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Abstract

Quantification of mature-RNA isoform abundance from
RNA-seq data has been extensively studied, but much
less attention has been devoted to quantifying the abun-
dance of distinct precursor RNAs based on nascent RNA
sequencing data. Here we address this problem with
a new computational method called Deconvolution of
Expression for Nascent RNA sequencing data (DENR).
DENR models the nascent RNA read counts at each locus
as a mixture of user-provided isoforms. The performance
of the baseline algorithm is enhanced by the use of
machine-learning predictions of transcription start sites
(TSSs) and an adjustment for the typical ‘“‘shape profile”
of read counts along a transcription unit. We show using
simulated data that DENR clearly outperforms simple
read-count-based methods for estimating the abundances
of both whole genes and isoforms. By applying DENR
to previously published PRO-seq data from K562 and
CD4* T cells, we find that transcription of multiple
isoforms per gene is widespread, and the dominant
isoform frequently makes use of an internal TSS. We
also identify >200 genes whose dominant isoforms make
use of different TSSs in these two cell types. Finally, we
apply DENR and StringTie to newly generated PRO-seq
and RNA-seq data, respectively, for human CD4* T cells
and CD14* monocytes, and show that entropy at the
pre-RNA level makes a disproportionate contribution
to overall isoform diversity, especially across cell types.
Altogether, DENR is the first computational tool to
enable abundance quantification of pre-RNA isoforms
based on nascent RNA sequencing data, and it reveals
high levels of pre-RNA isoform diversity in human cells.
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Introduction

For about the last 15 years, most large-scale transcriptomic
analyses have relied on high-throughput short-read sequenc-
ing technologies as the readout for the relative abundances
of RNA transcripts. In species with available genome
assemblies, these sequence reads are generally mapped to

assembled contigs, and then the “read depth,” or average
density of aligned reads, is used as a proxy for the abundance
of RNAs corresponding to each annotated transcription unit.
The approach is relatively inexpensive and straightforward,
and, with adequate sequencing depth, it generally leads to
accurate estimates of abundance.

A fundamental challenge with this general paradigm, how-
ever, is that transcription units frequently overlap in genomic
coordinates—that is, the same segment of DNA often serves
as a template for multiple distinct RNA transcripts. As a
result, it is unclear which transcription unit is the source
of each sequence read. While this problem can occur at
the level of whole genes that contain overlapping segments,
it is most prevalent at the level of multiple isoforms for
each gene, owing to alternative transcription start sites
(TSSs), alternative transcription termination sites (TTSs) or
polyadenylation and cleavage sites (PAS), and alternative
splicing. These isoforms often overlap heavily with one
another, and differ on a scale that is not well described
by short-read sequencing. For example, a typical Illumina
RNA sequencing run today generates reads of length 150
bp, roughly the size of an exon in the human genome. As
a result, many reads fall within a single exon and therefore
carry no direct information about the relative abundances
of isoforms containing that exon. This problem is critical
because the existence of multiple isoforms per gene is the
rule rather than the exception in most eukaryotes. For ex-
ample, more than 90% of multi-exon human genes undergo
alternative splicing (1), with an average of more than 7
isoforms per protein-coding gene (2); in plants, up to 70%
of multi-exon genes show evidence of alternative splicing (3).

In the case of RNA-seq data, the problem of isoform
abundance estimation from short-read sequence data has
been widely studied for more than a decade (4-6). Several
software packages now address the problem efficiently and
effectively, including ones that make use of fully mapped
reads (7-10) and others that substantially boost speed by
working only with “pseudoalignments” at remarkably little
(if any) cost in accuracy (11-13). These computational
methods differ in detail but they generally work by modeling
the observed sequence reads as an unknown mixture of

Zhao etal. | bioRxiv | March 16,2021 | 1-14


https://doi.org/10.1101/2021.03.16.435537
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435537; this version posted March 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

isoforms at each locus. They estimate the relative abun-
dances (mixture coefficients) of the isoforms from the read
counts, relying in particular on the subset of reads that reflect
distinguishing features, such as exons or splice junctions
present in some isoforms but not others. Because RNA-seq
libraries are typically dominated by mature RNAs, intronic
reads tend to be rare and splice junctions provide one of the
strongest signals for differentiation of isoforms. Altogether,
these isoform quantification methods work quite well, with
the best methods exhibiting Pearson correlation coefficients
of 0.95 or higher with true values in simulation experiments,
and similarly high concordance across technical replicates
for real data (2).

In recent years, another method for interrogating the tran-
scriptome, known as “nascent RNA sequencing,” has become
increasingly widely used. Instead of measuring the con-
centrations of mature RNAs, as RNA-seq effectively does,
nascent RNA sequencing protocols isolate and sequence
newly transcribed RNA segments, typically by tagging them
with selectable ribonucleotide analogs or through isolation of
polymerase-associated RNAs (14-22). In this way, they pro-
vide a measurement of primary transcription, independent of
the RNA decay processes that influence cellular concentra-
tions of mature RNAs. In addition, nascent RNA sequencing
methods have a wide variety of other applications, including
identification of active enhancers (through the presence of
eRNAs) (20, 22-25), characterization of promoter-proximal
pausing and divergent transcription (14, 15), estimation of
elongation rates (26, 27), and estimation of relative RNA
half-lives (28).

In nascent RNA sequencing, the isolated RNAs have gener-
ally not yet been spliced; therefore, they represent the entire
transcribed portion of the genome, including introns. As a
result, the problem of distinguishing alternative splice forms
is largely irrelevant. On the other hand, the data typically
still reflect a mixture of precursor RNA (pre-RNA) isoforms,
having different TSSs and/or TTSs/PASs. Moreover, the
problem of decomposing this mixture can be more chal-
lenging than for RNA-seq in some respects, both because
pre-RNA isoforms have fewer differentiating features than
mature RNA isoforms, and because nascent RNA read
depths tend to be substantially reduced, since introns as well
as exons are sequenced. Distinguishing among pre-RNA
isoforms in nascent RNA sequence data can be critical for a
wide variety of downstream analyses. Nevertheless, to our
knowledge, only one computational tool has been developed
to address this problem—a program called TuSelector that
was introduced in ref. (25)—and it has never been packaged
for use by other research groups or rigorously evaluated
for accuracy. In most analyses of nascent RNA sequencing
data, the isoform deconvolution problem is either ignored or
addressed by simple heuristics, such as assuming each gene
is represented by the longest annotated isoform (e.g., refs.
(29, 30)).
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In this article, we introduce a new computational method
and implementation in R, called Deconvolution of Expres-
sion for Nascent RNA sequencing (DENR), that addresses
the problem of isoform abundance quantification at the pre-
RNA level. DENR also solves the closely related problems
of estimating abundance at the gene level, summing over all
isoforms, and identifying the “dominant isoform,” that is, the
one exhibiting the greatest abundance. DENR makes use of
a straightforward non-negative least-squares strategy for de-
composing the mixture of isoforms present in the data, but
then improves on this baseline approach by taking advantage
of machine-learning predictions of TSSs and an adjustment
for the typical shape profile in the read counts along a tran-
scription unit. We show that the method performs well on
simulated data, and then use it to reveal a high level of diver-
sity in the pre-RNA isoforms inferred from PRO-seq data for
several human cell types, including K562, CD4* T cells, and
CD14* monocytes.

Results

Overview of DENR. DENR is implemented as a package
in the R programming environment. It requires two main
inputs: a set of isoform annotations and a set of correspond-
ing strand-specific nascent RNA sequencing read counts.
Mature RNA isoform annotations can be easily downloaded
by making use of biomaRt (31) or extracted from files in
commonly available formats, such as GTF or GFF; similarly
read counts can be obtained from a file in bigWig format.
Detailed examples are provided in an online vignette (see
Methods).

Given the necessary inputs, DENR first builds a tran-
script_quantifier object, which summarizes the read counts
corresponding to the available isoform annotations (Fig. 1).
This phase consists of three steps (Supplementary Fig.
S1). First, the mature RNA isoforms are grouped into
nonoverlapping, strand-specific clusters, corresponding
roughly to genes (although if two genes overlap on the same
strand, they will be grouped in the same cluster). Second,
masking rules are applied to the read counts, causing a
user-specified number of bins to be excluded at the start
and end of each annotated isoform, to avoid the biases in
quantification stemming from promoter-proximal pausing
or termination-related deceleration of RNA polymerase.
Throughout this paper, we assume a bin size of 250 bp.
Third, the set of mature isoforms in each cluster is collapsed
to a maximal set such that each isoform model has a unique
pair of start and end coordinates, by merging all mature
isoforms that share both their start and end bins. This
step reduces isoforms annotated at the mature RNA level,
many of which differ only in their splice patterns, to a more
compact set of pre-RNA isoforms. It also merges pre-RNA
isoforms that differ from one another after masking. This
second property is useful because the nascent RNA sequence
data typically provides only approximate indications of the
TSS and TTS associated with each transcript, owing to both
sparseness of the data and imprecisions in the transcription
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Fig. 1. lllustration of DENR analysis. (Top) DENR first groups the available isoform annotations into nonoverlapping, stand-specific clusters and summarizes the associated
read counts in genomic bins of user-specified size (default 250 bp). At this stage, it optionally masks bins corresponding to the start and end of each isoform. It then collapses
mature RNA isoforms together that share start (TSS) and end (TTS/PAS) coordinates within the resolution of a single bin. (Middle) The program then optionally adjusts the
isoform model to reflect a typical “U"-shaped profile, and optionally applies a machine-learning method to predict active TSSs based on patterns of bidirectional transcription.
At this stage, it may also exclude isoforms designated by the user as inactive (not shown). (Bottom) Finally, DENR estimates the abundance of each isoform in each cluster
by minimizing the squared difference between the expected and observed read counts across all bins (see Methods).

process itself (such as transcriptional run-on at the 3’ end).
The reduced set represents isoforms likely to be confidently
distinguishable on the basis of nascent RNA sequence data
alone.

The second phase in a DENR analysis is, optionally, to
provide auxiliary information that may improve the accuracy
of isoform abundance estimates. Any combination of three
separate types of data can be provided: (1) the coordinates
of predicted TSSs, (2) a list of inactive isoforms, and (3)
a shape-profile correction. Separate predictions of TSSs
are useful because they help to distinguish the start of one
isoform (particularly one downstream from the start of a
cluster) from the continuation of another isoform. The
DENR package includes a pre-trained machine-learning
classifier, implemented using TensorFlow, that can predict
the locations of likely TSSs based on their characteristic
patterns of bidirectional transcription and symmetric pause
peaks (Supplementary Figs. S2&S3; see also ref. (24) for
a similar approach). A separate specification of inactive
isoforms is useful because it can direct the quantification
algorithm to ignore a potentially large class of isoforms that
may otherwise be misleading or confusing, based on aux-
iliary sources of data—including either experimental data,
such as GRO-cap, PRO-cap, or RNA-seq, or computational
predictions. Finally, the shape profile correction is a way of
accommodating the typical “U”-shaped profile of nascent
RNA sequencing reads along a gene-body, even after pause
and termination peaks are excluded (Fig. 1). DENR provides
a function to estimate the average profile from a designated
subset of the data, and then to consider its shape when
estimating the abundance of each isoform (see Methods).
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Finally, DENR estimates the abundance of each isoform.
Given the read counts per bin for each isoform cluster, DENR
simply estimates a weight for each isoform by least squares,
that is, by minimizing the squared difference between the
expected density and the observed read count across all bins
(see Methods). An option is also provided to perform this
optimization in logarithmic space, i.e., by comparing the
logarithm of the expected density and the logarithm of the
read counts, corresponding to an assumption of a log-normal
distribution for read counts (see Discussion).

DENR accurately estimates RNA abundance at the
gene and isoform levels. We evaluated DENR’s accuracy
in quantifying RNA abundance at both the gene and isoform
levels. Lacking an appropriate “gold-standard” in the form
of real biological data, we chose to benchmark the software
using simulated data. Because, to our knowledge, there
is no available simulator for nascent RNA sequencing
data that accommodates multiple isoforms per gene, we
developed a new R package, called nascentRNASim, to
provide a ground truth against which to compare DENR’s
estimates (Supplementary Fig. S4). To make the simulated
data as realistic as possible, nascentRNASim makes use
of an empirical distribution of relative isoform abundances
per gene obtained from RNA-seq data from GTEx (32).
Given this distribution, the program then generates synthetic
nascent RNA sequencing read counts for each isoform by
resampling PRO-seq read counts from a manually curated
set of archetypal transcripts (see Methods). The read
counts from different isoforms are combined where they
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Fig. 2. Comparison of DENR and the simple read-count-based (RCB) method for quantifying nascent RNA abundance. True (x-axis) vs. estimated (y-axis) abundance
at the gene (A & B) and the isoform (C—F) levels, based on 1500 simulated loci. Data were simulated using nascentRNASiIm, which resamples real PRO-seq read counts and
assumes a distribution of relative isoform abundances derived from real RNA-seq data. Results are shown for both the “ dominant” (most highly expressed) isoform (panels
C&D) and the longest isoform (panels E&F). RMSE = root-mean-square error, = Pearson’s correlation coefficient.

overlap. In this way, synthetic data is generated that closely
resembles real data, without the need for restrictive modeling
assumptions.

We first evaluated the impact of the various optional features
by running the program with and without TSS prediction,
shape-profile correction, log-transformation of read-counts,
and with various numbers (0, 1, or 4) of masked bins at
the 5’ and 3’ ends of each isoform. We ran DENR on
1500 simulated loci, measuring the Pearson’s correlation
coefficient (r) of the estimated and “true” abundances
at both the gene (Supplementary Fig. S5) and isoform
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(Supplementary Fig. S6) levels, and for dominant and
longest isoforms as well as all isoforms together. We found,
in general, that TSS prediction, the shape-profile correction,
and the log tranformation did indeed improve performance
significantly. The improvement was more substantial at
the isoform level, where, together, these features increased
r by as much as 10 — 15%, compared with an increase of
~3% at the gene level. The effect of the masking strategy
was more variable, but we found that masks of one bin
at the 5’ end and four bins at the 3’ end performed well
on average. Therefore, for all subsequent analyses (unless
stated otherwise) on both simulated and real data, we
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Fig. 3. DENR abundance estimation for pre-RNA isoforms of ST7 in K562 cells. The ST7 (suppression of tumorigenicity 7; ENSG00000004866) gene has 30 isoform
annotations in Ensembl, which DENR merges into 19 distinct pre-RNA isoform models (bars at top). Based on the observed PRO-seq data (middle, in blue and red), DENR
estimates nonzero abundances for only two of these isoforms (marked in light blue and pink). The plot at bottom shows the expected relative contribution of each isoform
model to the overall read counts per bin. Notice the effect of the shape-profile adjustment near the 5’ and 3’ ends. Notice also that the PRO-seq data reveals bidirectional
transcription near the TSSs of both active isoforms; these signals are used by the machine-learning predictor to help identify sequence reads associated with these isoforms.

used this masking strategy, and made use of TSS predic-
tion, the shape-profile prediction, and the log-transformation.

With these options in place, we next compared DENR’s
estimates for the same 1500 simulated loci with estimates
obtained using a naive read-count-based (RCB) method
commonly used in the field. For the RCB method, we
simply estimated the abundance of a gene by the number of
sequence reads that overlap any annotated isoform for that
gene divided by the gene’s total length (see Methods). At the
gene level, DENR’s estimates were highly concordant with
true abundances (r = 0.97; Fig. 2A), substantially better than
the RCB method (r = 0.85; Fig. 2B). Accordingly, DENR
exhibited much smaller root-mean-square error (RMSE
= 328.58) than the RCB method (RMSE = 642.19; Fig.
2A&B). DENR offered a particular improvement in cases
where the dominant isoform corresponded to an internal TSS
(Supplementary Fig. S7A), where the RCB method “over-
normalized” using the length of whole gene and therefore
underestimated abundance (Supplementary Fig. S7B; see
Supplementary Figs. STC&D for comparison). Notably,
several genes having non-zero true abundances were esti-
mated to have values of zero by DENR (Fig. 2A), apparently
because of failures in TSS detection (see Discussion). The
RCB method displayed the opposite tendency, estimating
non-zero values for some genes having true values of zero
(Fig. 2B). These cases were predominantly caused by over-
lap with or transcriptional run-on from other expressed genes.

We also compared estimates from DENR and the RCB
method with the true RNA abundances at the level of in-
dividual isoforms. We focused our evaluation on a single
isoform per gene, selecting either the most abundant—or
“dominant”—isoform, as determined by the true abundances;
or the longest isoform, as determined by the annotations (see

Zhao etal. | DENR

Methods). At the isoform level, DENR'’s estimates of abun-
dance were still well correlated with the true values (r = 0.89;
Fig. 2C), although, not surprisingly, the concordance was
somewhat reduced compared with the gene-level compari-
son (Fig. 2A). The estimates from the RCB method showed
high correlation with true abundances (r = 0.96; Fig. 2D), but
these estimates were systematically inflated, leading to sub-
stantially larger error (RMSE = 786) than that from DENR
(RMSE = 428.65). This problem became more severe for
the longest isoform, where DENR outperformed the RCB
method substantially in terms of both correlation (r = 0.89
vs. 0.59) and RMSE (297.5 vs. 1117.28; Fig. 2E&F). These
biases occur because the RCB method tends to misattribute
sequence reads arising from other isoforms to the isoform in
question. While other counting strategies could be devised,
there is ultimately no good way to estimate isoform-specific
abundance without simultaneously considering all candidate
isoforms and all sequence reads (see Discussion).

Application to real data for K562 and CD4* T cells.
Having demonstrated that DENR has good power to recover
true gene and isoform abundances in simulated data, we
next applied it to real data from K562 (25) and CD4* T
cells (33). We focused our analysis on 7732 and 7632 genes
that displayed robust expression (ranking at top 75% of all
expressed genes) in K562 and CD4" cells, respectively. In
K562 cells, we found that nearly half of these genes (3624
of 7732, or 46.9%) displayed evidence of expression at
two or more isoforms (see Methods), indicating frequent
use of alternative TSSs and/or TTSs (248 with alternative
TSSs, 2213 with alternative TTSs, and 1163 with both).
We observed a similar pattern in CD4* cells, with 48.9%
(3734 of 7632) of genes producing two or more pre-RNA
isoforms. Moreover, we found that the dominant isoforms
for 1178 (15.2%) and 1262 (16.5%) of genes, respectively,
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Fig. 4. DENR abundance estimation for three overlapping genes on human chromosome 3. Isoform annotations are shown for SEC22C (yellow; ENSG00000093183),
SS18L2 (green; ENSG00000008324), and NKTR (purple; ENSG00000114857), together with the raw PRO-seq signal and DENR’s estimates of the expected contribution
of each isoform model (with visualization conventions as in Fig. 3). Notice, again, the use of the shape-profile correction and the TSS predictions based on bidirectional

transcription.

made use of an internal TSS, at least 1 kbp downstream from
the 5'-most annotation.

To illustrate how DENR deconvolves the signal from PRO-
seq data, we highlight two loci with multiple overlapping
pre-RNA isoforms and evidence for internal TSS usage
in K562 cells. The first example, at the gene S77, is a
relatively straightforward case (Fig. 3). This gene has
30 (mature-RNA) isoform annotations in Ensembl, which
DENR merged into 19 distinct pre-RNA isoforms. However,
the PRO-seq signal in the region suggests that only a subset
of these isoforms are expressed, with clear signals beginning
at a TSS near the 5’ end of the locus and at a second TSS
about 60 kbp downstream. Indeed, DENR estimated non-
zero abundance for only two isoforms, with the shorter one
(G14406M1, corresponding to five Ensembl isoforms; see
Supplementary Table S1) obtaining a higher weight than
the longer one (G14406M6, corresponding to two Ensembl
isoforms); the remaining 17 isoforms were assigned weights
of zero. Notice that the TSSs of both isoforms are clearly
marked by bidirectional transcription in the PRO-seq data, a
signal used by DENR in picking them out.

The second example is a more complex case in which three
expressed genes (SEC22C, SS18L2, and NKTR) all overlap
(Fig. 4). These genes all have multiple isoform annotations
in Ensembl, some of which correspond to distinct pre-RNA
isoforms after merging. In particular, SEC22C has 16
isoforms, which are merged into eight pre-RNA isoforms;
SSI8L2 has three isoforms, which are merged into two;
and NKTR has 19 isoforms, which are merged into ten. By
again leveraging the signatures associated with TSSs, DENR
identified two expressed isoforms of SEC22C, two expressed
isoforms of SS7/8L2, and three expressed isoforms of NKTR.
In each case, one isoform is clearly dominant, although in
the case of SSI8L2, both are expressed at non-negligible
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levels (Supplementary Table S2). Notice that the dominant
isoforms for both SEC22C and SS18L2 make use of internal
TSSs. Notice also that DENR attributes both expressed
isoforms of SEC22C and the minor expressed isoform of
SSI8L2 to the same TSS, suggesting that stable transcripts
are generated bidirectionally from this site. A second TSS
contributes bidirectionally to the dominant isoform of NKTR
and a minor isoform of SEC22C.

Differences in dominant pre-RNA isoforms between
CD4* T cells and K562 cells. Given DENR’s ability to
identify dominant pre-RNA isoforms, we wondered how fre-
quently these isoforms might differ between cell types. We
therefore compared the predictions of dominant isoforms
from K562 cells to those from CD4* T cells. Because the
3’ ends of pre-RNA transcription units can be difficult to pin-
point owing to transcriptional run-on, we focused on genes
for which the dominant isoforms clearly used different TSSs
in the two cell types, requiring a difference of at least 1 kbp in
genomic coordinates (see Methods). In addition, we limited
our analysis to 6757 genes showing robust expression (rank-
ing in the top 75%) in both cell types. We found that 238 of
these genes (~3.5%) had dominant isoforms that made use of
different TSSs in K562 and CD4* T cells. A gene ontology
analysis showed that these genes were significantly enriched
for annotations of alternative splicing (Supplementary Fig.
S8), suggesting a correlation between alternative TSS us-
age and alternative splicing. One prominent example in this
group is the gene encoding the transcription factor RUNXI,
a master regulator of hematopoietic stem cell differentia-
tion (Fig. 5), which has a much longer dominant isoform—
resulting from a TSS about 160 kbp upstream—in CD4* T
cells as compared with K562 cells. This gene is known to
make use of alternative TSSs in a temporal and tissue-specific
manner (34-36). Additional examples are shown in Supple-
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Fig. 5. Cell-type specific TSS usage for RUNX1. Of several annotated pre-RNA isoforms for the gene encoding the transcription factor RUNX1 on human chromosome 21
(shown on the negative strand at top), DENR finds two isoforms to be dominant: a ~100-kb isoform (G6681M1; shown in blue), and an isoform that is more than twice as
long and begins ~160 kb upstream (G6681M2; shown in pink). The shorter isoform is clearly dominant in K562 cells (middle), whereas both are expressed at non-negligible
levels in CD4* T cells, with the longer one being slightly dominant (bottom). RUNX1 is essential for normal hematopoietic development and its dysregulation is associated
with hematological malignancies (34). It is well known to make use of alternative promoters (35, 36)

mentary Figures S9&S10.

Relative contributions of transcriptional and post—
transcriptional processes to isoform diversity. We
were interested in making use of DENR to assess overall
levels of isoform diversity genome-wide. Furthermore, we
wondered if a parallel analysis of RNA-seq data would
enable an informative comparison of the relative contribu-
tions to isoform diversity at the pre-RNA and mature RNA
levels. Toward this end, we generated high-quality matched
PRO-seq and RNA-seq data sets (both with paired-end reads;
see Methods) for two similar but distinct human cell types,
CD4* T cells and CD14* monocytes. We used DENR to
quantify isoform diversity at the pre-RNA level and StringTie
(37) to quantify isoform diversity at the mature RNA level
in each cell type. Isoforms not detected in RNA-seq were
also used to indicate non-active isoforms in DENR instead
of using TSS prediction. Finally, we focused our analysis on
a set of 10,650 genes that were expressed in both cell types,
with good representation in both the PRO-seq and RNA-seq
data sets (see Methods).

To quantify isoform diversity at the pre-RNA and mature
RNA levels, we made use of the information-theoretic
measure of Shannon entropy. We observed that, given
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pre-RNA isoform abundance relative frequencies X (esti-
mated from PRO-seq data using DENR) and mature RNA
isoform abundance relative frequencies Y (estimated from
RNA-seq data using StringTie), the joint entropy H(X,Y)
can be decomposed into a component arising from primary
transcription, H(X), and a conditional-entropy component
arising from post-transcriptional processes, H (Y| X); that
is, H(X,Y) = H(X)+ H(Y|X) (see Methods). Thus, we
can estimate H (X)) across any set of expressed genes using
DENR, estimate H(X,Y") for the same set of genes using
StringTie, and then estimate the post-transcriptional entropy,
H(Y|X) by their difference. We can further estimate the
fractional contribution of transcription to the final isoform
entropy as H(X)/H(X,Y).

When applying these methods to the CD4* T cell and CD14*
monocyte data sets individually, we observed reasonably
good concordance, with estimates of H(X,Y) = 0.94-1.01
bits/gene in total entropy, of which 63-64% comes from
transcriptional entropy (H (X)) and the remaining 36-37%
derives from post-transcriptional processes (Fig. 6A&B).
When we pooled data from the two cell types together
(“both”), H(X,Y) increased by about 10%, indicating
higher levels of isoform diversity across cell types than
within them. Interestingly, however, the fractional contri-
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Fig. 6. Decomposition of Shannon entropy of isoform diversity into contributions from primary transcription and post-transcriptional processing. (A) Entropy
per gene of mature RNA isoforms (H (X,Y")) is partitioned into a component from primary transcription (H (X)) and a component from post-transcriptional processing,
including splicing (H (Y| X)). (B) Fractional contribution from primary transcription, H(X)/H (X,Y’). Results are for 10,650 genes expressed in both CD4* T cells and
CD14* monocytes. “Both” indicates results when both data sets are pooled. (C) Fractional contribution from primary transcription, as in (B), but for the subsets of genes
associated with the Gene Ontology terms “adaptive immune response” (GO:0002250; n = 116) and “innate immune response” (GO:0045087; n = 287). Error bars represent

the standard deviation of the mean as estimated by bootstrap resampling (n = 100).

bution from primary transcription, H(X)/H(X,Y), also
increased substantially, from ~0.64 to ~0.72, suggesting that
transcriptional processes make a disproportional contribution
to the isoform diversity across cell types, which is more
likely than diversity within each cell type to be associated
with true functional differences (see Discussion).

A primary difference between these cell types is that CD4*
T cells play an important role in the adaptive immune sys-
tem whereas CD14* monocytes are part of the innate immune
system. Therefore, we extracted 116 and 287 genes associ-
ated with the Gene Ontology (GO) terms “adaptive immune
response” and “innate immune response,’ respectively, and
calculated H (X)/H (X,Y) separately for each of these these
subsets of genes. Interestingly, we found that this fraction
was somewhat elevated in adaptive-immunity-related genes
in CD4* T cells, and slightly elevated in innate-immunity-
related genes in CD14" monocytes (Fig. 6C), suggesting
that primary transcription may disproportionally contribute
to isoform diversity in the genes most relevant to the specific
immune-related functions of each cell type.

Discussion

In this article, we have introduced Deconvolution of Expres-
sion for Nascent RNA-sequencing data (DENR), the first
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fully vetted computational method—to our knowledge—to
address the abundance estimation problem at the level of
pre-RNA isoforms, based on nascent RNA sequencing data.
At its core, DENR is simply a regression-like method for
estimating a weight for each element in a set of predefined
candidate isoforms, by minimizing the sum-of-squares
difference between expected and observed read counts.
This baseline model is augmented by various refinements,
including machine-learning predictions of transcription start
sites, a shape-profile correction for read counts, and masking
of read counts near isoform TSSs and TTSs. We have shown
that DENR performs well on simulated and real data, and
can be used for a variety of downstream applications.

In direct comparisons with simple read count-based (RCB)
methods like those used in most current applications, we
find that DENR does indeed offer a substantial performance
improvement. The improvement is most pronounced at
the isoform level, where the RCB methods inevitably
misattribute many reads to the wrong isoform. Interestingly,
however, DENR also improves substantially on gene-level
estimates of abundance. The main reason for this improve-
ment has to do with the normalization for gene length.
The gene-level RCB method has no good way to identify
which bases in the DNA template are transcribed, and
must conservatively assume transcription occurs across the
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union of all annotated isoforms. As a result, it frequently
“over-normalizes” and underestimates abundance. DENR,
by contrast, simultaneously models all isoforms and explains
the full set of read counts at a locus as a mixture of isoforms.
The limitations we observed with alternative RCB methods
highlight the difficulty of accurately estimating abundance
without a model that assigns reads to isoforms in zero-sum
fashion. Because most reads can potentially arise from
multiple alternative isoforms, any naive counting method
will tend to either over- or under-estimate abundance. These
errors in abundance estimation, in turn, can result in biases
in many downstream applications, such as elongation-rate or
RNA-half-life estimation.

In analyses of real data, we found that many genes (nearly
half of robustly expressed genes in K562 and CD4* T cells)
display evidence of expression at multiple distinct pre-RNA
isoforms. Moreover, we found that the dominant isoform
fairly commonly (in ~15% of cases) makes use of a TSS
that is substantially downstream of the 5’-most annotation.
These cases are particularly likely to be mischaracterized
by standard methods for quantifying pre-RNA expression.
We have highlighted specific examples showing how DENR
can effectively deconvolve the read-count contributions of
multiple overlapping isoforms, including a complex case
involving multiple overlapping genes (Fig. 4). In addition, in
a comparison of K562 and CD4" T cells, we identified more
than two hundred genes that use different dominant isoforms
in these two cell types, including prominent examples such
as RUNX].

One interesting consequence of having the ability—as
we now do—to characterize the distribution of isoform
abundances at both the pre- and mature-RNA levels is that it
potentially allows for a decomposition of the contributions
to isoform diversity from primary transcription and post-
transcriptional processes. In a final analysis, we attempted
to quantify these relative contributions using a simple infor-
mation theoretic calculation, by partitioning the Shannon
entropy in mature-RNA isoform diversity (as estimated from
RNA-seq data using StringTie) into a component estimated
at the pre-RNA level (by applying DENR to PRO-seq data)
and the remainder, which we argue can be interpreted as the
conditional entropy introduced at the post-transcriptional
level. Our observations are qualitatively similar to a number
of previous studies reporting observations of widespread,
regulated alternative TSS usage, often in a tissue-specific
manner (38—40), some of which have argued for a primary
role of transcription relative to splicing (41, 42). However,
while the post-transcriptional entropy that we measure
presumably derives primarily from splicing, it is worth
noting that it could also be influenced by post-transcriptional
up- or down-regulation of particular isoforms, for example,
through miRNA- or RBP-mediated decay. In some cases,
post-transcriptional processes could even reduce entropy
generated at the pre-RNA level, for example, by sharply
down-regulating particular pre-RNA isoforms relative to
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others. Importantly, this type of generation or reduction in
entropy can only be detected if pre-RNA isoform diversity
is independently characterized by a method like the one in-
troduced here, rather than indirectly assessed from RNA-seq
(or CAGE) data. For this reason, we believe our analysis is
complementary to previous analyses of alternative promoters
and TSSs.

There are a number of potential avenues for improvement
of our current implementation of DENR. First, the method
assumes a sum-of-squares loss function, which is equivalent
to maximum likelihood estimation under a Gaussian (or log
normal, if optimized in log space) generating distribution
for read counts, with the counts for each bin assumed to
be independent and identically distributed. Real nascent
RNA sequencing read counts, however, tends to be not
only overdispersed but nonuniform along the genome,
with fairly pronounced spikes separated by intervals of
reduced signal. The method could be extended to allow
for maximum-likelihood estimation under an arbitrary
generating distribution for read counts, by making use of
a general probabilistic model for nascent RNA sequencing
data that we have recently proposed (43). This model could
potentially accommodate autocorrelated read counts along
the genome sequence, although in this case, optimizing
the mixture coefficients would become more complex and
computationally expensive.  Another advantage of this
framework is that it would naturally accommodate a richer
and more general model for changes in polymerase density
along the gene body, beyond the simple shape-profile
correction introduced here. As a result, it might require a
less heavy-handed masking strategy, by providing a better
description for read counts near TSSs and TTSs. More
work will be needed to determine if these generalizations
are sufficiently advantageous to justify their complexity and
computational costs.

A second limitation is that DENR effectively uses a “hard
prior” for candidate isoforms, either treating them as equally
likely a priori or completely excluding them (i.e., assigning
a prior probability of zero) based on the absence of a TSS
prediction or other evidence of inactivity. A natural gener-
alization would be to accept an arbitrary prior probability
for each candidate isoform. These weights could potentially
be determined based on a variety of relevant covariates,
including not only TSS predictions but also, say, chromatin
accessibility, chromatin contact, histone modification, or
RNA-seq data from a relevant cell type. The model would
then combine the prior probabilities with the data likelihood
to enable full Bayesian estimation of isoform abundances. A
related extension would be to consider not only annotated
isoforms but also ones suggested by the nascent RNA
sequencing data but not annotated. Such candidates could
potentially be identified using a separate method (e.g., (44))
and given lower prior weights than annotated isoforms; if
they had sufficient support in the data, they might still obtain
high posterior probabilities.
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Finally, the current inference method does not make use
of a sparsity penalty to encourage the observed data to
be explained using as few isoforms as possible. In initial
experiments, we did not find that such penalties made a
noticeable difference in our prediction performance, and
in general, we do not observe a proliferation of isoforms
with small weights. However, we do occasionally find that
DENR gives high weights to short transcripts that happen to
coincide with spikes in the data or pause peaks, apparently
owing to a failure to account for spikes in the read-count
data, as well as inadequacies in the shape-profile correction
when applied to short isoforms. It is possible that a sparsity
penalty—perhaps combined with the use of a richer model
for read counts—would help to eliminate some of these
apparently spurious predictions.

Despite these limitations, we have shown that DENR is gen-
erally an effective tool for quantifying pre-RNA abundance at
both the gene and isoform levels, with many possible down-
stream applications. We expect this method to be increas-
ingly useful to the community as nascent RNA-sequencing
data grows more abundant and is used for a wider variety of
downstream applications.

Methods

Estimating isoform abundance. DENR estimates the
abundance of each isoform by non-negative least-squares op-
timization, separately at each cluster. For a given cluster of n
isoforms spanning m genomic bins, let 8 = (81,...,05,)’ be
a column vector representing the coefficients (weights) as-
signed to the isoforms, let Y = (y1,...,¥m)’ be a column
vector representing the read-counts in the bins, and let X be
an n X m design matrix such that x; ; = 1 if isoform ¢ spans
bin j and z; ; = 0 otherwise. DENR estimates 3 such that,

B =arg min (Y —X8)T(Y -X8), 50
B

subject to the constraint that 5; > 0 for all ¢ € {1,...,n}.
If the option to apply a log-transformation is selected, then
the transformation is applied to both the elements of Y
and those of X3, and the optimization otherwise proceeds
in the same manner. In either case, DENR optimizes the
objective function numerically using the BFGS algorithm
with a boundary of zero for the (; values. Notice that, when
the shape-profile correction is applied, the non-zero values
in the design matrix X are adjusted upward and downward
from 1 (see below).

After obtaining estimates for all isoform abundances (3;, we
normalize them by the total library depth to facilitate compar-
isons between samples. Isoform-level abundances are then
converted to gene-level abundances by summing over all iso-
forms associated with each gene.

Machine-learning predictor for active TSSs.To dis-
tinguish active and inactive TSSs based on patterns of
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bidirectional transcription in nascent RNA-sequencing data,
we implemented a convolutional neural network (CNN)
classifier using the Keras interface to TensorFlow (45). We
trained the CNN on previously published PRO-seq data
from K562 cells (25), using matched GRO-cap data (23)
to identify positive and negative examples. Specifically,
we conservatively defined candidate TSSs as ‘active’ if
they were overlapped with GRO-cap peaks from a HMM-
based predictor described in ref. (23), and TSS with max
GRO-cap signal was selected per peak; in addition, we
defined candidates as ‘inactive’ if TSSs were not overlapped
with any peaks by the HMM-based predictor and no active
TSSs (distance > 100bp) and raw GRO-cap signal (distance
> 25bp) nearby (Supplementary Fig. S2). The CNN was
composed of two 1-D convolutional layers, the first with
a ReLU activation function and both with max-pooling,
followed by drop-out, a densely connected layer, and a single
sigmoid output (Supplementary Fig. S3). It was applied to
feature vectors corresponding to strand-specific read counts
in 21 bins of width 51 bp, centered on the positive and
negative examples; the 42 raw read-counts for each example
were transformed to z-scores for scale-independence. The
CNN was trained using the Adam optimizer (46) with early

stopping.

When the optional TSS-calling feature is in use, only iso-
forms corresponding to predicted ‘active’ TSSs are allowed
to have non-zero weights. However, because the TSS predic-
tor inevitably misses some active TSSs that exhibit unusual
patterns of aligned reads, DENR makes use of a heuristic
method to identify and reconsider regions of “unexplained”
high-density polymerase. Specifically, an upstream poly-
merase ratio (UPR) statistic is calculated by taking the ratio
of the read-count density immediately upstream of the gene
and inside the gene body. If the UPR of an isoform is >10,
and there are no other active isoforms within 5 kbp upstream
or 6 kbp downstream of its TSS, then the isoform is eligible
to be assigned a non-zero weight.

Shape-profile correction. The shape-profile correction is
empirically derived from a reference set of isoforms. Briefly,
starting with the full set of annotations provided by the user,
DENR identifies a subset of isoforms that, according to var-
ious heuristics, appear to be sufficiently long, robustly ex-
pressed, and the sole source of sequencing reads in their ge-
nomic regions. DENR then tiles each representative isoform
with bins of the user-specified size (default 250 bp), and maps
those bins to a canonical [0, 1] interval. This mapping is
intended to fix the scales of the promoter-proximal and ter-
mination regions, and allow the remaining gene-body to be
compressed or expanded as needed. Specifically, the first 15
kbp of each isoform is mapped (proportionally) to the interval
[0, 0.2], the last 5 kbp is mapped to [0.8, 1], and the remain-
ing portion is mapped to the (0.2, 0.8) interval. Finally, the
canonical shape-profile is obtained by averaging the relative
read-count densities of the entire [0,1]-rescaled reference set
of isoforms, using a loess fit for smoothing, and scaling the
density such that the median value across the entire interval
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is one. This shape-profile is then used to adjust the design
matrix X (see above) by replacing each value of 1 with the
relative density at the corresponding location in the canon-
ical shape profile. The isoform weights are then estimated
by least-squares, as usual. In the case of isoforms of length
1 < 20 kbp, the first 0.75 and last 0.25 base-pairs are pro-
portionally mapped to the [0, 0.2] and [0.8, 1.0] intervals,
respectively, in the canonical shape-profile, and the interval
(0.2, 0.8) is ignored.

Simulation of nascent RNA sequencing data. Our
nonparametric simulator for nascent RNA sequencing
data, called nascentRNASim, makes use of a template
set of isoform annotations and a designated collection of
well-defined isoform “archetypes” and corresponding read
counts. Given these inputs, we simulate a synthetic data
set in five steps. First, we group the isoform annotations
into non-overlapping strand-specific clusters, as in a DENR
analysis. Second, we sample randomly (with resampling)
from this set of clusters, and similarly, from the set of
inter-cluster distances. Third, within each sampled cluster,
we substitute for each isoform the archetype that is closest to
it in genomic length, keeping the TSS at its original position
relative to the beginning of the cluster. Fourth, we sample
a new isoform abundance for each synthetic isoform from
a distribution fitted by kernel density estimation to isoform
abundance estimates from GTEx for skeletal muscle (32).
Finally, we obtain a new read count for each bin along the
isoform by resampling from the original value in proportion
to the simulated abundance estimate. In this way, we sample
a full synthetic data set, consisting of realistic clusters, each
with a realistic distribution of isoforms and realistic patterns
of read counts, but with a known abundance for each isoform.

In this work, we used the PRO-seq data set from ref. (25)
as our source data set, together with isoforms from Ensembl.
We selected a set of 62 archetypes manually, looking for iso-
forms with a range of lengths that exhibited relatively high
read depth, appeared to be solely responsible for the local
PRO-seq signal (i.e., they did not overlap other active iso-
forms and were at least ~5 kbp from other active genes), and
showed a PRO-seq signal that approximately coincided with
the annotated TSS and TTS, dropping to background levels
nearby. We also considered GRO-cap data from ref. (23) in
identifying TSSs. Notice that the design of the simulator en-
sures that every synthetic isoform has the same length and
approximate read-count pattern as one of the 62 archetypes,
but multiple isoforms may overlap (with additive contribu-
tions to read counts) in the synthetic data.

Calculation and decomposition of Shannon entropy.
Let X; be a random variable representing the possible
pre-RNA isoforms of gene ¢, and assume the probability
density function for X; is proportional to DENR-based
estimates of isoform abundance. That is, p(X; = j) = Z%qij,
where ¢;; is the estimated abundance of the jth isoform
of gene ¢ and Z; = Z]- ¢ij- We calculate the Shannon

entropy of X as H(X;) = =3, p(Xi = j)logy p(X; = j),
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and we calculate the total entropy of a set of genes S as
H(Xs)=>_;cs H(X;), assuming independence of genes.

Similarly, let Y; represent the possible mature RNA isoforms
of gene i, with p(Y; = k) = %qgk, where ¢/, is the StringTie-
estimated abundance of the kth isoform of gene ¢ and
Z; =3k qy Then H(Y;) = =3, p(Y; = k)logy p(Y; = k),
and, for a set of genes S, H(Ys) = ;g H(Y:).

To decompose entropy into components from H(X) (pri-
mary transcription) and H (Y |X) (post-transcriptional pro-
cesses), we consider the joint entropy of X and Y, H(X,Y),
and make use of the chain rule for joint and conditional en-
tropy, H(Y|X) = H(X,Y) — H(X), interpreting H(Y |X)
as the additional entropy contributed to the distribution of
pre-RNA isoforms by post-transcriptional processes. Fur-
thermore, because in this case, each mature RNA isoform
corresponds to a single pre-RNA isoform, H(X,Y) is the
same as H (Y). Specifically, for each i,

H(X;,Y;)

==Y p(Xi=jY;=k)logyp(X; = j,Yi = k)
J k=j

== p(Yi =k)logyp(Y; = k) = H(Y;),
k

where k ~ j indicates that mature RNA isoform k is compat-
ible (in TSS and TTS) with pre-RNA isoform j.

Human blood CD14* monocytes and CD4* T-cells iso-
lation. Roughly 80 ml of human blood was drawn to and
kept in spray-coated EDTA tubes (BD Vacutainer #366643)
at 4°C. The following day, blood was diluted 1:1 in PBS and
loaded on an equal volume of Ficoll-Paque (Fisher Scientific
#45-001-750). Peripheral blood mononuclear cells (PBMCs)
were then isolated by centrifugation for 20 min at 750xg.
All layers, excluding the lower erythrocytes-containing layer,
were moved to a new 50ml tube, and washed twice in PBS.
PBMCs were then treated with 2 ml of erythrocytes ly-
sis buffer (Lonza Walkersville inc. #120-02-070) for 1 min,
flooded with 5 ml of RPMI supplemented with 10% FBS, and
centrifuged for 10 min at 4°C and 1500 RPM on a Megafuge
40R Refrigerated Centrifuge (Thermo Scientific #75004518).
CD14* monocytes were isolated from PBMCs by a magnetic
cell separation system (MACS) using anti-human CD14 anti-
body attached to microbeads (Miltenyi Biotec #130050201)
on an LS column (Miltenyi Biotec #130-042-401) follow-
ing the manufacturer’s protocol, while maintaining the flow-
through of PBMCs without CD14* monocytes. CD4* T cells
were then isolated from CD14* monocyte-free PBMCs us-
ing anti-human CD4 antibody attached to microbeads (Mil-
tenyi Biotec #130045101) on a new LS column, following the
same protocol. Finally, CD14* monocytes and CD4* T-cells
were incubated for 1h of recovery in RPMI supplemented
with 10% FBS before any downstream applications.

RNA-seq library preparation. Cells were flooded with 1
ml per 5 x 106 cells of TRI reagent (Molecular Research Cen-
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ter #TR118) and 0.2 ml of chloroform was added per 1 ml
of TRI reagent followed by a vigorous vortexing for 20 sec.
Cells were then incubated in the TRI reagent and chloroform
solution for 2 minutes, followed by a 12,000xg centrifugation
at 4°C for 15 min. The resulting aqueous phase was trans-
ferred to a new 1.5 ml tube and 0.5 ml of isopropyl alcohol
was added for each 1 ml of TRI reagent initially used, and the
solution was incubated in room temperature for 10 min, fol-
lowed by a 10 min centrifugation in 12,000xg at 4°C. RNA
was then washed twice with 75% ethyl alcohol, air-dried for
5 min with an open lid on ice and dissolved in DEPC-treated
water. Poly-A enriched RNA-seq libraries were then pre-
pared with up to 1 pg of isolated RNA, using the NEBNext®
Ultra™ II Directional RNA Library Prep Kit for Illumina®
(New England Biotech #E7760) with the NEBNext Poly(A)
mRNA Magnetic Isolation Module (New England Biotech
#E7490), following the manufacturer’s protocol.

Nuclei isolation and PRO-seq library preparation. 1 x
106 cells were centrifuged at 4°C for 5 min at 1000xg
and washed twice with 1 ml of PBS. Cells were then re-
suspended in 150 pl of wash buffer (10mM Tris-Cl pH 8.0,
300mM sucrose, 10mM NaCl, 2mM MgAc,, 2.5 uM DTT,
1X protease inhibitor cocktail (Thermo Scientific, #A32965))
supplemented with 0.6U of SUPERase In RNase Inhibitor
(Thermo Fisher Scientific, #AM2696). 150 ul of 2X lysis
buffer (10mM Tris-Cl pH 8.0, 300mM sucrose, 10mM NaCl,
2mM MgAc,, 6mM CaCl,, 0.2% NP-40) were added to the
solution and samples were gently pipetted up and down 10
times, to facilitate nuclei release. Released nuclei were then
centrifuged at 4°C for 5 min at 1000xg, washed with 1 ml
of a 1:1 ratio solution of wash buffer and 2X lysis buffer
and re-suspended in 50 pl of storage buffer (5S0mM Tris-
CL pH 8.3, 40% glycerol, SmM MgCl,, 0.1 mM EDTA, 2.5
uM DTT, 1X protease inhibitor cocktail) supplemented with
0.2U of SUPERase In RNase Inhibitor. PRO-seq run-on and
library preparation was completed following a recently up-
dated protocol (47). Briefly, nuclei were run-on by incubat-
ing at 37°C for 5 min in run-on buffer (10 mM Tris-Cl pH
8.0, 5 mM MgCl,, 1 mM DTT, 300 mM KCl, 40 uM Biotin-
11-CTP, 40 uM Biotin-11-UTP, 40 uM Biotin-11-ATP, 40
UM Biotin-11-GTP, 1% (w/v) Sarkosyl in DEPC H,0). The
run-on reaction was stopped by adding Trizol LS (Life Tech-
nologies, #10296-010). RNA was pelleted with the addition
of GlycoBlue (Ambion, #AM9515) to visualize the pellet,
re-suspended in diethylpyrocarbonate (DEPC)-treated water
and heat denatured for 40 sec. RNA was digested using 0.2N
NaOH on ice for 6 min, which yields RNA lengths ranging
from ~20-500 bases. The 3’ adapter (sequence: AGATCG-
GAAGAGCACACGTCTGAACTC) was ligated using T4
RNA Ligase 1 (NEB, M0204L) and purified nascent RNA
using streptavidin beads (NEB, S1421S). Next the nascent
RNA was decapped using RppH (NEB, M0356S), the 5’ end
was phosphorylated using T4 polynucleotide kinase (NEB,
MO0201L), and the 5’ adapter (sequence: GTTCAGAGTTC-
TACAGTCCGACGATC) was ligated. RNA was removed
from the beads and a reverse transcription was performed
using Superscript IV Reverse Transcriptase (Life Technolo-
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gies) and amplified using Q5 High-Fidelity DNA Polymerase
(NEB, M0491L). PRO-seq libraries were sequenced using
the NextSeq500 high-throughput sequencing system (Illu-
mina) at the Cornell University Biotechnology Resource
Center.

Applying DENR to synthetic data.To benchmark
DENR’s performance, nascentRNASim was first used to
simulate PRO-seq read-counts for 1500 genes. To thoroughly
examine the effects of optional features on performance, all
combinations of optional features, i.e., with and without TSS
prediction, shape-profile correction, log-transformation of
read-counts, and with various numbers (0, 1, or 4) of masked
bins at both the 5’ and 3’ end of each isoform, were tested
on the synthetic data, resulting in a total of 72 test schemes
(2% x 32; Supplementary Figs. S5&S6). The scheme with
TSS prediction, shape-profile correction, log-transformation
of read-counts, masking of one bin around the TSS and
four bins around the TTS performed well at both the gene
and isoform levels. Therefore, this combination was used
for all subsequent analyses in synthetic and real data with
one exception: in the entropy analysis, we used RNA-seq
data indicate non-active isoforms instead of relying on
TSS prediction. The gene-level comparison was performed
on the whole set of genes, and on two complementary
subsets: one for which active isoforms predominately used
an internal TSS, and one for which they used the 5’-most
TSS for transcription. Genes were defined as using an
internal TSSs if their dominant isoforms were transcribed
from a TSS at least 1 kbp downstream from the 5’-most TSS
annotation; otherwise they were defined as using the 5’-most
TSS (Supplementary Fig. S7). At the isoform level, we
compared the performance of DENR and the RCB method
for both dominant isoforms determined by true abundances
in simulation, and longest isoforms determined by the
annotations. To make the estimates more comparable, we
masked 250 bp downstream from TSS and 1000 bp upstream
from the TTS when counting reads for the RCB method.

For the RCB method, the abundance of a gene or isoform ¢
is estimated as follows:

RCB T 106
Qi - sz 9
where r; is number of reads mapped to the genomic region
in question (corresponding either to an isoform or the union

of isoforms associated with a gene), f; is the length of that

region, and,
r
2 : g
T == T,
geG g

where G is the set of all genes in the simulation, 4 is number
of reads mapped to a gene region, and f, is the length of that
gene. Notice that ¢R“B has units of transcripts per million
(TPM) (48).

Applying DENR to real data. To prepare bigWig files as
input for DENR, published K562 (25) and CD4* T cell (33)
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PRO-seq libraries were first processed by the PROseq2.0
pipeline using single-end mode (49). The human genome
assembly (GRCh38.p13) and isoform annotations were
downloaded from Ensembl (release 99) (50). Annotations
of protein-coding genes from the autosomes and X chro-
mosome were used, excluding genes that overlapped on
the same strand. To identify genes producing two or more
pre-RNA isoforms with high confidence, only genes with
robust expressions (i.e., ranking at top 75% of all expressed
genes) in K562 (n = 7732) and CD4* T cells (n = 7632)
were retained for analysis. To survey predominant usage
of internal TSSs for transcription, genes with dominant
pre-RNA isoforms transcribed from internal TSSs 1 kbp
downstream from the 5’ most TSSs were identified and
visualized using Gviz (51).

To investigate the differences in dominant isoforms between
K562 and CD4* T cells, mature RNA isoform annotations
were first grouped together if the distances between their
annotated TSSs were <1 kbp. The longest isoform in each
group was selected as the representative and used for esti-
mating abundance. Inactive TSSs were predicted separately
in K562 and CD4* T cells then intersected, to ensure that the
same set of inactive isoforms was used across cell types. To
identify genes with different dominant isoform between cell
types, 6757 genes exhibiting robust expression (i.e., ranking
in the top 75% in both cell types) were analyzed. We focused
on cases in which the dominant isoforms differed in the two
cell types. Gene Ontology analysis was performed using the
online tool DAVID (52).

For calculation of Shannon entropy in the newly generated,
matched PRO-seq and RNA-seq data for CD4* T cells and
CD14* monocytes, we estimated isoform abundances at the
pre-RNA and mature RNA levels. For mature RNA abun-
dances in RNA-seq, adapters (sequence: AGATCGGAA-
GAGC) in raw reads were first removed using Cutadapt
(v2.10) (53). Clean reads were then aligned to the human
genome using HISAT2 (v2.2.1) (54). Mature RNA isoform
abundances were quantified using StringTie (v2.1.4) (37).
Human genome (GRCh38.p13) and GTF files were down-
loaded from Ensembl (release 99) (50). For pre-RNA isoform
abundances, PRO-seq libraries were first processed by the
PROseq?2.0 pipeline using paired-end mode (49), then DENR
was used to quantify abundances. The shape-profile correc-
tion, log-transformation of read-counts, and masking of one
around the TSS and four bins around the TTS were used, as
in other analyses, but that inactive isoforms were identified as
those not detected in the RNA-seq data rather than by using
DENR’s TSS prediction feature. 10,650 genes with abun-
dance estimates > 0 in CD4* T cell and CD14* monocyte
samples were used for the entropy calculation.

Software availability. DENR and nascentRNASim are
freely available at https://github.com/CshlSiepelLab/DENR
(version v1.0.0) and https://github.com/CshlSiepelLab/
nascentRNASim (version v0.3.0). Usage of DENR is demon-
strated in a vignette at https://github.com/CshlSiepelLab/
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DENR/blob/master/vignettes/introduction.Rmd.

Data availability. All published datasets were downloaded
from GEO. GRO-cap data for TSS detection model train-
ing was retrieved in preprocessed form using accession num-
ber GSE60456 (23). PRO-seq data from K562 (25) and
CD4" T cells (33) were retrieved using accession numbers
GSE96869 and GSE85337. Data submission of newly gener-
ated PRO-seq and RNA-seq to dbGaP is in progress (project
#phs002146.v1.p1).
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