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Abstract

Quantification of mature-RNA isoform abundance from

RNA-seq data has been extensively studied, but much

less attention has been devoted to quantifying the abun-

dance of distinct precursor RNAs based on nascent RNA

sequencing data. Here we address this problem with

a new computational method called Deconvolution of

Expression for Nascent RNA sequencing data (DENR).

DENR models the nascent RNA read counts at each locus

as a mixture of user-provided isoforms. The performance

of the baseline algorithm is enhanced by the use of

machine-learning predictions of transcription start sites

(TSSs) and an adjustment for the typical “shape profile”

of read counts along a transcription unit. We show using

simulated data that DENR clearly outperforms simple

read-count-based methods for estimating the abundances

of both whole genes and isoforms. By applying DENR

to previously published PRO-seq data from K562 and

CD4+ T cells, we find that transcription of multiple

isoforms per gene is widespread, and the dominant

isoform frequently makes use of an internal TSS. We

also identify >200 genes whose dominant isoforms make

use of different TSSs in these two cell types. Finally, we

apply DENR and StringTie to newly generated PRO-seq

and RNA-seq data, respectively, for human CD4+ T cells

and CD14+ monocytes, and show that entropy at the

pre-RNA level makes a disproportionate contribution

to overall isoform diversity, especially across cell types.

Altogether, DENR is the first computational tool to

enable abundance quantification of pre-RNA isoforms

based on nascent RNA sequencing data, and it reveals

high levels of pre-RNA isoform diversity in human cells.
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Introduction

For about the last 15 years, most large-scale transcriptomic

analyses have relied on high-throughput short-read sequenc-

ing technologies as the readout for the relative abundances

of RNA transcripts. In species with available genome

assemblies, these sequence reads are generally mapped to

assembled contigs, and then the “read depth,” or average

density of aligned reads, is used as a proxy for the abundance

of RNAs corresponding to each annotated transcription unit.

The approach is relatively inexpensive and straightforward,

and, with adequate sequencing depth, it generally leads to

accurate estimates of abundance.

A fundamental challenge with this general paradigm, how-

ever, is that transcription units frequently overlap in genomic

coordinates—that is, the same segment of DNA often serves

as a template for multiple distinct RNA transcripts. As a

result, it is unclear which transcription unit is the source

of each sequence read. While this problem can occur at

the level of whole genes that contain overlapping segments,

it is most prevalent at the level of multiple isoforms for

each gene, owing to alternative transcription start sites

(TSSs), alternative transcription termination sites (TTSs) or

polyadenylation and cleavage sites (PAS), and alternative

splicing. These isoforms often overlap heavily with one

another, and differ on a scale that is not well described

by short-read sequencing. For example, a typical Illumina

RNA sequencing run today generates reads of length 150

bp, roughly the size of an exon in the human genome. As

a result, many reads fall within a single exon and therefore

carry no direct information about the relative abundances

of isoforms containing that exon. This problem is critical

because the existence of multiple isoforms per gene is the

rule rather than the exception in most eukaryotes. For ex-

ample, more than 90% of multi-exon human genes undergo

alternative splicing (1), with an average of more than 7

isoforms per protein-coding gene (2); in plants, up to 70%

of multi-exon genes show evidence of alternative splicing (3).

In the case of RNA-seq data, the problem of isoform

abundance estimation from short-read sequence data has

been widely studied for more than a decade (4–6). Several

software packages now address the problem efficiently and

effectively, including ones that make use of fully mapped

reads (7–10) and others that substantially boost speed by

working only with “pseudoalignments” at remarkably little

(if any) cost in accuracy (11–13). These computational

methods differ in detail but they generally work by modeling

the observed sequence reads as an unknown mixture of
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isoforms at each locus. They estimate the relative abun-

dances (mixture coefficients) of the isoforms from the read

counts, relying in particular on the subset of reads that reflect

distinguishing features, such as exons or splice junctions

present in some isoforms but not others. Because RNA-seq

libraries are typically dominated by mature RNAs, intronic

reads tend to be rare and splice junctions provide one of the

strongest signals for differentiation of isoforms. Altogether,

these isoform quantification methods work quite well, with

the best methods exhibiting Pearson correlation coefficients

of 0.95 or higher with true values in simulation experiments,

and similarly high concordance across technical replicates

for real data (2).

In recent years, another method for interrogating the tran-

scriptome, known as “nascent RNA sequencing,” has become

increasingly widely used. Instead of measuring the con-

centrations of mature RNAs, as RNA-seq effectively does,

nascent RNA sequencing protocols isolate and sequence

newly transcribed RNA segments, typically by tagging them

with selectable ribonucleotide analogs or through isolation of

polymerase-associated RNAs (14–22). In this way, they pro-

vide a measurement of primary transcription, independent of

the RNA decay processes that influence cellular concentra-

tions of mature RNAs. In addition, nascent RNA sequencing

methods have a wide variety of other applications, including

identification of active enhancers (through the presence of

eRNAs) (20, 22–25), characterization of promoter-proximal

pausing and divergent transcription (14, 15), estimation of

elongation rates (26, 27), and estimation of relative RNA

half-lives (28).

In nascent RNA sequencing, the isolated RNAs have gener-

ally not yet been spliced; therefore, they represent the entire

transcribed portion of the genome, including introns. As a

result, the problem of distinguishing alternative splice forms

is largely irrelevant. On the other hand, the data typically

still reflect a mixture of precursor RNA (pre-RNA) isoforms,

having different TSSs and/or TTSs/PASs. Moreover, the

problem of decomposing this mixture can be more chal-

lenging than for RNA-seq in some respects, both because

pre-RNA isoforms have fewer differentiating features than

mature RNA isoforms, and because nascent RNA read

depths tend to be substantially reduced, since introns as well

as exons are sequenced. Distinguishing among pre-RNA

isoforms in nascent RNA sequence data can be critical for a

wide variety of downstream analyses. Nevertheless, to our

knowledge, only one computational tool has been developed

to address this problem—a program called TuSelector that

was introduced in ref. (25)—and it has never been packaged

for use by other research groups or rigorously evaluated

for accuracy. In most analyses of nascent RNA sequencing

data, the isoform deconvolution problem is either ignored or

addressed by simple heuristics, such as assuming each gene

is represented by the longest annotated isoform (e.g., refs.

(29, 30)).

In this article, we introduce a new computational method

and implementation in R, called Deconvolution of Expres-

sion for Nascent RNA sequencing (DENR), that addresses

the problem of isoform abundance quantification at the pre-

RNA level. DENR also solves the closely related problems

of estimating abundance at the gene level, summing over all

isoforms, and identifying the “dominant isoform,” that is, the

one exhibiting the greatest abundance. DENR makes use of

a straightforward non-negative least-squares strategy for de-

composing the mixture of isoforms present in the data, but

then improves on this baseline approach by taking advantage

of machine-learning predictions of TSSs and an adjustment

for the typical shape profile in the read counts along a tran-

scription unit. We show that the method performs well on

simulated data, and then use it to reveal a high level of diver-

sity in the pre-RNA isoforms inferred from PRO-seq data for

several human cell types, including K562, CD4+ T cells, and

CD14+ monocytes.

Results

Overview of DENR. DENR is implemented as a package

in the R programming environment. It requires two main

inputs: a set of isoform annotations and a set of correspond-

ing strand-specific nascent RNA sequencing read counts.

Mature RNA isoform annotations can be easily downloaded

by making use of biomaRt (31) or extracted from files in

commonly available formats, such as GTF or GFF; similarly

read counts can be obtained from a file in bigWig format.

Detailed examples are provided in an online vignette (see

Methods).

Given the necessary inputs, DENR first builds a tran-

script_quantifier object, which summarizes the read counts

corresponding to the available isoform annotations (Fig. 1).

This phase consists of three steps (Supplementary Fig.

S1). First, the mature RNA isoforms are grouped into

nonoverlapping, strand-specific clusters, corresponding

roughly to genes (although if two genes overlap on the same

strand, they will be grouped in the same cluster). Second,

masking rules are applied to the read counts, causing a

user-specified number of bins to be excluded at the start

and end of each annotated isoform, to avoid the biases in

quantification stemming from promoter-proximal pausing

or termination-related deceleration of RNA polymerase.

Throughout this paper, we assume a bin size of 250 bp.

Third, the set of mature isoforms in each cluster is collapsed

to a maximal set such that each isoform model has a unique

pair of start and end coordinates, by merging all mature

isoforms that share both their start and end bins. This

step reduces isoforms annotated at the mature RNA level,

many of which differ only in their splice patterns, to a more

compact set of pre-RNA isoforms. It also merges pre-RNA

isoforms that differ from one another after masking. This

second property is useful because the nascent RNA sequence

data typically provides only approximate indications of the

TSS and TTS associated with each transcript, owing to both

sparseness of the data and imprecisions in the transcription
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  Collapse annotations to unique pre-RNA isoforms

Use shaped profile and/or TSS detection

Estimate pre-RNA isoform abundances

Fig. 1. Illustration of DENR analysis. (Top) DENR first groups the available isoform annotations into nonoverlapping, stand-specific clusters and summarizes the associated

read counts in genomic bins of user-specified size (default 250 bp). At this stage, it optionally masks bins corresponding to the start and end of each isoform. It then collapses

mature RNA isoforms together that share start (TSS) and end (TTS/PAS) coordinates within the resolution of a single bin. (Middle) The program then optionally adjusts the

isoform model to reflect a typical “U”-shaped profile, and optionally applies a machine-learning method to predict active TSSs based on patterns of bidirectional transcription.

At this stage, it may also exclude isoforms designated by the user as inactive (not shown). (Bottom) Finally, DENR estimates the abundance of each isoform in each cluster

by minimizing the squared difference between the expected and observed read counts across all bins (see Methods).

process itself (such as transcriptional run-on at the 3′ end).

The reduced set represents isoforms likely to be confidently

distinguishable on the basis of nascent RNA sequence data

alone.

The second phase in a DENR analysis is, optionally, to

provide auxiliary information that may improve the accuracy

of isoform abundance estimates. Any combination of three

separate types of data can be provided: (1) the coordinates

of predicted TSSs, (2) a list of inactive isoforms, and (3)

a shape-profile correction. Separate predictions of TSSs

are useful because they help to distinguish the start of one

isoform (particularly one downstream from the start of a

cluster) from the continuation of another isoform. The

DENR package includes a pre-trained machine-learning

classifier, implemented using TensorFlow, that can predict

the locations of likely TSSs based on their characteristic

patterns of bidirectional transcription and symmetric pause

peaks (Supplementary Figs. S2&S3; see also ref. (24) for

a similar approach). A separate specification of inactive

isoforms is useful because it can direct the quantification

algorithm to ignore a potentially large class of isoforms that

may otherwise be misleading or confusing, based on aux-

iliary sources of data—including either experimental data,

such as GRO-cap, PRO-cap, or RNA-seq, or computational

predictions. Finally, the shape profile correction is a way of

accommodating the typical “U”-shaped profile of nascent

RNA sequencing reads along a gene-body, even after pause

and termination peaks are excluded (Fig. 1). DENR provides

a function to estimate the average profile from a designated

subset of the data, and then to consider its shape when

estimating the abundance of each isoform (see Methods).

Finally, DENR estimates the abundance of each isoform.

Given the read counts per bin for each isoform cluster, DENR

simply estimates a weight for each isoform by least squares,

that is, by minimizing the squared difference between the

expected density and the observed read count across all bins

(see Methods). An option is also provided to perform this

optimization in logarithmic space, i.e., by comparing the

logarithm of the expected density and the logarithm of the

read counts, corresponding to an assumption of a log-normal

distribution for read counts (see Discussion).

DENR accurately estimates RNA abundance at the

gene and isoform levels. We evaluated DENR’s accuracy

in quantifying RNA abundance at both the gene and isoform

levels. Lacking an appropriate “gold-standard” in the form

of real biological data, we chose to benchmark the software

using simulated data. Because, to our knowledge, there

is no available simulator for nascent RNA sequencing

data that accommodates multiple isoforms per gene, we

developed a new R package, called nascentRNASim, to

provide a ground truth against which to compare DENR’s

estimates (Supplementary Fig. S4). To make the simulated

data as realistic as possible, nascentRNASim makes use

of an empirical distribution of relative isoform abundances

per gene obtained from RNA-seq data from GTEx (32).

Given this distribution, the program then generates synthetic

nascent RNA sequencing read counts for each isoform by

resampling PRO-seq read counts from a manually curated

set of archetypal transcripts (see Methods). The read

counts from different isoforms are combined where they
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r = 0.97
RMSE = 328.58
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r = 0.85
RMSE = 642.19
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RMSE = 428.65

0

5

10

15

0 5 10 15
True abundance log2(TPM + 1)

D
E

N
R

 e
st

im
at

e 
lo

g 2
(T

P
M

 +
 1

)

0

40

80

120

160

n_neighbors

Pre−RNA Isoforms (Dominant)
C

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●
●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

● ●

●

●

r = 0.96
RMSE = 786

0

5

10

15

0 5 10 15
True abundance log2(TPM + 1)

R
C

B
 e

st
im

at
e 

lo
g 2

(T
P

M
 +

 1
)

0

40

80

120

160

n_neighbors

Pre−RNA Isoforms (Dominant)
D

●
●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●●●

●

●

●

●

● ●● ●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●●

●

● ●

●●●

●

●

●

●
●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

● ●

● ●

●

●●●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●● ●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●●

●●● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

● ●

●

●

●

●●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●●● ●●

●

●●●

●
●

●

●

●

●●

●

●●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●●

●

●

●

●●

●

●● ●

●

●

●

●●

● ●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

r = 0.89
RMSE = 297.5

0

5

10

15

0 5 10 15
True abundance log2(TPM + 1)

D
E

N
R

 e
st

im
at

e 
lo

g 2
(T

P
M

 +
 1

)

0

40

80

120

160

n_neighbors

Pre−RNA Isoforms (Longest)
E

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

r = 0.59
RMSE = 1117.28

0

5

10

15

0 5 10 15
True abundance log2(TPM + 1)

R
C

B
 e

st
im

at
e 

lo
g 2

(T
P

M
 +

 1
)

0

40

80

120

160

n_neighbors

Pre−RNA Isoforms (Longest)
F

Fig. 2. Comparison of DENR and the simple read-count-based (RCB) method for quantifying nascent RNA abundance. True (x-axis) vs. estimated (y-axis) abundance

at the gene (A & B) and the isoform (C–F) levels, based on 1500 simulated loci. Data were simulated using nascentRNASim, which resamples real PRO-seq read counts and

assumes a distribution of relative isoform abundances derived from real RNA-seq data. Results are shown for both the “ dominant” (most highly expressed) isoform (panels

C&D) and the longest isoform (panels E&F). RMSE = root-mean-square error, r = Pearson’s correlation coefficient.

overlap. In this way, synthetic data is generated that closely

resembles real data, without the need for restrictive modeling

assumptions.

We first evaluated the impact of the various optional features

by running the program with and without TSS prediction,

shape-profile correction, log-transformation of read-counts,

and with various numbers (0, 1, or 4) of masked bins at

the 5′ and 3′ ends of each isoform. We ran DENR on

1500 simulated loci, measuring the Pearson’s correlation

coefficient (r) of the estimated and “true” abundances

at both the gene (Supplementary Fig. S5) and isoform

(Supplementary Fig. S6) levels, and for dominant and

longest isoforms as well as all isoforms together. We found,

in general, that TSS prediction, the shape-profile correction,

and the log tranformation did indeed improve performance

significantly. The improvement was more substantial at

the isoform level, where, together, these features increased

r by as much as 10 − 15%, compared with an increase of

∼3% at the gene level. The effect of the masking strategy

was more variable, but we found that masks of one bin

at the 5′ end and four bins at the 3′ end performed well

on average. Therefore, for all subsequent analyses (unless

stated otherwise) on both simulated and real data, we
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Fig. 3. DENR abundance estimation for pre-RNA isoforms of ST7 in K562 cells. The ST7 (suppression of tumorigenicity 7; ENSG00000004866) gene has 30 isoform

annotations in Ensembl, which DENR merges into 19 distinct pre-RNA isoform models (bars at top). Based on the observed PRO-seq data (middle, in blue and red), DENR

estimates nonzero abundances for only two of these isoforms (marked in light blue and pink). The plot at bottom shows the expected relative contribution of each isoform

model to the overall read counts per bin. Notice the effect of the shape-profile adjustment near the 5′ and 3′ ends. Notice also that the PRO-seq data reveals bidirectional

transcription near the TSSs of both active isoforms; these signals are used by the machine-learning predictor to help identify sequence reads associated with these isoforms.

used this masking strategy, and made use of TSS predic-

tion, the shape-profile prediction, and the log-transformation.

With these options in place, we next compared DENR’s

estimates for the same 1500 simulated loci with estimates

obtained using a naive read-count-based (RCB) method

commonly used in the field. For the RCB method, we

simply estimated the abundance of a gene by the number of

sequence reads that overlap any annotated isoform for that

gene divided by the gene’s total length (see Methods). At the

gene level, DENR’s estimates were highly concordant with

true abundances (r = 0.97; Fig. 2A), substantially better than

the RCB method (r = 0.85; Fig. 2B). Accordingly, DENR

exhibited much smaller root-mean-square error (RMSE

= 328.58) than the RCB method (RMSE = 642.19; Fig.

2A&B). DENR offered a particular improvement in cases

where the dominant isoform corresponded to an internal TSS

(Supplementary Fig. S7A), where the RCB method “over-

normalized” using the length of whole gene and therefore

underestimated abundance (Supplementary Fig. S7B; see

Supplementary Figs. S7C&D for comparison). Notably,

several genes having non-zero true abundances were esti-

mated to have values of zero by DENR (Fig. 2A), apparently

because of failures in TSS detection (see Discussion). The

RCB method displayed the opposite tendency, estimating

non-zero values for some genes having true values of zero

(Fig. 2B). These cases were predominantly caused by over-

lap with or transcriptional run-on from other expressed genes.

We also compared estimates from DENR and the RCB

method with the true RNA abundances at the level of in-

dividual isoforms. We focused our evaluation on a single

isoform per gene, selecting either the most abundant—or

“dominant”—isoform, as determined by the true abundances;

or the longest isoform, as determined by the annotations (see

Methods). At the isoform level, DENR’s estimates of abun-

dance were still well correlated with the true values (r = 0.89;

Fig. 2C), although, not surprisingly, the concordance was

somewhat reduced compared with the gene-level compari-

son (Fig. 2A). The estimates from the RCB method showed

high correlation with true abundances (r = 0.96; Fig. 2D), but

these estimates were systematically inflated, leading to sub-

stantially larger error (RMSE = 786) than that from DENR

(RMSE = 428.65). This problem became more severe for

the longest isoform, where DENR outperformed the RCB

method substantially in terms of both correlation (r = 0.89

vs. 0.59) and RMSE (297.5 vs. 1117.28; Fig. 2E&F). These

biases occur because the RCB method tends to misattribute

sequence reads arising from other isoforms to the isoform in

question. While other counting strategies could be devised,

there is ultimately no good way to estimate isoform-specific

abundance without simultaneously considering all candidate

isoforms and all sequence reads (see Discussion).

Application to real data for K562 and CD4+ T cells.

Having demonstrated that DENR has good power to recover

true gene and isoform abundances in simulated data, we

next applied it to real data from K562 (25) and CD4+ T

cells (33). We focused our analysis on 7732 and 7632 genes

that displayed robust expression (ranking at top 75% of all

expressed genes) in K562 and CD4+ cells, respectively. In

K562 cells, we found that nearly half of these genes (3624

of 7732, or 46.9%) displayed evidence of expression at

two or more isoforms (see Methods), indicating frequent

use of alternative TSSs and/or TTSs (248 with alternative

TSSs, 2213 with alternative TTSs, and 1163 with both).

We observed a similar pattern in CD4+ cells, with 48.9%

(3734 of 7632) of genes producing two or more pre-RNA

isoforms. Moreover, we found that the dominant isoforms

for 1178 (15.2%) and 1262 (16.5%) of genes, respectively,
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Fig. 4. DENR abundance estimation for three overlapping genes on human chromosome 3. Isoform annotations are shown for SEC22C (yellow; ENSG00000093183),

SS18L2 (green; ENSG00000008324), and NKTR (purple; ENSG00000114857), together with the raw PRO-seq signal and DENR’s estimates of the expected contribution

of each isoform model (with visualization conventions as in Fig. 3). Notice, again, the use of the shape-profile correction and the TSS predictions based on bidirectional

transcription.

made use of an internal TSS, at least 1 kbp downstream from

the 5′-most annotation.

To illustrate how DENR deconvolves the signal from PRO-

seq data, we highlight two loci with multiple overlapping

pre-RNA isoforms and evidence for internal TSS usage

in K562 cells. The first example, at the gene ST7, is a

relatively straightforward case (Fig. 3). This gene has

30 (mature-RNA) isoform annotations in Ensembl, which

DENR merged into 19 distinct pre-RNA isoforms. However,

the PRO-seq signal in the region suggests that only a subset

of these isoforms are expressed, with clear signals beginning

at a TSS near the 5′ end of the locus and at a second TSS

about 60 kbp downstream. Indeed, DENR estimated non-

zero abundance for only two isoforms, with the shorter one

(G14406M1, corresponding to five Ensembl isoforms; see

Supplementary Table S1) obtaining a higher weight than

the longer one (G14406M6, corresponding to two Ensembl

isoforms); the remaining 17 isoforms were assigned weights

of zero. Notice that the TSSs of both isoforms are clearly

marked by bidirectional transcription in the PRO-seq data, a

signal used by DENR in picking them out.

The second example is a more complex case in which three

expressed genes (SEC22C, SS18L2, and NKTR) all overlap

(Fig. 4). These genes all have multiple isoform annotations

in Ensembl, some of which correspond to distinct pre-RNA

isoforms after merging. In particular, SEC22C has 16

isoforms, which are merged into eight pre-RNA isoforms;

SS18L2 has three isoforms, which are merged into two;

and NKTR has 19 isoforms, which are merged into ten. By

again leveraging the signatures associated with TSSs, DENR

identified two expressed isoforms of SEC22C, two expressed

isoforms of SS18L2, and three expressed isoforms of NKTR.

In each case, one isoform is clearly dominant, although in

the case of SS18L2, both are expressed at non-negligible

levels (Supplementary Table S2). Notice that the dominant

isoforms for both SEC22C and SS18L2 make use of internal

TSSs. Notice also that DENR attributes both expressed

isoforms of SEC22C and the minor expressed isoform of

SS18L2 to the same TSS, suggesting that stable transcripts

are generated bidirectionally from this site. A second TSS

contributes bidirectionally to the dominant isoform of NKTR

and a minor isoform of SEC22C.

Differences in dominant pre-RNA isoforms between

CD4+ T cells and K562 cells. Given DENR’s ability to

identify dominant pre-RNA isoforms, we wondered how fre-

quently these isoforms might differ between cell types. We

therefore compared the predictions of dominant isoforms

from K562 cells to those from CD4+ T cells. Because the

3′ ends of pre-RNA transcription units can be difficult to pin-

point owing to transcriptional run-on, we focused on genes

for which the dominant isoforms clearly used different TSSs

in the two cell types, requiring a difference of at least 1 kbp in

genomic coordinates (see Methods). In addition, we limited

our analysis to 6757 genes showing robust expression (rank-

ing in the top 75%) in both cell types. We found that 238 of

these genes (∼3.5%) had dominant isoforms that made use of

different TSSs in K562 and CD4+ T cells. A gene ontology

analysis showed that these genes were significantly enriched

for annotations of alternative splicing (Supplementary Fig.

S8), suggesting a correlation between alternative TSS us-

age and alternative splicing. One prominent example in this

group is the gene encoding the transcription factor RUNX1,

a master regulator of hematopoietic stem cell differentia-

tion (Fig. 5), which has a much longer dominant isoform—

resulting from a TSS about 160 kbp upstream—in CD4+ T

cells as compared with K562 cells. This gene is known to

make use of alternative TSSs in a temporal and tissue-specific

manner (34–36). Additional examples are shown in Supple-
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Fig. 5. Cell-type specific TSS usage for RUNX1. Of several annotated pre-RNA isoforms for the gene encoding the transcription factor RUNX1 on human chromosome 21

(shown on the negative strand at top), DENR finds two isoforms to be dominant: a ∼100-kb isoform (G6681M1; shown in blue), and an isoform that is more than twice as

long and begins ∼160 kb upstream (G6681M2; shown in pink). The shorter isoform is clearly dominant in K562 cells (middle), whereas both are expressed at non-negligible

levels in CD4+ T cells, with the longer one being slightly dominant (bottom). RUNX1 is essential for normal hematopoietic development and its dysregulation is associated

with hematological malignancies (34). It is well known to make use of alternative promoters (35, 36)

mentary Figures S9&S10.

Relative contributions of transcriptional and post–

transcriptional processes to isoform diversity. We

were interested in making use of DENR to assess overall

levels of isoform diversity genome-wide. Furthermore, we

wondered if a parallel analysis of RNA-seq data would

enable an informative comparison of the relative contribu-

tions to isoform diversity at the pre-RNA and mature RNA

levels. Toward this end, we generated high-quality matched

PRO-seq and RNA-seq data sets (both with paired-end reads;

see Methods) for two similar but distinct human cell types,

CD4+ T cells and CD14+ monocytes. We used DENR to

quantify isoform diversity at the pre-RNA level and StringTie

(37) to quantify isoform diversity at the mature RNA level

in each cell type. Isoforms not detected in RNA-seq were

also used to indicate non-active isoforms in DENR instead

of using TSS prediction. Finally, we focused our analysis on

a set of 10,650 genes that were expressed in both cell types,

with good representation in both the PRO-seq and RNA-seq

data sets (see Methods).

To quantify isoform diversity at the pre-RNA and mature

RNA levels, we made use of the information-theoretic

measure of Shannon entropy. We observed that, given

pre-RNA isoform abundance relative frequencies X (esti-

mated from PRO-seq data using DENR) and mature RNA

isoform abundance relative frequencies Y (estimated from

RNA-seq data using StringTie), the joint entropy H(X,Y )
can be decomposed into a component arising from primary

transcription, H(X), and a conditional-entropy component

arising from post-transcriptional processes, H(Y |X); that

is, H(X,Y ) = H(X) + H(Y |X) (see Methods). Thus, we

can estimate H(X) across any set of expressed genes using

DENR, estimate H(X,Y ) for the same set of genes using

StringTie, and then estimate the post-transcriptional entropy,

H(Y |X) by their difference. We can further estimate the

fractional contribution of transcription to the final isoform

entropy as H(X)/H(X,Y ).

When applying these methods to the CD4+ T cell and CD14+

monocyte data sets individually, we observed reasonably

good concordance, with estimates of H(X,Y ) = 0.94–1.01

bits/gene in total entropy, of which 63–64% comes from

transcriptional entropy (H(X)) and the remaining 36–37%

derives from post-transcriptional processes (Fig. 6A&B).

When we pooled data from the two cell types together

(“both”), H(X,Y ) increased by about 10%, indicating

higher levels of isoform diversity across cell types than

within them. Interestingly, however, the fractional contri-
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Fig. 6. Decomposition of Shannon entropy of isoform diversity into contributions from primary transcription and post-transcriptional processing. (A) Entropy

per gene of mature RNA isoforms (H(X,Y )) is partitioned into a component from primary transcription (H(X)) and a component from post-transcriptional processing,

including splicing (H(Y |X)). (B) Fractional contribution from primary transcription, H(X)/H(X,Y ). Results are for 10,650 genes expressed in both CD4+ T cells and

CD14+ monocytes. “Both” indicates results when both data sets are pooled. (C) Fractional contribution from primary transcription, as in (B), but for the subsets of genes

associated with the Gene Ontology terms “adaptive immune response” (GO:0002250; n = 116) and “innate immune response” (GO:0045087; n = 287). Error bars represent

the standard deviation of the mean as estimated by bootstrap resampling (n = 100).

bution from primary transcription, H(X)/H(X,Y ), also

increased substantially, from ∼0.64 to ∼0.72, suggesting that

transcriptional processes make a disproportional contribution

to the isoform diversity across cell types, which is more

likely than diversity within each cell type to be associated

with true functional differences (see Discussion).

A primary difference between these cell types is that CD4+

T cells play an important role in the adaptive immune sys-

tem whereas CD14+ monocytes are part of the innate immune

system. Therefore, we extracted 116 and 287 genes associ-

ated with the Gene Ontology (GO) terms “adaptive immune

response” and “innate immune response,” respectively, and

calculated H(X)/H(X,Y ) separately for each of these these

subsets of genes. Interestingly, we found that this fraction

was somewhat elevated in adaptive-immunity-related genes

in CD4+ T cells, and slightly elevated in innate-immunity-

related genes in CD14+ monocytes (Fig. 6C), suggesting

that primary transcription may disproportionally contribute

to isoform diversity in the genes most relevant to the specific

immune-related functions of each cell type.

Discussion

In this article, we have introduced Deconvolution of Expres-

sion for Nascent RNA-sequencing data (DENR), the first

fully vetted computational method—to our knowledge—to

address the abundance estimation problem at the level of

pre-RNA isoforms, based on nascent RNA sequencing data.

At its core, DENR is simply a regression-like method for

estimating a weight for each element in a set of predefined

candidate isoforms, by minimizing the sum-of-squares

difference between expected and observed read counts.

This baseline model is augmented by various refinements,

including machine-learning predictions of transcription start

sites, a shape-profile correction for read counts, and masking

of read counts near isoform TSSs and TTSs. We have shown

that DENR performs well on simulated and real data, and

can be used for a variety of downstream applications.

In direct comparisons with simple read count-based (RCB)

methods like those used in most current applications, we

find that DENR does indeed offer a substantial performance

improvement. The improvement is most pronounced at

the isoform level, where the RCB methods inevitably

misattribute many reads to the wrong isoform. Interestingly,

however, DENR also improves substantially on gene-level

estimates of abundance. The main reason for this improve-

ment has to do with the normalization for gene length.

The gene-level RCB method has no good way to identify

which bases in the DNA template are transcribed, and

must conservatively assume transcription occurs across the
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union of all annotated isoforms. As a result, it frequently

“over-normalizes” and underestimates abundance. DENR,

by contrast, simultaneously models all isoforms and explains

the full set of read counts at a locus as a mixture of isoforms.

The limitations we observed with alternative RCB methods

highlight the difficulty of accurately estimating abundance

without a model that assigns reads to isoforms in zero-sum

fashion. Because most reads can potentially arise from

multiple alternative isoforms, any naive counting method

will tend to either over- or under-estimate abundance. These

errors in abundance estimation, in turn, can result in biases

in many downstream applications, such as elongation-rate or

RNA-half-life estimation.

In analyses of real data, we found that many genes (nearly

half of robustly expressed genes in K562 and CD4+ T cells)

display evidence of expression at multiple distinct pre-RNA

isoforms. Moreover, we found that the dominant isoform

fairly commonly (in ∼15% of cases) makes use of a TSS

that is substantially downstream of the 5′-most annotation.

These cases are particularly likely to be mischaracterized

by standard methods for quantifying pre-RNA expression.

We have highlighted specific examples showing how DENR

can effectively deconvolve the read-count contributions of

multiple overlapping isoforms, including a complex case

involving multiple overlapping genes (Fig. 4). In addition, in

a comparison of K562 and CD4+ T cells, we identified more

than two hundred genes that use different dominant isoforms

in these two cell types, including prominent examples such

as RUNX1.

One interesting consequence of having the ability—as

we now do—to characterize the distribution of isoform

abundances at both the pre- and mature-RNA levels is that it

potentially allows for a decomposition of the contributions

to isoform diversity from primary transcription and post-

transcriptional processes. In a final analysis, we attempted

to quantify these relative contributions using a simple infor-

mation theoretic calculation, by partitioning the Shannon

entropy in mature-RNA isoform diversity (as estimated from

RNA-seq data using StringTie) into a component estimated

at the pre-RNA level (by applying DENR to PRO-seq data)

and the remainder, which we argue can be interpreted as the

conditional entropy introduced at the post-transcriptional

level. Our observations are qualitatively similar to a number

of previous studies reporting observations of widespread,

regulated alternative TSS usage, often in a tissue-specific

manner (38–40), some of which have argued for a primary

role of transcription relative to splicing (41, 42). However,

while the post-transcriptional entropy that we measure

presumably derives primarily from splicing, it is worth

noting that it could also be influenced by post-transcriptional

up- or down-regulation of particular isoforms, for example,

through miRNA- or RBP-mediated decay. In some cases,

post-transcriptional processes could even reduce entropy

generated at the pre-RNA level, for example, by sharply

down-regulating particular pre-RNA isoforms relative to

others. Importantly, this type of generation or reduction in

entropy can only be detected if pre-RNA isoform diversity

is independently characterized by a method like the one in-

troduced here, rather than indirectly assessed from RNA-seq

(or CAGE) data. For this reason, we believe our analysis is

complementary to previous analyses of alternative promoters

and TSSs.

There are a number of potential avenues for improvement

of our current implementation of DENR. First, the method

assumes a sum-of-squares loss function, which is equivalent

to maximum likelihood estimation under a Gaussian (or log

normal, if optimized in log space) generating distribution

for read counts, with the counts for each bin assumed to

be independent and identically distributed. Real nascent

RNA sequencing read counts, however, tends to be not

only overdispersed but nonuniform along the genome,

with fairly pronounced spikes separated by intervals of

reduced signal. The method could be extended to allow

for maximum-likelihood estimation under an arbitrary

generating distribution for read counts, by making use of

a general probabilistic model for nascent RNA sequencing

data that we have recently proposed (43). This model could

potentially accommodate autocorrelated read counts along

the genome sequence, although in this case, optimizing

the mixture coefficients would become more complex and

computationally expensive. Another advantage of this

framework is that it would naturally accommodate a richer

and more general model for changes in polymerase density

along the gene body, beyond the simple shape-profile

correction introduced here. As a result, it might require a

less heavy-handed masking strategy, by providing a better

description for read counts near TSSs and TTSs. More

work will be needed to determine if these generalizations

are sufficiently advantageous to justify their complexity and

computational costs.

A second limitation is that DENR effectively uses a “hard

prior” for candidate isoforms, either treating them as equally

likely a priori or completely excluding them (i.e., assigning

a prior probability of zero) based on the absence of a TSS

prediction or other evidence of inactivity. A natural gener-

alization would be to accept an arbitrary prior probability

for each candidate isoform. These weights could potentially

be determined based on a variety of relevant covariates,

including not only TSS predictions but also, say, chromatin

accessibility, chromatin contact, histone modification, or

RNA-seq data from a relevant cell type. The model would

then combine the prior probabilities with the data likelihood

to enable full Bayesian estimation of isoform abundances. A

related extension would be to consider not only annotated

isoforms but also ones suggested by the nascent RNA

sequencing data but not annotated. Such candidates could

potentially be identified using a separate method (e.g., (44))

and given lower prior weights than annotated isoforms; if

they had sufficient support in the data, they might still obtain

high posterior probabilities.
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Finally, the current inference method does not make use

of a sparsity penalty to encourage the observed data to

be explained using as few isoforms as possible. In initial

experiments, we did not find that such penalties made a

noticeable difference in our prediction performance, and

in general, we do not observe a proliferation of isoforms

with small weights. However, we do occasionally find that

DENR gives high weights to short transcripts that happen to

coincide with spikes in the data or pause peaks, apparently

owing to a failure to account for spikes in the read-count

data, as well as inadequacies in the shape-profile correction

when applied to short isoforms. It is possible that a sparsity

penalty—perhaps combined with the use of a richer model

for read counts—would help to eliminate some of these

apparently spurious predictions.

Despite these limitations, we have shown that DENR is gen-

erally an effective tool for quantifying pre-RNA abundance at

both the gene and isoform levels, with many possible down-

stream applications. We expect this method to be increas-

ingly useful to the community as nascent RNA-sequencing

data grows more abundant and is used for a wider variety of

downstream applications.

Methods

Estimating isoform abundance. DENR estimates the

abundance of each isoform by non-negative least-squares op-

timization, separately at each cluster. For a given cluster of n
isoforms spanning m genomic bins, let β = (β1, . . . ,βn)′ be

a column vector representing the coefficients (weights) as-

signed to the isoforms, let Y = (y1, . . . ,ym)′ be a column

vector representing the read-counts in the bins, and let X be

an n × m design matrix such that xi,j = 1 if isoform i spans

bin j and xi,j = 0 otherwise. DENR estimates β such that,

β̂ = arg min
β

(Y −Xβ)T(Y −Xβ), (1)

subject to the constraint that βi ≥ 0 for all i ∈ {1, . . . ,n}.

If the option to apply a log-transformation is selected, then

the transformation is applied to both the elements of Y

and those of Xβ, and the optimization otherwise proceeds

in the same manner. In either case, DENR optimizes the

objective function numerically using the BFGS algorithm

with a boundary of zero for the βi values. Notice that, when

the shape-profile correction is applied, the non-zero values

in the design matrix X are adjusted upward and downward

from 1 (see below).

After obtaining estimates for all isoform abundances βi, we

normalize them by the total library depth to facilitate compar-

isons between samples. Isoform-level abundances are then

converted to gene-level abundances by summing over all iso-

forms associated with each gene.

Machine-learning predictor for active TSSs. To dis-

tinguish active and inactive TSSs based on patterns of

bidirectional transcription in nascent RNA-sequencing data,

we implemented a convolutional neural network (CNN)

classifier using the Keras interface to TensorFlow (45). We

trained the CNN on previously published PRO-seq data

from K562 cells (25), using matched GRO-cap data (23)

to identify positive and negative examples. Specifically,

we conservatively defined candidate TSSs as ‘active’ if

they were overlapped with GRO-cap peaks from a HMM-

based predictor described in ref. (23), and TSS with max

GRO-cap signal was selected per peak; in addition, we

defined candidates as ‘inactive’ if TSSs were not overlapped

with any peaks by the HMM-based predictor and no active

TSSs (distance > 100bp) and raw GRO-cap signal (distance

> 25bp) nearby (Supplementary Fig. S2). The CNN was

composed of two 1-D convolutional layers, the first with

a ReLU activation function and both with max-pooling,

followed by drop-out, a densely connected layer, and a single

sigmoid output (Supplementary Fig. S3). It was applied to

feature vectors corresponding to strand-specific read counts

in 21 bins of width 51 bp, centered on the positive and

negative examples; the 42 raw read-counts for each example

were transformed to z-scores for scale-independence. The

CNN was trained using the Adam optimizer (46) with early

stopping.

When the optional TSS-calling feature is in use, only iso-

forms corresponding to predicted ‘active’ TSSs are allowed

to have non-zero weights. However, because the TSS predic-

tor inevitably misses some active TSSs that exhibit unusual

patterns of aligned reads, DENR makes use of a heuristic

method to identify and reconsider regions of “unexplained”

high-density polymerase. Specifically, an upstream poly-

merase ratio (UPR) statistic is calculated by taking the ratio

of the read-count density immediately upstream of the gene

and inside the gene body. If the UPR of an isoform is ≥10,

and there are no other active isoforms within 5 kbp upstream

or 6 kbp downstream of its TSS, then the isoform is eligible

to be assigned a non-zero weight.

Shape-profile correction. The shape-profile correction is

empirically derived from a reference set of isoforms. Briefly,

starting with the full set of annotations provided by the user,

DENR identifies a subset of isoforms that, according to var-

ious heuristics, appear to be sufficiently long, robustly ex-

pressed, and the sole source of sequencing reads in their ge-

nomic regions. DENR then tiles each representative isoform

with bins of the user-specified size (default 250 bp), and maps

those bins to a canonical [0, 1] interval. This mapping is

intended to fix the scales of the promoter-proximal and ter-

mination regions, and allow the remaining gene-body to be

compressed or expanded as needed. Specifically, the first 15

kbp of each isoform is mapped (proportionally) to the interval

[0, 0.2], the last 5 kbp is mapped to [0.8, 1], and the remain-

ing portion is mapped to the (0.2, 0.8) interval. Finally, the

canonical shape-profile is obtained by averaging the relative

read-count densities of the entire [0,1]-rescaled reference set

of isoforms, using a loess fit for smoothing, and scaling the

density such that the median value across the entire interval
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is one. This shape-profile is then used to adjust the design

matrix X (see above) by replacing each value of 1 with the

relative density at the corresponding location in the canon-

ical shape profile. The isoform weights are then estimated

by least-squares, as usual. In the case of isoforms of length

l ≤ 20 kbp, the first 0.75l and last 0.25l base-pairs are pro-

portionally mapped to the [0, 0.2] and [0.8, 1.0] intervals,

respectively, in the canonical shape-profile, and the interval

(0.2, 0.8) is ignored.

Simulation of nascent RNA sequencing data. Our

nonparametric simulator for nascent RNA sequencing

data, called nascentRNASim, makes use of a template

set of isoform annotations and a designated collection of

well-defined isoform “archetypes” and corresponding read

counts. Given these inputs, we simulate a synthetic data

set in five steps. First, we group the isoform annotations

into non-overlapping strand-specific clusters, as in a DENR

analysis. Second, we sample randomly (with resampling)

from this set of clusters, and similarly, from the set of

inter-cluster distances. Third, within each sampled cluster,

we substitute for each isoform the archetype that is closest to

it in genomic length, keeping the TSS at its original position

relative to the beginning of the cluster. Fourth, we sample

a new isoform abundance for each synthetic isoform from

a distribution fitted by kernel density estimation to isoform

abundance estimates from GTEx for skeletal muscle (32).

Finally, we obtain a new read count for each bin along the

isoform by resampling from the original value in proportion

to the simulated abundance estimate. In this way, we sample

a full synthetic data set, consisting of realistic clusters, each

with a realistic distribution of isoforms and realistic patterns

of read counts, but with a known abundance for each isoform.

In this work, we used the PRO-seq data set from ref. (25)

as our source data set, together with isoforms from Ensembl.

We selected a set of 62 archetypes manually, looking for iso-

forms with a range of lengths that exhibited relatively high

read depth, appeared to be solely responsible for the local

PRO-seq signal (i.e., they did not overlap other active iso-

forms and were at least ∼5 kbp from other active genes), and

showed a PRO-seq signal that approximately coincided with

the annotated TSS and TTS, dropping to background levels

nearby. We also considered GRO-cap data from ref. (23) in

identifying TSSs. Notice that the design of the simulator en-

sures that every synthetic isoform has the same length and

approximate read-count pattern as one of the 62 archetypes,

but multiple isoforms may overlap (with additive contribu-

tions to read counts) in the synthetic data.

Calculation and decomposition of Shannon entropy.

Let Xi be a random variable representing the possible

pre-RNA isoforms of gene i, and assume the probability

density function for Xi is proportional to DENR-based

estimates of isoform abundance. That is, p(Xi = j) = 1
Zi

qij ,

where qij is the estimated abundance of the jth isoform

of gene i and Zi =
∑

j qij . We calculate the Shannon

entropy of Xi as H(Xi) = −
∑

j p(Xi = j) log2 p(Xi = j),

and we calculate the total entropy of a set of genes S as

H(XS) =
∑

i∈S H(Xi), assuming independence of genes.

Similarly, let Yi represent the possible mature RNA isoforms

of gene i, with p(Yi = k) = 1
Z′

i

q′
ik, where q′

ik is the StringTie-

estimated abundance of the kth isoform of gene i and

Z′
i =

∑
k q′

ik. Then H(Yi) = −
∑

k p(Yi = k) log2 p(Yi = k),

and, for a set of genes S, H(YS) =
∑

i∈S H(Yi).

To decompose entropy into components from H(X) (pri-

mary transcription) and H(Y |X) (post-transcriptional pro-

cesses), we consider the joint entropy of X and Y , H(X,Y ),

and make use of the chain rule for joint and conditional en-

tropy, H(Y |X) = H(X,Y ) − H(X), interpreting H(Y |X)
as the additional entropy contributed to the distribution of

pre-RNA isoforms by post-transcriptional processes. Fur-

thermore, because in this case, each mature RNA isoform

corresponds to a single pre-RNA isoform, H(X,Y ) is the

same as H(Y ). Specifically, for each i,

H(Xi,Yi)

= −
∑

j

∑

k≈j

p(Xi = j,Yi = k) log2 p(Xi = j,Yi = k)

= −
∑

k

p(Yi = k) log2 p(Yi = k) = H(Yi),

where k ≈ j indicates that mature RNA isoform k is compat-

ible (in TSS and TTS) with pre-RNA isoform j.

Human blood CD14+ monocytes and CD4+ T-cells iso-

lation. Roughly 80 ml of human blood was drawn to and

kept in spray-coated EDTA tubes (BD Vacutainer #366643)

at 4°C. The following day, blood was diluted 1:1 in PBS and

loaded on an equal volume of Ficoll-Paque (Fisher Scientific

#45-001-750). Peripheral blood mononuclear cells (PBMCs)

were then isolated by centrifugation for 20 min at 750xg.

All layers, excluding the lower erythrocytes-containing layer,

were moved to a new 50ml tube, and washed twice in PBS.

PBMCs were then treated with 2 ml of erythrocytes ly-

sis buffer (Lonza Walkersville inc. #120-02-070) for 1 min,

flooded with 5 ml of RPMI supplemented with 10% FBS, and

centrifuged for 10 min at 4°C and 1500 RPM on a Megafuge

40R Refrigerated Centrifuge (Thermo Scientific #75004518).

CD14+ monocytes were isolated from PBMCs by a magnetic

cell separation system (MACS) using anti-human CD14 anti-

body attached to microbeads (Miltenyi Biotec #130050201)

on an LS column (Miltenyi Biotec #130-042-401) follow-

ing the manufacturer’s protocol, while maintaining the flow-

through of PBMCs without CD14+ monocytes. CD4+ T cells

were then isolated from CD14+ monocyte-free PBMCs us-

ing anti-human CD4 antibody attached to microbeads (Mil-

tenyi Biotec #130045101) on a new LS column, following the

same protocol. Finally, CD14+ monocytes and CD4+ T-cells

were incubated for 1h of recovery in RPMI supplemented

with 10% FBS before any downstream applications.

RNA-seq library preparation. Cells were flooded with 1

ml per 5×106 cells of TRI reagent (Molecular Research Cen-
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ter #TR118) and 0.2 ml of chloroform was added per 1 ml

of TRI reagent followed by a vigorous vortexing for 20 sec.

Cells were then incubated in the TRI reagent and chloroform

solution for 2 minutes, followed by a 12,000xg centrifugation

at 4°C for 15 min. The resulting aqueous phase was trans-

ferred to a new 1.5 ml tube and 0.5 ml of isopropyl alcohol

was added for each 1 ml of TRI reagent initially used, and the

solution was incubated in room temperature for 10 min, fol-

lowed by a 10 min centrifugation in 12,000xg at 4°C. RNA

was then washed twice with 75% ethyl alcohol, air-dried for

5 min with an open lid on ice and dissolved in DEPC-treated

water. Poly-A enriched RNA-seq libraries were then pre-

pared with up to 1 µg of isolated RNA, using the NEBNext®

Ultra™ II Directional RNA Library Prep Kit for Illumina®

(New England Biotech #E7760) with the NEBNext Poly(A)

mRNA Magnetic Isolation Module (New England Biotech

#E7490), following the manufacturer’s protocol.

Nuclei isolation and PRO-seq library preparation. 1 ×
106 cells were centrifuged at 4°C for 5 min at 1000xg

and washed twice with 1 ml of PBS. Cells were then re-

suspended in 150 µl of wash buffer (10mM Tris-Cl pH 8.0,

300mM sucrose, 10mM NaCl, 2mM MgAc2, 2.5 µM DTT,

1X protease inhibitor cocktail (Thermo Scientific, #A32965))

supplemented with 0.6U of SUPERase In RNase Inhibitor

(Thermo Fisher Scientific, #AM2696). 150 µl of 2X lysis

buffer (10mM Tris-Cl pH 8.0, 300mM sucrose, 10mM NaCl,

2mM MgAc2, 6mM CaCl2, 0.2% NP-40) were added to the

solution and samples were gently pipetted up and down 10

times, to facilitate nuclei release. Released nuclei were then

centrifuged at 4°C for 5 min at 1000xg, washed with 1 ml

of a 1:1 ratio solution of wash buffer and 2X lysis buffer

and re-suspended in 50 µl of storage buffer (50mM Tris-

CL pH 8.3, 40% glycerol, 5mM MgCl2, 0.1 mM EDTA, 2.5

µM DTT, 1X protease inhibitor cocktail) supplemented with

0.2U of SUPERase In RNase Inhibitor. PRO-seq run-on and

library preparation was completed following a recently up-

dated protocol (47). Briefly, nuclei were run-on by incubat-

ing at 37°C for 5 min in run-on buffer (10 mM Tris-Cl pH

8.0, 5 mM MgCl2, 1 mM DTT, 300 mM KCl, 40 µM Biotin-

11-CTP, 40 µM Biotin-11-UTP, 40 µM Biotin-11-ATP, 40

µM Biotin-11-GTP, 1% (w/v) Sarkosyl in DEPC H2O). The

run-on reaction was stopped by adding Trizol LS (Life Tech-

nologies, #10296-010). RNA was pelleted with the addition

of GlycoBlue (Ambion, #AM9515) to visualize the pellet,

re-suspended in diethylpyrocarbonate (DEPC)-treated water

and heat denatured for 40 sec. RNA was digested using 0.2N

NaOH on ice for 6 min, which yields RNA lengths ranging

from ∼20–500 bases. The 3′ adapter (sequence: AGATCG-

GAAGAGCACACGTCTGAACTC) was ligated using T4

RNA Ligase 1 (NEB, M0204L) and purified nascent RNA

using streptavidin beads (NEB, S1421S). Next the nascent

RNA was decapped using RppH (NEB, M0356S), the 5′ end

was phosphorylated using T4 polynucleotide kinase (NEB,

M0201L), and the 5′ adapter (sequence: GTTCAGAGTTC-

TACAGTCCGACGATC) was ligated. RNA was removed

from the beads and a reverse transcription was performed

using Superscript IV Reverse Transcriptase (Life Technolo-

gies) and amplified using Q5 High-Fidelity DNA Polymerase

(NEB, M0491L). PRO-seq libraries were sequenced using

the NextSeq500 high-throughput sequencing system (Illu-

mina) at the Cornell University Biotechnology Resource

Center.

Applying DENR to synthetic data. To benchmark

DENR’s performance, nascentRNASim was first used to

simulate PRO-seq read-counts for 1500 genes. To thoroughly

examine the effects of optional features on performance, all

combinations of optional features, i.e., with and without TSS

prediction, shape-profile correction, log-transformation of

read-counts, and with various numbers (0, 1, or 4) of masked

bins at both the 5′ and 3′ end of each isoform, were tested

on the synthetic data, resulting in a total of 72 test schemes

(23 × 32; Supplementary Figs. S5&S6). The scheme with

TSS prediction, shape-profile correction, log-transformation

of read-counts, masking of one bin around the TSS and

four bins around the TTS performed well at both the gene

and isoform levels. Therefore, this combination was used

for all subsequent analyses in synthetic and real data with

one exception: in the entropy analysis, we used RNA-seq

data indicate non-active isoforms instead of relying on

TSS prediction. The gene-level comparison was performed

on the whole set of genes, and on two complementary

subsets: one for which active isoforms predominately used

an internal TSS, and one for which they used the 5′-most

TSS for transcription. Genes were defined as using an

internal TSSs if their dominant isoforms were transcribed

from a TSS at least 1 kbp downstream from the 5′-most TSS

annotation; otherwise they were defined as using the 5′-most

TSS (Supplementary Fig. S7). At the isoform level, we

compared the performance of DENR and the RCB method

for both dominant isoforms determined by true abundances

in simulation, and longest isoforms determined by the

annotations. To make the estimates more comparable, we

masked 250 bp downstream from TSS and 1000 bp upstream

from the TTS when counting reads for the RCB method.

For the RCB method, the abundance of a gene or isoform i
is estimated as follows:

qRCB
i =

ri ·106

fiT
,

where ri is number of reads mapped to the genomic region

in question (corresponding either to an isoform or the union

of isoforms associated with a gene), fi is the length of that

region, and,

T =
∑

g∈G

rg

fg
,

where G is the set of all genes in the simulation, rg is number

of reads mapped to a gene region, and fg is the length of that

gene. Notice that qRCB
i has units of transcripts per million

(TPM) (48).

Applying DENR to real data. To prepare bigWig files as

input for DENR, published K562 (25) and CD4+ T cell (33)
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PRO-seq libraries were first processed by the PROseq2.0

pipeline using single-end mode (49). The human genome

assembly (GRCh38.p13) and isoform annotations were

downloaded from Ensembl (release 99) (50). Annotations

of protein-coding genes from the autosomes and X chro-

mosome were used, excluding genes that overlapped on

the same strand. To identify genes producing two or more

pre-RNA isoforms with high confidence, only genes with

robust expressions (i.e., ranking at top 75% of all expressed

genes) in K562 (n = 7732) and CD4+ T cells (n = 7632)

were retained for analysis. To survey predominant usage

of internal TSSs for transcription, genes with dominant

pre-RNA isoforms transcribed from internal TSSs 1 kbp

downstream from the 5′ most TSSs were identified and

visualized using Gviz (51).

To investigate the differences in dominant isoforms between

K562 and CD4+ T cells, mature RNA isoform annotations

were first grouped together if the distances between their

annotated TSSs were <1 kbp. The longest isoform in each

group was selected as the representative and used for esti-

mating abundance. Inactive TSSs were predicted separately

in K562 and CD4+ T cells then intersected, to ensure that the

same set of inactive isoforms was used across cell types. To

identify genes with different dominant isoform between cell

types, 6757 genes exhibiting robust expression (i.e., ranking

in the top 75% in both cell types) were analyzed. We focused

on cases in which the dominant isoforms differed in the two

cell types. Gene Ontology analysis was performed using the

online tool DAVID (52).

For calculation of Shannon entropy in the newly generated,

matched PRO-seq and RNA-seq data for CD4+ T cells and

CD14+ monocytes, we estimated isoform abundances at the

pre-RNA and mature RNA levels. For mature RNA abun-

dances in RNA-seq, adapters (sequence: AGATCGGAA-

GAGC) in raw reads were first removed using Cutadapt

(v2.10) (53). Clean reads were then aligned to the human

genome using HISAT2 (v2.2.1) (54). Mature RNA isoform

abundances were quantified using StringTie (v2.1.4) (37).

Human genome (GRCh38.p13) and GTF files were down-

loaded from Ensembl (release 99) (50). For pre-RNA isoform

abundances, PRO-seq libraries were first processed by the

PROseq2.0 pipeline using paired-end mode (49), then DENR

was used to quantify abundances. The shape-profile correc-

tion, log-transformation of read-counts, and masking of one

around the TSS and four bins around the TTS were used, as

in other analyses, but that inactive isoforms were identified as

those not detected in the RNA-seq data rather than by using

DENR’s TSS prediction feature. 10,650 genes with abun-

dance estimates > 0 in CD4+ T cell and CD14+ monocyte

samples were used for the entropy calculation.

Software availability. DENR and nascentRNASim are

freely available at https://github.com/CshlSiepelLab/DENR

(version v1.0.0) and https://github.com/CshlSiepelLab/

nascentRNASim (version v0.3.0). Usage of DENR is demon-

strated in a vignette at https://github.com/CshlSiepelLab/

DENR/blob/master/vignettes/introduction.Rmd.

Data availability. All published datasets were downloaded

from GEO. GRO-cap data for TSS detection model train-

ing was retrieved in preprocessed form using accession num-

ber GSE60456 (23). PRO-seq data from K562 (25) and

CD4+ T cells (33) were retrieved using accession numbers

GSE96869 and GSE85337. Data submission of newly gener-

ated PRO-seq and RNA-seq to dbGaP is in progress (project

#phs002146.v1.p1).
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