple replicate lines to yvf males for a further nine
generations and the end of the egg-laying cycle of that generation, we collected mothers
and genotyped them for molecular markers located in the 2 Mb region (Suppl. Table 2).
Four mothers with breakpoints within this region were identified. Two of them were siblings
(IL9.1a and IL9.1b) and they had the same 4™ great-grandmother as 1L9.3 and the same
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7" great-grandmother as IL9.2. Male progeny available for each of these females was
collected and genotyped and phenotyped for eye area, ommatidia diameter, ommatidia
number and T1 tibia length as described previously in Posnien et al. (Posnien et al.,
2012)(Suppl. Table 2). To determine if the D. mauritiana DNA in the 2 Mb region resulted
in larger eyes and larger ommatidia, yf males (with some D. mauritiana DNA in the 2Mb
interval) were compared to that of their yvf sibling males (i.e., without D. mauritiana DNA)

for each introgression line using one-tailed two-sample equal-variance t-tests.

Rh3 related ommatidia measurements

Flies of both species were raised at 25°C with a 12h:12h and dark:light cycle and 40-60%
humidity. Density was controlled by transferring 30-40 larvae 20-22 hours after egg laying
into fresh food vials. All measurements were performed using female flies 3-5 days after
eclosion.

Adult flies were decapitated and heads were cut in half. The halves were fixated in
4% paraformaldehyde (PFA) for 2-3 days. The specimens were washed three times with
PBS-T (1xPBS+0.3% Triton X-100) for 10 minutes each. Afterwards they were incubated
in 5% H,0, for 1 day and subsequently in 10% H2O, for 3-4 days until the heads were
depigmented. The depigmented heads were washed three times with PBS (10X: 1.37 M
NaCl, 27 mM KCI, 100mM NaxHPO4, 18mM KH2PO,) for 10 minutes each and prepared
for immunostaining by incubating them in blocking solution (PBS-T+0.2% goat serum) for
4 hours. The heads were incubated for 48 hrs with the primary antibody (mouse a-Rh3;
1:10 dilution in blocking solution) and then washed five times with PBS for 1 hr each. The
secondary antibodies (goat a-mouse Alexa Fluor 555; 1:1000 in blocking solution or goat
a-mouse Alexa Flour 647; 1:500 in blocking solution) were applied 48 hours before the
heads were washed 3 times with PBS for 10 minutes each. Subsequently, the heads were
dehydrated in a graded ethanol series for 30 minutes (30%, 50%, 70%, 90%, 95% and 3
times 100% ethanol in water, respectively) and stored in 100% ethanol. For imaging heads
were incubated in methyl-salicylate for 1 hour and then mounted on a cover slip with the
eyes facing upwards and imaged with a cLSM (Zeiss LSM 710). The autofluorescence
signal was recorded at 488 nm and the staining at 555 nm or 647 nm, respectively.

After acquisition of z-stacks using the cLSM, the data were split into the two
channels, converted into tiff-files using Fiji (Image J 1.52n) and analyzed using the 3D
image processing program Amira (version 5.4.1). To ensure an accurate three-
dimensional representation of the data, the voxel size in the z-direction was set to 1.523 to

match the refractive index of the cover slips (D 263 M borosilicate glass with refractive
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index nD=1.523). Voxel sizes of x and y were entered according to the resolution of
acquisition. Volume renderings of the two channels were used to visualize the data and
identify ommatidia that were Rh3-positive (Rh3") and those that did not express Rh3 (Rh3"
) (Figure 4a). Landmarks were used to label the ommatidia and the 3D-measuring tool was
used to measure the diameter of the lens of each ommatidium. For landmarks and the
measuring tool to work, an isosurface of the autofluorescence channel was created to
provide a reference as to where in the 3D space these were placed (Figure 4b). Using this
technique, ommatidia diameters of Rh3" and Rh3" ommatidia were measured in a central
region of the compound eye. Also, in a central region, a quadrant of 10x10 ommatidia was
defined and the number Rh3" and Rh3" ommatidia was counted (Figure 4b). All raw
diameter measurements and ommatidia counts are available in the supplementary

material (Suppl. Table 7).

RNA-seq

Flies were raised at 25°C with a 12h:12h dark:light cycle and their eggs were collected in 2
h time periods. Freshly hatched L1 larvae were transferred into fresh vials in density-
controlled conditions (30 freshly hatched L1 larvae per vial). Eye-antennal imaginal discs
were dissected at three different developmental time points: 72 h after egg laying (AEL),
96 h AEL and 120 h AEL and stored in RNALater (Qiagen, Venlo, Netherlands). Three
biological replicates for each sample were generated. Total RNA was isolated using
RNeasy Mini Kit (Qiagen). RNA quality was determined using the Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) microfluidic electrophoresis.

Library preparation for RNA-seq was performed using the TruSeq RNA Sample
Preparation Kit (lllumina, catalog ID RS-122-2002) starting from 500 ng of total RNA.
Accurate quantitation of cDNA libraries was performed using the QuantiFluor™dsDNA
System (Promega, Madison, Wisconsin, USA). The size range of final cDNA libraries was
determined by applying the DNA 1000 chip on the Bioanalyzer 2100 from Agilent (280 bp).
cDNA libraries were amplified and sequenced using cBot and HiSeq 2000 (lllumina): only
120h eye-antennal imaginal disc samples were sequenced as paired-end (PE) reads (2 x
100 bp), all the rest of samples were sequenced in single-end (SE) reads (1 x 50 bp).
Sequence images were transformed to bcl files using the software BaseCaller (lllumina).
The bcl files were demultiplexed to fastq files with CASAVA (version 1.8.2).

Quality control analysis using FastQC software (version 0.10.1, Babraham
Bioinformatics) was performed. All RNAseq reads are accessible in the Short Read
Archive through umbrella BioProject PRIJNA666691 (containing PRJNA374838 and
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PRJINAG666524). Before the mapping step, PE 100 bp reads were converted into SE 50 bp
by splitting the reads in half and merging right and left reads into a single file.

The reciprocally re-annotated references described in (Torres-Oliva et al., 2016)
were used to map the species-specific reads. Bowtie2 (Langmead and Salzberg, 2012)
was used to map the reads to each reference (—very-sensitive-local —N 1) and the idxstats
command from SAMtools v0.1.19 (Li et al., 2009) was used to summarize the number of
mapped reads. HTSFilter (Rau et al., 2013) was used with default parameters to filter out
genes with very low expression in all samples. For the remaining genes in each pair-wise
comparison, differential expression was calculated using DESeq2 v1.2.7. with default
parameters (Love et al., 2014).

ATAC-seq library preparation and sequencing

Samples were obtained following the same procedure as for the RNA-seq experiments:
flies were raised at 25° C with a 12h:12h and dark:light cycle. Freshly hatched L1 larvae
were transferred into vials with density-controlled conditions. Eye-antennal imaginal discs
were dissected at 96 h AEL and 120 h AEL and maintained in ice cold PBS. Imaginal disc
cells were lysed in 50 pl Lysis Buffer (10 mM Tris-HCI, pH = 7.5; 10 mM NaCl; 3 mM

MgCl2; 0.1% IGEPAL). Nuclei were collected by centrifugation at 500 g for 5 min. 75,000
nuclei were suspended in 50 pyl Tagmentation Mix [25 pl Buffer (20 mM Tris- CH3COO_,

pH = 7.6; 10 mM MgClg; 20% Dimethylformamide); 2.5 yl Tn5 Transposase; 22.5 ul H2O]

and incubated at 37 C for 30 min. After addition of 3 pl 2 M NaAC, pH = 5.2 DNA was
purified using a QIAGEN MinElute Kit. PCR amplification for library preparation was done
for 14 cycles with NEBNext High Fidelity Kit; primers were used according to (Buenrostro
et al., 2013). Paired end 50 bp sequencing was carried out by the Transcriptome and
Genome Analysis Laboratory Goettingen, Germany.

ATACseq peak calling and differential binding site analysis

ATAC-seq raw reads were generated from the following samples (2 replicates each): D.
simulans larvae at 96h AEL and 120h AEL and D. mauritiana larvae at 96h AEL and 120h
AEL. These reads were mapped to strain-specific genomes of D. mauritiana and D.
simulans (Torres-Oliva et al., 2016) using Bowtie2 (version 2.3.4.1) (Langmead and
Salzberg, 2012) with the parameter —X2000. The Samtools suite v0.1.19 (Li et al., 2009)
was used to convert *.sam to *.bam files and to further process the mapped reads.
Duplicates were removed using Picard (version 2.20.2) with the parameter
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REMOVE_DUPLICATE=TRUE. Bam files were then converted to bed files using the
Bedtools (version 2.24) bamtobed command. Reads were centred according to
(Buenrostro et al., 2013). These reads were then converted to the D. melanogaster
coordinate system using liftOver (1.14.0) with custom prepared chain files, one for the
conversion of D. mauritiana coordinates to D. melanogaster coordinates and one for the
conversion of D. simulans coordinates to D. melanogaster coordinates. Peaks were then
called using MACS2 (version 2.1.2, (Zhang et al., 2008)) with the following parameters: --
shift — 100, extsize 200, -q 0.01.

We used the Diffbind package (version 2.12.0, (Ross-Innes et al.,, 2012)) in R
(version 3.6.1.) to search for differentially accessible ATAC-seq regions. A consensus
peak set of 19,872 peaks (96h AEL) and 15,868 peaks (120h AEL) was used for all
samples and the reads were counted for each identified peak with the dba.count
command. For each time point separately we used the dba.analyze command with default
parameters to get differentially accessible peaks between the two species. This command
uses by default the DESeq2 analysis. All plots were as well generated with the DiffBind
package.

To search for TFBM of potential otd regulators, we used the JASPAR core
database and its online tool for screening DNA sequences of ATAC-seq peaks with all
possible TFB motifs from insects (153 profiles) with a relative profile score threshold of
85%.

Gene regulatory network reconstruction

To search for TFBM of potential otd regulators, we used the JASPAR core database and
its online tool for screening DNA sequences of ATAC-seq peaks in the otd locus (between
the two flanking genes) with all possible TFB motifs from insects (153 profiles) with a
relative profile score threshold of 90%.

To define a list of potential Otd target genes, we used an Otd-motif
(Dmelanogaster-FlyFactorSurvey-Oc_Cell_FBgn0004102) from the MotifDB package
(version 1.16.1), which provides a collection of available transcription factors in R (version
3.3.3). We searched for Otd binding sites in accesible chromatin regions with the
findMotifsGenome.pl command implemented in the HOMER (version V4.10.4, (Heinz et
al., 2010)) in all samples. All peaks with a predicted Otd motif were annotated to an
associated gene using the annotatePeaks.pl command by HOMER and combined all time
points and both species into one file. We then looked for the number of genes with an

annotated Otd motif and found 1,148 unique genes, which we overlapped with our RNA-
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seq dataset to find out which of these target genes were differentially expressed between
the two species. GO term enrichment analysis of putative Otd target genes was performed
using the online tool Metascape (Zhou et al., 2019).

We used the online STRING database that integrates all known and predicted
associations between proteins based on evidence from a variety of sources (Szklarczyk et
al., 2020), to construct networks of DEG encoded proteins. To visualize the network and

map genes/prot with Otd motifs we applied the Cytoscape software (Shannon et al., 2003).

In situ hybridisation and immunohistochemistry

In situ hybridizations were carried out using a standard protocol with DIG-labeled
antisense RNA probes. Eye-antenna imaginal discs were dissected and fixed at 120 h
AEL for 40 min in 4% formaldehyde. To be able to compare the expression patterns
avoiding technical differences (i.e. probe affinity and probe concentration), we first aligned
the sequences from D. mauritiana and D. simulans and designed RNA probes within
fragments with at least 95% of similarity between them (Suppl. Table 8). This design
allowed us to perform the in situ hybridization experiments using the same specific probes
for each of the candidate genes at the same concentration for both species. The nitro blue
tetrazolium/5-bromo-4-chloro-3'-indolyphosphate (NBT-BCIP) reaction was stopped at the
same time. Candidate gene sequences were cloned into a TOPO PCR4 (spirit, otd, Ppt1,
CG1632, Es2 and CG12112) or pCRII (CG1885, Sptr) vectors (Invitrogen) using specific
primer pairs (Suppl. Table 8), respectively, following the manufacturer’s protocol. M13
forward and reverse primers were used to linearize the DNA. According to the vector and
orientation of the fragments T3, T7 or SP6 RNA polymerase were used to generate the
DIG-labeled riboprobes.

Immunostainings with Rabbit anti-Otd (Wang et al., 2010) and rat anti-Elav
(7TE8A10, Hybridoma bank) were performed at 1:1500 and 1:100 dilutions respectively
using standard protocols, followed by anti-rat-Cy3 (Jackson Immuno Research) and anti-
rabbit-Alexafluor 647 (Molecular probes) secondary AB staining, at 1:200. The actin
cytoskeleton was stained with Alexafluor 488-Phalloidin (Molecular Probes) at 1:40 dilution
for 30 min after discs fixation. Discs were mounted in Prolong Gold antifade reagent,
supplemented with DAPI (Molecular Probes), and captured with a Zeiss LSM 510 confocal
microscope. Images were processed using NIH ImageJ software.
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Otd positive cells measurements

We used an Analysis of Covariance (ANCOVA) to test for differences between strains for
Otd-positive ommatidia while adjusting for differences in development stage by using the
number of ommatidial rows as a proxy for the latter. The ANCOVA was performed using
base R v4.0.2 (R Core Team, 2020).

Data Availability
All RNAseq and ATACseq reads are accessible in the Short Read Archive through
umbrella BioProject PRINA666691 (containing PRINA374838 and PRINA666524).
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